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Abstract

We consider a model equation for 3D vorticity dynamics of incompressible vis-
cous fluid proposed by K. Ohkitani and the second author of the present paper. We
prove that a solution blows up in finite time if the L1-norm of the initial vorticity
is greater than the viscosity.
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1 Introduction

An evolution equation which was derived from the Navier-Stokes equations in [18] is
considered. It is written as follows:

ωt = ‖ω(t)‖∞ (rωr + 2ω) + ν
1

r
(rωr)r (0 ≤ r <∞, 0 < t), (1)

ω(0, r) = ω0(r), (2)

where ν > 0 is the kinematic viscosity, ω is a function of (t, r), ω(t) denotes r-function
ω(t, ·), and ‖ ‖∞ denotes the L∞-norm. This is derived from the vorticity dynamics in a
linear strain field with the assumption that the strain-rate is proportional to the L∞-norm
of the vorticity. Actually the velocity field u of incompressible viscous fluid in question is
given by

u = (−ζ(t)x+ u(t, x, y),−ζ(t)y + v(t, x, y), 2ζ(t)z) , (3)

where (x, y, z) denotes a point in three dimensional space R3, ζ(t) = ‖ω(t)‖∞, and

u(t, x, y) =
−1

2π

∫
R2

(y − η)

(x− ξ)2 + (y − η)2
ω
(
t,
√
ξ2 + η2

)
dξdη,

v(t, x, y) =
1

2π

∫
R2

(x− ξ)
(x− ξ)2 + (y − η)2

ω
(
t,
√
ξ2 + η2

)
dξdη.

( Note that curl u = (0, 0, ω(t, r)) with r =
√
x2 + y2. ) Although the assumption

that the strain-rate ζ(t) is proportional to ‖ω(t)‖∞ is somewhat artificial, the solutions
of (1) still are exact solutions of the three-dimensional Navier-Stokes equations ([18]).
Hence it may be interesting to supply a mathematical proof of blow-up in finite time.
Note however that our solutions are unbounded in R3, whence the energy is infinite. In
particular, blow-up proved in the present paper do not have relevance to the famous
problem of the regularity of the solutions of the Navier-Stokes equations ( [5, 12, 14] ).
Nevertheless, our results remind us that the energy inequality or something to specify the
largeness of the velocity at infinity is necessary for the regularity of solutions of the 3D
Navier-Stokes equations. For other aspects and related topics, see [7, 16, 18].

It was proved in [18] that, if ‖ω(t)‖∞ is replaced in (1) by the Lp-norm ‖ω(t)‖p with
finite p, the solutions exist globally in time. The paper could not clarify the dynamics
when L∞-norm was employed as in (1), although it found a self-similar blow-up solution
of (1) and strongly suggested the blow-up for general data. The purpose of the present
paper is to prove this ( Theorem 2 below ).

Numerical evidence exists for blow-up of certain exact unbounded solutions of the
Navier-Stokes equations ( [8, 9, 17, 19] ), while global existence of some exact solutions
are proved in [3, 18, 21]. Also, there exist mathematical proofs of blow-up for solutions of
the 3D Euler equations with infinite energy ( [4, 15, 21] ). However, it seems to be worthy
of notice that the following two things hold true simultaneously in the Navier-Stokes
equations ( as is implied by Theorems 1 and 2 below ):

1. there exists a class of functions in which the unique existence local-in-time of the
solution is guaranteed:
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2. there exists a proof that some solution blows up in finite time.

Remark 1. A few words on the claim 1 above would be helpful. We prove the uniqueness
of the solution of the vorticity equation, which in our case is (1). The velocity vector fields
is constructed by (3), which may well be called a generalized Biot-Savart law, since its
right hand side is a sum of the usual Biot-Savart term and an unbounded, irrotational flow.
Therefore we cannot specify explicitly a uniqueness class in terms of u. The uniqueness
class is a thin, linear manifold of the space of bounded vorticity fields.

The present paper consists of four sections and an appendix. We give in section 2 a
remark about non-existence of comparison theorem. The blow-up theorem is stated and
proved in section 3. Section 4 is devoted to comments on remaining cases. Finally a proof
of the unique existence of the solution local-in-time is given in Appendix.

2 Non-existence of comparison theorem

Before entering details of the result, we would like to show that the equation (1) does
not admit a comparison theorem. We recall that self-similar blow-up solutions, which are
written as

ω(t, r) =
1 + 4αν

2(T − t)
exp

(
− αr2

T − t

)
, (4)

where T > 0 and α > 0 are parameters, were found in [18]. If a comparison theorem
were valid, then the existence of a self-similar blow-up solution and comparison theorem
would imply that any initial function which was larger at t = 0 than a self-similar blow-up
solution also blowed up in finite time. Although there is a possibility that this argument
is correct, this way of proof would be very difficult, since there exists an example which
shows that comparison between two general solutions is not guaranteed. Accordingly we
are forced to look for a different approach to the proof of blow-up.

In order to see the invalidity of the comparison theorem, we consider two smooth
functions f1(r) and f2(r) satisfying the following conditions:

• f1(r) ≥ f2(r) > 0 for all r ∈ [0,∞),

• ‖f1‖∞ > ‖f2‖∞,

• there exists an r0 > 0 such that, f1(r0) = f2(r0), f ′1(r0) = f ′2(r0), and r0f
′
1(r0) +

2f1(r0) = r0f
′
2(r0) + 2f2(r0) < 0.

Then w ≡ ω1(t, r) − ω2(t, r), where ωj denotes the solution of (1) with fj as its initial
data ( j = 1, 2 ), satisfies

wt(0, r0) = (‖f1‖∞ − ‖f2‖∞) (2r0f
′
1(r0) + 2f1(r0)) + ν(f1 − f2)′′(r0).

( This equation is valid because both ω1 and ω2 are continuous at t = 0, see Theorem
1 below. ) The right hand side is negative if ν is small enough. Since w(0, r0) = 0,
w(t, r0) is negative for small t > 0, while w is nonnegative everywhere at t = 0.
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3 Finite time blow-up

We now prove that large initial data lead to blow-up in finite time. Before doing so, we
present some facts, which hold for any solutions without an assumption of the largeness
of the initial data.

Let ‖ ‖1 be defined by

‖f‖1 ≡
∫ ∞

0

|f(r)|rdr <∞,

and let X1 be the set of all bounded, uniformly continuous functions defined in [0,∞)
such that ‖f‖1 < ∞. With ‖f‖1 + ‖f‖∞ as its norm, X1 is clearly a Banach space. Let
X2 be the set of all the function f : [0,∞) → R such that f is continuous and bounded
in [0,∞) and satisfies

‖f‖∗ ≡ sup
0≤r<∞

r|f(r)| <∞.

Equipped with ‖f‖∞ + ‖f‖∗, X2 is a Banach space. Note that any function in X2 is
uniformly continuous in [0,∞). We then have the following

Theorem 1 For all ω0 ∈ X1 ∩ X2, there exists T1 > 0 depending only on ‖ω0‖1 +
‖ω0‖∞+ ‖ω0‖∗ such that the solution of (1) and (2) exists and unique in C0([0, T1];X1)∩
L∞(0, T1;X2).

We postpone the proof until we outline it in Appendix, since the local existence is not a
central issue and its proof is carried out by standard arguments. The reader, however,
may wonder if the function space X1 ∩ X2 is the largest one for the unique existence.
In particular, one may wonder if the somewhat artificial condition sup r|f(r)| < ∞ can
be weakened. We do not know the answer. Since this function space suits our physical
motivation in which the vortices are localized near the z-axis ( [18] ), we would not try
to find an optimal result.

Throughout the remaining part of the present paper, we consider those solutions with
ω0(r) ≥ 0 everywhere. Despite the failure of the comparison theorem, we can still prove
that ω(t, r) ≥ 0 for all t and r. We can also prove easily that the L1-norm of ω(t) is
conserved by the evolution equation (1). Accordingly, we have ‖ω(t)‖1 =

∫∞
0
ω(t, r)rdr =

‖ω0‖1 for all t ≥ 0. Therefore, the global existence is guaranteed if the a priori estimate
sup0<t<T ‖ω(t)‖∞ <∞ and sup0<t<T ‖ω(t)‖∗ <∞ hold for any T > 0.

Let [0, T ) be the maximum interval of the existence of the solution ω(t). ( T =∞ is
included. ) We define two functions a and b of t ∈ [0, T ) by

a(t) = exp

(∫ t

0

‖ω(s)‖∞ds
)
, b(t) =

∫ t

0

a(s)2ds. (5)

They are increasing functions and satisfy a(t) ≥ 1 and b(t) ≥ t in 0 ≤ t < T . We next
define u = u(τ, ξ) by

∂u

∂τ
= ν

1

ξ

∂

∂ξ

(
ξ
∂u

∂ξ

)
, u(0, ξ) = ω0(ξ), (6)
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or we may write as

u(τ, ξ) =
1

4πντ

∫
R2

exp

(
−|ξ − y|2

4ντ

)
ω0(|y|)dy1dy2,

where ξ = (ξ, 0) and y = (y1, y2). Then it holds that

ω(t, r) = a(t)2u (b(t), a(t)r) . (7)

( This nice trick is due to Lundgren [13]. )
Defining h as h(τ) = 2τ‖u(τ)‖∞, we can easily see that limτ→0 h(τ) = 0, that h is a

monotone increasing function, and that we have

lim
τ→∞

h(τ) =
‖ω0‖1

ν
. (8)

In view of this, we define γ = ‖ω0‖1/ν. Note also that we have the following differential
equations

ȧ =
h(b)

2b
a3, (9)

ḃ = a2 (10)

with initial data a(0) = 1 and b(0) = 0. From these equations, we have

ȧ

a
=

1

2
h(b)

ḃ

b
. (11)

Now take any t0 ∈ (0, T ) and fix it. Define γ̃ = h(b(t0)). Then (11) and the mono-
tonicity of h yield

γ̃

2

ḃ

b
≤ ȧ

a
≤ γ

2

ḃ

b
(t0 ≤ t < T ).

By integration we obtain (
b(t)

b(t0)

)γ̃/2
≤ a(t)

a(t0)
≤
(
b(t)

b(t0)

)γ/2
(12)

These inequalities imply that

lim
t→T

a(t) = lim
t→T

b(t) =∞, (13)

in either case of T < ∞ or T = ∞: in fact, if T < ∞, then we must have either
limt→T ‖ω(t)‖∞ =∞ or limt→T ‖ω(t)‖∗ =∞ because of the local existence of the solution
in X1 ∩X2 and the invariance of the L1-norm. Note that

ξu(τ, ξ) =
1

4πντ

∫
exp

(
−(ξ − y1)2 + y2

2

4ντ

)
(ξ − y1)ω0(|y|)dy1dy2

+
1

4πντ

∫
exp

(
−(ξ − y1)2 + y2

2

4ντ

)
y1ω0(|y|)dy1dy2

≤ cτ 1/2‖ω0‖∞ + ‖ω0‖∗,
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so we have
‖u(τ)‖∗ ≤ cτ 1/2‖ω0‖∞ + ‖ω0‖∗, (14)

where c is a constant. Hereafter we follow the usual convention that c denotes a positive
constant which may differ in different contexts. Note also that ‖u(τ)‖∞ ≤ ‖ω0‖∞. Since

‖ω(t)‖∞ = a(t)2‖u(b(t))‖∞, ‖ω(t)‖∗ = a(t)‖u(b(t))‖∗,

either a or b must be unbounded, hence both are unbounded because of (12). If T =∞,
then b(t) ≥ t, as is noted above, shows the unboundedness of b, and (12) implies (13).

We finally define d by d(t) = a(t)−2b(t). It satisfies

ḋ = 1− h(b) (0 ≤ t < T ). (15)

The following lemma, which will play a crucial role later, is easily verified:

Lemma 1 d(t) is positive for all t ∈ (0, T ). ḋ is monotone decreasing. It satisfies

‖ω(t)‖∞ =
h(b(t))

2d(t)
. (16)

We are now ready to prove the following theorem:

Theorem 2 Let ω0 ∈ X1 ∩X2 be non-negative in [0,∞). Then the solution blows up in
finite time if ‖ω0‖1 > ν. Further, we have

lim
t→T

(T − t)‖ω(t)‖∞ =
γ

2(γ − 1)
, (17)

where T is the blow-up time and γ = ‖ω0‖1/ν.

Proof. Suppose that the solution exists for all t ∈ [0,∞). Then, since the right hand
side of (15) tends to 1 − γ < 0, d(t) becomes negative for sufficiently large t. This is an
obvious contradiction because d is positive. d(t) therefore exists only for finite time.

In order to prove (17), we take t0 such that γ̃ = h(b(t0)) > 1. This is possible if t0 is
sufficiently close to T ( see (8) ). Then (12) and (13) imply that limt→T d(t) = 0. This,
together with (15), yields that

d(t)

T − t
=

1

T − t

∫ T

t

h(b(s))ds− 1→ h(b(T − 0))− 1 = γ − 1

as t→ T . Consequently, by Lemma 1, we have

lim
t→T

(T − t)‖ω(t)‖∞ = lim
t→T

h(b(t))

2

T − t
d(t)

=
γ

2(γ − 1)
,

and we are done. 2

Remark 2. It is interesting to note the self-similar blow-up solutions (4) satisfy

‖ω(0)‖1 = ν +
1

4α
> ν.
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Remark 3. The blow-up rate (17) complies with the famous criterion by Beale, Kato
and Majda[1], although their theorem gives a blow-up criterion for the Euler equations,
not for the Navier-Stokes equations. It also complies with Kozono and Taniuchi’s blow-up
criterion on the Navier-Stokes equations in [11].

Remark 4. Also important is to note that blow-up occurs only at r = 0 if the initial
function is monotone decreasing in r and decays sufficiently rapidly as r →∞. Since the
numerical solutions discovered by [8, 9, 17] seem to blow up on the whole interval of space
variable, not on a single point, the model (1) may be said to be potentially more relevant
( to real flow dynamics ) than those equations in [8, 9, 17] are. However, the fact that the
set of singular points is exactly the z-axis does not comply with the existence of a weak
solution such that the one-dimensional Hausdorff measure of the ( possible ) singular set
is zero ( [2] ). This discrepancy is caused, of course, by the non-existence of the energy
inequality.

4 The case where ‖ω0‖1 ≤ ν

We here prove

Theorem 3 Assume that ω0 ∈ X1∩X2 is non-negative. If ‖ω0‖1 ≤ ν, the solution of (1)
and (2) exists for all 0 ≤ t <∞. Further, sup0<t<∞ ‖ω(t)‖∞ <∞. If ‖ω0‖1 < ν, then

lim
t→∞

t‖ω(t)‖∞ =
γ

2(1− γ)
.

In particular ‖ω(t)‖∞ tends to zero. If ‖ω0‖1 = ν, we have

lim inf
t→∞

‖ω(t)‖∞ > 0,

provided that there exists a positive constant δ such that∫ ∞
0

ω0(r)r1+δdr <∞.

Proof. By (12) we have

ḃ = a2 ≤ a(t0)2

b(t0)γ
b(t)γ ≡Mb(t)γ

for all 0 < t0 < t. Accordingly, we have

b(t)1−γ

1− γ
≤ b(t0)1−γ

1− γ
+M(t− t0) (for γ < 1)

or
b(t) ≤ b(t0) exp (M(t− t0)) (for γ = 1),

which implies that b is locally bounded. The boundedness of a follows from this and
(12). Since ‖ω(t)‖∞ = a(t)2‖u(b(t))‖∞ ≤ a(t)2‖ω0‖∞, the local boundedness of ‖ω(t)‖∞
follows. Also (14) implies that

|rω(t, r)| = a(t)2r|u(b(t), a(t)r)| ≤ a(t) ‖u(b(t))‖∗ ≤ ca(t)
(
b(t)1/2‖ω0‖∞ + ‖ω0‖∗

)
.
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Therefore ω(t) is bounded in X2 locally in time, and the possibility of T <∞ is excluded.
By Lemma 1, ḋ(t) ≥ 1− γ ≥ 0, whence d(t) ≥ d(t0) > 0 for all t ≥ t0. We therefore

have the following upper bound:

‖ω(t)‖∞ =
h(b(t))

2d(t)
≤ γ

2d(t0)
.

If γ < 1, then Lemma 1 implies

lim
t→∞

d(t)

t
= lim

t→∞
ḋ(t) = 1− γ.

Accordingly

t‖ω(t)‖∞ =
h(b(t))

2

t

d(t)
→ γ

2(1− γ)

as t→∞.
Finally, we note that, if γ = 1,

ḋ(t) ≤ 1− 1

2πν

∫
R2

exp

(
− |y|

2

4νb(t)

)
ω0(|y|)dy1dy2

=
1

ν

∫ ∞
0

[
1− exp

(
− r2

4νb(t)

)]
ω0(r)rdr

≤ cb(t)−δ/2,

On the other hand, (10) and (12) give us

ḃ ≥ kbγ̃ (t0 ≤ t)

with a positive constant k and γ̃ = h(b(t0)). Hence

b(t) ≥
{
b(t0)1−γ̃ + k(1− γ̃)(t− t0)

}1/(1−γ̃)

for t ≥ t0. Note that γ̃ = h(b(t0)) can be chosen as closely to unity as we wish. If
1− γ̃ < δ/2, then

d(t) ≤ d(t0) + c

∫ ∞
t0

ds

b(s)δ/2
≡ K <∞.

This implies

‖ω(t)‖∞ =
h(b(t))

2d(t)
≥ γ̃

2K
.

2

Remark 5. There exist ( [18] ) the following steady-states:

ω0(r) = 2ανe−αr
2

,

where α ∈ (0,∞) is a parameter. Whatever α may be, we have ‖ω0‖1 = ν.
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Appendix

Proof of Theorem 1: Suppose that ω0 ∈ X1 ∩X2 is given. In this section, its sign does
not matter. We now define

Y = {A ∈ C0([0, T ]) ; 0 ≤ A(t) ≤ 2‖ω0‖∞ ( t ∈ [0, T ] ) }.

Given any A ∈ Y we define ω by

ωt = A(t) (rωr + 2ω) + ν
1

r
(rωr)r (0 ≤ r <∞, 0 < t),

ω(0, r) = ω0(r).

We then define Φ(A)(t) = ‖ω(t)‖∞ for 0 ≤ t ≤ T . Our goal is then to prove the existence
of a fixed point of the mapping Φ. We begin with the proof of the fact that there exists
a T > 0 such that Φ maps Y into itself.

For a given A, we define a and b by

a(t) = exp

(∫ t

0

A(s)ds

)
, b(t) =

∫ t

0

a(s)2ds.

Defining u = u(τ, ξ) by (6), we have ω(t, r) = a(t)2u(b(t), a(t)r). Since ω0 is uniformly
continuous, ‖u(τ)‖∞ is continuous on [0, T ], which implies that ‖ω(t)‖∞ = a(t)2‖u(b(t))‖∞
is continuous on [0, T ]. Further, we obtain

‖ω(t)‖∞ = a(t)2‖u(b(t))‖∞ ≤ a(t)2‖ω0‖∞.

Therefore Φ(A) ∈ Y, if exp (4T‖ω0‖∞) ≤ 2, which is satisfied for a sufficiently small T .
We fix such a T .

We next show that Φ is a contraction mapping if T is small. Suppose that two
functions A1 and A2 are given and define ai, bi by

ai(t) = exp

(∫ t

0

Ai(s)ds

)
, bi(t) =

∫ t

0

ai(s)
2ds (i = 1, 2).

We then define ωi(t, r) = ai(t)
2u(bi(t), ai(t)r) (i = 1, 2). Let

ω1(t)− ω2(t) =
(
a2

1 − a2
2

)
u(b1, a1r) + a2

2 [u(b1, a1r)− u(b2, a1r)]

+a2
2 [u(b2, a1r)− u(b2, a2r)]

≡ I1 + I2 + I3. (18)

The right hand side is estimated as follows. Note first that

|a1(t)− a2(t)| ≤ c

∫ t

0

|A1(s)− A2(s)|ds ≤ ct max
0≤t≤T

|A1(t)− A2(t)|

and

|b1(t)− b2(t)| ≤ c

∫ t

0

(t− s)|A1(s)− A2(s)|ds ≤ ct2

2
max

0≤t≤T
|A1(t)− A2(t)|.
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We now have
|I1| ≤ ct max

0≤t≤T
|A1(t)− A2(t)|. (19)

Since bi(t) ≥ t implies that

sup
0≤r<∞

|u(b1, a1r)− u(b2, a1r)| = sup
0≤r<∞

∣∣∣∣∫ 1

0

d

ds
u(b2 + s(b1 − b2), a1r)ds

∣∣∣∣
≤
∫ 1

0

∥∥∥∥∂u∂τ (b2 + s(b1 − b2))

∥∥∥∥
∞
ds|b1 − b2| ≤

c|b1 − b2|
min (b1(t), b2(t))

≤ ct−1|b1(t)− b2(t)|,

we have
|I2| ≤ ct max

0≤t≤T
|A1(t)− A2(t)|. (20)

The term I3 is estimated as follows:

u(b2, a1r)− u(b2, a2r) =

∫ 1

0

d

ds
u(b2, a2r + sr(a1 − a2))ds

=

∫ 1

0

uξ(b2, a2r + sr(a1 − a2))(a1 − a2)rds.

Since 1 ≤ min(a1, a2) ≤ a2 + s(a1 − a2), we obtain

sup
0≤r<∞

|u(b2, a1r)− u(b2, a2r)| ≤ sup
0≤ξ<∞

|ξuξ(b2, ξ)| |a1 − a2|.

By a standard argument we have

ξ
∂u

∂ξ
(τ, ξ) =

−1

4πντ

∫
exp

(
−(ξ − y1)2 + y2

2

4ντ

)
ξ(ξ − y1)

2ντ
ω0(|y|)dy1dy2

=
−1

4πντ

∫
exp

(
−(ξ − y1)2 + y2

2

4ντ

)
(ξ − y1)2

2ντ
ω0(|y|)dy1dy2

+
−1

4πντ

∫
exp

(
−(ξ − y1)2 + y2

2

4ντ

)
y1(ξ − y1)

2ντ
ω0(|y|)dy1dy2

≤ ‖ω0‖∞
1

4πντ

∫
exp

(
−(ξ − y1)2 + y2

2

4ντ

)
(ξ − y1)2

2ντ
dy1dy2

+‖ω0‖∗
1

4πντ

∫
exp

(
−(ξ − y1)2 + y2

2

4ντ

) ∣∣∣∣ξ − y1

2ντ

∣∣∣∣ dy1dy2

≤ c‖ω0‖∞ + cτ−1/2‖ω0‖∗.

This then yields

|I3| ≤ c(1 + t−1/2) |a1(t)− a2(t)| ≤ c(t+ t1/2) max
0≤t≤T

|A1(t)− A2(t)|. (21)
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Combining (19)-(21) with (18), we obtain

|ω1(t)− ω2(t)| ≤ c(t+ t1/2) max
0≤t≤T

|A1(t)− A2(t)|.

Namely,
max

0≤t≤T
|Φ(A1)(t)− Φ(A2)(t)| ≤ c(T + T 1/2) max

0≤t≤T
|A1(t)− A2(t)|.

Accordingly Φ is a contraction mapping for sufficiently small T , and it has a unique fixed
point in Y.

The ω(t, r) constructed by the fixed point is what we are looking for. Using the fact
that −4 generates an analytic semigroup in L1 and in the space of bounded uniformly
continuous functions, it is not difficult to verify that ω ∈ C0([0, T ];X1) ∩ L∞((0, T );X2)
( cf. [10, 20] ).

As for uniqueness, we recall that any continuous and bounded solution ω can be
represented as (7). Then, for sufficiently small T > 0, ‖ω(·)‖∞ belongs to Y. The
uniqueness in 0 ≤ t < T is then a consequence of the contraction mapping theorem. Since
this argument can be repeated, we get to the uniqueness.
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