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Symmetric Crystals for gl_

Dedicated to Professor Heisuke Hironaka on the occasion of
his seventy-seventh birthday

By

Naoya ENOMOTO* and Masaki KASHIWARA*™*

Abstract

In the preceding paper, we formulated a conjecture on the relations between
certain classes of irreducible representations of affine Hecke algebras of type B and
symmetric crystals for gl . In the present paper, we prove the existence of the
symmetric crystal and the global basis for gl_.

81. Introduction

Lascoux-Leclerc-Thibon ([LLT]) conjectured the relations between the rep-
resentations of Hecke algebras of type A and the crystal bases of the affine Lie
algebras of type A. Then, S. Ariki ([A]) observed that it should be understood
in the setting of affine Hecke algebras and proved the LLT conjecture in a more
general framework. Recently, we presented the notion of symmetric crystals
and conjectured that certain classes of irreducible representations of the affine
Hecke algebras of type B are described by symmetric crystals for gl ([EK]).

The purpose of the present paper is to prove the existence of symmetric
crystals in the case of gl.

Let us recall the Lascoux-Leclerc-Thibon-Ariki theory. Let H2 be the
affine Hecke algebra of type A of degree n. Let Kﬁ be the Grothendieck group
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of the abelian category of finite-dimensional HA-modules, and KA = Dr>0 K;?.
Then it has a structure of Hopf algebra by the restriction and the induction.
The set I = C* may be regarded as a Dynkin diagram with I as the set of
vertices and with edges between a € I and ap?. Here p; is the parameter of the
affine Hecke algebra usually denoted by ¢. Let g; be the associated Lie algebra,
and g; the unipotent Lie subalgebra. Let Ur be the group associated to g .
Hence g; is isomorphic to a direct sum of copies of Aél_)l if p? is a primitive
¢-th root of unity and to a direct sum of copies of gl if p; has an infinite
order. Then C ® K* is isomorphic to the algebra & (Ur) of regular functions on
Ur. Let Uy(gr) be the associated quantized enveloping algebra. Then U, (gr)
has an upper global basis {G"P(b) }yep(o0). By specializing @ Clg, ¢~ *]G"P(b)
at ¢ = 1, we obtain &(Uy). Then the LLTA-theory says that the elements
associated to irreducible HA-modules corresponds to the image of the upper
global basis.

In [EK], we gave analogous conjectures for affine Hecke algebras of type
B. In the type B case, we have to replace U, (gr) and its upper global basis
with symmetric crystals (see § 2.3). It is roughly stated as follows. Let HE be
the affine Hecke algebra of type B of degree n. Let KE be the Grothendieck
group of the abelian category of finite-dimensional modules over HE, and KB =
Dn>0 KE. Then K has a structure of a Hopf bimodule over KA. The group
Uy has the anti-involution 6 induced by the involution a — a~! of I = C*. Let
U? be the 6-fixed point set of U;. Then &(U?) is a quotient ring of €(Uy).
The action of 0(U;) ~ C® K* on C ® KB, in fact, descends to the action of
o).

We introduce Vy(A) (see § 2.3), a kind of the g-analogue of &(UY). The
conjecture in [EK] is then:

(i) V(M) has a crystal basis and a global basis.

(ii) K® is isomorphic to a specialization of Vy(\) at ¢ = 1 as an &(U;)-module,
and the irreducible representations correspond to the upper global basis
of Ve(\) at ¢ = 1.

Remark.  In [KM], Miemietz and the second author gave an analogous
conjecture for the affine Hecke algebras of type D.

In the present paper, we prove that Vy(\) has a crystal basis and a global
basis for g = gl and A = 0.

More precisely, let I = Zyqq be the set of odd integers. Let «; (i € I) be
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the simple roots with
2 ifi =y,
(aj,05) =q —1 ifi=j+2,
0 otherwise.

Let 6 be the involution of I given by 6(i) = —i. Let By(gl,,) be the algebra
over K:=Q(q) generated by E;, F;, and invertible elements T; (i € I) satisfying
the following defining relations:

(i) the T;’s commute with each other,
(ii) Ty = T; for any 1,
(i) T;E; T_ = (O‘iJra@(i)’o‘J‘)Ej and TZ-FjTi_1 = q(o‘iJra@(i)”O‘j)Fj for i,j € I,
(iv) EiFj = q @) FiE; + (8,5 + 0g(y ;T;) for i, € 1,
(v) the E;’s and the F’s satisfy the Serre relations (see Definition 2.1 (4)).

Then there exists a unique irreducible By (gl . )-module V4 (0) with a generator
¢ satistying E;¢p = 0 and T;¢p = ¢ (Proposition 2.11). We define the endomor-
phisms E; and F; of V4(0) by

Eia _ Z Fi(n—l)am ﬁia _ Z fi(n+1)am
n>1 n>0

when writing
a= Z Fi(n)an with F;a, = 0.

n=0

Here Fi(") = F/[n]! is the divided power. Let A be the ring of functions
a € K which do not have a pole at ¢ = 0. Let Lg(0) be the Ag-submodule of
V4(0) generated by the elements F}, ~~~Ez¢ (£ >0,i1,...,9¢g € I). Let By(0)
be the subset of Ly(0)/qLa(0) consisting of the F}, -- 'ﬁifqb’s. In this paper, we
prove the following theorem.

Theorem (Theorem 4.15).
(i) FyLg(0) C Lg(0) and E;Lg(0) C Lg(0),
(ii) Bg(0) is a basis of Lg(0)/qLe(0),

(iii) FiBg(0) C By(0), and E;By(0) C By(0) L {0},
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(iv) FyE;(b) = b for any b € By(0) such that E;b # 0, and E;F;(b) = b for any
b € By(0).

By this theorem, Bg(0) has a similar structure to the crystal structure.
Namely, we have operators F;: By(0) — Bg(0) and E;: Bg(0) — By(0) L {0},
which satisfy (iv). Moreover &;(b) := max {n € Z>o | Ez”b € Bg(O)} is finite.
We call it the symmetric crystal associated with (I, ). Contrary to the usual
crystal case, Eg(i)b may coincide with Eib in the symmetric crystal case.

Let — be the bar operator of V(0). Namely, — is a unique endomorphism
of Vp(0) such that ¢ = ¢, @ = av and Fyv = F;v for a € K and v € Vj(0).
Here a(q) = a(qg™'). Let Vp(0)a be the smallest submodule of Vp(0) over
A := Q|q, ¢ '] such that it contains ¢ and is stable by the Fi(n)’s.

Then we prove the existence of global basis:

Theorem (Theorem 5.5).

(i) For any b € By(0), there exists a unique G (b) € Vy(0)a N Ly(0) such
that GV (b) = Gi™(b) and b = Gi™(b) mod qLg(0),

(i) {GE™(b)}oen,(0) is a basis of the Ag-module Ly (0), the A-module Vy(0)a
and the K-vector space Vy(0).

We call G (b) the lower global basis. The Bg(gl.,)-module V4(0) has a
unique symmetric bilinear form (s, o) such that (¢,¢) = 1 and E; and F; are
transpose to each other. The dual basis to {Gbow(b)}bege(o) with respect to
(e, ) is called an upper global basis.

Let us explain the strategy of our proof of these theorems. We first con-
struct a PBW type basis {Py(m)¢}n of Vy(0) parametrized by the 6-restricted
multisegments m. Then, we explicitly calculate the actions of E; and F; in
terms of the PBW basis { Py(m)¢}y. Then, we prove that the PBW basis gives
a crystal basis by the estimation of the coefficients of these actions. For this
we use a criterion for crystal bases (Theorem 4.1).

82. General Definitions and Conjectures

§2.1. Quantized universal enveloping algebras and
its reduced g-analogues

We shall recall the quantized universal enveloping algebra U, (g). Let I be
an index set (for simple roots), and @ the free Z-module with a basis {«;}ier.
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Let (o, ¢): @ xQ — Z be a symmetric bilinear form such that («;, a;)/2 € Z=g
for any ¢ and (o), j) € Zgg for i # j where o) :=20;/(;, ;). Let ¢ be an
indeterminate and set K := Q(q). We define its subrings Aj, A, and A as
follows.

Ag={f € K| f is regular at ¢ =0},
A ={f K| fisregular at ¢ = o},
A=Qlg,q7 "]
Definition 2.1.  The quantized universal enveloping algebra U,(g) is

the K-algebra generated by elements e;, f; and invertible elements ¢; (i € I)
with the following defining relations.

(1) The t;’s commute with each other.
(2) tje; tj_l = ¢(@@) ¢, and tjfitj_l =q (@) f, forany i,j € 1.

tp—t !
(3) lei, f] = 6;j——L5 for i, j € I. Here g; := q(@)/2,

(4) (Serre relation) For i # j,
b b
Z (b k) o, Z f(k fjf(b k) _
k=0 k=0

Here b =1— (o), rj) and

e = ek /R, £ = £/
k)i = (af —a; )/(Qi —q; ), Uf]i! = [1)i---[Ki .
Let us denote by U, (g) (resp. U, (g)) the K-subalgebra of U, (g) generated

by the f;’s (resp. the e;’s).
Let e; and e} be the operators on U, (g) (see [K1, 3.4]) defined by

eralt; —t;lela
fenal = ST G0 (¢ (),
qi — 4q;

These operators satisfy the following formulas similar to derivations:
e(ab) = ei(a)b+ (Ad(t;)a)esd,
ef(ab) = aefb + (efa)(Ad(t;)b).

(2.1)
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Note that in [K1], the operator €] was defined. It satisfies e = —oe} 0 —, while

e; satisfies ef = % o ¢} o *. They are related by ef = Ad(¢;) oe}.

The algebra U, (g) has a unique symmetric bilinear form (, «) such that
(1,1) =1 and
(eja,b) = (a, f;b) for any a,be€ U, (g).

It is non-degenerate and satisfies (efa,b) = (a,bf;). The left multiplication of
fj.€; and e} have the commutation relations

€ifj = a0 fiel + by, e fj = fre] + 8 Ad(t),
and both the e/’s and the e}’s satisfy the Serre relations.

Definition 2.2.  The reduced g-analogue B(g) of g is the K-algebra gen-
erated by e} and f;.

§2.2. Review on crystal bases and global bases

Since e and f; satisfy the g-boson relation, any element a € U, (g) can be
uniquely written as

a= Z fl-(n)an with €ja,, = 0.

n>=0

n
Here fi(n) = L

[n];!
Definition 2.3. We define the modified root operators e; and ﬁ on
U, (g) by N
gia = Z fi(nfl)am fia — Z fi(nJrl)an.
n>1 n>0

Theorem 2.4 ([K1]).  We define

Leo)= Y Aofi o fi 1CU; (),
€20,41,...,i0€1

B(c0) = {le o fi, -1 modqL(00) | £ = 0,i1,-+- ,ig € I} C L(00)/qL(0).
Then we have
(i) &L(co) C L(o0) and fiL(cc0) C L(co),

(ii) B(o0) is a basis of L(co)/qL(c0),
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(i) fiB(co) C B(co) and ¢;B(c0) C B(oo) U {0}.
We call (L(o0), B(00)) the crystal basis of U, (g).

Let — be the automorphism of K sending ¢ to ¢~'. Then A coincides
with A .

Let V be a vector space over K, Ly an Ag-submodule of V', Lo, an A -
submodule, and VA an A-submodule. Set F := Lo N Lss N VA.

Definition 2.5 ([K1], [K2, 2.1]).  We say that (Lo, Lo, Va) is balanced
if each of Loy, Lo, and Va generates V as a K-vector space, and if one of the
following equivalent conditions is satisfied.

(i) E — Lo/qLg is an isomorphism,

(LoNVA) @ (¢ Loo NVA) — VA is an isomorphism,

)
(i) E — Loo/q 'L is an isomorphism,
(iid)

)

(iv) Ao®@g F — Lo, Acc ®@q F — Lo, AQg E — Va and K®qg E — V are
isomorphisms.

Let — be the ring automorphism of U,(g) sending g, t;, e;, fi to ¢~ 1, t;l,

€i, fi-
Let U,(g)a be the A-subalgebra of U,(g) generated by egn), fi(n) and t;.
Similarly we define U, (g)a.-

Theorem 2.6.  (L(00),L(c0)™,U; (g)a) is balanced.
Let
GV L(00)/qL(00)—5E := L(co) N L(c0) ™ N U, (9)a

be the inverse of E—L(c0)/qL(c0). Then {G'¥(b) | b € B(co)} forms a basis

of U, (g). We call it a (lower) global basis. It is first introduced by G. Lusztig
([L]) under the name of “canonical basis” for the A, D, E cases.

Definition 2.7. Let
{G"(b) [ b € B(oo)}

be the dual basis of {G!°¥(b) | b € B(co)} with respect to the inner product
(e, ). We call it the upper global basis of U, (g).
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§2.3. Symmetric crystals

Let # be an automorphism of I such that 62 = id and (giy, o(s)) =
(0, aj). Hence it extends to an automorphism of the root lattice @ by 0(«a;) =
Qg (s), and induces an automorphism of Uy(g).

Definition 2.8. Let By(g) be the K-algebra generated by F;, F;, and
invertible elements T; (i € I) satisfying the following defining relations:

(i) the T;’s commute with each other,
(ii) Ty = T; for any i,
(iii) TiE;T; " = ¢l @itee@ ) B; and T, F;T; ' = q@+eew —) F; for i,j € I,
(iv) EiFj = q ) FE; + (8;,5 + dg(y ; T;) for i, 5 € 1,
(v) the E;’s and the F;’s satisfy the Serre relations (Definition 2.1 (4)).
We set E™ = E"/[n);! and F™ = F"/[n];!.

Lemma 2.9.  Identifying U, (g) with the subalgebra of By(g) by the mor-
phism f; — F;, we have
Tia = (Ad(titg(i))a)Ti,
Eia = (Ad(t;)a)E; + eja + (Ad(ti)(e;(i)a))Ti

forae U, (g).

Proof. The first relation is obvious. In order to prove the second, it is
enough to show that if a satisfies (2.3), then f;a satisfies (2.3). We have

Ei(fja) = (g ) fE; + 6; j + So(1) ;T )
=g~ o) f5((Ad(t:)a) Ei + eja + (Ad(t:)(e5;ya)) T)
+0;,5a + 8gi),; (Ad(tite))a) T;
= ((Ad(t)(f;0)) E; + €;(fia) + (Ad(t:) (eg;) (f30)) T
O

The following lemma can be proved in a standard manner and we omit the
proof.
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Lemma 2.10.  Let K[T/5;i € I be the commutative K-algebra gener-
ated by invertible elements T; (i € I) with the defining relations Ty = T;.
Then the map U, (g) ® K[TFicll® U (g) — By(g) induced by the multipli-
cation is bijective.

Let A € Py :={\ € Hom(Q, Q) | (o, \) € Z> for any i € I} be a domi-

K2

nant integral weight such that 6(\) = \.
Proposition 2.11.

(i) There exists a By(g)-module Vo(X\) generated by a non-zero vector ¢ such
that

(a) FEipr =0 for anyi €,
(b) Tipr = ¢\ Ny for any i€,
(c) {u e Vo(N) | Bsu=0 for any i € I} = Key.

Moreover such a Vy(X) is irreducible and unique up to an isomorphism.

(i) there exists a unique symmetric bilinear form (o, ) on Vy(\) such that
(dx, @2) = 1 and (E;u,v) = (u, Fyv) for any i € I and u,v € Vy(\), and
it 18 non-degenerate.

Remark 2.12.  Set Py = {u € P|0(u) = p}. Then V() has a weight
decomposition

VG()\) = @ VH()‘)W

HEPy
where Vy(A), = {u € Vp(A) | Tyu = @ u}. We say that an element u of
Vo(A) has a §-weight p and write wtg(u) = pif u € Vop(X),. We have wtg(E;u) =
wto(u) + (o + ag(s)) and wtg(Fiu) = wtg(u) — (a; + ag(i))-
In order to prove Proposition 2.11, we shall construct two By(g)-modules,
analogous to Verma modules and dual Verma modules.

Lemma 2.13.  Let U, (g)¢) be a free U (g)-module with a generator ¢/ .
Then the following action gives a structure of a By(g)-module on U (g)¢) :

Ti(ag)) =N (Ad(tite(i) )a) g,

(2.4) E;i(ad)) = (eja+ gV Ad(t:) (ej;)a) ) A,
Fi(ag)) = (fia)9

foranyi €l and a € U, (g).

Moreover By(g)/ > (Bo(g)E; + Bo(9)(T; — g @MYy — U, (9)¢) is an iso-
i€l
morphism.
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Proof. We can easily check the defining relations in Definition 2.8 except
the Serre relations for the E;’s.

Fori#jel set S=3"_(~1)"EMEE®™ where b=1— (h;,a;). It
is enough to show that the action of S on U, (g)¢), is equal to 0. We can easily
check that SF; = ¢~ tecr) [ S Since S¢y = 0, we have SU, (g)¢y = 0.

Hence U, (g)# has a Bp(g)-module structure.

The last statement is obvious. 1

Lemma 2.14.  Let U, (g)¢X be a free U, (g)-module with a generator
@\. Then the following action gives a structure of a Bg(g)-module on U (g)@}:

‘(a(b”) ozZ ) (Ad(t te(z)) ) (¢
25) B06f) - (s
¢// (fza + q(o‘z’/\) Ad( ) )fe(i)) /)(

foranyie€l anda €U, (g). Moreover, there exists a non-degenerate bilinear
form (o, ¢): U (9)\ xU, (9)9) — K such that (Fju,v) = (u, Ejv), (Eju,v) =
(u, Fyv), (Tyu,v) = (u, Tyv) foru € U;(g)gﬁl)\ and v € U; (9) l/\/7 and ( /)\a¢/)(> =
1.

Proof. There exists a unique symmetric bilinear form (e, «) on U, (g)
such that (1,1) = 1 and f; and e, are transpose to each other. Let us define
(o, +): Uy (8)64 x Uy (2)6 — K by (adh,b6) = (a,b) for a € U (g) and b e
U, (g)- Then we can easily check (Fyu,v) = (u, Ev), (Tju,v) = (u, T;v). Since
ef is transpose to the right multiplication of f;, we have (F;u,v) = (u, Fjv).
Hence the action of E;, F;, T; on U, (g)¢% satisfy the defining relations in

Definition 2.8. O

Proof of Proposition 2.11. Since E;¢y = 0 and ¢} has a §-weight A, there
exists a unique Bg(g)-linear morphism ¢: U, (g)¢) — U, (g)¢y sending ¢ to
Py Let Vy(A) be its image (U, (g)@)-

(i) (c) follows from {u € U, (g) | eju =0 for any i} = K and U, (g)¢% D
Vo(A). The other properties (a), (b) are obvious. Let us show that Vy()) is
irreducible. Let S be a non-zero By(g)-submodule. Then S contains a non-zero
vector v such that E;u = 0 for any ¢. Then (c) implies that v is a constant
multiple of ¢5. Hence S = Vp(A).

Let us prove (ii). For u,u" € U, (g)¢), set (u,u’)) = (u,(u’)). Then it is
a bilinear form on U, (g)¢) which satisfies

((¢/)\7 ¢/)\)) =1, ((FZU’U’/)) = ((u, Eiu,))7 ((Eluvu,)) = ((u7 Fiul»ﬂ and

@6) (o) = (u, T,
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It is easy to see that a bilinear form which satisfies (2.6) is unique. Since
((u',u)) also satisfies (2.6), ((u,u’)) is a symmetric bilinear form on U, (g)¢).
Since t(u') = 0 implies (u,u’)) =0, (u,v’)) induces a symmetric bilinear form
on Vp(A). Since (+, +) is non-degenerate on U, (g), ((+, +)) is a non-degenerate
symmetric bilinear form on Vpy(A).

1

Lemma 2.15.  There exists a unique endomorphism — of Vy(\) such
that ¢y = ¢ and av = av, Fyv = F;0 for any a € K and v € Vp()\).

Proof. The uniqueness is obvious.

Let ¢ be an anti-involution of U, (g) such that £(q) = ¢~" and £(f;) =
Joi)- Let p be an element of Q ® P such that (p,a;) = (ay, ag(;))/2. Define
c(p) = ((p+p,0(n+p) — (5,0(p)))/2 4+ (A, p) for p € P. Then it satisfies

o(p) = e(p — o) = (A4 p, g(i))-

Hence ¢ takes integral values on Q := )", Za.
We define the endomorphism ® of U (g)#y by ®(a¢y) = g~ ¢M¢(a)gy for
a € U; (g),- Let us show that

(2.7) O(F;(ady)) = F;®(apy) for any a € U, (9)-
For a € U, (g),, we have

O(Fi(agh)) = O (fia + ¢ Mafy)) dh
= (g ¢ (a) foy + g~ AT 00) fi6(a)) B

On the other hand, we have

Fid(ag}) = F,(q~¢(a)e})
) (fif(a) Jrq(ai,Aw(u))g(a)fe(i))¢’>f.

Therefore we obtain (2.7).
Hence @ induces the desired endomorphism of Vp(\) C U (g)#Y. O

Hereafter we assume further that
there is no ¢ € I such that (i) = 7.

We conjecture that Vy(\) has a crystal basis under this assumption. This means
the following. Since E; and F; satisfy the g-boson relation, any u € Vy(\) can be
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uniquely written as u = Zn>0 Fi(n)un with F;u, = 0. We define the modified
root, operators E‘Z and f‘z by:

Ez(u) = Z Fi(nfl)un and ﬁl(u) = Z Fi(nﬂ)un

n>1 n=>0

Let Lg(\) be the Ag-submodule of Vp(\) generated by Fy, --- Fj,¢x (£ >0 and
i1,...,0¢ € I), and let By(A) be the subset

{ﬁ - Eydymod qLo(N) | €30, iy,... i € I}

of Ly(A)/qLo(X).

Conjecture 2.16.  For a dominant integral weight A such that (A) = A,
we have

(1) FiLg(\) C Lo(A) and E;Lg()\) C Lg()\),

(2) Bg()) is a basis of Lg(\)/qLg(N),

(3) F;Bo(\) C By(N), and E;By(X) C Bo(A) L {0},
(

4) F;E;(b) = b for any b € By(\) such that E;b # 0, and E;F,(b) = b for any
be Bg()\).

As in [K1], we have

Lemma 2.17.  Assume Conjecture 2.16. Then we have
(i) Lo(A) ={v € Vo(AN) | (Lo(A),v) C Ao},

(ii) Let (o, ¢)o be the Q-valued symmetric bilinear form on Lg(X\)/qLg(N)
induced by («, ). Then Bg()\) is an orthonormal basis with respect to

(" ')0'

Moreover we conjecture that V() has a global crystal basis. Namely we
have

Conjecture 2.18.  The triplet (Lg()\), Lo(A)~, Vo(A)™) is balanced.
Here VoAV := U (g)ada-

q

Its dual version is as follows.
Let us denote by Vy(A)y the dual space {v € Vy(A) | (Vo(N)g¥,v) C A}.
Then Conjecture 2.18 is equivalent to the following conjecture.
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Conjecture 2.19.  (Lg(A),c(Lo(N)), Vo(AN) ) is balanced.

Here ¢ is a unique endomorphism of Vy(\) such that c¢(¢y) = ¢ and
clav) = ac(v), c(Ew) = Eie(v) for any a € K and v € Vp(A). We have
(c(v'),v) = (v, D) for any v,v" € Vp(A).

Note that Vp(A)} is the largest A-submodule M of V() such that M is
invariant by the Ei(")’s and M NKopy = Ag,.

By Conjecture 2.19, Lg(X) N ¢(Lo(N)) N Vo(A)'s — Lg(A)/qLe(N) is an
isomorphism. Let G,” be its inverse. Then {G,” (D) }sep,(n) is a basis of Vp(N),
which we call the upper global basis of Vy(X). Note that {G,"(b)}pep,(r) is the
dual basis to {G§" (b) }pen, (1) With respect to the inner product of Vp(A).

We shall prove these conjectures in the case g = gl and A = 0.

§3. PBW Basis of Vj(0) for g = gl
83.1. Review on the PBW basis
In the sequel, we set I = Zy,qq and

2 fori=yj,
(oviya) = ¢ —1for j =i+ 2,
0 otherwise,

and we consider the corresponding quantum group U,(gl,,). In this case, we
have g; = g. We write [n] and [n]! for [n]; and [n];! for short.

We can parametrize the crystal basis B(oo) by the multisegments. We
shall recall this parametrization and the PBW basis.

Definition 3.1.  For ¢,j € I such that ¢ < j, we define a segment (3, j)
as the interval [i,j] C I := Zoqa- A multisegment is a formal finite sum of
segments:

m=> mi,j)
i<y
with m; j € Z>o. We call m;; the multiplicity of a segment (i, j). If m; ; > 0,
we sometimes say that (i, j) appears in m. We sometimes write m; ;(m) for m; ;.
We sometimes write (i) for (i,i). We denote by M the set of multisegments.
We denote by @ the zero element (or the empty multisegment) of M.

Definition 3.2.  For two segments (i1,71) and (ia,ja), we define the
ordering >ppw by the following:
J1> 72
(i1, J1) ZpBW (i2,j2) <= { or
J1=J2 and i1 > ia.
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We call this ordering the PBW-ordering.

Definition 3.3.  For a multisegment m, we define the element P(m) €
U (gl,) as follows.

q

(1) For a segment (i, j), we define the element (i, j) € U (gl.,) inductively by
<ia Z> = f’ia
<Z,]>:<Z,j—2><],]>—q<],j><l,j—2> fori<j'

(2) For a multisegment m = Z mi;(i,7), we define

i<j

Pm) = [ 6,3,

N
Here the product [] is taken over segments appearing in m from large to
small with respect to the PBW-ordering. The element <z‘,j>(m”) is the
divided power of (i, j) i.e.

1
W<’L,j>n for n > 07
<i’j>(n) 31 for n =0,
0 for n < 0.
Hence the weight of P(m) is equal to wt(m):=— > m; jag: ;P(m)t; 1 =

1<k

gt m) P(m).

Theorem 3.4 ([L]).  The set of elements {P(m) | m € M} is a K-basis
of Uy (9ls). Moreover this is an A-basis of Uy (gl )a- We call this basis the
PBW basis of U (gl)-

Definition 3.5. For two segments (i1, j1) and (is,j2), we define the
ordering >, by the following:
J1 > J2
<i17j1> >cry <i27j2> — or
Jj1 = jo and 41 < do.

We call this ordering the crystal ordering.

Example 3.6. The crystal ordering is different from the PBW-ordering.
For example, we have (—1,1) >cy (1,1) >cry (—1), while we have (1,1) >ppw
<—].,].> >PBW <—].>
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Definition 3.7.  We define the crystal structure on M as follows: for
m =3 m;;(ij) € Mandiel,set A,(;)(m) = Y prsk(Mig — Miyopi9) for
k > i. Define €;(m) as max {A,(f)(m) | k> z} > 0.

(i) Ife;(m) = 0, then define &;(m) = 0. If &;(m) > 0, let ke be the largest k > i
such that g;(m) = AS) (m) and define &;(m) = m— (3, ke) + g i (0 +2, ke ).

(ii) Let ks be the smallest k& > ¢ such that &;(m) = A,(ci)(m) and define f;(m) =
m— 5kf;éi<i + 2, kf> + <’i, kf>.

Remark 3.8.  For i € I, the actions of the operators ¢; and fz onme M
are also described by the following algorithm:

Step 1. Arrange the segments in m in the crystal ordering.

Step 2. For each segment (i, j), write —, and for each segment (i 4 2, j), write
+.

Step 3. In the resulting sequence of + and —, delete a subsequence of the form
+— and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form — —--- — + + -+ - 4.
(1) e;(m) is the total number of — in the resulting sequence.
(2) fi(m) is given as follows:

(a) if the leftmost + corresponds to a segment (i 4 2,7j), then replace it
with (i, ),

(b) if no + exists, add a segment (i,7) to m.

(3) €;(m) is given as follows:

(a) if the rightmost — corresponds to a segment (i,j) with ¢ < j, then
replace it with (i + 2, j),

(b) if the rightmost — corresponds to a segment (i,7), then remove it,

(¢) if no — exists, then €;(m) = 0.

Let us introduce a linear ordering on the set M of multisegments, lexico-
graphic with respect to the crystal ordering on the set of segments.
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Definition 3.9. For m = ; m; ;(i,j) € M and m’ = ; m; (i, J) €
1< 1)

M, we define m" < m if there exist i < jo such that m; ; < m, j,, m
cry ’ ’

o /
m;,j, for ¢ <igp, and m;

/ —
1,50
j=Mij fOI"j>j0 and i < j.
Theorem 3.10.

(i) L(oo) = @D AoP(m).

meM
(if) B(oo) = {P(m)modgL(cc) | m € M}.
(iii) We have
&P(m)=P(&;(m)) modgL(0),
fiP(m) = P(fi(m)) modgL(co).
Note that ¢; and f; in the left-hand-side is the modified root operators.
(iv) We have

P(m) € P(m)+ > AP(w).
m’cfym
Therefore we can index the crystal basis by multisegments. By this the-
orem we can easily see by a standard argument that (L(oco), L(o0)™, U, (9)a)
is balanced, and there exists a unique G'**(m) € L(co) N U, (g)a such that
GY(m)~ = G°Y(m) and G*%(m) = P(m)mod gL(c0). Then {GY(m)}mem

is a lower global basis.

§3.2. f-restricted multisegments

We consider the Dynkin diagram involution 6 of I := Z,qq defined by
0(i)=—iforiel.

We shall prove in this case Conjectures 2.16 and 2.18 for A = 0 (Theorems 4.15

and 5.5).
We set
Vi(0) :=By(ls)/ 3 (Bo(aloo) i + Bo(glo)(Th — 1) + Bo(gloo) (F; — Fo))

icl

~ Uy (8l0)/ Uy (8loo)(fi = foi)-
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Let ¢ be the generator of 179(0) corresponding to 1 € By(gl,,). Since F;¢) =
(fi + fo(i)) 6 = Foi)¢g, we have an epimorphism of Bg (gl )-modules

(3.1) Va(0) = Vy(0).
We shall see later that it is in fact an isomorphism (see Theorem 4.15).

Definition 3.11.  If a multisegment m has the form
m= Z my;j <Za ])a
—J<i<y

we call m a 0-restricted multisegment. We denote by My the set of f-restricted
multisegments.

Definition 3.12.  For a f-restricted segment (7, j), we define its modi-
fied divided power by

We understand that (i, 7)™ is equal to 1 for m = 0 and vanishes for m < 0.

Definition 3.13.  For m € My, we define Py(m) € U, (gl.) C Bo(gls,)
by

) [mis]

PG(m) = <ia.7

g=I

=

(i,j)EmM

Here the product ﬁ is taken over the segments appearing in m from large to
small with respect to the PBW-ordering.

If an element m of the free abelian group generated by (7, j) does not belong
to My, we understand Py(m) = 0.

We will prove later that {Py(m)¢}mer, is a basis of Vy(0) (see Theo-
rem 4.15). Here and hereafter, we write ¢ instead of ¢¢ € Vy(0).

§3.3. Commutation relations of (i, j)

In the sequel, we regard U, (gl ) as a subalgebra of By(gl.,) by fi — F;.
We shall give formulas to express products of segments by a PBW basis.

Proposition 3.14.  Fori,j, k,l € I, we have
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(1) (4, 5)(k,£) = (k,£)(i,7) fori<j, k<landj<k-—2,
(2) (@630 +2,k) = (i, k) +q(G +2,k) (i, 5) fori <j <k,
(3) (4 k)i, €) = (i, ) (G, k) fori <j <k <L,

(4) (i, k) (5, k) = q7 1 (5, k) (i, k) fori < j <k,

(5) (i,4){i, k) = q~ (i, k) (i, j) fori<j <k,

(6) (i,k)(j. €) = (45, O)(i, k) + (7 — @) (i, 0)(j, k) fori <j <k <L

Proof. (1) is obvious. We prove (2) by the induction on k—j. If k—j = 2,
it is trivial by the definition. If j < k — 2, then (k) and (i, j) commute. Thus,
we have

(i, )G +2,k) = (i, 5) ((G + 2,k — 2) (k) — q(k)(j + 2,k — 2))
(1, k= 2) +q(G + 2,k = 2)(5, 7)) (k) — q(k) (@, 4)(§ + 2,k — 2)
= (i, k — 2)(k) +q(j + 2,k — 2)(k) (i, j)
—q(k) ((i k= 2) + q(j + 2,k — 2)(i, j))
= (i, k) + (j + 2,k) (3, j).

In order to prove the other relations, we first show the following special cases.
Lemma 3.15. We have for any j € I

(@) (G —2,0)0) =¢G00 —2.4) and (j)(G.5+2) = ¢ (3,5 + 2)(j),

(b) NG —27+2)={0—-2,7+2)(),

(© G=2,00,0+2) =G +2)—2.0) + (@' =) — 2,5 +2){j).
Proof. The first equality in (a) follows from

<]727]><]>7q71<‘7><‘7727]>
= (fi—afi—afifi—2)fi —a ' fi(fi—2fi — afifi-2)
= fi—of? = (a+a "V fifi—2fj + f7fi—2 =0.

We can similarly prove the second.
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Let us show (b) and (c). We have, by (a)

(G =200, +2) =G =2, ()G +2) —alf +2)())
=q¢ NG -2,00+2) —q((G—2.7+2) +q(i +2)(G —2,5) (4

q
¢ (G —2,0+2) +ali +2)( - 2,5))
(3.2) =i — 2,7 +2)(J) — (i +2)(5){ — 2,5)

= ((NG+2) —qG+2U)G—2,4)
+¢ NG —2,0+2) —q(i —2,7+2)(j)
=i+ 20+ G0 —2,7+2) —q(f — 2,5+ 2)(5)-

Similarly, we have

G=2,007i+2=(G-2)0) — e —2) 0,7 +2)
Y =200, 5 +2)0) —a(i) (G — 2,5 +2) + a5 +2) (5 — 2))

TG -2, +2) +q,d +2)(G —2) ()
(3.3) —q(j){—2,7+2) —q{§,j +2){H) (5 —2)

=i +2(G-20) —a(i) (i —2)
¢ G -2, 4+2)0) — 4N 2,7 +2)
=i+ 20 -2+ G —2,+2)0) —a(i(—2,5+2).

Then, (3.2) and (3.3) imply (b) and (c). |

=q
=4q

We shall resume the proof of Proposition 3.14. By Lemma 3.15 (b), (i, k)
commutes with (j) for i < j < k. Thus we obtain (3).

We shall show (4) by the induction on k — j. Suppose k —j = 0. The case
i = k — 2 is nothing but Lemma 3.15 (a).

If i < k — 2, then

(i, k) (k) = (i k — ) (k = 2, k) (k) — q(k = 2, k) (i, k — 4) (k)
=q  (k){i b — ) (k — 2, k) — (k) (k — 2, k) (i, b — 4) = ¢~ (k) (i, k).

Suppose k — j > 0. By using the induction hypothesis and (3), we have

(1, k) (j, k) = (i, k) (7) (5 + 2, k) — (i, k) (G + 2, k) ()
@) k)G +2,k) = (G +2,k) (k) ()
=q (G2, k)G k) — (G +2,k)(G) (0 k) = a7 (G, k) (i k).

Similarly we can prove (5).



856 NAovyA ENOMOTO AND MASAKI KASHIWARA

Let us prove (6). We have

(i, k) {J, 7= 2)(, k) — a4, k) (6,5 — 2)) (5, 0)
T = 200G, 00, k) — qG k) (0 + 40, 0,5 — 2))
0 +ali 05— 2) (5, k)

—q(i, ), k) — q(4,€) {4, k) (i, 5 — 2)

= (j, 0)(i, k) + (¢ — q)(i, €)(j, k).

= ({4,
q
=q

Lemma 3.16.
(i) For1<i<j, we have (—j,—i)$ = (i, ).
(ii) For1<i<j, we have (—j,i)p = q~*(—i,5)6.
Proof. (i) If i = j, it is obvious. By the induction on j — i, we have

—i = 2){=i) = q(=i)(~j, =i = 2))¢

(=g, =)o = ({=J,
= (=g, =i = 2){i) — q(=i)(i + 2,5))¢
= ((i)(=j, =i = 2) — q(i +2,5)(~i))¢
= (i) (i 4+ 2,§) — i +2,/)(0))0 = (i, )6.

(ii) By (i), we have

(=4, )6 = (=, —1)(1,4) — q(1,8){~j, —1))$
= (4, —1){(=i, =1) — {1, D) (1. 1)$
= (¢ {4, ~1){=5,-1) = (1, >< i)
= (g~ (=i, =1)(1,§) = (L,j)(=6,=1))6 = ¢~ (~i, )0,

Proposition 3.17.
(i) For a multisegment m =3, .m; ;(i,j), we have

Ad(tk)P(m) — qzi(ﬂ’Li,k—2—m1‘,k)+Ej(mk+2,j—mk,j)P(m)'
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(i)
ql_"<i>(”_1) ka =i=j,
e (i, ) = ¢ (1= g®)g" (i +2,5) (6, )"V ifk=i<j,
0 otherwise,
q17n<i>(n71) ZfZ :] _ k,
ei(i )™ =1 (1= g)g (i, )V, —2) ifi<j=k,
0 otherwise.

Proof. (i) is obvious. Let us show (ii). Tt is obvious that e} (i, )™ = 0
unless i < k < j. It is known ([K1]) that we have e} (k)™ = ¢'="(k)(»=1.
We shall prove e} (k, j)(™ = (1 — ¢*)¢" " (k + 2, j){k, )"~V for k < j by the
induction on n. By (2.1), we have

e (k. ) = e ((k)(k + 2, 5) — q(k + 2, j) (k)
= <k+27]> - q2<k+27j> = (1 - q2)<k+2’j>'

For n > 1, by the induction hypothesis and Proposition 3.14 (4), we get

[nes,(k, )™ = €, (k, §) (k, )Y
= (1 =)k +2,5) k5 )" D + ¢k, 5)- (1= ¢*)g® "k +2,5) (k, )"
= (1= @A) {0+ 2,) (b, ) + 7k, GGk + 2,5, )2}
= (1= ¢)(1+q "[n— 1))k +2,5)(k, )"V
= (1= *)g" ") (k +2,5) (k, )" Y.

Finally we show €}, (i,7) = 0 if k # . We may assume i < k < j. If i < k < j,
we have

er (i, ) = ex (i, k = 2) (k. j) — q(k, ) (i, k — 2))
k

A
<i7k - 2>6 <ka.]> - Q(e;c<k’.]>)<la k - 2>
(1= ¢®)(i k= 2)(k+2,5) — q(1 — ¢*)(k + 2,5) (i, k — 2)

The case k = j is similarly proved.
The proof for ej; is similar. O
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83.4. Actions of divided powers

Lemma 3.18.  Let a, b be non-negative integers, and let k € Is¢ :=
{kellk>0}.

(1) For ¢ >k, we have

(=) (k42,0 <k, 0 = b+ 1](—k + 2,07 =k, )0+
" (k2,0 (k) (k).

(2) We have

(=) (—k + 2, k)@ (—k, k)P = [2b + 2](—k 4 2, k) (@~ D (K, k) b+
+q" (ko 2, k) <k, k)P (k).

(3) For k> 1, we have

(k) (~k+2,k =2 =(¢" + ¢ )N~k + 2,k —2)l0 Nk k - 2)
+q%(—k + 2,k — 2)lal(— k).

(4) If £ < k — 2, we have
(6, k = 2)( k) = (€, R)0 k= 2) 7 + g (k) {6,k — 2)@)
(5) For k> 1, we have

(=k+ 2,k — 2k = (¢* + ¢ )" U=k + 2, k) (—k + 2,k — 2)la—1]
+q (k) (—k + 2,k — 2)lel,

Proof. 'We show (1) by the induction on a. If @ = 0, it is trivial. For
a > 0, we have

[a)(—k) (—k + 2,0 (=&, £)*)
= ((=k, &) + g(—k + 2,0)(—k)) (=k + 2,0) (@~ (—k, 0)®)
= [b+1]¢ "%~k + 2,0 @D (—k, £)*+D
+q(—k +2,0{[b+ 1](—k +2,0)(*=2 (—k, £)*+V
+¢ T =k 2,00 <k, 0 (< k) }
= b+ 1](¢" % + gla — 1)) (—=k + 2,0 @D (—f, p) >+
+¢*lal(—k + 2,0 (—k, 0)®) (—F).
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Since ¢*~* + gla — 1] = [a], the induction proceeds.
The proof of (2) is similar by using (—k, k) = [2b](—k, k)P~ (—Fk, k).
We prove (3) by the induction on a. The case a = 0 is trivial. For a > 0,
we have

[2a](—k)(—k + 2,k — 2)[
= ((—k,k —2) + q(—k + 2,k — 2)(—k)) (~k + 2,k — 2)[2~1]
= ¢ =k 42,k — 20—k k- 2)
+q(—k+2,k = 2){(@"  + ¢ N~k + 2,k - 2) (kK —2)
+q N~k + 2,k — 2l gy}
q[2a — 2]

a—1

— (q17a+
+¢%[2a)(—k + 2,k — 2)l2)(—F)

= (¢" + ¢ )V [2a)(—k + 2,k — 2)la (K k — 2)
+¢%[2a)(—k 4 2,k — 2)l9(— k).

Similarly, we can prove (4) and (5) by the induction on a. O
Lemma 3.19. Fork >1 and a,b,c,d > 0, set
(a,b,¢,d) = (k)@ (—k + 2, k) (—k, &) (—k + 2,k — 2)!U .
Then, we have

(=k)(a,b,c,d)=[2c+ 2](a,b—1,c+1,d)
(3.4) +[b+1]¢"2(a,b+1,¢,d — 1)
+[a +1)¢??2¢(a + 1,b, ¢, d).

Proof. We shall show first

(k) (—k + 2,k — 2)[ g

(3.5) = ((—k + 2, k) (—k + 2,k — 201 4 24 (k) (—k + 2,k — 2>[d])$.

By Lemma 3.18 (3), we have
(—k)(—k+ 2,k —2)ldg

= (" +q ) N~k +2,k -2k k- 2)
g~k + 2,k — 2 (k).
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By Lemma 3.16 and Lemma 3.18 (5), it is equal to
(¢ + D g Yk + 2,k — 21Uk 2, k) + ¢~k + 2,k — 2)l (k)
= (" + a7 g g k4 2 ) (e 2,0 — 2l
+q*((¢* + ¢~k + 2, k) (—k + 2,k — 2)l4 1]
+q" (k) (—k + 2,k — 2)!) ) .
Thus we obtain (3.5). Applying Lemma 3.18 (2), we have
(k) (a,b,¢.d) = (B)@ ([2¢ + 2=k + 2, )~ (—k, Rl
POk + 2, k) O (—k, k) (—k>> (—k+2,k—2)dg
= [2¢+2)(a,b— 1, ¢+ 1,d) + "¢ (k)@ (—k + 2, k) (—k, k)
X ((=k + 2, k) (—k + 2,k — 247U 4 2Uk) (—k + 2,k — 2)[ D)6

=[2¢+2)(a,b—1,c+1,d) + ¢" %[+ 1](a,b+1,¢,d — 1)
+qmF2d=e=bly L 1)(a 4 1,b, ¢, d).

Hence we have (3.4). O

Proposition 3.20.

(1) We have

la/2] / s
(—1)@ (-1, )G = 37 ( "B 2U]> e
> <1>(a—2s)<_1, 1>[m+s]$.
(2) For k> 1, we have

(—k)" (—k + 2,k — 2)llg
_ Z qzai+j(j;1>—i(t+u)
i+j4+2t=n,j+t=u
(kYD (—k + 2, k)9 (—k, Y (—k 2,k — )74,

(3) If £ > k, we have

n

(k)™ (K + 2’€>(a) _ Z g @=) (4 2,€>(a—s)<k’€>(s)<k>(n75).
s=0
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Proof. 'We prove (1) by the induction on a. The case a = 0 is trivial.
Assume a > 0. Then, Lemma 3.18 (2) implies

(—1)(1) (W (-1, 1>“”]$

= (2m + 21" D (-1, 1)y g ><”><— >“"]<—1>>as
= ([2m+2 1 1)<_17 >[m+1] + n—m< >(n) 1 )¢
= ([2m +2)(1)(" "D (-1 D gr=2mn 4111 >(n+1)< 1,1)lm ])¢

Put
2m Jr 21/ > —2(a—s)m+ (a—?s)(g—2s—1) .
v=1

Then we have
[a + 1)(=1)D (1, 1y = (1) (1)@ (-1, )"

la/2] N
= (=) 3 e =L

s=0
La/2]
= Z cs{[2(m+ s+ D)(1)le=2s=1 (1, 1>[m+s+1]
s=0

+qa72572(m+s) [a — 25+ 1]<1>(a72s+1) <71, 1>[m+5] }5
In the right-hand-side, the coefficients of (1)2+1=27(—1, 1)["™*"14 are
[Q(m +7)er1 +q¢* 20 — 2r + 1e,

2 2 a—2r)(a—27r .
— H = + d g2 )me (=22 ([27“]61&_27””1 +la—2r+ 1](1_27)

2Mm + 2] _o(p—pi1yma (e=20(a=2r+1)
=[a+uH%q o g,
v=1

Hence we obtain (1).
We prove (2) by the induction on n. We use the following notation for
short:

(ir gt @) = (B) (= + 2, ) (— ke, ) (ke + 2,k — 2) 6.
Then Lemma 3.19 implies that
(=k)(i, 4, t,a) = [2t + 2)(i,j — 1,t + 1,a)

+07 + 1?20, 5+ 1,t,a — 1)
+Hi+1g* (i + 1, 5,1, a).
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Hence, by assuming (2) for n, we have

[+ (k) "D~k + 2,k — 211§ = (—k) (—k) " (—k + 2,k — 2)1g
[2t i 2]q2m-+j(j;1) —i(t+u) (’L,j —1,t+1,a— u)

iG=1

= > [ 1P 2 1 - 1)
i+j+2t=n,j+t=u +[l 4 1}q2ai+j(j;1) —i(t+u)+2a—2u—2t(i + 17]', t, a— u)

Then in the right hand side, the coefficients of (¢/,j',t',a — u’) satisfying ' +
J+2=n+1,7+t' =u are

[Qt/]qzai’-pw—i’(t/—uu/) n [j/}q2ai’+w—i’(t/+u’—1)+j/—1—2t’

+[i/]qza(iblnw7(i’fl)(t’+u/)+2a72u'72t’

_ ani/+j/(j;71) —i'(t’—i—u/) ([Qt/]qj,"’_ll + [j/]qil_Zt/ n [i/]q_(t/"’_u/))
_ qQai/+j/(j;71) —i/(t’—i-u')[n + 1]

We can prove (3) similarly as above. O

83.5. Actions of Ej, Fj, on the PBW basis

For a f-restricted multisegment m, we set

Py(m) = Py(m)g.
We understand Py(m) = 0 if m is not a multisegment.

Theorem 3.21. For k € Is¢ and a O-restricted multisegment m =

> i<icy Ma,jlis j), we have

F_Py(m)
> (m—k+2,Z’_7n—k,l’) ~

= [mope + g Py(m — (—k +2,0) + (=K, 1))

>k

S (m_py2e—m_py) ~
+q*>* [2m_pk +2|Py(m — (—k + 2,k) + (—k, k))

S (M pgo k=M g k)+M_py2 k—2M gk

+qf>k
X[m_jrak + 1Py(m — Spr (—k + 2,k — 2) + (—k + 2, k)

+Z q[gk(m—k-f—lk7m—k,k,)+2m—k+2,k—272m—k,k,_‘tc+§:<j<j(mj‘k—27mj,k,)
—k+2<i<k

X [mi g + 1 Po(m — 8 (i ke — 2) + (i, k)).
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Proof. We divide m into four parts
m=my 4+ my +m3 + SpL1M_pi2k—2(—k + 2,k — 2),
Where m; = Zmi,j@}j}, myo = Z mi’j<i,j>, ms = Z mz’]<z,]>

>k j=k —k2<i<j<k—2
Then Proposition 3.14 implies

Py(m) = Py(my)Py(my) Py(ms)(—k + 2,k — 2)[m-r+20-21

If k = 1, we understand (—k + 2,k — 2)["l = 1. By Lemma 3.18 (1), we have

(=k)Py(mq)

= Z qu/>e(m—k+2,z’*m—k‘e’)[m_k,z + 1]P9(m1 _ <,k + 2’ €> + <,k7 g>)

>k
+qu>k(m—k+2,£*m—k,z)p9(ml)<_]€>’

and Lemma 3.18 (2) implies
(k) Po(mz) = [2m_p + 2] Py(mz — (—k + 2, k) + (=K, k))
HqM 2Tk Py (mg)(—k).
Since we have (—k)Py(ms) = Py(ms)(—k), we obtain
(3.6) <fk>}~79(m) = Ze>quzl>z(m—k+2,e'*m—k,e')[m_kl + 1]
Xﬁg(m - <_k + 2a€> + <_ka£>)
g k(M k2,0 k) [2m_j1 + 2]
Xﬁg(m - <_k + 2a k> + <_k7 k>)
gezk Mok Tk Py (my + my + mg)
X (—k)(—k + 2,k — 2)lm—rr2k-2]g
By (3.5), we have
(—k) (=K + 2,k — 2)[m k22l
= (—k + 2, k) (—k + 2,k — 2)m-rs2r2—1 g
+5k¢1q2m_k+2,k—2 <k><*k + 2, k— 2>[m-k+2,k—2]$.
Hence the last term in (3.6) is equal to
qze>k(m—k+2,£7m—k‘£)*m—k‘k
X [m_pp2g + 1 Po(m — Sppr (= + 2,k — 2) + (—k + 2,k))

_‘_5k¢1ng>k(m—k+2,e*m—k,,e)+2m—1c+2,k—2

X Py(my + mg + m3) (k) (—k + 2, k — 2)[m-r2n-2lg,
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For k # 1, Lemma 3.18 (4) implies
Pp(ma)(k) = ) q-wra<i<i ™R3 (i k) Py(my — Gick (i k - 2)),
—k42<i<k

and Proposition 3.14 implies
Py(my) (i, k) = g~ 2i<i ™3k [my 4. + 1) Py(mg + (i, k)).
Hence we obtain

Py(my) Pp(mg) Py(mz) (k) (—k + 2, k — 2)[m-r+z-2lg
= Z qz—k+2<j<7i My k=23 _pgjci Mk
—k+2<i<k N
x[mi g + 1 Py(m — Gy (i k — 2) + (i, k).
Thus we obtain the desired result. 0

Theorem 3.22. For k € Iy and a O-restricted multisegment m =

> my (i, j), we have
—J<iIsy

E_},Pp(m)
I+ 3 (M_pgo e —M_p o)

S S ]
>k X[m7k+2,f + 1]P9(m - <_ka€> + <_k + 2)£>)

14+ 3 (Mg e—Mm_k0)+mM_pi2k—2m_

+(1—q*g =H X[m_grok + 1Bs(m — (—k, k) + (—k +2,k))

14+ > (Mmopyoe—m_p0)+2m_jq2 k—2—2m_p k+ 2 (M4 k—2—m;ry,)

Hi-@) Y g
—k+2<i<k—2 ~ . .
' X [mio—a + 1 Py(m — (i, k) + (i, k — 2))

14+ > (Mopgo0—Mm_k e)+2m_ppo k—2—2m_j &

+0k21(1 —g*)g  &*
X[2(m_pio2h2+ 1)]Ps(m— (—k+2,k) + (—k + 2,k — 2))

Z(m—k+2,z*m—k,z)*2m—k,k+5k¢1(1*mk,k+2m—k+2,k—2+ > (mi,k—Q*mi,k))
+q>* —k2<i<k—2
ng(m—(k>).

Proof. We shall divide m into

m=m; + mg +mgy
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where my = Y° m;;(i,7) and my = > my (i, k) and mg = > m, (i, ).
i<j >k i<k i<k
By (2.3) and Proposition 3.17, we have
E_ By(m) = ((e’_kPg(ml))Pg(mg +my)
(3.7) +(Ad(t—k)Py(m1)) (e, Py(mz + m3))

+ Ad(t) {Po(m1) (¢ Po(mz)) Ad(t4) Po(m3) } )
By Proposition 3.17, the first term is

(¢ Pop(m1)) Pp(mg + mg)

1 m r—m_ . g
(38) — (1 . q2) Z€>k q +e§e( —k+2,2 —k,L )

X[m_pt2,0 + 1 Py(m — (=K, £) + (—=k +2,0)).
The second term is

(Ad(t—x)Py(m1)) (e Pp(mz + m3))

(3-9) - qze>k(m—k+2,€—m—k,€) [m_k7k][m_k+27k + 1}
[Qm,k)k]
><(1 _ q2)q1—m7k,k+m—k+2,kpe(m _ <_]€7 k> + <_k + 2’ k>)

Let us calculate the last part of (3.7). We have

Ad(t_y) (Pg (my1) (e} Pp(mg)) Ad(t) Py (mg))

DMk, =Mk, e)+3 0, < i k—2—Ok=1

=g Pg(ml)(eZPg(mg))Pg(m3).
We have
. 1—mk—_E mi kg
epPo(m2) =¢ i<k Pp(mg — (k)
5 1—mi,k—‘/z:.mi/vk . .
+(1_q ) Z q st PG(m2_<Z7k>)<7’vk_2>
—k<i<k

[m k] 2\ 1—

+—2 (1 — m-kkP(mg — (—k,k)){(—k, k — 2).

[2m,]€)k]( q )q ( 2 < >)< >

For —k < i < k, we have

<i, k — 2>P9(m3)

- M g2 i
=q > (14 0i=—ry2)(Mmig—2 + 1)]Py(m3 + (i, k — 2)).
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By Lemma 3.16, we have

(—k,k —2)Py(m3)¢

_ > My k—2 7
=g —kta<k<he2 Pg(m3)<_k7 k— 2>¢
_ > M k—2—0k2£1 e
=q —k+2<k<k—2 Pg(m3><_k+27k>¢
Mokt k—2— > My k—2—0k1 7
=q —k+2<i<k—2 (=k +2, k) Py(m3) .

Hence we obtain

Py(my) (e} Py(ma)) Py(m3)ep
1= mik ~
=g @ Bym - (k)
1-> mgr e — > MG g —2
+(1 _ q2) Z q i'<i i >i

—k+2<i<k—2 ~ . .
X[mi,ka + 1]P9(m - <z7 k) + <7’7 k — 2>)
9 1-m_pg—Mm_pt2,6— 2 My k-2
+(1 —¢°)0r21q ThrEs

X[2(M_proh2 + D] Ps(m— (—k + 2, k) + (—k + 2,k — 2))

a 2) 2(17m_)c,k)7m—k+2,k—27k+2;<k7772‘iv;‘"'_276k¢1
+(1—¢)q o
_ 1|lm_
[m_giok +1][m k»k]P(m_<_k’ kY + (=k+2k)).
[2m_ k]

Hence the coefficient of Py(m — (k) in E_j,Py(m) is

S(Me_kqo,e—m_k )+ >, Mik—2—0k=1+1— 2 m;
q° i<khe2 i<k

Z(m—k+2,£*m—k,l)*Qm—k,k‘i’&k;ﬁl(I*mk,k+2m—k+2,k—2+ > (mi,k—zfmi,k,))
= ¢>* Ckto<i<k—2

The coefficient of Py(m — (—k, k) + (—k + 2,k)) in E_,Ps(m) is

(1= gy B s Il m i+ 1]

S2(m_gt2e—m_g,0) My g—2—0p=1+2(1—m_g k) —M_py2,k—2—> Mir—2—0kz1
+q° i<ho2 Crt2<i<k-2

[Qm,k,k]

M_gt2,k + 1) [m_g k]

X(]‘ - q2) [ [mek; k]

(1 _ q2)q1+222k(m—k+2,£*m—k,l) [m—k,k][m—k+2,k + 1} (1 + q72m_k,k)
[2m k]

= (1= g R e e 1]

=(1- q2)q1+m—k+2,k—Zm—k,k+2£>k(m—k+2,l—m—k,l)[mik+2’k +1].
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For —k+2 < i < k—2, the coefficient of Py(m — (i, k) + (i, k—2)) in E_jPy(m)
is

(Mg o=k )+ 20 My o= 0k=1+1= 30 My = 35 My g

2 i <k— i’ <i il >i
(1-q)q" <k < > [mik—2+1]
2
=(1-q)
14+ 37 (Meopy2,e—m_g0)F2m_pyo p—2—2m_g x+ > (M r—2—my )
>k —k il <i
xXq > k+2<ifs [mivk_g + 1]

Finally, for k # 1, the coefficient of Py(m — (—k + 2,k) + (—k + 2,k — 2)) in
E,kPg(m) is
S (m_pq2,0—m_k,e)+ Mi g—2—0k=1+1l—M_} k—M_fq2,k— 2, Mjr_2
(1 _ q2)q 7 i<k—2 —kf2<i
X [2(m_k+27k_2 + 1)]

14+ 3 (m_kqo0—m_ k) +2m_jpqo k_2—2Mm_p &

=(1-¢%)q ** 2(m_pt2k—2+1)].

Theorem 3.23. For k >0 and m € My, we have

B Py(m) = 3 (1 — g?)q T ez (mszer =)
X [mk+2’£ + 1 Py(m — {k,0) + (k+2,0))
+q1+25>k(mk+2,e*mk,£)*mk,kﬁe(m _ <k>),

FyPy(m) = Z > Mz =M ) [y 4 1Py(m — Sepnlk+2,0) + (k, 0)).
>k

Proof. The first follows from e* , Py(m) = 0 and Proposition 3.17, and
the second follows from Proposition 3.20. O

§4. Crystal Basis of Vp(0)
84.1. A criterion for crystals

We shall give a criterion for a basis to be a crystal basis. Although we
treat the case for modules over B(g) in this paper, similar results hold also for
Uq(9)-

Let Kle, f] be the ring generated by e and f with the defining relation
ef = q 2fe+ 1. We define the divided power by f() = f/[n]!.

Let P be a free Z-module, and let & be a non-zero element of P.
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Let M be a Kle, f]-module. Assume that M has a weight decomposition
M = ®¢epMe, and eMy C Myio and fMy C My_,.
Assume the following finiteness conditions:

(4.1) for any A € P, dim M) < co and My, =0 for n > 0.

Hence for any u € M, we can write u =3 -, f™u, with eu,, = 0. We define
endomorphisms € and f of M by

éu = Z fF=Dy,,,

n>1

fu = Z f(nJrl)un-

n=0

Let B be a crystal with weight decomposition by P. In this paper, we consider
only the following type of crystals. We have wt: B — P, f: B—B,ée:B—
BU{0}, e: B — Zx satisfying the following properties, where B :=wt~1(\):

(i) fBx C Bx_q and éBy C Byyq LI{0} for any A € P,

(i) fé(b) =bif éb+#0, and éo f = idp,
(iii) for any A € P, B, is a finite set and Byynq = 0 for n > 0,
(iv) e(b) =max{n > 0| é"b # 0} for any b € B.

Set ord(a) =sup{n € Z | a € ¢"Ao} for a € K. We understand ord(0) =

Let {C(b) }vep be a system of generators of M with C'(b) € Mypy: M =
> e KC(D).

Let £ be a map from B to an ordered set. Let ¢: Z — R, f: Z — R and
e: Z — R. Assume that a decomposition B = B’ U B” is given.

Assume that we have expressions:

(4.2) eC(b) = > EuC),
veB
(4.3) fCb) = Z FyyC(Y).

beB

Now consider the following conditions for these data, where ¢ = ¢(b) and
0 =e(l):

(4.4) ¢(0) =0, and ¢(n) > 0 for n # 0,
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c(n)
c(n)
(n)
(n)
(
(

n)<n+cm+n)+e(m) forn >0,
c(m+n)+ f(m) forn <0,
f(n)>0 forn>0,
e(n) >0 formn >0,
>0+ f(l+1-1),
ord(Epp) =1 —Ll+e(l—1-1),
Fy €0 (14 qAy),
Eyer € 741+ qAg) if £ >0,
ord(Fyp) > =L+ f(L+1 =) it # fb, £(fb) # £(1),
ord(Fyy) > L+ f(l+1—0)if fbe B,V # foand £ < 0/ —1,
ord(Epp)>1—L+e(l—1—1)ifbe B", b #¢éband £ < ' + 1.

)

<
<
+
n)+

ord Fb,b’)
)

Theorem 4.1.  Assume the conditions (4.4)—(4.15). Let L be the Ag-

submodule " AgC(b) of M. Then we have éL C L and fL C L. Moreover
beB
we have

eC(b) = C(éb)mod gL and fC(b) = C(fb)modqL for any b € B.
Here we understand C(0) = 0.

We shall divide the proof into several steps.
Write
C(b) =Y f"MC,(b) with eC,(b) =0.
n>0
Set
Lo= Y Agf™Co(b).
beB, n>0

Set for u € M, ord(u) =sup{n € Z | u € ¢"Lo}. If u =0 we set ord(u) =
0o, and if u & Upezq™ Lo, then ord(u) = —oc.

We shall use the following two recursion formulas (4.16) and (4.17).

We have

Co)=2 ¢ "f" V0 0)

n>1

=Y Epy fMC0).

n>=0
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Hence we have
(416)  Cn(d)= Y. ¢"'EpyCn1(b)) forn>0andbe By.
¥ €Bxrta
If £:=¢(b) > 0, then we have
fC@) = > FaufMC. W)

b EB, n>0
= [n+1f"TIC,(éb).
n=0
Hence, we have by (4.11)
Onz0[n]Crn—1(€b) =3y Fep,pr Cp (V)
€ ¢' (14 qA0)Cr(b) + Xy sy Feviy Cr ().
Therefore we obtain
(4.17)  Cn(b) € dnzo(1 + qA0)g" "Cr1(Eb) + > ¢" ' AgFappr C (V)
b'£b
if ¢ >0.

Lemma 4.2. ord(Cy(b)) > c¢(n —{) for any n € Zso and b € B, where
0:=¢e(b).

Proof. For A € P, we shall show the assertion for b € B) by the induction
on sup {n € Z | Myjno # 0}. Hence we may assume

(4.18) ord(Cp(b)) = ¢(n — ) for any n € Zo and b € Byyq,.

(i) Let us first show C,,(b) € KLy.

Since it is trivial for n = 0, assume that n > 0. Since C,,_1(b") € KLg for
b € Byiqa by the induction assumption (4.18), we have C),(b) € KLg by (4.16).
(ii) Let us show that ord(C, (b)) = ¢(n — ¢) for n > £.

If n = 0, then ¢ = 0 and the assertion is trivial by (4.4). Hence we may
assume that n > 0.

We shall use (4.16). For V' € By, we have

ord(Cp—1 (b)) = ¢(n—1—1¢") where ¢/ =¢(V)
by the induction hypothesis (4.18). On the other hand, ord(Epp) > 1 — €+
e({ —1—1¢) by (4.10). Hence,
ord(¢" "By Cri (V) 2 (n—1)+ (1—L+e(t—1—0)) +c(n—1-1)
=n—0O+el—-1-)+c(n—-0+U—-1-1))

—0)

n

>c(n
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by (4.5).
(iii) In the general case, let us set
r = min{ord(Cy (b)) —c(n — (b)) | b€ Bx, n >0} € RU {o0}.
Assuming r < 0, we shall prove
ord(Cy (b)) > e(n —£) +r for any b € By,

which leads a contradiction.
By the induction on £(b), we may assume that

(4.19) if £(0') < £(b), then ord(Cy, (b)) > c(n — ') + r where ¢/ :=£(b').

By (ii), we may assume that n < ¢. Hence éb € B. By the induction
hypothesis (4.18), we have ord(q‘"C,,_1(éb)) = —n+c((n—1)— (£ —1)) >
e(n—20)>c(n—2L)+r. By (4.17), it is enough to show

ord(q" 1 Esp iy Cr (b)) > ¢(n — £) 41 for b/ #b.
We shall divide its proof into two cases.
(a) £(b) <&(b).
In this case, (4.19) implies ord(C,, (V') > ¢(n — ¢') + r. Hence
ord(¢"  Fapp Cn(b) > (E = 1)+ (1 =L+ f(L =) +c(n— )+
=fUl—0)+c(n—0+U-))+r=cn—L0)+r
by (4.9) and (4.6).

(b) Case £(b') £ £(b)-

In this case, ord(Feppr) > 1 — £+ f(£ —¢') by (4.13), and ord(C,, (b)) >
¢(n— ") + r. Hence,

Ord(qe_lFéb’blCn(bl)) >SU—-D)+ 1L+ fl—0)+cn—0)+r
=fl—-)+ec((n=—0+U—=E))+r>=cln—0)+r.
|

Lemma 4.3.  ord(Cy(b) — Cr—1(€b)) > 0 for £:=e(b) > 0.

Proof.
We divide the proof into two cases: b € B’ and b € B”.
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(i) be B
By (4.17), it is enough to show

ord(¢* 1 Fap iy Co(b)) > 0 for b # b.

(a) Case £ >0 :=¢(V).
We have

ord(¢" ey Co(0) = (6= 1)+ (1 — L+ f(U— ) +c(t—¢) >0

by (4.7).
(b) Case £ < 0.
We have ord(Feppr) > 1— £+ f(£ —¢') by (4.14). Hence

ord(¢"  Eappy Co(W) > (U= 1)+ (1 L+ f(L—0)) +c(t—0)>0
by (4.6) with n = 0.

(ii) Case b€ B”.
We use (4.16). By (4.12), it is enough to show that

ord(q" ' By, Cp_1 (b)) > 0 for b’ # éb.

(a) Case £ —1> /.
ord(¢" 1 Eppy Co_1 (V) = e(f —1—0")+c(f—1—¢") > 0 by (4.10) and
(4.8).
(b) Case £ —1< /0.
ord(Ep ) > 1—Ll+e({—1—£') by (4.15), and ord(q* 1 Ey 1y Co—1 (V') >
el —1—0)+c({—1—-1)>0Dby (4.5) with n =0.
|

Hence we have

Cr(b) =0mod gLy for n # £ :=e(b),
Cy(b) = Co(&°b) mod g Lo,

C(b) = fOC,(b) mod gLy,

fC(b) = C(fb) mod qLo,

eC (b) = C(éb) mod ¢qLy,

Z Ao f™Co(b ZAOC (b).

beB, n>0 beB
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Indeed, the last equality follows from the fact that {C(b) },cp generates Lo /qLo.
Thus we have completed the proof of Theorem 4.1.
The following is the special case where B’ = B” = B and £(b) = (b).

Corollary 4.4.  Assume (4.4)—(4.12) and

(4.20)  ord(Fyy) > L4+ f(A+L—0") if e <l and b # fb,
(4.21)  ord(Epp)>1—L4e(l—1—0) if <l +1 and V' # éb.

Then the assertions of Theorem 4.1 hold.

84.2. Crystal structure on My
We shall define the crystal structure on M.

Definition 4.5.  Suppose & > 0. For a #-restricted multisegment m =

> my (i, 7)), we set
—J<isy

e_p(m) = max {Agf“(m) 17> —k+ 2} ,

Ag-fk)(m) = Z(m—k,z —Mm_gyo42) for j>k,

>

Az(c_k)(m) = Z(m—k,z = Mofy2,0) + 2mo g + 0(Moppo, is 0dd),
0>k

AT () =" (mgr = m_gaze) + 2mkk — 2m g2 ko2

>k
+ E Mk — E M k—2

—k42<i<j4+2  —k+2<i<
for —k+2<j<k—-2.

(i) Let ny be the smallest £ > —k + 2, with respect to the ordering --- >
k+2>k>—k+2>--->k—2 such that £_(m) = A" (m). We
define

m— <—k‘ + 2,nf> + (—k,nf> if ng > k,

m— (—k+2,k)+ (—k, k) if ny =k and m_p49 is odd,

+(—k +2,k)

m— 5nf¢k._2<nf +2,k—2)

+<nf +2,k)

if ng =k and m_j40 is even,

if —k+2<n; <k-2.
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(i) If e_p(m) = 0, then E_j(m) = 0. If e_4(m) > 0, then let n, be the largest
¢ > —k 4 2, with respect to the above ordering, such that e_(m) =
Aéfk) (m). We define

m— (—k,ne) + (—=k+2,n.) ifn. >k,

m— (—k, k) + (—k + 2, k) 1fne:k:'and
M_kyo IS even,

m— (—k+2,k) if ne = k and
+op21(—k+ 2,k —2) M_j2k is odd,

m— (n. + 2, k)

if —k+2<n.<k—2.
+5ne¢k,2<ne + 2,k — 2>

Remark 4.6. For 0 < k € I, the actions of E,k and ﬁ,k onm € My are
described by the following algorithm.

Step 1. Arrange segments in m of the form (—k, j) (j > k), (=k+2,7) (j > k),
(i,k) (—k <i<k), (i,k—2) (—k+2<i<k—2) in the order

(k4 2), (—k+ 2,k +2), (=K, k), (—k+2,k), (—k+ 2,k — 2),
(—k+4,k), (-k+4,k—2),--- (k—2,k),(k—2,k—2), (k).

Step 2. Write signatures for each segment contained in m by the following rules.

(i) If a segment is not (—k + 2, k), then
e For (—k, k), write ——,
e For (—k,j) with j > k, write —,
e For (—k + 2,k — 2) with k > 1, write ++,
e For (—k +2,5) with j > k, write +,
e For (j, k) with —k + 2 < j < k, write —,
e For (j,k —2) with —k+2 < j <k — 2, write +,
e Otherwise, write no signature.
(ii) For segments m_gyo p(—k + 2, k), if m_j19 is even, then write
no signature, and if m_j42  is odd, then write —+.

Step 3. In the resulting sequence of + and —, delete a subsequence of the form
+— and keep on deleting until no such subsequence remains.
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Then we obtain a sequence of the form — —--- — + +--- 4.

(1) e_g(m) is the total number of — in the resulting sequence.

(2) F_i(m) is given as follows:
(1) if the leftmost 4 corresponds to a segment (—k + 2, j) for j > k, then
replace it with (—k, j),

(ii) if the leftmost + corresponds to a segment (j, k — 2) for —k+2 < j <
k — 2, then replace it with (j, k),

(ili) if the leftmost + corresponds to segment m_jio k(—k + 2, k), then
replace one of the segments with (—k, k),

(iv) if no + exists, add a segment (k, k) to m.

(3) E_i(m) is given as follows:
(i) if the rightmost — corresponds to a segment (—k,j) for j > k, then
replace it with (—k + 2, j),

(ii) if the rightmost — corresponds to a segment (j, k) for —k+2 < j < k,
then replace it with (j, k — 2),

(ili) if the rightmost — corresponds to segments m_jyo (—k + 2, k), then
replace one of the segment with (—k + 2,k — 2),

(iv) if the rightmost — corresponds to a segment (k,k) for k& > 1, then
delete it,

(v) if no — exists, then E_z(m) = 0.

Example 4.7.

(1) We shall write {a,b} for a(—1,
part of the crystal graph of By(0
(—1)-arrows.

1) + b(1). The following diagram is the
) that concerns only the 1-arrows and the

1 L {04 = {05}
1 1 {07 2} ? {Oa 3} - 1
11,0 == {1,1}
—1 -1 {2,0} 311 {2’ 1} .
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Especially the part of (—1)-arrows is the following diagram.
(0,20} — 5> {0,2n 4+ 1} —> {1,2n) — 5 {1,2n + 1} = {220} - --
(2) The following diagram is the part of the crystal graph of By(0) that concerns

only the (—1)-arrows and the (—3)-arrows. This diagram is, as a graph,
isomorphic to the crystal graph of As.

/™
i

(3) Here is the part of the crystal graph of By(0) that concerns only the n-
arrows and the (—n)-arrows for an odd integer n > 3:

Lemma 4.8. For k € I.q, the data E,k, ﬁ,k, e_k define a crystal
structure on Mg, namely we have
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(i) F_xMg C My and E_,My C My U {0},
(i) F_xE_p(m)=m if E_x(m) #0, and E_j 0 F_j, = id,

(iii) e_x(m) = max {n >0] Eﬁk(m) # 0} for any m € M.

Proof. We shall first show that, for m = > .. .m;;(i,j) € Mo,
F_j(m) is G-restricted, E_,F_p(m) = m and e_p(F_pm) = e_p(m) + 1. Let
A; ::A§_k)(m) (j =2 —k+2) and let ns be as in Definition 4.5. Set m’ = F_pm.
Let A} = A§-7k)(m') and let n., be n, for m'.

(i) Assume ny > k. Since Ap, > Ap, 2= Ap, +M_gn,—2 — M_ki2n,, We
have m_g ., —2 < M_gy2,n,. Hence m’ =m — (—k +2,ny) + (=k,ny) is

O-restricted. Then we have

Aj ifj>nf,
Aj—|—2 ifj<’l’L4f.

Hence e p(m') = A,, +1 = ¢ _x(m) + 1 and n;, = ny, which implies
m=FE_g(m).

(ii) Assume ny = k.

(a) If m_g4o is odd, then m’ = m — (—k+2, k) 4+ (—k, k) is O-restricted.
We have
Aj lf] > k,
Aj=QSA;+1 ifj=k,

Hence e_j(m') = e_j(m)+1 and n/, = k, which implies m = E_j(m’).

(b) Assume that m_jyop is even. If k£ # 1, then Ay > A_p4o =
A —2m_j19 k—2, and hence m_jp49,—2 > 0. Therefore m’ = m —
Opz1(—k +2,k —2) + (—k + 2, k) is O-restricted. We have

Aj 1f]>l€,
Al=qAj+1 ifj=k,
Aj+2 if j <k.

Hence e_j(m') = e_j(m)+1 and n/, = k, which implies m = E_(m’).
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(iii) Assume —k +2 < ny < k—2. Since A, > Ap, 40 = Ap, + M, 1ap —
My, 42,k—2, We have My, yo k2 > My, 4k Hence m’ =m — (ny +2,k —
2) 4+ (nf + 2, k) is O-restricted. Then we have
Aj lf] > ng,
A=A+ 1 i j =ny,
Aj +2 if j <ny.

(Here the ordering is as in Definition 4.5 (i).) Hence e_;(m') = e_;(m)+1
and n/, = ny, which implies m = E_;m’.

(iv) Assume ny = k — 2. It is obvious that m’ = m + (k) is f-restricted. We
have

A if j # ny,
! Aj+1 ifj:nf.

Hence e_j(m') = e_x(m) 4+ 1 and n/, = ns, which implies m = E_j(m’).

Similarly, we can prove that if e_(m) > 0, then E_g(m) is f-restricted and
F_pE_;(m) =m. Hence we obtain the desired results. O

Definition 4.9. For k € I.(, we define fk, Ek. and e by the same rule
as in Definition 3.7 for fj, é; and e.

Since it is well-known that it gives a crystal structure on M, we obtain
the following result.

Theorem 4.10. By Fy., By, e (k € I), My is a crystal, namely, we
have

(i) FuMy C My and ExMy C My U {0},
(ii) FpE(m) =m if Ex(m) # 0, and Ey o Fj, = id,
(iii) er(m) = max {n 20| Eg(m) # 0} for any m € M,.
The crystal My has a unique highest weight vector.

Lemma 4.11. If m € My satisfies that ex(m) = 0 for any k € I, then
m = (. Here () is the empty multisegment. In particular, for any m € My,
there exist £ > 0 and i1,...,ip € I such that m = F;, --- F,,0.
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Proof. Assume m # (). Let k be the largest k such that my, ; # 0 for some
j. Then take the largest j such that my ; # 0. Then j > |k|. Moreover, we
have my2,0 = 0 for any ¢, and my , = 0 for any £ > j. Hence we have

2my; ifk=—
A (m) = { e R
my,;  otherwise.

Hence ei(m) > A;k) (m) > 0. O

§4.3. Estimates of the order of coefficients

By applying Theorem 4.1, we shall show that {Py(m)d}mer, is a crystal
basis of V(0) and its crystal structure coincides with the one given in § 4.2.

Let k be a positive odd integer. We define ¢, f,e: Z — Q by ¢(n) = |n/2|
and f(n) = e(n) = n/2. Then the conditions (4.4)—(4.8) are obvious. Set
&(m) = (=1)™-k+2km_y . and

B'={me My | —-k+2<n(m)<k}U{me My|m_gi2x(m)isodd},
=My \ B".

Here n.(m) is n. given in Definition 4.5 (ii). If e_;(m) = 0, then we understand
ne(m) = oo.

We define Fm o and E_ ", by the coefficients of the following expansion:

mm’
F_ Py(m)p = Z mm/
E_,Py(m)¢ = ZEm " ¢,

as given in Theorems 3.21 and 3.22. Put £ = e¢_;(m) and ¢ = e_;(w’).

Proposition 4.12.  The conditions (4.9), (4.11), (4.13) and (4.14) are
satisfied for E_ k> F k, €E_k, namely, we have

(a) if m’ = F_j(m), thenka,Eq ‘(14 qAy),

(b) if m' # F_j(m), then ord(F k) > —0+ f({+1— ) = —((+ ¢ —1)/2,
(c) if w' # F_p(m) and ord(F R)) = —(l+ 0 —1)/2, then the following two

conditions hold:

(1) E(F_r(m)) > E(m),



880 NAovyA ENOMOTO AND MASAKI KASHIWARA
(2) £ =0 or F_i(m) € B".

Proof. We shall write A; for Aj_k(m). Let ny be as in Definition 4.5 (i).
Note that F % # 0.
m,F_j(m)

If Fn:)’fn, # 0, we have the following four cases. We shall use [n] € ¢* =" (1 +
qAy) for n > 0.
Case 1. m' =m — (—k +2,n) + (—k,n) for n > k.

In this case, we have

ka = [mfk,n -+ 1]qz.i>n(m—k+2,j*m—k,j) c q—An(]_ + qu)

m,m’

and

¢=max{A;(j > —k+2)},
¢ =max{A; (j >n), A, +1,A;,+2 (j <n)}.

If m’ = F_j(m), then £ = A,, and we obtain (a). Assume m’ # F_j(m). Since
A, < 0,0 —1, we have ord(Fn;’f“,) =—A, > —(+ ¢ —1)/2. Hence we obtain
(b). If ord(Fr;)’fn,) = —(l+ /¢ —1)/2, then we have A, = ¢ = ¢/ — 1. Since
Aj+2< ' =A, +1for j <n, we have ny =n and m’ = ﬁ_k(m), which is a
contradiction.

Case 2. m' =m — (—k+2,k) + (—k, k).

In this case we have
Fn:k [2m_ g + 2]q2j>k(m—k+2,j_m7k,j) € g A 0(morpak is CVCU)(l + qAp).

,m’ =
(i) Assume that m_j1oy is odd. We have Fn;]fn, € ¢ (1 + qAp) and
U =max{A; (j >k),Ar+1,4;+2 (j <k)}.

If m’ = F_,(m), then £ = Ay and (a) holds. Assume that m’ # F_,(m).
We have Aj, < £,¢' — 1 and hence ord(F_* ) = —A;, > —(£ + ¢ —1)/2.

If ord(F_ %)) = —(¢ + ¢ —1)/2, then A}C ¢ ={¢ —1, and we have

m,m’

m’ = F_j(m), which is a contradiction.

(i) Assume that m_j 4oy is even. Then m’ # F_j(m), E R, eqg ™11+

,m
qAQ) and
(' =max{A; (j > k),Ax+3,A4;,+2 (j <k)}.

We have Ay < £,0' — 3 and hence ord(F, %) = —A, =1 > —((+ 0 -
1)/2. Hence (b) holds. Let us show (c). Assume m’ # F_;(m), and
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ord( mm,) = —({+¢ —1)/2. Then we have Ay = ¢ = ¢’ — 3. Hence

ny < k and we have either F_p(m) = m— dizi(t, k — 2) + (i, k) with

—k+2<i<kor Fp(m)= m—0p21(—k+2,k—2)+(—k+2,k). Hence

we have £(F_j(m)) = tm_ g > —m_pr — 1 =¢&(m'). Hence we obtain

(e) (1).

(1) Assume F_j(m) = m—08;2, (2, k—2)+ (3, k) with —k+2 < ¢ < k. Then
k # 1 and E_p(F_g(m)) = F_g(m) — (i, k) + 821 (3, k — 2). Hence
ne(F_p(m)) =i —2 < k. Hence F_;(m) € B”. Therefore we obtain
(©) (2).

(2) Assume F_jp(m) = m — Ort1(—k + 2,k —2) + (—k + 2,k). Then
M_pgok(F_rp(m)) = m_giax + 1 is odd. Hence F_j(m) € B”.

Case 3. m' = m — 021 (—k+2,k—2) + (—k +2,k). In this case, we have
Fn:m’ -

c q_Ak+5(77l—k+2,k is odd)(l + qA0>.

[ ko + 1g2a>h P ke2a =Mk bz =2m gk

(1) If m_g1o is odd, then m’ # ﬁ,k(m), Fn;’f“, € ¢ A1+ qAy), and
(' =max{A; (j >k),Ar—1,A;+2 (j <k)}.

We have Ay, < £,¢ +1 and hence ord(F, %) = —Ap+1> —((+0 —1)/2.
It ord(Fn:m,) = -+ -1)/2, then Ak ={¢=V0+1, and ny = k.
Hence we obtain (c) (2), and F_gx(m) = m — (—k + 2, k) + (—k, k). Hence
E(F_p(m)) = Mm_pk+1>m_p i, =&(m’'). Hence we obtain (c) (1).

(i) If m_jg4ok is even, then Fm , € ¢ % (14 qAp) and
(' =max{A; (j > k), A +1,A;+2 (j <k)}.

If m’ = F_p(m), then £ = Ay, and (a) is satisfied. Assume m’ # F_,(m).
We have Aj, < {,¢' —1 and hence ord (£, R = —Ap > (0 —1)/2. If

ord(F M) = —(l+0'—1)/2, then A, = £ = ¢'—1, and hence m’ = F_j(m),
which is a contradiction.

Case 4. m' =m — §; (i, k — 2) + (3, k) for —k +2 < i < k. We have

me’_

[mi,k + 1]

Xq2j>k(m*k+2,j =M, ) F2M g2 k2= 2M ke b F D gy (Mg k—2— M k)

€q M2 (1+ qAo),
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and
K':maX{Aj (]>k),AJ (j<l’—2),Ai72+].,Aj+2 (Z—2<]<k—2)}

If m = F_j(m), then £ = A;_, and (a) holds. Assume m’ # F_,(m). Since
A;_o < 4,0 — 1, we have ord(Fn:’]fn,) =—A4, 9> -+ —1)/2. Hence we
obtain (b). If ord(F %) = —(€+ ¢ —1)/2, then we have A; o =€ = ' — 1.

Hence m’ = F_j(m), which is a contradiction.
]

Proposition 4.13.  Suppose k > 0. The conditions (4.10), (4.12), and
(4.15) hold, namely, we have

(a) if m' = E_g(m), then E_%, € ¢"=(1+ qAy),
(b) if m' # E_j(m), then ord(E k) > 1~ l+e(t—1—0') = —(L+ 0 —1)/2,

(c) ifm' £ E_p(m), < +1 and ord(E" ) = —(L+ 0 —1)/2, then b & B".

m,m’

Proof. The proof is similar to the one of the above proposition.
We shall write A; for Aj_k(m). Let n. be as in Definition 4.5 (ii).

Note that E;,kE“_k(m) £ 0if E_g(m) # 0. If En:ffn/ # 0, we have the
following five cases.
Case 1. m' =m — (—k,n) + (—k + 2,n) for n > k.

In this case, we have

E-E = (1= ¢®)m_pyon + 1)g T 2mn(Mrzi=mori) ¢ 1=4n (1 4 gAy)

m,m’

and

£ = max{A;( >~k +2))
' =max{A; (j >n),A, —1,4; =2 (j <n)}.

If m' = E_j(m), then £ = A,, and we obtain (a). Assume m’ # E_j(m). Since
A, < 0,0 + 1, we have ord(En_I,’fn/) =1—-A, > -+ /¢ —1)/2. Hence we
obtain (b). If ord(E,%,) = —(¢ + ¢ —1)/2, then we have A, = { = ' + 1.
Since A; < ¢' = A,, — 1 for j > n, we have n, =n and m’ = E,k(m), which is
a contradiction.

Case 2. m' =m — (—k, k) + (—k + 2, k).

In this case we have

En_i,lfn/ =(1— @) m_psan+ gt + 2> k(M2 =Mk ) Hmoksa ke =2m—k

c ql—Ak+5(m,k+27k is Odd)(l + qu).
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(i) Assume that m_j o isodd. Thenm’ # E_;(m), Em “ € 2 (14qAy)
and
U =max{A; (j > k), A, —3,4; =2 (j < k)}.
We have Ay, < ¢, ¢+ 3 and hence ord(E, E)=2—Ap > —(L+ 0 —1)/2.
Hence (b) holds. If ord(E_ " ) = —(£ 4 ¢ —1)/2, then A, = £ = (' + 3.

m,m’

Hence £ > ¢’ 4+ 1 and (c) holds.
(ii) Assume that m_j 2 is even. Then Em “ €@ A% (1 + qAp) and
= max{Aj (] > k),Ak — ].,Aj -2 (] < k)}

If m’ = E_j(m), then £ = Ay, and we obtain (a). Assume m’ # E_,(m).
We have Ak £,¢' + 1 and hence ord(E, F)=1—A>—(+0—1)/2
If ord(E_* )= —(¢ +¢ —1)/2, then Ay = £ = +1 and n, = k. Hence

m,m’

m’ = E_j(m), which is a contradiction.
Case 3. m' =m — (—k+2,k) + dpr1(—k + 2,k —2). If k # 1, we have

E~ ko _ (1 _ q2)[2(m,k+2 ko + 1>]q1+2j>k(m—k+2,j*m—k,j)+2m—k+2,k—2*2m—k,k

m,m’
c q*Ak+5(m—k+2,k is Odd)(l + qu)-
If K =1, we have

Em]:n/ — qEJ>k(m k42,5 —M— k]) 2m_k7k — q—Ak+6(m,k+2,k is Odd).

In the both cases, we have
n:ffn’ c q*Ak+5(m—k+2,k is 0dd)(1 4 (JAO)-
(i) If m_g42. is odd, then En:)’fn, € ¢" (14 qAy) and
= max{Aj (] > k),Ak — ].,Aj -2 (] < k)}

If m' = E_j(m), then ¢ = A, and (a) is satisfied. We have Aj, < £, + 1
and hence ord (£, K =1—A > {4+ —1)/2. Assume m’ # E_g(m).
If ord(Emkm,) =—(l+¢ —1)/2, then A, =¢=/{+1, and n. = k. Hence

m’ = E_,(m), which is a contradiction.
(ii) If m_pyo is even, then m’ # E_j(m), Em " € q (14 gAp), and
V= max{Aj (] > k),Ak + ].,Aj -2 (] < k)}

We have Aj, < ¢,¢' — 1 and hence ord(E, )= —Ap > -+ —1))2.
Hence we obtain (b). If ord(E_" ) = —(£+£'—1)/2, then Ay = £ = {' —

m,m’
Hence n.(m) > k and m_j12 ,(m) is even. Hence m ¢ B”.
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Case 4. m' =m — (i, k) + (i,k —2) for —k+2<i<k—2.
We have

ER =01 = ¢*)[migp—2 +1]

430 s (M2, =Mk ) +2Mm g2 k2= 2m g e+ 30 oo (M 2=y k)

xq
€q' 4 2(1+ qAy),

and
K':max{Aj (j}k), Aj (]<Z*2), Ai_gfl, Aj*2 (Z<]<k72)}

Ifm = E,k(m), then ¢ = A; 5 and (a) holds. Assume m’ # E,k(m). Since
Ao < 4,0+ 1, we have ord(E;)’fn,) =1—A; 2> -+ —1)/2. Hence we
obtain (b). If ord(E;ﬁn,) =—(l+/¢ —1)/2, then we have A; o = =10 +1.
Hence m’ = E_j(m), which is a contradiction.

Case 5. k# 1 and m' = m — (k). In this case,

D (M_kg2 =Mk ) =2m_g gt lomg g t2m g kmat D, (Mik—2—mig)
- :q3>k —k+2<i<k—2
)m/

€ q'~M2(1+ qAy),

and

U =max{A; (j #k —2), Ao — 1}.
If m' = E_p(m), then £ = Ap_5 and (a) holds. Assume m’ # E_j(m). Since
Ap_o < 4,0 + 1, we have ord(En_iff“,) =1—Ap_o>—({+¢ —1)/2. Hence we
obtain (b). If ord(E;f“m,) =—(+¢ —1)/2, then we have Ay_o =€ =10+ 1.

Hence m’ = E_j(m), which is a contradiction. O

Proposition 4.14.  Let k € Isg. Then the conditions in Corollary 4.4
holds for Ey, Fy and €, with the same functions c,e, f.

Since the proof is similar to and simpler than the one of the preceding two
propositions, we omit the proof.

As a corollary we have the following result. We write ¢ for the generator
¢o of Vy(0) for short.

Theorem 4.15.
(i) The morphism
Va(0) := Uy (0)/ > Uy (@) (fx — f-k) = Va(0)

kel

is an isomorphism.
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(if) {Po(m)@}menm, is a basis of the K-vector space Vp(0).
(iii) Set
Le(0):= > Ao, - F;,é C Vy(0),
€20, i1,... ig€T

By (0) = {E - Fy,¢mod qLg(0) | £ = 0,iy,...,i € z}.

Then, Bg(0) is a basis of Lg(0)/qLg(0) and (Lg(0),Bg(0)) is a crystal
basis of Vp(0), and the crystal structure coincides with the one of M.

(iv) More precisely, we have

(a) Lo(0)= @ AoPy(m)o,
meMy

(b) Bg(0) = {Pp(m)pmod qLy(0) | m € My},
(¢c) for any k € I and m € My, we have
(1) FxPy(m)p = Py(Fi(m))¢mod gLy (0),

(2) ExPy(m)¢ = Py(Ex(m))dmod gLy (0),
where we understand Py(0) = 0,

(3) E‘L’Pg(m)qb € qLy(0) if and only if n > e (m).

Proof. Let us recall that Py(m)¢ € Vy(0) is the image of Py(m) €
Vo(0). By Theorem 3.21, {Pp(m)}mer, generates Vy(0). Let us set L =
> mem, AoPa(m) C Vp(0). Then Theorem 4.1 implies that

FyPy(m) = Py(Fy(m)) mod gL and EjPy(m) = Py(E)(m)) mod ¢L.

Hence the similar results hold for Ly:=)
Let us show that

mem, AoPa(m)e C V4(0) and Py(m)¢.

(A) {Py(m)pmodgLo}mem, is linearly independent in Ly/qLo,

by the induction of the f-weight (see Remark 2.12). Assume that we have a lin-
ear relation ) - ¢ amPp(m)¢ = 0mod gLy for a finite subset S and an, € Q\{0}.
We may assume that all m in S have the same 6-weight. Take mg € S. If mg is
the empty multisegment @, then S = {0} and Py(mg)é = ¢ is non-zero, which is
a contradiction. Otherwise, there exists k such that e (mg) > 0 by Lemma 4.11.
Applying Ey, we have ) ¢ anErPy(m)¢ = ZmES, Fe (m) £0 amPo(Er(m))p =
0mod gLg. Since Ex(m) (Ej(m) # 0) are mutually distinct, we have Gy, =0
by the induction hypothesis. It is a contradiction.
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Thus we have proved (A). Hence {Py(m)p}menr, is a basis of Vp(0), which
implies that {Ps(m)}mea, is a basis of Vy(0). Thus we obtain (i) and (ii).

Let us show (iv) (a). Since ﬁh "'ﬁi[(b = Pg(ﬁil -~-Eg(2))q§mod qLg, we
have Lg(0) C Lo and Lo C Ly(0) + gLo. Hence Nakayama’s lemma implies
Lo = Ly(0). The other statements are now obvious. O

§5. Global Basis of Vj(0)
§5.1. Integral form of V}(0)

In this section, we shall prove that V(0) has a lower global basis. In order
to see this, we shall first prove that {Py(m)@}menm, is a basis of the A-module

Vo(0)a. Recall that A = Q[g, ¢ '], and Vy(0)a = U, (gl )a¢-

Lemma 5.1. V3(0)a = @ APy(m)¢.
meMy

Proof. 1t is clear that €D, AFPs(m)¢ is stable by the actions of Flgn)
by Proposition 3.20. Hence we obtain Vy(0)a C Depq, ALo(m)¢.

We shall prove Py(m)¢ € U, (gloo)ad. It is well-known that (i, 7)™ is
contained in U, (gl,,)Aa, which is also seen by Proposition 3.20 (3). We divide
masm=m; +my, where my =, _,.mi;(i, j) and mo =37, o mu(—k, k).
Then Pp(m) = P(my)Pp(mz) and P(my) € U, (gl )a- Hence we may assume
from the beginning that m =3, _, - my(—k, k). We shall show that Py(m)¢ €
V4(0)a by the induction on a.

Assume a > 1. Set m" = 37, ., my(—k,k) and v = Py(m')¢. Then
(—a+2,a —2)"v € V4(0)a for any m by the induction hypothesis.

We shall show that (—a, a)™(—a +2,a — 2)[™ly is contained in Vj(0)a by
the induction on n. Since Py(m’) commutes with (a), (—a), {(—a + 2,a — 2),
(—a+2,a) and (—a,a), Proposition 3.20 (2) implies

(—a)®(—a + 2,0 — 2)"+mly
— Z P ntm)iti(G=1)/2=i(t+u)
i+j+2t=2n, j+t=u . . n+m—u

! ! (@)D (—a+2,a)D(—a,a)(—a + 2, —2) Ty,
which is contained in V4(0)a. Since we have

<a>(i)<_a +2 a>(j)<—a, a>[t]<_a +2,a— 2>[n+m7u]v c VQ(O)A

if (i, 4,t,u) # (0,0,n,n) by the induction hypothesis on n, (—a, a)!" (—a+2,a—
2)[mly is contained in V(0)a.
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If a = 1, we similarly prove Py(m)¢ € Vy(0)a using Proposition 3.20 (1)
instead of (2). O

85.2. Conjugate of the PBW basis

We will prove that the bar involution is upper triangular with respect to
the PBW basis {Py(m) }mer, -

First we shall prove Theorem 3.10 (4).

For a,b € M such that a < b, we denote by M, (resp. M) the set

of m € M of the form m = >, ., m;;(i, ) (resp. m = 37, mi; (i, ).
Similarly we define (Mp)<p. For a multisegment m € Mgy, we divide m into
m = my + M.y, where my, = Zigb m; ;(i,b) and mey = Zi<j<b m (i, J).
Lemma 5.2. Forn >0 and a,b € I such that a < b, we have
(@, )™ € (a,b)™+ Y  KP(m).

m < n{a,b)
cry

Proof. We shall first show
(5.1) (a,) € (a,b) + > (k0)U, (9)

a+2<k<h

by the induction on b — a. If @ = b, it is trivial. If a < b, we have

(a,b) =(a){a+2,b) — ¢~ {a+2,b){a)
e@(a+20)+ Y (kYU (9)

a+2<k<b

—¢ (a2t + > kYU (@)

a+2<k<b

Clab) +(a—q Na+2.0)a) + Y ((k0){a)U, () + (k1)U (9))-

a+2<k<b

Hence we obtain (5.1). We shall show the lemma by the induction on n. We
may assume n > 0 and

(@b Te(ab)" '+ Y KP(m).

m < (n—1){a,b)
cry

Hence we have

(a.0)" = {a,0) (a,5)" T € (a, )" + > (k,b)U; (8)+ Y  K{a,b)P(m).

a<k<b m < (n—1)(a,b)
cry
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For a < k < b and m € M such that wt(m) = wt(n(a, b)) — wt((k, b)), we have

m € M and my, = Zagigb m;p(i,b) with Y. m;, = n — 1. In particular,

Mmap < n— 1. Hence (k,b)P(m) € KP(m+ (k,b)) and m + (k,b) < n(a,b).
cry

If m < (n—1){a,b), then (a,b)P(m) € KP({a,b) +m) and (a,b) +m s

cry

n{a,b). O
Proposition 5.3. Forme M,

P(m) € P(m)+ Y _ KP(n).

n<m
cry

Proof. Put m =37, m;;(i,j) and divide m = my + m<,. We prove
the claim by the induction on b and the number of segments in m;,. Suppose
my, = m(a,b) + my with m =mgp > 0, where my = Za<i<b my b (i, b).

(i) Let us first show that

(5.2) P(m) € P(my) + > KP(w).

m’/ < my
cry

We have P(my) = P(my) - (a,b)™. Since P(m;) € P(my) + 3 KP(m})

m’lcfyml
by the induction hypothesis, and (a,b)™ € (a,b)™ + Do < miap) KP(m),

we have

P(my) € P(my) + > KPm))a,b)™+ Y KP(m))Pm").
m’lcf my, miEMiqq2,p) mi < my, m”c< m{a,b)

cry

If m} ny my and mj € M, 24, then P((m})<p) and (a, b)™ commute. Hence
P(m})(a,b)™ = P(m) + m(a,b)) and m} + m(a,b) < m,.
cry
If mj < my, m) € Migio4 and m” < m(a,b), then we can write my =
cry

cry
J{a,b) +my with j < m and my € M40 Hence we have

P(m})P(m”) € KP((m})y) P(j(a, b)) P((m})<p) P(mz) P(m7Zp).

Since (m})<p, My € Migyo) we have P((m})<p)P(mz)P(m”,) € > KP(n).
npEMa12p)
Hence we have P(m})P(m”) € aneM[a+2 ) KP((m})p+j{a,b)+n)and (m}),+

jla,b) + n < my. Hence we obtain (5.2).
cry
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(ii) By the induction hypothesis, P(m<p) € P(mcp) + 3o <, KP(m”).

Since P(m) = P(my) P(m<yp), (5.2) implies that

P(m) € P(m) + > KP(m')P(m")+ Y KP(m;)P(m").
m’cfmb,m”€M<b m”cfmd,

For m’ < my and m"” € M_;, we have
cry
P(w)P(m") = P(m})P(w’_,)P(m") € > KP@c ) KP(@).

nEMgb,nb:m{) n<m
cry

For m” < m.y, we have P(m,)P(m”) = P(m, + m”) and mp + m” < m. Thus
cry cry

we obtain the desired result. O

Proposition 5.4. For m € My, we have

Py(m)p € Pp(m)p+ > KPR(w)s.

m'eMp,m’ <m

cry

Proof. First note that

(5.3) P(m)pe > KPy(n)¢ foranybe Lgand me M _yy,
ne(Mo)gs

by the weight consideration.
For m € My, Py(m) and P(m) are equal up to a multiple of bar-invariant
scalar. Thus we have

Py(m) € Py(m)+ > KP(w))

meM, m’ <m

cry

by Proposition 5.3. Hence it is enough to show that

(5.4) Pm)pe > KPy(n)¢

neEMy, n<m

cry

for m" € M such that m" < m and wt(m’) = wt(m). Put m =3, . m; ;{i, j)
cry SIS
and write m = m, + m.,. We prove (5.4) by the induction on b. By the

assumption on m’, we have m’ € M_; ) and my < my. Thus mj € My. Hence

cry
KP(m")¢ = KPp(my,) P(m’_,)o.
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If my = my, then m’, <., mcy, and the induction hypothesis implies
P60 € Xuerty. n<m., KPo(n)o. Since Py(mj)Py(n) = Py(mj, + n) and

m, +n < m, we obtain (5.4).
cry

i : I __ A N _ /
If my ny my, write m’ = Z—bgigjgb mi,j@,]}. Set s =m_pp —m. 4, > 0.

Since wt(m') = wt(m), we have >°, ,m’, , = s. If s = 0, then m_, €

M pi2p-2, and P(m_y)d € 32 c(ag,)_, KPo(n)¢ by (5.3). Then (5.4) follows

from mj +n < m.
cry

Assume s > 0. Since m’_, € M|_p;), we have P(m_,)p € > KPy(n)¢
ne(Mop)<o
by (5.3). We may assume (14 ) wt(m’,) = (14 ) wt(n) (see Remark 2.12).

Hence, we have s = 2m_pp(n) + Y, m;p(n). In particular, m_;,(n) < s/2.
—b<i<b
We have mj +n € My and Py(m})Py(n)¢ = Py(mj+n)¢. Since m_pp(my+n) <

(m_pp—8) +5/2 <m_pp, we have mj +n < m. Hence we obtain (5.4). O
cry

§5.3. [Existence of a global basis

As a consequence of the preceding subsections, we obtain the following
theorem.

Theorem 5.5.
(i) (Lg(0),Lg(0)~,Vy(0)a) is balanced.

(ii) For any m € M, there exists a unique G (m) € Lg(0) N Vy(0)a such
that G (m) = G (m) and Gi*™ (m) = Py(m)¢ mod qLg(0).

(iii) GE™(m) € Py(m)o + >, 1 Qg Po(n)¢ for any m € M.
(iv) {GE™(m)}mem, is a basis of the A-module Vy(0)a, the Ag-module Ly(0)
and the K-vector space Vy(0).

Proof. 'We have already seen that Py(m)p = > Con,me Po(m”) ¢ for

m' <m
cry

Cmm' € A with ¢ m = 1. Let us denote by C the matrix (¢m,m’)m,m er,. Then
CC =id and it is well-known that there is a matrix A = (am m')m,m e, Such

that AC = A, amm =0 unless m’ < M, . = 1 and am w € ¢QJg] for m’ ny
cry

m. Set Gl (m) = S < o Po(m')6. Then we have GE™ (m) = C™ (m)

and GV (m) = Py(m)¢ mod qLy(0). Since Gi™(m) is a basis of Vp(0)a, we
obtain the desired results. |
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Errata to “Symmetric crystals and affine Hecke algebras of type B, Proc. Japan
Acad., 82, no. 8, 2006, 131-136”7 :

(i) In Conjecture 3.8, A = A,, + A1 should be read as A = EZAAQ, where

A =T10{po,py"—po,—py'}. We thank S. Ariki who informed us that
the original conjecture is false.

(ii) In the two diagrams of By(A) at the end of §2, A should be 0.

(ili) Throughout the paper, Agl) should be read as Agljl.
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