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Abstract

The Navier-Stokes equations for incompressible viscous
fluid are simplified, by means of a similarity assumption,
to coupled equations defined in a finite interval. We show
numerically that some of the solutions can blow up after
finite time. We discuss the difference between 2D and 3D
cases and present an evidence of richness of 3D equations
from a dynamical systems viewpoint.
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1 Introduction

We consider the Navier-Stokes equations for incompressible viscous
fluid motion in the following infinite domain:

Q={(z,y,2); —a<zr<a,-0<yz<ox},

where a is a constant. Following Zhu [52], we assume the following
form ( sometimes called a similarity form ) of the velocity vector:

u:f_g’ U:—@/fxa W = 29z, (11)

where u,v, and w are z,y, and z components, respectively, of the
velocity. f and g are assumed to be functions of (¢,z) only; f =
f(t,x), g = g(t,x). The subscript implies the differentiation. The
velocity u = (u,v,w) and the pressure p satisfy the Navier-Stokes
equations:

1
—+(u-V)u = vAu-— ;Vp (1.2)
divu = 0. (1.3)

The incompressibility condition (1.3) is automatically satisfied by
the ansatz (1.1). The equation (1.2) leads to the following coupled
equations:

ft:v:v - szzzw+(fw+gz)fzz_(f_g)fwwwa (

1.4)
Gtzz = VGzaxzx — (fx + gz)gzx - (f - g)ga:xx (15

)
These equations are to be satisfied in —a < = < a and 0 < t.
Note that no approximation is assumed in deriving (1.4) and (1.5).
Accordingly, any solution of (1.4) and (1.5) is what is called an
exact solution of the Navier-Stokes equations. The wall located at

x = *a is assumed to be fixed. Accordingly, the following boundary
conditions are imposed:

f(t,£a) = g(t, +a) = f(t, +a) = g.(t, £a) = 0. (1.6)
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The purpose of the present paper is to show numerically that some
initial data do not admit a solution global in time. Namely, blow-up
occurs for (1.4), (1.5), and (1.6).

The present paper is composed of five sections. In section 2, we
explain the background of the problem and our motivation. Nu-
merical results will be presented in section 3. Two special cases
of the problem are studied in section 4, where a simpler equation
having blow-up solutions will be derived. Section 5 is devoted to
the computation of the steady-states.

2 Background
If ¢ =0, then we obtain the following single equation:

ft:v:v :szzz:v"‘f:cfww_ffwww- (2'1)

In view of the important contribution by Proudman and Johnson
[36], this equation was called the Proudman-Johnson equation by
Cox [8]. Its first appearance in the literature, however, seems to be
in Riabouchinsky [39]. The stationary version of (2.1), i.e., v fypee +
faofex—f feze = 0, was considered much earlier in Hiemenz [20]. The
purpose of [35] was to study the property of the solutions to (2.1)
and related equations. One of the unsolved problem for (2.1) was to
determine whether any solution of (2.1) with boundary condition

f(t,£a) = fo(t,£a) =0 (2.2)

can blow up in finite time. In 1989, Childress and others [5] re-
ported, among others, that a blow-up occurred for (2.1) and (2.2)
with » > 0. On the other hand, there are some papers which report
that no solution of (2.1) and (2.2) blow up in finite time. We do
not know who was the first to find this but Cox [8] already says
it clearly in 1991 ( see [35] for other information ). Based on the
consideration in [8] and the numerical experiments in [34, 35, 52|,
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we had believed that none of the solution blow up in finite time
but a mathematical proof for global existence of the solutions was
found only recently, see [6].

Grundy and McLaughlin [16] showed that some solutions of
(2.1) could blow up if the following inhomogeneous boundary con-
dition
f(tv —CL) = P1, fxz(ta _a’) = —01, f(ta a’) = P2, fxx(ta a’) = —03,

(2.3)
where p;, 0; (i = 1,2) are appropriate constants, were imposed. So,
the boundary condition plays an important role for blow-up. Pre-
sumably [16] is the first paper to find that an exact solution of
the Navier-Stokes equations blows up in finite time, with a kind
of uniqueness of the solution. In this sense, the contribution of
[16] is very remarkable. Although their evidence for blow-up is
convincing, their argument is partly numerical and partly asymp-
totic analytic. Therefore a rigorous proof of blow-up seems yet to
be sought. If the boundary data in (2.3) is increased gradually
from zero, the phase portrait of the dynamics changes interest-
ingly. Bifurcation of steady-states happens and boundary layers
appear for large Reynolds numbers. This is studied in detail by
[15]. With boundary conditions different from (2.3), steady-states,
their stability, and appearance of chaotic solutions were computed
by [3, 8, 9, 23, 40, 49, 50, 51].

The coupled equations (1.4) and (1.5) were derived ( with a
slightly different but equivalent notation ) by Taylor et al. [46] ( f
should be replaced by — f in their notation. ). With an appropriate
boundary condition, they computed steady-states and studied nu-
merically the dynamical behavior of nonstationary solutions. How-
ever, the existence or nonexistence of blow-up solutions seems to
be out of their interest. Later, Grundy and McLaughlin introduced
in [17] a system of coupled equations, which can be transformed,
by change of variables, to our equations (1.4) and (1.5). With ap-
propriate inhomogeneous boundary condition analogous to (2.3),
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some solutions were shown, by numerical and asymptotic methods,
to blow up ( see [17] ). At nearly the same time, Zhu [52] inde-
pendently found (1.4) and (1.5). Though [46] is the earliest among
these papers, the coupled equations are actually a special case of
what Lin [26] derived in 1957. ( We learned this by [17]. )

In this paper we will show, by numerical experiments, that
some solutions of (1.4) and (1.5) with the homogeneous bound-
ary condition (1.6) blow up in finite time. This shows an inter-
esting difference between two and three dimensional cases. Zhu
[52] showed numerically that blow-up occurred for (1.4) and (1.5)
with the homogeneous boundary condition (1.6). However, he used
only one initial data and there seems to be much room for fur-
ther experiments. In the present paper we test several initial data
and, furthermore, explain the blow-up by a hypothesis concerning
steady-states.

We finally remark that the blow-up of some similarity solutions
of the Navier-Stokes equations is not new. In fact, there are pi-
oneering works by Ohkitani and Craik: Ohkitani [30], Craik [12].
They gave examples of blow-up. However, the solutions in [30] are
not unique in the sense that one initial datum may yield many dif-
ferent solutions. This was pointed out by [31]. Craik [10] implicitly
mentioned non-uniqueness of his solutions. This lack of unique-
ness is caused by the linear ( or higher ) growth of the velocity
vector and/or the pressure. With moderate growth condition on
the pressure and/or the velocity gradient, we have uniqueness of
the solution, see [13, 22, 31]. The uniqueness conditions assumed
in these papers are, of course, violated by the above examples of
blow-up. The most serious obstruction to the uniqueness is the
unboundedness of the pressure ( the pressure associated with our
solution is a quadratic function in y and z ). Also, the solutions of
(2.1) or (1.4) & (1.5) do not meet the criteria of the uniqueness in
[13, 22, 31]. Chae and Dubovskii [4] gave a more systematic way to
construct blow-up solutions, which, too, allow the non-uniqueness



of the solutions.

For mechanical applications, it is important to find a class of
functions in which a solution is unique. This is difficult for those
solutions mentioned in the preceding paragraph. A solution of the
initial-boundary value problem (2.1) or (1.4) & (1.5) can easily be
proved to be unique, say, in C([0,T]; L*(—a,a)). In other words,
the solution may not be unique among general velocity vector fields
but it is unique among the velocity fields of similarity form (1.1).

Recently Ohkitani and Gibbon [29] showed numerically that
some similarity solutions blow up in finite time. Their solutions
have uniqueness in the same sense as the solution of (1.4),(1.5),
and (1.6) is unique. The difference of the equation in [29] and
ours is that their equations are defined in a two-dimensional do-
main while ours are defined in one-dimension. Their velocity field
is unbounded in one direction and ours are unbounded in two di-
rections. Accordingly, their problem may be more suited to physics
problems. On the other hand, our problem may be more suitable
to rigorous analysis.

We finally remark that Okamoto [32] gave some examples of
blow-up via Leray’s backward similarity equations. Here, again,
the uniqueness of the solution to the nonstationary Navier-Stokes
equations is not clear.

We have no mathematical proof for our blow-up results con-
cerning the Navier-Stokes equations. The situation changes if we
consider the Euler equations. Some similarity solutions which blows
up in finite time are known if v = 0. See [4, 5, 7, 27, 43, 44] and
[35].

It has long been conjectured that the Navier-Stokes equations in
three-dimensions have a unique smooth solution for all the time and
the Euler equations may have many spontaneous singularities. We
believe this conjecture is true in the case where the initial data have
finite energy. The results here and in [29] show that, if the finiteness
of the energy is discarded, there is a case where the solution is



unique in some class and at the same time blows up in finite time.
This shows the importance of the finiteness of the energy.

We now rewrite the equation in a nondimensinal form. By the
following re-definition of the variables

- a’ . v v
T +— ax, t}_)jt, fHafa gHgga

the equations (1.4) and (1.5) becomes, after dropping the tildes,

Jtaz = YGzzzz — (fw + gw)gww - (f - g)gzzw- (25

This equation should be satisfied in 0 < ¢ and —1 < x < 1 together
with the boundary condition.

F(t,£1) = g(t, £1) = fo(t,£1) = go(t,£1) = 0. (2.6)

In what follows, we use the following norm:

1/2

1
— _ 2
6l = masx 1)l 1ol = ( [ 1ow)da)
L>® and L? denote the set of all the functions ¢ with ||¢[|e < o0
and ||¢]| < oo, respectively.

3 Numerical experiments

The approximation theory of blow-up solutions has a long history
and many sophisticated schemes have been proposed ( see, for in-
stance Ushijima [47] or Wang [38] ). We, however, use a rather
simple method to minimize our programming labor and the same
technique as in [35] is used in the present paper. Namely we employ
the finite difference scheme proposed by Nakagawa [28].



He proposed a fully-explicit scheme but we modify it to a semi-
implicit scheme in the sense that the viscous term is explicit but
nonlinear term is partly implicit. In doing so we use an idea of
Tabata [45]. Since the idea is the same for all the equations con-
sidered in the present paper, we write down the finite difference
scheme in the simplest case. Namely we consider (2.1), which can
be rewritten, after normalization, as follows:

Wi = Weg + fow — fwy. (3.1)
The function f is determined by w via the Poisson equation:
—fez(t, ) = w(t, x) (-l<z<1), f(t,£1) =0.

In view of this, the equation (3.1) is closed in w. The boundary
condition f,(t,£1) = 0 in (2.2) is equivalent to

/1 w(t,z)dx = /1 zw(t, z)dz = 0. (3.2)

-1 -1
See [52]. Our scheme is the following one.

WZH — Wy Wi — 2w+ w,’}+1+f,?+1 - flzl—lwn+1_fnw;cl+l — Wr_y
At, h? 2h B ap
(3.3)

Here h = 2/N with N being the number of meshes and w} is an
approximation for w(t,, —1 + kh) with t, = Y"1 At,,. We give
{wdHY .. Then f? ’s are determined by the finite differences with
S = f% = 0. Then the finite difference scheme (3.3) are to be
satisfied forn =1 and k = 1,---, N —1. Finally the condition (3.2)
is discretized by the trapezoidal rule and the resulting equation
determines w; and wjy. This process is repeated. The scheme is
complete if we give a rule for At,,. Following Nakagawa [28], we

define At,, as follows:

At,, = min {7’, A(;m} ,
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where Af,, is defined as
fif — fita
2h

and 7 and ¢ are parameters. In order that w; are well-defined,
7 > 0 and ¢ > 0 must be sufficiently small.

Afm =

T 1<k<N-1 ’

IIf xx lloo [ xx oo
200000 250000
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s t
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Figure 1: Time evolution of || fzx(¢, *)||co for (3.1) and (3.2). Initial data;
fzz(0,2) = —10000(52% — 3x). The part in 0 < ¢ < 0.03 is magnified in
the right. 300 meshes are used ( N =300 ). 7 = 0.0001,¢ = 0.02

Figure 1 shows how a solution of (3.1) and (3.2) behaves as ¢
increases. There is a sharp increase of || f;z(t,)||co near ¢ = 0 and
t = 0.018 but the solution eventually decays to zero slowly.

We now consider (1.4), (1.5), and (1.6). It was pointed out
by Zhu [52] that the solution does not blow up if one of f,.(0,-)
and ¢,,(0,-) is small enough. He therefore set f(0,z2) = ¢(0,x)
and obtained Figure 2, which shows how (|| fzz(t, )|l s |92 (t: *) || o)
changes with ¢. Although max (|| f22(0, *)||cos |22 (0, *)||oo) is smaller
than || fz2(0, -)||c in Figure 1, the solution seems to blow up.

We tested other initial data and confirm that solutions blow
up if both of the initial functions are large enough. Rather than
showing these numerical data, we would like to show experiments
for a restricted class of solutions which blows up. This is done in
the next section.
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Figure 2: Time evolution of || fyz(t,-)||co and ||gz(t,-)||co- Initial
data; fu2(0,7) = g44(0,2) = —3000(5z> — 3z). 7 = 0.0002 and
g=003xT

4 Special cases

Suppose that the velocity field is axisymmetric with respect to the
z-axis. This amount to assuming that g(¢,z) = —f(t, z). If we put
g=—f1in (1.4) and (1.5), then the coupled equations are reduced
to the following single equation:

fthzyfwwzz_2ffwwz (_1 <z < 1) (41)
with the boundary condition
f(t,£1) = fo(t, £1) = 0. (4.2)

The evolution equation (4.1) with the periodic boundary condition
has a global solution for any initial data, which was proved in [35].
We remark that the global existence is a consequence of the fact
that f., satisfies the maximum principle ( w = — f,, satisfies w; =
Vg — 2fwy ).
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There is another reduction to a scalar equation. Put g(¢,x) =
f(t,—z). Then (1.4) and (1.5) are reduced to the following equa-
tion:

where the operator H is defined as follows:

¢(t’ '73) B qb(t’ _'T)
9 .

H[¢] =

If £(0,)is odd in z, then the solution to (4.3) and (4.2) remains
to be odd in x for all ¢. In this case (4.3) is the same as (4.1). On
the other hand, evenness of f is not preserved by (4.3) and some
solutions lead to blow-up as is shown in Figure 3. The graphs of f,
are plotted in Figure 4, which seems to indicate that f, blows up
everywhere in —1 < z < 1.

800000

"fXX ”oo

500000 -

100000 - J*
0 S S K

0 001 002 003 004 005 006 0.07 008 0.09

Figure 3: The time evolution of ||f..(¢,)|le for (4.3) and (4.2).
£(0,2) = 100(3z2 — 1). N = 1000, 7 = 0.0001, ¢ = 0.4 x 7
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f, N=1000
£(0X) = 100(3% - 1)

Figure 4: Plots of the graphs of f;(¢,-). The same data as in Figure
3.

5 Steady-state

One of the major differences between the coupled equations (1.4) &
(1.5) and the single equation (2.1) is the existence or nonexistence
of nontrivial steady-states. The equation (2.1) with the boundary
condition (2.2) has no stationary solution other than f = 0 ( see
[35] ). On the other hand we will show numerically that there
exist nontrivial stationary solutions of (1.4), (1.5) and (1.6). The
existence of nontrivial steady-states is an indirect evidence that the
dynamics of (1.4) & (1.5) may have blow-up solutions. In fact, we
can understand why blow-up is favored by (1.4)—(1.6) but not by
(2.1) & (2.2) in the following way.

It is easy to prove that (1.4),(1.5), and (1.6) admit a unique
strong solution for short time for any (f(0, ), g(0,-)) € L*(—1,1) x
L*(—1,1). Tt is also easy to prove that the solution exists globally
in time and lim; .o ||f(¢, )] = limy—oo ||g(%, )| = 0, if the initial
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data are small. In the case of (2.1) with the boundary condition
(2.2), the zero state f = 0 attracts every solution ( [6] ). Namely
the whole L?(—1,1) is the basin of f = 0. On the other hand, the
basin of (f,g) = (0,0) is a proper subset of L?(—1,1) x L*(—1,1).
The steady-states are divides in the sense that the boundary of
the basin contains them. We actually found a steady-state which
had a one-dimensional unstable manifold such that, on one side
of the unstable manifold, the solution blew up in finite time and,
on the other side of the manifold, the solution was attracted by
(f,9) = (0,0). The situation is illustrated by Figure 5.

unstablesteady-state\ Blow-up

Figure 5: The steady-state as a divide.

In order to obtain nontrivial solutions, it is convenient to con-
sider the following boundary value problem:

Vf:v:v:vz + (fz + g:v)f:v:v - (f - g)fwww = 07 (—CL <r< a) (51)
VGrzxx — (fx + gx)gzz - (f - g)g:ca:z = 0; (—CL <z < CL) (52)
f(£a) = g(+a) =0, fo(da)=F1, go(£a) =0, (5.3)
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where (4, and (; are prescribed constants. The physical meaning
is that the walls are impermeable and are stretched or contracted
along itself as elastic membranes.

We do not know who was the first to discover this system of
equations but it dates back at least to 1959, when Howarth found
the equations (5.1) and (5.2), see (13.9) and (13.10) in page 315
of [19] ( Set the constant ¢ in the page be 1, substitute (—f,¢g) in
place of (f, g), and differentiate the resulting equation. ). However,
he considered (5.1) and (5.2) in 0 < z < oo. Later [18, 25] gave
mathematical proofs which guaranteed the existence of the solu-
tion with suitable boundary conditions at + = 0 and z = co. A
similar problem was considered by Wang [48]. The equations (5.1)
and (5.2) were studied by [46] in a finite interval with a boundary
condition f(+a) = px, g(+a) = ox, fo(£a) = gz(+a) = 0. We
are unaware of a paper which proves the existence of the solution
of (5.1)—(5.3).

By the following nondimensionalization,

T — ax, fr—rvaltf, g— valg,
the boundary value problem above is written as

fzzzz + (fz + gz)fzz - (f - g)fzzz = 0; (_1 <z < 1) (54)
Jrrzx — (fz + gz)ng - (f - g)g:vx:v = Oa (_1 <r< 1) (55)
f(ED) =g(£1) =0, fa(£l) =Ry, gu(£1) =Ry,  (5.6)

where ) )
R, = pra , R, = Baa
v v
are nondimensional parameters, which we call Reynolds numbers.
Note that Ry and Ry can take any real numbers; positive, zero, or
negative.
We now define another nondimensional parameter s by Ry =
sR; and consider the problem (5.4)—(5.6) as a bifurcation parameter

with two parameters R = R; and s.
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Our strategy to obtain nontrivial solutions of (5.4)—(5.6) with
Ry = Ry = 0is as follows. We start with f =0,g=0,Ri =Ry =0
and use the path-continuation method ( see for instance, [1], [2],
[14], [21], [24], or [37] ). With s fixed to 1, we compute solutions
for —400 < R; < 100. From the solution f, g, Ry = Ry = —400 or
f,9, R = Ry =100, we fix R = R; and let s change from 1 to -1.
We then have solutions, for instance f, g, Ry = —400,—1 < s < 1.
From there, we let s be fixed and let R = R; vary from -400 to 0.
Then the continued solution may get back to the trivial solution
but there is a chance that it is connected to a nontrivial solution.
We actually found many solutions at Ry = —400, and some of them
became nontrivial solutions as |R;| + |Ra| — 0. Once we obtain a
nontrivial solution, then we can repeat the process above and we
may have other solutions.

In the case where s = 0, we solve

fz:v:v:v + (f:v + gz)fz:v - (f - g)fz:v:v = 07 (_1 <r< 1) (57)
Jrrzx — (fz + gz)gzw - (f - g)gavavav = Oa (_1 <r< 1) (58)
fE) =g(£1) =0, fu(x1) =R, g.(+1)=0, (5.9)

We computed solutions in the range —400 < R < 100 through the
finite difference discretization with 800 equal meshes. The result is
shown in Figure 6. It is very important to note that some of the
branches pass through those points where R = 0. This shows that
there are many nontrivial solutions for Ry = Ry = 0.

Remark. If g = 0, then the boundary value problem (5.7) — (5.9)
is reduced to

Jeeee + fofoe — [ a2 =0, ( —1l<z<l1 ) (510)
E) =0, [0 =R (5.11)

Solutions of this boundary value problem was computed by [3, 49].
One can consider a slightly more general problem by imposing the
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f(-1/2)

40 A
0 I ? i
. ?—<%

-80

Figure 6: Bifurcation diagram of (5.7)—(5.9). There are many inter-
sections in the figure but most of them are artificial ones and not
bifurcation points. There are only two bifurcation points, which
are marked by dots.
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f(-1/2)

e
0 —
0l Q

40

.60 |

-80 I I I I I I I T
-400 -350 -300 -250 -200 -150 -100 -50 0 50 100

Figure 7: Bifurcation diagram of (5.4)—(5.6). s = 1. The dot
represents the bifurcation point.
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boundary condition f,(1) = R, fz(—1) = R’, which was studied
in [50]. The boundary-value problem of (5.10) with the boundary
condition f(£1) = Ry, fz(£1) = 0 has been the subject of many
researches. See [8, 9, 40, 41, 42, 49, 51] and references therein.

In the case where s = 1, the bifurcation diagram is shown
in Figure 7. When s = —1, we obtained Figure 8. Figure 9 is the
bifurcation diagram showing solutions with R = —400, —1 < s < 1.

f(-1/2)

20 ¢

20 - —
40

.60 |

-80

Figure 8: Bifurcation diagram of (5.4)-(5.6). s = —1. The dots
represent the bifurcation points.

In this way, we found 20 nontrivial solutions in total for (5.4)-
(5.6) with Ry = Ry = 0. We here note the following symmetry:

(f(2),9(z)) = (9(=2), f(==)),  (f(z),9(2)) = (—9(z), - f(2)),
(f(2),9(x)) = (= f(-x), —g(=2)).

These mappings and the identity map constitute the group Z, x
Z,, with which the boundary value problem (5.4)—(5.6) with R; =

18



f(-1/2)

40

Figure 9: Bifurcation diagram of (5.4)-(5.6). —1 < s < 1, R =
—400.
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Ry = 0 is equivariant. Accordingly, (—g(z),—f(x)) is a solution
if (f(x),g(x)) is, etc. With this symmetry we can see that only
six solutions are mutually independent and other 14 solutions are
obtained from the six solutions through the action of Zy x Z,. The
six solutions are depicted in Figure 10. The solution given in the left
bottom of Figure 10 has the property which we are looking for: it
has one-dimensional unstable manifold. g(z) = f(—=z) is satisfied
by this solution and it is a steady-state of (4.3). We therefore
consider it in the dynamics of (4.3).

In order to verify what we predicted in section 4, we performed
the following experiments. We set N = 1600 and computed the
steady-states f = (fo, f1,- -, fv). We linearized the equation at f
and computed the eigenvector é = (eq, e1,---,eyn). Its was normal-
ized in such a way that maxy |ez| = 1. We chose f + €é as initial
data with appropriate e. Then we found that the solution blows up
in finite time if it starts from f + eé with e = 0.2,0.1,0.05 and that
it decays to zero if ¢ = —0.2,—0.1, —0.05. The results in the case
of € = 0.2 are shown in Figures 11 and 12. Note that the graph of
f(t,-) when t is near the blow-up time is almost flat in 0 < z < 1.
This and Figure 4 suggest that a kind of asymptotic analysis of the
blow-up is possible. We however leave it to future works.

6 Conclusion

We have studied coupled equations, which are a three-dimensional
extension of the Proudman-Johnson equation. By a finite differ-
ence method, we have shown that some solutions blow up in finite
time. The phase portrait of the dynamical system generated by the
equations is better understood by steady-states. We found many
nontrivial steady-states, which suggests that the dynamical system
is a rather complicated one. A scalar, nonlinear, nonlocal equation
of one variable — (4.3) — is derived and blow-up solutions were
obtained numerically.

20



Figure 10: Graphs of f and g of (5.4)—(5.6) with R; = Ry = 0. The
solid lines are the graphs of f and the broken lines are those of g.
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250000
o Il Tl
150000 |
100000 |

50000 [

Figure 11: Time evolution of || f || for (4.3) and (4.2) with f+0.2¢
as its initial data.

B

10

x=1

Figure 12: Plots of f,(¢,z)/|| fz(t, -)||co for the experiments in Figure
11.
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