
Publ. RIMS, Kyoto Univ.
45 (2009), 569–599

Resolution of Operator Singularities via
the Mixed-Variable Method

By

Sheng-Ming Ma∗

Abstract

This paper applies a modern method of singularity resolution in algebraic ge-
ometry to resolving singularities of integral operators in Fourier analysis. This is
achieved by introducing a method of mixed variables that is equivalent to changing
coordinates for integral operators. We decompose the integral operator into dyadic
pieces via monomial transforms and the mixed-variable method so as to obtain its
sharp estimates on different domains. These sharp estimates can be written in an
elegant form in terms of continued fractions.

§1. Introduction

The monomial transform is a modern method for resolution of singularities
in algebraic geometry. It emerged in the 1970s [1], [6] and is more efficient than
the quadratic transform. Later on it was employed by Varchenko [1], [12] serv-
ing as the Jacobi transform for oscillatory integrals to resolve the singularities
of their phase functions. In this way Varchenko established an intriguing link
between the decay rate of an oscillatory integral and the Newton polyhedron
of its phase function.

Nonetheless we do not have a routine similar to the Jacobi transform to
change coordinates for integral operators, which constitutes a major difficulty
in studying their singularities. In this paper we introduce a method of mixed
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variables that is equivalent to changing coordinates for integral operators. In
this way the machineries of algebraic geometry can be applied directly to study-
ing the singularities of integral operators in Fourier analysis.

More specifically, we will study oscillatory integral operators Tλ in the
following form:

(1.1) Tλ(f)(x) =
∫ ∞

−∞
eiλP (x,y)ϕ(x, y)f(y)dy,

where P (x, y) is a smooth phase function and ϕ(x, y) is a smooth cutoff function
supported in a neighborhood of the origin. We are interested in finding the
decay rate of Tλ defined as the best possible positive δ such that ‖Tλ‖2 ≤
C|λ|−δ.

Hörmander [5] investigated the operator Tλ in (1.1) with a non-degenerate
phase function P (x, y) and proved that its decay rate equals d/2 for x, y ∈ Rd.
His method constitutes a cornerstone for the analysis of more general oscillatory
integral operators.

For the operator Tλ with a polynomial or real analytic phase function in the
case of x, y ∈ R1, a notable progress was made in the thesis of Ma [7] and then
appeared in the paper of Phong and Stein [11]. It asserts that the decay rate
of Tλ is determined by the Newton polygon of its phase, same as Varchenko’s
conclusion on oscillatory integrals. Nonetheless an obvious drawback of the
method in [11] is the employment of Puiseux series for curve singularities, which
cannot be generalized to algebraic varieties of higher dimensions. A note on
this limitation is at the end of the “Introduction” of [11]. The Puiseux series
also leads to a redundant discussion of its complex roots in [11]. Further, in
order to have a summation of the infinite pieces of a dyadic decomposition, it
is required that the estimates for the derivatives of the phase Hessian P ′′

xy(x, y)
be uniform on all pieces of the decomposition. It is excruciating to address this
uniformity in terms of Puiseux series in [11].

In this paper we carry out dyadic decompositions via monomial transforms
as per [7] so as to overcome these drawbacks. Our proof is based on two
successive phases of decomposing the operator Tλ:

(1.2) Tλ =
∑
α

Tα =
∑
α

∑
k,j

Tα
kj .

After the first phase of the operator decompositions in (1.2), each Tα is an
operator of mixed variables:

Tα(f)(x) =
∫ ∞

−∞
eiλP (x,y)ϕ(x, y)Φ(|Yα|)Ψ(|Xα|)f(y)dy,
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where the variables Xα and Yα are linked to the variables x and y by a finite
composition of monomial transforms that resolves the singularities of the phase
Hessian P ′′

xy(x, y). The mixture of variables in the Tα is a new method that
amounts to changing coordinates for integral operators.

The second phase of the operator decompositions in (1.2) is a routine
dyadic partition of unity on the support of each operator Tα. A summation
balance between two kinds of estimates for the operator pieces Tα

kj in (1.2) leads
to a sharp estimate for each Tα.

In summary, we have the following stronger conclusion than those in [7]
and [11]:

Theorem. Suppose the oscillatory integral operator Tλ in (1.1) with
x, y ∈ R1 has a real analytic phase function P (x, y) and a smooth cutoff func-
tion ϕ(x, y) supported in a sufficiently small neighborhood of the origin.

1. Tλ has the following sharp estimate:

(1.3) ‖Tλ‖2 ≤ Cλ−1/[2(Δ+1)].

Here (Δ+1,Δ+1) is exactly the intersection point of the bisector y = x and
the boundary of the Newton polygon of P (x, y) excluding all its monadic
monomials.

2. Tλ can be decomposed into finite parts Tλ =
∑

α Tα as in (1.2). For each
operator Tα we have the following sharp estimate:

(1.4) ‖Tα‖2 ≤ Cαλ
−1/[2(Δα+1)],

where ∃t(α) ∈ N such that Δα =
[b1, b2, . . . , bt]

2[k1, k2, . . . , kt]
or

[b1, b2, . . . , b′t]
2[k1, k2, . . . , k′t]

is

the ratio of two finite continued fractions. These continued fractions are
determined by a sequence of Newton polygons resolving the singularity of
the phase Hessian P ′′

xy(x, y). Here for 1 < j ≤ t, bj , kj , b
′
j and k′j denote the

intercept and the negative reciprocal of the slope respectively of a side of the
j-th Newton polygon in the Newton polygon sequence (Please refer to (4.4)
for more details). When j = 1, the

(
b1
2k1

, b1
2k1

)
is exactly the intersection

point of the bisector y = x and the extended line of a side of the Newton
polygon of P ′′

xy(x, y). Cα is independent of λ. The Δ in (1.3) equals Δ =
maxα{Δα}.

Here by “sufficiently small” in the assumption of the theorem, we mean
that the size of the support of ϕ(x, y) is determined by the Newton polygon of
the phase Hessian P ′′

xy(x, y), which will be clear from the proof.



572 Sheng-Ming Ma

For simplicity we shall just denote ‖ · ‖2 as ‖ · ‖ in the following context.
As usual, we denote the sets of real numbers, rational numbers, integers and
natural numbers as R, Q, Z and N respectively. In particular, we adopt the
convention that 0 /∈ N.

For a generic function g(x, y), the notations supp g and (supp g)◦ shall be
used to denote the closure and interior of the set {(x, y) ∈ R2 | g(x, y) �= 0}
respectively.

§2. Mixed-Variable Estimates

It is difficult to change coordinates of integral operators through the tradi-
tional Jacobi transform because of the intricate impacts incurred on the func-
tion spaces of the operator. The method of mixed variables introduced in this
section can overcome this difficulty so that we can directly apply the method of
singularity resolutions in algebraic geometry to integral operators in analysis.

Definition 2.1. Horizontal and vertical connectedness.
A bounded set D on the (x, y)-plane is defined as horizontally connected

if for ∀ y0 ∈ R, the one-dimensional set {(x, y) ∈ Dc | y = y0} has at most two
connected components. Similarly we can define vertically connected sets.

Henceforth we write (x, y) = T (X,Y ) in the form of x = x(X,Y ) and
y = y(X,Y ).

Lemma 2.1. Let R be a rectangle on the (X,Y )-plane with sides par-
allel to the X and Y axes respectively and let U be a neighborhood of R.
Suppose that T ∈ C1(U) is a diffeomorphism from U to the (x, y)-plane with
T −1 ∈ C1(T (U)). If ∂y(X,Y )/∂X and ∂y(X,Y )/∂Y do not change sign for
(X,Y ) ∈ ∂R, then T (R) is horizontally connected.

Similarly, T (R) is vertically connected if ∂x(X,Y )/∂X and ∂x(X,Y )/∂Y
do not change sign for (X,Y ) ∈ ∂R.

Proof. Let the rectangle R ⊃ ∂R and its vertices be A(a, b), B(a, b+ η),
C(a + ε, b + η) and D(a + ε, b) respectively. The condition on ∂y(X,Y )/∂X
and ∂y(X,Y )/∂Y indicates that the function y(X,Y ) is monotonic on the
sides AB ∪ BC of R. Hence the boundary curve T (AB ∪ BC) is horizontally
connected. The same is true for the boundary curve T (CD ∪DA).

Let H be a maximal horizontal segment in T (R) with two end points
E1, E2 ∈ ∂T (R) such that E1 �= E2 and their y-coordinate equals y0. Here
being “maximal” means that H ⊃ {(x, y0) ∈ T (R)}. If H \ T (R) �= ∅, then
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there exists an interval [E′
1, E

′
2] ⊂ H with E′

1 �= E′
2 such that the open in-

terval (E′
1, E

′
2)
⋂
T (R) = ∅ and the set {E′

1, E
′
2} ⊂ ∂T (R). First of all,

suppose H \ T (R) = (E′
1, E

′
2). Then it is easy to see that the generic case

H
⋂
∂T (R) = {E1, E

′
1, E2, E

′
2} contradicts the horizontal connectedness of the

boundary curves T (AB ∪BC) and T (CD ∪DA). In the special cases such as
E1 = E′

1, E2 = E′
2, or H

⋂
∂T (R) contains an interval, we can vertically trans-

lateH either upward or downward by a small distance. In this way these special
cases can be reduced to the above generic case contradicting the horizontal con-
nectedness of the boundary curves. More generally when H \T (R) ⊃ (E′

1, E
′
2),

the above discussion still applies because we can shrink H appropriately so that
H \ T (R) = (E′

1, E
′
2).

By symmetry the conclusion for the vertical connectedness can be imme-
diately deduced.

In what follows we will write the map (X,Y ) = T −1(x, y) in the form of
X = X(x, y) and Y = Y (x, y). We have the following lemma.

Lemma 2.2. Suppose that the rectangle R in Lemma 2.1 has widths
ε > 0 and η > 0 in the X-direction and Y -direction respectively.

For a diffeomorphism T as in Lemma 2.1 whose partial derivatives satisfy
the condition for the vertical connectedness, if ∃δ > 0 such that the partial
derivatives of T −1 satisfy at least one of the following conditions for (x, y) ∈
T (R):

(2.1) |∂X(x, y)/∂y| ≥ ε/δ, |∂Y (x, y)/∂y| ≥ η/δ,

then the length of each vertical segment of T (R) is bounded by δ.
Similarly, if the diffeomorphism T satisfies the condition for horizontal

connectedness in Lemma 2.1, and ∃δ > 0 such that the partial derivatives of
T −1 satisfy at least one of the following conditions for (x, y) ∈ T (R):

|∂X(x, y)/∂x| ≥ ε/δ, |∂Y (x, y)/∂x| ≥ η/δ,

then the length of each horizontal segment of T (R) is bounded by δ.

Proof. Suppose (x, yj) ∈ ∂T (R) for j = 1, 2 with y1 < y2. Then we have:

ε ≥ |X(x, y2) −X(x, y1)| =
∫ y2

y1

|∂X(x, y)/∂y|dy ≥ ε(y2 − y1)/δ.

This implies that the vertical segment connecting (x, y1) and (x, y2) has
length y2 − y1 ≤ δ.
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Lemma 2.3. Let R be a rectangle of the same magnitude as in Lemma
2.2. Suppose that T is a diffeomorphism as in Lemma 2.1 satisfying the con-
dition for the vertical connectedness and the estimates in (2.1). Further, we
assume that both T and T −1 are C2-diffeomorphisms defined in a neighborhood
of R and T (R) respectively.

Suppose that for l = 1, 2 and (x, y) ∈ T (R), the partial derivatives of T −1

have upper bounds :

(2.2) |∂lX(x, y)/∂yl| ≤ ε/δl, |∂lY (x, y)/∂yl| ≤ η/δl.

Further, we assume that the operator Tλ in (1.1) with x, y ∈ R1 satisfies
the following conditions :

1. Define χ := ϕ ◦ T and assume that suppχ ⊂ R. Suppose that ∃B > 0 such
that for k, l ∈ N∪{0} with 0 ≤ k+ l ≤ 2, the partial derivatives of χ(X,Y )
satisfy :

(2.3) |∂k∂lχ(X,Y )/∂Xk∂Y l| ≤ B/(εkηl),

where the constant B is independent of λ, ε and η.

2. Define P(X,Y ) := P ′′
xy[x(X,Y ), y(X,Y )]. Suppose that ∃ν > 0 such that

for (X,Y ) ∈ R and k, l ∈ N ∪ {0} with 0 ≤ k + l ≤ 2:

(2.4) ν ≤ |P(X,Y )|, |∂k∂lP(X,Y )/∂Xk∂Y l| ≤ ν/(εkηl),

where ν is independent of λ but dependent on ε and η.

Then ∃C > 0 such that the Tλ can be extended to a bounded operator on
L2(R1):

‖Tλ‖ ≤ C(λν)−
1
2 ,

where the constant C is independent of λ, ν, ε and η.

Proof. To simplify notations, in what follows we use the same C to denote
all the constants that are independent of λ, ν, ε and η.

Consider the kernel K(x, y) of the integral operator TλT
∗
λ given by:

K(x, y) =
∫ ∞

−∞
eiλ[P (x,z)−P (y,z)]ϕ(x, z)ϕ(y, z)dz.

A double integration by parts leads to the form:

K(x, y) =
∫ ∞

−∞
eiλ[P (x,z)−P (y,z)]D2[ϕ(x, z)ϕ(y, z)]dz
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with the operator D defined as Df = −(iλ)−1∂[(P ′
z(x, z) − P ′

z(y, z))
−1f ]/∂z.

(2.2) and (2.4) together with the chain rule for differentiation such as

(2.5)
|∂P ′′

xy(x, y)/∂y| ≤|∂P(X,Y )/∂X||∂X(x, y)/∂y|+
+ |∂P(X,Y )/∂Y ||∂Y (x, y)/∂y|

imply that:

(2.6) |∂lP ′′
xy(x, y)/∂yl| ≤ Cν/δl, l = 0, 1, 2.

For θ1, θ2 ∈ [x, y] that satisfies the following equality:

(2.7) ∂[P ′
z(x, z) − P ′

z(y, z)]
−1/∂z = (y − x)−1[P ′′

ωz(θ1, z)]
−2∂P ′′

ωz(θ2, z)/∂z,

Lemma 2.1 ensures that (θ1, z), (θ2, z) ∈ T (R). Hence (2.4) and (2.6) indicate
that:

(2.8) |∂l[P ′
z(x, z) − P ′

z(y, z)]
−1/∂zl| ≤ C(νδl|x− y|)−1, l = 0, 1, 2,

where the differentiation in the case of l = 2 is performed in a similar way to
the case of l = 1 in (2.7).

Further, (2.2), (2.3) and the chain rule for differentiation similar to (2.5)
imply:

(2.9) |∂lϕ(x, y)/∂yl| ≤ C/δl, l = 0, 1, 2.

(2.9) together with (2.8) yield:

|D2[ϕ(x, t)ϕ(y, t)]| ≤ C(λδν|x− y|)−2,

and hence the estimate:

|K(x, y)| ≤ Cδ−1(λν|x− y|)−2.

In addition, the conclusion of Lemma 2.2 indicates that |K(x, y)| ≤ Cδ.
Balancing the above two estimates we have a new estimate:∫ ∞

−∞
|K(x, y)|dy ≤ Cmin

σ>0

{
δσ +

∫
|y−x|≥σ

δ−1(λν|x− y|)−2dy

}
= C(λν)−1

,

which implies that ‖TλT
∗
λ‖ ≤ C(λν)−1.
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§3. An Algorithm of Operator Decompositions

In this section we integrate space partitions and operator decompositions
with the algorithm of singularity resolutions in algebraic geometry. In this
way we can introduce a partition of unity in a neighborhood of the origin to
approximate each branch of a real analytic curve as well as to decompose the
operator via the method of mixed variables.

§3.1. An algorithm of singularity resolutions

The elaboration of the resolution algorithm for real analytic functions in
this section is almost verbatim to that of [9] for polynomials. The reason for
the similarity is that the resolution algorithm for a real analytic function is
only pertinent to the boundary of its Newton polygon. The repetition of the
resolution algorithm in this section aims at the integrity of the proof as well as
the convenience of the readers.

We define a positive quadrant with vertex (a, b) as {(x, y) ∈ R2 | x ≥
a, y ≥ b}. Given a real analytic function, consider the union of the positive
quadrants whose vertices correspond to the exponents of its monomials.

Definition 3.1. Newton polygon.
The Newton polygon of a real analytic function is defined as the convex

hull of the above union of positive quadrants.

The Newton polygon of a monomial cxayb (c �= 0) is simply the positive
quadrant with vertex (a, b); whereas the Newton polygon of the polynomial
x3y + xy3 − 2y4 is {(x, y) ∈ R2 | x ≥ 0, y ≥ 1, x + y ≥ 4}, which is the
same as the Newton polygon of the real analytic function x3y + xy3 − 2y4 +∑

α≥0,β≥1,α+β>4 cαβx
αyβ .

We denote a compact or noncompact face of a Newton polygon satisfying
the equation mx+ ny = p as [mx+ ny = p] with (m,n) = 1 if mn �= 0. From
the definition of the Newton polygon it is easy to see that m,n, p ∈ N ∪ {0}.
We have the following lemma.

Lemma 3.1. Suppose {(a, b)} = [mx + ny = p]
⋂

[m̃x + ñy = p̃] is a
vertex of the Newton polygon. If

det

(
m m̃

n ñ

)
> 1,



Resolution of Operator Singularities 577

then there are a finite sequence of straight lines rjx+ sjy = qj with rj , sj , qj ∈
N, 1 < j < J passing through the vertex (a, b) such that for 1 ≤ k < J ,

(3.1) det

(
rk rk+1

sk sk+1

)
= 1 with

(
r1
s1

)
=
(
m

n

)
and

(
rJ
sJ

)
=
(
m̃

ñ

)
.

Proof. Evidently the matrix
(

m em
n en

)
has no inverse matrix in the integral

domain Z. Hence we have
(
1
0

)
(or

(
0
1

)
) = μ1

(
m
n

)
+ μ2

(
em
en

)
with μ1, μ2 ∈ Q \ Z.

Thus ∃λ1, λ2 ∈ Q∩ (0, 1) and a vector
(
r
s

)
= λ1

(
m
n

)
+λ2

(
em
en

)
with r, s ∈ N such

that

det

(
m r

n s

)
= λ2 det

(
m m̃

n ñ

)
< det

(
m m̃

n ñ

)
,

det

(
r m̃

s ñ

)
= λ1 det

(
m m̃

n ñ

)
< det

(
m m̃

n ñ

)
.

The conclusion of the lemma follows from a decreasing induction on the
integer values of the determinants.

We name the above finite sequence of straight lines rjx + sjy = qj with
rj , sj , qj ∈ N, 1 < j < J satisfying (3.1) as a sequence of auxiliary lines at the
vertex (a, b).

Definition 3.2. Perfect Newton polygon.
A Newton polygon with auxiliary lines added to each of its vertices is

named as a perfect Newton polygon.

Lemma 3.1 indicates that we can always refine a Newton polygon into a
perfect Newton polygon. If we enumerate all the faces and auxiliary lines of
the perfect Newton Polygon in increasing order of their slopes and denote them
as Lκ = [mκx + nκy = pκ] respectively (1 ≤ κ ≤ ρ), then each adjacent pair
Lκ and Lκ+1 satisfy

(3.2) det

(
mκ mκ+1

nκ nκ+1

)
= 1

for 1 ≤ κ < ρ. The proof of Lemma 3.1 shows that we always have mκ, nκ, pκ ∈
N ∪ {0} with 1 ≤ κ ≤ ρ.

A simple example is the Newton polygon of the real analytic function
P (x, y) = xy5 + x2y2 + x5y +

∑
α,β∈N,3α+β>8,α+3β>8 cαβx

αyβ that consists of
3 vertices {(1, 5), (2, 2), (5, 1)} and 4 faces {[x = 1], [3x + y = 8], [x + 3y =
8], [y = 1]}. At the vertex (1, 5) = [x = 1] ∩ [3x + y = 8], the two faces
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satisfy det ( 1 3
0 1 ) = 1 and thus it is unnecessary to add auxiliary lines to the

vertex. The same is true for the vertex (5, 1) = [x + 3y = 8] ∩ [y = 1].
Nonetheless at the vertex (2, 2) = [3x + y = 8] ∩ [x + 3y = 8], the two faces
satisfy det ( 3 1

1 3 ) = 8 > 1 and hence we choose a sequence of integer vectors(
1
1

)
= 1

4

(
3
1

)
+ 1

4

(
1
3

)
,
(
2
1

)
= 1

2

(
3
1

)
+ 1

2

(
1
1

)
and

(
1
2

)
= 1

2

(
1
1

)
+ 1

2

(
1
3

)
that satisfy

det ( 3 2
1 1 ) = det ( 2 1

1 1 ) = det ( 1 1
1 2 ) = det ( 1 1

2 3 ) = 1. These integer vectors
(
1
1

)
,
(
2
1

)
and

(
1
2

)
correspond to auxiliary lines [x+ y = 4], [2x+ y = 6] and [x+ 2y = 6]

at the vertex (2, 2) respectively.
Based on each adjacent pair Lκ and Lκ+1, which will be denoted as

〈Lκ, Lκ+1〉 with 1 ≤ κ < ρ, we have a monomial transform (x, y) = Tκ(Xκ, Yκ)
as follows:

(3.3) Tκ :
{
x=Xmκ

κ Y
mκ+1
κ

y =Xnκ
κ Y

nκ+1
κ

; T −1
κ :

{
Xκ = xnκ+1/ymκ+1

Yκ = ymκ/xnκ

whose exponents satisfy the condition (3.2). The Tκ is a bijective map and has
an inverse T −1

κ if we exclude all the axes.
From (3.3), we have the following relationship for 1 ≤ κ < ρ− 1:

(3.4) Yκ+1 =
1
Xκ

.

Suppose the operator Tλ in (1.1) with x, y ∈ R1 has a real analytic phase
function P (x, y). For the perfect Newton Polygon of the phase Hessian P ′′

xy(x, y)
defined as above, let 〈Lκ, Lκ+1〉 be an adjacent pair such that Lκ

⋂
Lκ+1 =

{(aκ, bκ)} with aκ, bκ ∈ N ∪ {0}. Then each monomial transform Tκ factorizes
P ′′

xy(x, y) as:

(3.5)

P ′′
xy(x, y) = cκx

aκybκ +
∑

(α,β)∈Lκ∪Lκ+1\{(aκ,bκ)}
cαβx

αyβ

+
∑

(δ,γ)/∈Lκ∪Lκ+1

cδγx
δyγ = Xpκ

κ Y pκ+1
κ P1(Xκ, Yκ)

with the exponents α, β, δ, γ ∈ N ∪ {0}. The coefficients cκ, cαβ, cδγ ∈ R \ {0}.
The P1(X,Y ) in (3.5) is named as a partial transform and is a series of

the following form:

(3.6)

c+
∑

(α,β)∈Lκ\{(aκ,bκ)}
cαβY

lαβ+
∑

(α,β)∈Lκ+1\{(aκ,bκ)}
cαβX

elαβ

+
∑

(δ,γ)/∈Lκ∪Lκ+1

cδγX
elδγY lδγ
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with the exponents lαβ , l̃αβ, lδγ , l̃δγ ∈ N. The constant term c is the coefficient
cκ in (3.5).

The monadic polynomial in Y in (3.6) can be factorized as

(3.7) c+
∑

(α,β)∈Lκ\{(aκ,bκ)}
cαβY

lαβ = Q(Y )
∏

i

(Y − ri)hi

with ri ∈ R\{0}. The monadic polynomial Q stands for a product of quadratic
polynomials that are not factorizable in the field R.

The monadic polynomial in X in (3.6) also has a factorization

(3.8) c+
∑

(α,β)∈Lκ+1\{(aκ,bκ)}
cαβX

elαβ = Q̃(X)
∏
j

(X − sj)hj

with sj ∈ R \ {0}. The polynomial Q̃ is similar to the polynomial Q in (3.7).
We make such kind of factorizations for each adjacent pair 〈Lκ, Lκ+1〉 with

1 ≤ κ < ρ. The (0, ri) or (sj , 0) obtained is named as a branch point except
those (0, ri) of 〈L1, L2〉 and (sj , 0) of 〈Lρ−1, Lρ〉. Furthermore, because of the
reciprocal relationship (3.4), for 1 ≤ κ < ρ and r ∈ R \ {0}, Yκ+1 = r and
Xκ = 1/r represent the same branch of the initial analytic curve defined by
the phase Hessian {P ′′

xy(x, y) = 0}. Hence to avoid repetitions, hereafter we
prescribe that 0 < |ri| ≤ 1 and 0 < |sj | < 1 for all the branch points of the
form (0, ri) or (sj , 0).

For 1 ≤ κ < ρ, we denote:

(3.9) Δκ := max
{

pκ

mκ+nκ
, pκ+1

mκ+1+nκ+1

}
, Δ := max

1≤κ<ρ
{Δκ}.

Then the bisector y = x and the boundary of the original Newton Polygon
intersect at (Δ,Δ).

The algorithm of resolution of singularity continues as follows. Through
the factorization in (3.7), we treat the partial transform P1(X,Y ) in (3.6) as a
new series:

P̃1(X,Y − ri) := P1(X, (Y − ri) + ri)

so as to address its singularity at the branch point (0, ri). We name the
new series P̃1(X,Y − ri) as the reduced transform of the partial transform
P1(X,Y ). Then we construct the perfect Newton Polygon of the reduced trans-
form P̃1(X,Y − ri) and deduce monomial transforms that are similar to those
in (3.3). We enumerate these monomial transforms by a new subscript variable.
For simplicity, we still use κ to denote this new subscript variable.

The above resolution may lead to more branch points. With the above
procedure repeated at each newly generated branch point, the branch points
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of the resolution procedure form a tree whose root is the origin of the (x, y)-
plane. We use the same subscript variable κ as the one in (3.2) to enumerate
the different tree branches that are from the same branch point. The difference
between this tree and a regular one is that each value of each subscript variable
κ of this tree further branches out to new branch points on the next level of
the tree.

Following the above procedure we choose a branch on each level of the tree
to obtain a path from its root to one of the last branch points. Hereafter we
will use a subscript t to enumerate the levels of the branch points on a path.

Without loss of generality, suppose that every branch point on a path
takes the form (0, rj) with 1 ≤ j ≤ t. Consider the following sequence of
monomial transforms T1, · · · , Tt based on the adjacent pairs 〈Lj , L

′
j〉 with Lj =

[mjx + njy = pj ] and L′
j = [m′

jx + n′
jy = p′j ] such that det

(
mj m′

j

nj n′
j

)
= 1 for

1 ≤ j ≤ t and t ∈ N.

(3.10) T1 :
{
x=Xm1

1 Y
m′

1
1

y =Xn1
1 Y

n′
1

1

, · · · , Tt :
{

Xt−1 =Xmt
t Y

m′
t

t

Yt−1 − rt−1 =Xnt
t Y

n′
t

t

.

The composition of the above monomial transforms T1 ◦ · · · ◦ Tt factorizes
the Hessian of the phase function P ′′

xy(x, y) into a product:

(3.11) P ′′
xy(x, y) =

t∏
j=1

X
pj

j Y
p′

j

j Pt(Xt, Yt) := P(Xt, Yt)

with Pt bearing a similar form to P1 in (3.6).
It is easy to see that we can define the singularity height of a branch point in

the same way as in Section 4 of [9] for polynomials. We can also prove verbatim
like Lemma 4.3 of [9] that the singularity height of a reduced transform shall
strictly decrease after a resolution step unless the reduced transform is either
degenerate or nonsingular. Same as (4.1) of [9], the paradigm of a degenerate
transform in (X,Y − r) is:

(3.12) (Y − r − r1X
n)h +

∑
δ+nγ>nh

cδγX
δ(Y − r)γ

whose Newton polygon has a single compact face of perfect power with its
exponent h being exactly the singularity height. Here n, h ∈ N and δ, γ ∈
N ∪ {0}. The coefficients r, r1, cδ,γ ∈ R \ {0}.

Hence same as in [9], it suffices to consider the degenerate transforms like
(3.12) and after a monomial transform X = X1 and Y − r = Xn

1 Y1, its partial
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transform takes the form:

(3.13) (Y1 − r1)h +
∑

δ+nγ>nh

cδγX
δ+nγ−nh
1 Y γ

1 ,

which is the formula (5.1) in [9].
Nonetheless it is unnecessary to define the singularity index for real ana-

lytic functions as we did in Section 5 of [9] for polynomials. Instead, we can
invoke the Weierstrass Preparation Theorem directly on (3.13) to obtain:

(3.14)
[
(Y1 − r1)h +

h∑
j=1

Rj(X1)(Y1 − r1)h−j
]
E(X1, Y1 − r1),

where E(X1, Y1 − r1) is a real analytic function in the variables (X1, Y1 − r1)
with E(0, 0) �= 0. The Rj(X1) is a power series in X1 such that Rj(0) = 0 for
1 ≤ j ≤ h. The reason for the definition of the singularity index in Section 5 of
[9] is that the theme of [9] is algebraic instead of analytic whereas E(X1, Y1−r1)
and Rj(X1) are series instead of polynomials.

When h > 1, we expand each factor (Y1 − r1)j in (3.14) as [(Y1 − r1 +
R1(X1)/h)−R1(X1)/h]j for 1 ≤ j ≤ h. Then the factor inside the brackets in
(3.14) becomes:

(3.15) (Y1 − r1 +R1(X1)/h)h +
h∑

j=2

R̃j(X1)(Y1 − r1 +R1(X1)/h)h−j

with R̃j(0) = 0 for 2 ≤ j ≤ h.
Now if R̃j(X1) ≡ 0 for 2 ≤ j ≤ h, then (3.15), and thus the factor inside

the brackets in (3.14), are perfect powers and they represent a branch

(3.16) (Y1 − r1 +R1(X1)/h)h

of the initial analytic curve with multiplicity h.
However if ∃j with 2 ≤ j ≤ h such that R̃j(X1) �= 0, then we make a

coordinate change X2 = X1 and Y2 = Y1 − r1 +R1(X1)/h and (3.15) becomes
an analytic function in the variables (X2, Y2):

Y h
2 +

h∑
j=2

R̃j(X2)Y
h−j
2 .

This analytic function cannot be a degenerate transform. As a result, its sin-
gularity height shall strictly decrease after another resolution step.
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Thus a recursive and finite repetition of the above algorithm shall lead
to either a branch of the initial analytic curve like (3.16) whose multiplicity
is strictly bigger than one, or a branch point whose singularity height equals
one. The later case is equivalent to the degenerate transform (3.13) having
singularity height h = 1. Then after invoking the Weierstrass Preparation
Theorem as above, (3.14) takes the following form instead:

[Y1 − r1 +R1(X1)]E(X1, Y1 − r1).

The above argument demonstrates that for each path in the resolution
tree, ∃t ∈ N such that

(3.17) Pt(Xt, Yt) = [Yt − r(Xt)]
htE(Xt, Yt − rt)

with E(Xt, Yt − rt) being nonsingular as E(0, 0) ∈ R \ {0}. r(Xt) is either a
convergent power series with r(0) = rt ∈ R \ {0}, or a constant rt ∈ R \ {0}.
Here ht ∈ N. In the case of (3.17) we define the branch point (0, rt) as a
terminal branch point.

It is easy to see that at a terminal branch point (st, 0), Pt has another
possible form

(3.18) Pt(Xt, Yt) = [Xt − s(Yt)]htẼ(Xt − st, Yt).

Summarizing (3.11) and (3.17), P ′′
xy(x, y) takes the following form at a

terminal branch point (0, rt):

(3.19) P ′′
xy(x, y) = Ỹ ht

t

t∏
j=1

X
pj

j Y
p′

j

j E(Xt, Yt − rt) := P(Xt, Yt),

where ht ∈ N. The variable Ỹt := Yt − r(Xt) as in (3.17) with r(0) = rt ∈
R \ {0}.

By symmetry, at a terminal branch point (st, 0), P ′′
xy(x, y) takes the form:

(3.20) P ′′
xy(x, y) = X̃ht

t

t∏
j=1

X
pj

j Y
p′

j

j Ẽ(Xt − st, Yt) := P(Xt, Yt)

with X̃t := Xt − s(Yt) as in (3.18) such that s(0) = st ∈ R \ {0}.
In the case of branch points (sj , 0) (1 ≤ j < t), we simply replace (Xj , Yj−

rj) by (Xj − sj , Yj) in the (j + 1)-th monomial transform of (3.10).
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§3.2. Partition of unity

Suppose φ ∈ C∞((0,+∞)) is nonnegative and decreasing such that φ(x) =
1 for 0 < x ≤ 1 and φ(x) = 0 for x ≥ 2. We define φk(x) := φ(2kx)− φ(2k+1x)
to have a dyadic partition of unity on (0,+∞) as

∑
k∈Z φk(x) = 1.

To take advantage of (3.4), we define the conjugate function ψk(x) of φk(x)
as follows.

ψ(x) := φ(1/x), ψk(x) := ψ(2kx) − ψ(2k−1x) = φ−k(1/x).

In this way we can rewrite the above dyadic partition of unity as:

(3.21)
∑
k∈Z

φk(x) =
∑
k≥0

φk(x) +
∑
j≥1

ψj(1/x) = 1.

For the simplicity of notations, we define

Φn(x) :=
∑
k≥n

φk(x); Ψn(x) :=
∑
j≥n

ψj(x).

From the above definitions, we can see that the supports of the functions
Φn and Ψn are supp(Φn) = supp(Ψn) = [0, 2−n+1]. And we have Φn(x) =
Ψn(x) = 1 for x ∈ (0, 2−n].

Lemma 3.2. For the monomial transforms Tκ with 1 ≤ κ < ρ in (3.3),
we define c := max1≤κ≤ρ{mκ} and c′ := max1≤κ≤ρ{nκ}. Then we have a
partition of unity on the rectangles {(x, y) | (|x|, |y|) ∈ (0, 2−c) × (0, 2−c′)}:

(3.22)
ρ−1∑
κ=1

Φ0(|Yκ|)Ψ1(|Xκ|) = 1.

Proof. For each monomial transform Tκ as in (3.3), which is based on
an adjacent pair 〈Lκ, Lκ+1〉 with 1 ≤ κ < ρ, the determinant condition (3.2)
indicates the following properties of the matrix per se in (3.2). First, the four
entries of the matrix cannot be odd numbers simultaneously. Secondly, the
entries on the same row or column of the matrix cannot be even numbers
simultaneously. As a result, the monomial transform Tκ in (3.3) maps the
four quadrants of the (Xκ, Yκ)-plane to four sectors in the four quadrants of
the (x, y)-plane respectively. Thus it suffices to prove the lemma in the first
quadrant of the (x, y)-plane excluding the axes.

We begin by showing that:

(0, 1] × (0, 2] ⊂
ρ−1⋃
κ=1

Tκ((0, 1] × (0, 2]).
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In fact, for 1 ≤ κ < ρ, the ρ− 1 coordinate pairs (Xκ, Yκ) = T −1
κ (x, y) for

∀(x, y) ∈ (0, 1] × (0, 2] satisfy: (i) for 1 < κ < ρ, Xκ−1 = 1/Yκ; (ii) Xρ−1 = x

and Y1 = y. This implies that there would be a contradiction if for each κ

satisfying 1 ≤ κ < ρ, either Xκ > 1 or Yκ > 2.
If we define Iκ,κ′ := Tκ((0, 1]×(0, 2])

⋂
Tκ′((0, 1]×(0, 2]), then for the Iκ,κ′

satisfying |κ− κ′| > 1,

(3.23) Iκ,κ′
⋂

((0, 2−c) × (0, 2−c′)) = ∅.

In fact, if ∃κ with 1 ≤ κ < ρ such that both Xκ ≥ 1
2 and Yκ ≥ 1

are true, then x = Xmκ
κ Y

mκ+1
κ ≥ 2−mκ , y = Xnκ

κ Y
nκ+1
κ ≥ 2−nκ and hence

(x, y) /∈ (0, 2−c)× (0, 2−c′). Now for κ ≤ p ≤ κ′ and ∀(x, y) ∈ Iκ,κ′
⋂

((0, 2−c)×
(0, 2−c′)), consider the κ′−κ+1 coordinate pairs (Xp, Yp) = T −1

p (x, y). Xκ ≤ 1
and Yκ+1 = 1/Xκ ≥ 1 indicate Xκ+1 < 1

2 . We can proceed inductively on
p − κ to prove that Xκ′−1 <

1
2 . This contradicts Xκ′−1 = 1/Yκ′ ≥ 1

2 since
(x, y) ∈ Tκ′((0, 1] × (0, 2]) indicates Yκ′ ≤ 2.

We are left with showing that (3.22) is an equality for ∀(x, y) ∈ (0, 2−c)×
(0, 2−c′). In the above argument for (3.23), it is apparent that if we take
κ′ = κ+ 1, we have[
Iκ,κ+1

⋂
((0, 2−c) × (0, 2−c′))

]
⊂
[
Tκ([12 , 1] × (0, 1))

⋂
Tκ+1((0, 1

2 ) × [1, 2])
]

for 1 ≤ κ < ρ− 1. Then together with (3.23), (3.22) is reduced to an equality

Φ0(Yκ)Ψ1(Xκ) + Φ0(Yκ+1)Ψ1(Xκ+1) = Ψ1(Xκ) + Φ0(Yκ+1) = 1,

which is exactly (3.21).

Corollary 3.1. For d > 1, we have the following partition of unity on
rectangles {(x, y) | (|x|, |y|) ∈ (0, 2−2cd) × (0, 2−2c′d)}:

ρ−1∑
κ=1

Φ0(|Yκ|)Ψ1(|Xκ|)[1 − χ(Xκ, Yκ)] = 1,

with χ(Xκ, Yκ) := [1 − Φd(|Yκ|)][1 − Ψd(|Xκ|)] supported on (±2−d,±∞) ×
(±2−d,±∞) as a function in Xκ and Yκ.

The parameter d in Corollary 3.1 is named as an adjustable parameter.
The pair of parameters (c, c′) in Lemma 3.2 is named as a pair of exponential
parameters associated with the origin (0, 0) of the (x, y)-plane.

It is easy to see that for every branch point in the resolution tree, there
associated with a pair of exponential parameters. Hereafter for every branch
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point (0, rj) with 1 ≤ j ≤ t on a path of length t in the resolution tree, we denote
the pair of exponential parameters associated with it as (cj , c′j), 1 ≤ j ≤ t.

In the Theorem in the Introduction, the “sufficiently small” neighborhood
of the origin (0, 0) of the (x, y)-plane that supports the cutoff function ϕ(x, y)
of the operator Tλ is determined by the above adjustable and exponential pa-
rameters.

§3.3. An algorithm of operator decompositions

For the operator Tλ in (1.1) with x, y ∈ R1 and a real analytic phase func-
tion P (x, y), suppose that the support of its cutoff function ϕ(x, y) satisfies
suppϕ ⊂ (−2−2cd, 2−2cd) × (−2−2c′d, 2−2c′d). Here the (c, c′) is the exponen-
tial parameter pair defined as in Lemma 3.2; whereas the d is the adjustable
parameter defined as in Corollary 3.1.

We invoke Corollary 3.1 and the method of mixed variables to decompose
the operator Tλ as follows:

(3.24) Tλ =
ρ−1∑
κ=1

Tκ + T ◦, Tκ(f)(x) :=
∫ ∞

0

eiλP (x,y)ϕ̃(Xκ, Yκ)f(y)dy,

where

(3.25) ϕ̃(Xκ, Yκ) := Φ0(|Yκ|)Ψ1(|Xκ|)[1 − χ(Xκ, Yκ)]ϕ(x, y)

and P (x, y) is the real analytic phase function of the Tλ. The operator T ◦ has
support function χ{xy=0}(x, y)ϕ(x, y) with χ{xy=0}(x, y) being the characteris-
tic function of the two axes. Since the two axes have measure zero, it is easy
to see that ‖T ◦‖ = 0. Thus the operator T ◦ has no contribution to ‖Tλ‖. In
the following operator decompositions we shall disregard such kind of operators
with zero-measure support.

In order to isolate the branch point (0, ri), we define a cutoff function

(3.26) ϕri
(Xκ, Yκ) := Φ2c′1d(|Yκ − ri|)Ψ2c1d(|Xκ|)

with d being the same adjustable parameter as the one in Corollary 3.1 and
(3.25) for the support function χ(Xκ, Yκ). The pair of exponential parameters
(c1, c′1) are defined almost the same as the exponential parameter pair (c, c′)
in Lemma 3.2 except that they are associated with the branch point (0, ri).
Evidently ∃d ∈ N such that suppϕri

⋂
suppϕri′ = ∅ for i �= i′. Similarly we

define a cutoff function ϕsj
to isolate the branch point (sj , 0).
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Now let ϕ0 := ϕ̃
∏

i(1−ϕri
)
∏

j(1−ϕsj
). We can further decompose each

operator Tκ in (3.24) into:

(3.27) Tκ = T0 +
∑

i

Tri
+
∑

j

Tsj

with the cutoff functions of the operators T0, Tri
and Tsj

being ϕ0, ϕ̃ϕri
and

ϕ̃ϕsj
respectively. In this way the operator T0 accounts for the singularities

of the origin (0, 0) of the (Xκ, Yκ)-plane; whereas Tri
and Tsj

account for the
singularities of the branch points (0, ri) and (sj , 0) respectively.

The support of ϕ0 might consist of several connected regions on which we
have identical arguments and estimates for the operator T0. Hence we just take
the one holding the origin of the (Xκ, Yκ)-plane as suppϕ0. For the operators
Tri

and Tsj
in (3.27), we treat them like the operator Tλ and, following the

second step of the singularity resolution, repeat the decomposition in (3.24).
Then we repeat the operator decomposition in (3.27) for another time at the
branch points on the next level of the resolution tree.

In this way we have an algorithm of operator decompositions that decom-
poses the operators Tri

and Tsj
in (3.27) into a finite sum of operators. All

these operators can be classified into two kinds of operators that will be denoted
as T t

0 and T t
r respectively.

The first kind of operators, which is denoted as T t
0 , accounts for the sin-

gularity at the origin (0, 0) of the (Xt, Yt)-plane and is defined in the same way
as the operator T0 in (3.27). Its cutoff function ϕt

0 is defined as:

(3.28) ϕt
0 := ϕ̃t

∏
i

(1 − ϕrt
i
)
∏
j

(1 − ϕst
j
)

with

(3.29) ϕ̃t(Xt, Yt) := Φ0(|Yt|)Ψ1(|Xt|)[1 − χ(Xt, Yt)]ϕ̃rt−1(Xt−1, Yt−1)

being similar to the cutoff function ϕ̃ of the operator Tκ in (3.25). The cutoff
function ϕ̃rt−1 in (3.29) is similar to the cutoff function ϕ(x, y) in (3.25) and is
defined as

(3.30) ϕ̃rt−1 := Φ2c′t−1d(|Yt−1 − rt−1|)Ψ2ct−1d(|Xt−1|)ϕ̃t−1

with d being the same adjustable parameter as the one defined in Corollary 3.1,
(3.25) and (3.26). The pair of exponential parameters (ct−1, c

′
t−1) are defined

almost the same as the exponential parameter pair (c1, c′1) in (3.26) except
that they are associated with the branch point (0, rt−1). The cutoff function
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ϕ̃rt−1 is also similar to the cutoff function of the operator Tri
in (3.27). Here

(Xt−1, Yt−1 − rt−1) are the variables of the monomial transform Tt in (3.10).
The cutoff function ϕ̃t−1 in (3.30) is recursively defined like the cutoff function
ϕ̃t in (3.29). The cutoff function ϕrt

i
in (3.28) is simply

(3.31) ϕrt
i

:= Φ2c′td(|Yt − rt
i |)Ψ2ctd(|Xt|)

with the adjustable parameter d being the same as the one in (3.30). The
exponential parameter pair (ct, c′t) in (3.31) are associated with the branch
point (0, rt). The cutoff function ϕst

j
in (3.28) is defined similarly to the cutoff

function ϕrt
i

in (3.31).
The other kind of operator, which is denoted as T t

r , accounts for the sin-
gularity of a terminal branch point (0, rt

i) and has similar definition to the
operator Tri

or Tsj
in (3.27). Its cutoff function ϕt

r is defined as:

(3.32) ϕt
r := ϕ̃tΦd(|Ỹt|)Ψd(|Xt|)

with the adjustable parameter d being the same as in (3.29) and (3.31). Here
the cutoff function ϕ̃t is defined as in (3.29) and Ỹt is defined as in (3.19). Please
note that when the branch point (0, rt

i) is a terminal branch point as in (3.32),
the cutoff function (3.28) should take a slightly different form, i.e., the cutoff
function ϕrt

i
defined in (3.31) should be substituted by the cutoff function

Φd(|Ỹt|)Ψd(|Xt|) in (3.32). Similarly at a terminal branch point (st
j , 0), the

cutoff function of the operator T t
r takes the form:

(3.33) ϕt
r := ϕ̃tΦd(|Yt|)Ψd(|X̃t|)

with the adjustable parameter d being the same as in (3.32).

§4. Some Preliminary Estimates

In this section we shall introduce some preliminary estimates as well as
carry out the second phase of the operator decompositions in (1.2), which are
routine dyadic decompositions.

§4.1. Some preliminary estimates

For t > 1, we define a function Γt :=
∏t−1

i=1(Yj − rj) and substitute Xj − sj

for Yj − rj in the case of the branch point (sj , 0); we define Γ1 := 1.
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Lemma 4.1. Let l = 1, 2. For the cutoff function ϕt
0 defined as in

(3.28), as well as its adjustable parameter d, ∃d ∈ N such that the following
estimates hold on (suppϕt

0)◦:

|∂lXt/∂y
l| ≤ C|Xt/(yΓt)l|, |∂lYt/∂y

l| ≤ C|Yt/(yΓt)l|;

For the cutoff function ϕt
r defined in (3.32) or (3.33) as well as its adjustable

parameter d, ∃d ∈ N such that the following estimates hold on (suppϕt
r)

◦:

|∂lXt/∂y
l| ≤ C|Xt/(yΓt)l|, |∂lZ̃t/∂y

l| ≤ C|Z̃t/(yΓt)lZ̃t|

with Z̃t = Ỹt in the case of the terminal branch point (0, rt) as in (3.19) whereas
Z̃t = X̃t in the case of the terminal branch point (st, 0) as in (3.20). Here we
keep the variable Z̃t in the upper bound of the second estimate on purpose for
later usages.

If we substitute x for y in the above estimates, the conclusions still hold.

Proof. The conclusion follows from an induction on t. When t = 2,
we apply the chain rule for differentiations to the composition of monomial
transforms in (3.10) to obtain ∂Y2

∂y = n2m
′
1

Y2
y +m2m1

Y2Y1
(Y1−r1)y

, whose estimate
is straightforward.

Lemma 4.2. Let (k, l) ∈ {(1, 0), (0, 1)}. In the case of the branch point
(0, rt−1), and for the cutoff functions ϕt

0 and ϕt
r defined in (3.28) and (3.32)

or (3.33) respectively with their adjustable parameter d, ∃d ∈ N such that the
following estimates :

|∂k∂lYt/∂x
k∂yl| ≥ C|Yt/(xkylΓt)|, |∂k∂lZ̃t/∂x

k∂yl| ≥ C|Z̃t/(xkylZ̃tΓt)|

hold on (suppϕt
0)

◦ and (suppϕt
r)◦ respectively. The variable Z̃t := Ỹt in the

case of the terminal branch point (0, rt) as in (3.19) whereas Z̃t := X̃t in the
case of the terminal branch point (st, 0) as in (3.20). Here we keep the variable
Z̃t in the lower bound of the second estimate on purpose for later usages. In
the case of the branch point (st−1, 0), we simply substitute Xt for Yt and the
first estimate still holds on (suppϕt

0)◦; whereas the second estimate does not
change on (suppϕt

r)◦.
When t = 1 we have lower bounds |∂xX1| ≥ C|X1/x| and |∂yY1| ≥ C|Y1/y|.

Proof. Apart from the chain rule for differentiation and an induction on
t, our proof depends on the exponents of the monomial transforms in (3.10)
being nonzero. In fact, we always have mj · n′

j �= 0 for ∀1 ≤ j ≤ t. And same
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as the definition of the branch point under (3.7), we rule out both (0, rj) of
〈L1, L2〉 and (sj , 0) of 〈Lρ−1, Lρ〉 for each Newton polygon in our resolution
tree and accordingly, we have either nj �= 0 or m′

j �= 0, depending on the form
of the branch point being (0, rj) or (sj , 0) with 1 ≤ j ≤ t. To obtain the second
estimate we can use the estimates in Lemma 4.1.

The proof of Lemma 4.3 as follows is similar to those of Lemma 4.1 and
Lemma 4.2.

Lemma 4.3. Let 1 ≤ k + l ≤ 2 with k, l ∈ N ∪ {0}. In the case
of the branch points (0, rj) with 1 ≤ j < t, and for the cutoff functions ϕt

0

and ϕt
r defined in (3.28) and (3.32) or (3.33) respectively with their adjustable

parameter d, ∃d ∈ N such that the following estimates :

|∂k∂lXj/∂X
k
t ∂Y

l
t | ≤ C|Xj/(Xk

t Y
l
t )|,

|∂k∂lYj/∂X
k
t ∂Y

l
t | ≤ C|(Yj − rj)/(Xk

t Y
l
t )|

hold on (suppϕt
0)

◦; whereas in the cases of the terminal branch points (0, rt) or
(st, 0) on (suppϕt

r)
◦, we substitute Ỹt for Yt or substitute X̃t for Xt respectively

and the above estimates still hold.
For the same k, l as above and z = x or z = y, ∃d ∈ N such that the

following estimates :

|∂k∂lz/∂Xk
t ∂Y

l
t | ≤ C|z/(Xk

t Y
l
t )|

hold on (suppϕt
0)◦; whereas in the cases of the terminal branch points (0, rt) or

(st, 0) on (suppϕt
r)◦, we substitute Ỹt for Yt or substitute X̃t for Xt respectively

and the above estimates still hold.

Without loss of generality, suppose that each branch point takes the form
(0, rj) with 1 ≤ j ≤ t. Hence the exponents of the monomial transforms in
(3.10) satisfy nj �= 0 for 1 ≤ j ≤ t. And we always have mj · n′

j �= 0 for
1 ≤ j ≤ t.

For 1 ≤ j < t, let αj :=
∏t

i=j+1mi and αt := 1. For the cutoff functions ϕt
0

and ϕt
r defined in (3.28) and (3.32) respectively with their adjustable parameter

d, it is easily seen from (3.10), (3.11) and (3.19) that ∃d ∈ N such that

(4.1) |P(Xt, Yt)| ∼ |Xt|νt |Yt|ν
′
t and |P(Xt, Yt)| ∼ |Xt|νt |Ỹt|ht

hold on suppϕt
0 and suppϕt

r respectively. Here νt :=
∑t

j=1 αjpj and ν′t :=
m′

t

mt
(νt − pt) + p′t. The Π1 ∼ Π2 in (4.1) means that ∃C > 0 such that CΠ2 ≤

Π1 ≤ CΠ2.
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Similar to (4.1), it is also clear that ∃d ∈ N such that

(4.2) |xy|Γ2
t ∼ X2μt

t Y
2μ′

t
t and |xy|Ỹ 2

t Γ2
t ∼ X2μt

t Ỹ 2
t

hold on suppϕt
0 and suppϕt

r respectively. Here μt :=
∑t

j=1 αj ñj and μ′
t :=

m′
t

mt
(μt− ñt)+ ñ′

t with ñj = nj , ñ′
j = n′

j for j > 1 and ñ1 = m1+n1
2 , ñ′

1 = m′
1+n′

1
2 .

In the second estimate of (4.2) we keep the Ỹ 2
t on purpose for later usages.

In particular, in the case of the terminal branch point (st, 0), it is easily
seen from (3.10) and (3.20) that ∃d ∈ N such that (4.1) and (4.2) becomes:

(4.3) |P(Xt, Yt)| ∼ |X̃t|ht |Yt|ν
′
t and |xy|X̃2

t Γ2
t ∼ X̃2

t Y
2μ′

t
t

on suppϕt
r with the cutoff function ϕt

r defined as in (3.33). Here in the second
estimate we keep the X̃2

t on purpose for later usages.
For the simplicity of notations, let us define:

(4.4) Δt := νt/(2μt) =
[b1, b2, . . . , bt]

2[k1, k2, . . . , kt]
, Δ′

t := ν′t/(2μ
′
t) =

[b1, b2, . . . , b′t]
2[k1, k2, . . . , k′t]

.

In particular when t = 1, we have Δ′
1 := b′1/(2k

′
1) = p′1/(m

′
1+n

′
1). Here b1 = p1,

b′1 = p′1, k1 = ñ1 and k′1 = ñ′
1; and when 1 < j ≤ t, bj = pj/mj and kj = ñj/mj

are the abscissa intercept and the negative reciprocal of the slope of the side
Lj of the j-th Newton polygon in (3.10) respectively; whereas b′j = p′j/m

′
j and

k′j = ñ′
j/m

′
j are the abscissa intercept and the negative reciprocal of the slope

of the side L′
j respectively. The [b1, b2, . . . , bt] and [k1, k2, . . . , kt] denote the

continued fractions:

[
p1,

p2

m2
, . . . ,

pt

mt

]
:= p1 +

p2 +
p3 + · · · +

pt

mt

m3

m2

[
ñ1,

n2

m2
, . . . ,

nt

mt

]
:= ñ1 +

n2 +
n3 + · · · +

nt

mt

m3

m2

Please note that the premise for the above definition is that for 1 ≤ j ≤ t,
each branch point has the form (0, rj). Since (4.4) is the exponents of the second
conclusion of the Theorem as in (1.4), in what follows we shall elaborate on the
other cases of the branch points in details. When the branch points have the
form (sj , 0) for 1 ≤ t1 ≤ j ≤ t2 < t−1, we substitute the variables (Xj , Yj −rj)
in the (j+1)-th monomial transform of (3.10) by the variables (Xj−sj , Yj). We
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also substitute the Yj − rj in Γt =
∏t−1

j=1(Yj − rj) by Xj − sj . Accordingly, we
revise the Δt and Δ′

t defined in (4.4) as follows. The bt1 and kt1 are substituted
by b′t1 and k′t1 respectively; If t2 > t1, then for t1 < j ≤ t2, the bj and kj are
substituted by the ordinate intercept p′j/n

′
j and the negative slope m′

j/n
′
j of

L′
j respectively; The bt2+1 and kt2+1 are substituted by the ordinate intercept

pt2+1/nt2+1 and the negative slope mt2+1/nt2+1 of Lt2+1 respectively.
When t2 = t− 1, besides the above revisions, we have to further revise the

Δ′
t defined in (4.4), i.e., to substitute the b′t and k′t by the ordinate intercept

p′t/n
′
t and the negative slope m′

t/n
′
t of L′

t respectively. Whereas in the case of
t1 < t2 = t, besides all the above revisions, we have to substitute Δ′

t for Δt on
suppϕt

r.
Finally, in the case of t1 = t2 = t, it suffices to substitute Δ′

t for Δt on
suppϕt

r.
The monomial transform T1 in (3.10) represents a monomial transform Tκ

in (3.3) for some subscript variable κ. And we have the following lemma.

Lemma 4.4. Let t > 1. For the cutoff functions ϕt
0 and ϕt

r defined
in (3.28) and (3.32) or (3.33) respectively, the following inequalities hold on
suppϕt

0 as well as on suppϕt
r in the case of the terminal branch point (0, rt):

max{ht/2,Δ′
t} ≤ Δt ≤ Δκ ≤ Δ.

In the case of the terminal branch point (st, 0) on suppϕt
r, we have:

ht/2 ≤ Δ′
t ≤ Δκ ≤ Δ.

The above conclusions are independent of the form of the branch points being
(0, rj) or (sj , 0) for 1 ≤ j ≤ t− 1.

When t = 1, we have h1/2 ≤ max{Δ1,Δ′
1} = Δκ ≤ Δ.

Proof. Some calculations and the following observations can lead to the
conclusion. In fact, the monadic polynomial in (3.7) implies that hi + 1 ≤ Nκ

with Nκ being the number of integral points on the face Lκ of the Newton
polygon. And Nκ ≤ min{ pκ

nκ
, pκ

mκ
}+ 1 ≤ 2pκ

mκ+nκ
+ 1. Using the subscript of the

monomial transform T1 in (3.10), this amounts to h1+1 ≤ 2p1
m1+n1

+1 = 2Δ1+1.
Similarly in the case of the branch point (s1, 0), we can obtain from (3.8) that
h1 + 1 ≤ 2p′

1
m′

1+n′
1

+ 1 = 2Δ′
1 + 1. Altogether we have h1/2 ≤ max{Δ1,Δ′

1} =
Δκ ≤ Δ. Here Δκ and Δ are defined as in (3.9). When t > 1, it suffices to
prove the conclusion when each branch point, including the terminal branch
point, takes the form (0, rj) for 1 ≤ j ≤ t. For ∀ j with 1 < j ≤ t, we can
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define similar quantities hj and Nj and they also satisfy hj + 1 ≤ Nj . In
addition, since (0, hj−1) is the initial vertex of the perfect Newton Polygon at
the branch point (0, rj−1), we have Nj ≤ pj/ñj + 1 ≤ hj−1 + 1. Summarizing
the above inequalities in a recursive way, we can obtain ht ≤ pj/ñj ≤ 2Δκ

for ∀ j with 1 ≤ j ≤ t. Then notice that in the definition of Δt in (4.4), we
have bj = kj(pj/ñj) for 1 ≤ j ≤ t and thus the inequality ht

2 ≤ Δt ≤ Δκ.
The inequality Δ′

t ≤ Δt can be proved in a similar way. In particular, we need
to substitute pt = mtc̃t + ntd̃t and p′t = m′

tc̃t + n′
td̃t into the definitions of

νt, μt, ν
′
t and μ′

t respectively. Here the (c̃t, d̃t) is the vertex of the adjacent pair
〈Lt, L

′
t〉, i.e., {(c̃t, d̃t)} := Lt

⋂
L′

t. It is evident that d̃t ≤ ht−1 ≤ pj/ñj for
1 ≤ j ≤ t− 1.

Corollary 4.1. Let t > 1. For the cutoff functions ϕt
0 and ϕt

r defined
in (3.28) and (3.32) or (3.33) respectively with their adjustable parameter d,
∃d ∈ N and ∃C > 0 such that |P(Xt, Yt)| ≥ C(|xy|Γ2

t )
Δt holds on suppϕt

0;
whereas |P(Xt, Yt)| ≥ C(|xy|Ỹ 2

t Γ2
t )

Δt holds in the case of the terminal branch
point (0, rt), or |P(Xt, Yt)| ≥ C(|xy|X̃2

t Γ2
t )Δ

′
t holds in the case of the terminal

branch point (st, 0) on suppϕt
r.

When t = 1, the estimate |P(X1, Y1)| ≥ C|xy|Δκ holds on suppϕ1
0 with

Δκ = max{Δ1,Δ′
1} defined as in (3.9). In the case of the terminal branch point

(0, r1) the estimate |P(X1, Y1)| ≥ C(|xy|Ỹ 2
1 )Δκ , or in the case of the terminal

branch point (s1, 0) the estimate |P(X1, Y1)| ≥ C(|xy|X̃2
1 )Δκ holds on suppϕ1

r.

Proof. (4.1), (4.2), (4.3), (4.4) and the above lemma immediately yield
the conclusion.

§4.2. Dyadic decompositions

We have the following dyadic operator decompositions:

(4.5) T t
0 =

∑
k≥0,j≥1

St
kj , T t

r =
∑

k≥d,j≥d

S̃t
kj

that correspond to the cutoff function decompositions ϕt
0 =

∑
k≥0,j≥1 ϕ

t
kj and

ϕt
r =

∑
k≥d,j≥d ϕ̃

t
kj respectively as follows.

We decompose the cutoff function ϕt
0 defined in (3.28) through a dyadic

decomposition of its factor

Φ0(|Yt|)Ψ1(|Xt|) =
∑

k≥0,j≥1

φk(|Yt|)ψj(|Xt|).
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The cutoff functions ϕt
r in (3.32) and (3.33) are similarly decomposed via

a dyadic decomposition of their factors

Φd(|Ỹt|)Ψd(|Xt|) =
∑

k≥d,j≥d

φk(|Ỹt|)ψj(|Xt|);

Φd(|Yt|)Ψd(|X̃t|) =
∑

k≥d,j≥d

φk(|Yt|)ψj(|X̃t|).

These are the second phase of the operator decompositions in (1.2).
The proof of Lemma 4.5 as follows is similar to those of Lemma 4.1 and

Lemma 4.2.

Lemma 4.5. For the k, j, t and adjustable parameter d in (4.5), ∃d ∈ N
and ∃ctkj > 0 dependent on k, j and t such that the estimates |∂x/∂Xt| ≥ ctkj

and |∂y/∂Yt| ≥ ctkj hold on suppϕt
kj.

Further, we have either |∂x/∂Yt| ≥ ctkj or ∂x/∂Yt ≡ 0 and the same holds
for ∂y/∂Xt on suppϕt

kj.
In the case of the terminal branch point (0, rt) or (st, 0) on supp ϕ̃t

kj, we
substitute Ỹt for Yt or substitute X̃t for Xt in the above estimates respectively.

The conclusion of the lemma is independent of the form of the branch
points being (0, rj) or (sj , 0) for 1 ≤ j ≤ t− 1.

§5. Summation Balance and Sharp Estimates

We invoke Lemma 2.3 to estimate the operators St
kj and S̃t

kj in (4.5). The
final conclusion of the Theorem is a balance between the summations of these
estimates. Then we make a scale transform in terms of the parameter λ to
prove the sharpness of our estimates.

§5.1. Summation balance

In what follows we first discuss the operator St
kj in details since the esti-

mate of the operator S̃t
kj is almost verbatim. For the estimate of the operator

S̃t
kj , we only mention its difference from that of the operator St

kj .
Since |Xt| ∼ 2−j and |Yt| ∼ 2−k hold on suppϕt

kj , as a result of (4.1)
and similar to (4.2), ∃C1, C2 > 0 independent of k and j, and ∃ν, δ1, δ2 > 0
dependent on k and j, such that for (α, β) ∈ {(1, 0), (0, 1)}, the following
estimates hold on suppϕt

kj .

(5.1) C1ν ≤ |P(Xt, Yt)| ≤ C2ν, C1δ
α
1 δ

β
2 ≤ |xαyβΓt| ≤ C2δ

α
1 δ

β
2 .
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Lemma 4.2, (5.1) and Lemma 2.2 imply that the horizontal segment and
vertical segment of the support of the kernel of the operator St

kj on the (x, y)-
plane, which is the image of suppϕt

kj under T1 ◦ · · · ◦ Tt in (3.10), can be
controlled by δ1 and δ2 respectively. Hence it is straightforward that:

(5.2) ‖St
kj‖ ≤ C(δ1δ2)

1/2
.

Next we verify that the operator St
kj satisfies the conditions of Lemma 2.3

under the diffeomorphism T = T1 ◦ · · · ◦ Tt in (3.10).
Lemma 4.3 indicates that the cutoff function ϕt

kj of the operator St
kj sat-

isfies the estimates in (2.3) with ε = 2−j and η = 2−k. Further, it follows
from Lemma 4.5 that ∂x(Xt, Yt)/∂Xt and ∂x(Xt, Yt)/∂Yt do not change sign
for (Xt, Yt) ∈ suppϕt

kj , and thus satisfy the conditions of Lemma 2.1 for the
vertical connectedness. In addition, according to (3.11), Lemma 4.3 and (5.1)
we can directly verify that P(Xt, Yt) satisfies the estimates of (2.4). Finally,
the estimates in Lemma 4.1 guarantee the condition (2.2). In summary, the
operator St

kj satisfies the conditions of Lemma 2.3 and we have:

(5.3) ‖St
kj‖ ≤ C(λν)−1/2 ≤ Cλ−1/2(δ1δ2)−Δt/2,

where the constant C is independent of λ, k, j, ν, δ1 and δ2. The second esti-
mate is based on C2ν ≥ |P(Xt, Yt)| ≥ C(|xy|Γ2

t )Δt ≥ C ′(δ1δ2)Δt according to
Corollary 4.1 and (5.1).

Similar to (4.2), we can prove that for (α, β) ∈ {(0, 1), (1, 0), (1, 1)} and i =
1, 2, ∃Ai, Bi > 0 depending only on the exponents of the monomial transforms
in (3.10) such that (|xΓt|)α(|yΓt|)β ∼ 2−(αA1+βA2)k−(αB1+βB2)j on suppϕt

kj.
Let A := A1 + A2 and B := B1 + B2. From (5.1) and (5.2), it is evident
that ‖St

kj‖ ≤ C ′2−(Ak+Bj)/2. Moreover, it is easy to verify that det
(

A1 A2
B1 B2

)
=

(m1 − n1)D with D := α1/mt > 0. The α1 is defined above (4.1) in the
case of the branch points bearing the form (0, rj) for 1 ≤ j < t. The m1

and n1 are the exponents of the monomial transform T1 in (3.10). Thus when
m1 �= n1, if both |j − j′| ≥ hA and Ak + Bj = Ak′ +Bj′ hold for h > 0, then
|(Aik

′ + Bij
′) − (Aik + Bij)| ≥ hD (i = 1, 2). Hence ∃h0 > 0 satisfying the

above condition such that ϕt
kj(x, z)ϕ

t
k′j′(y, z) = ϕt

kj(z, x)ϕ
t
k′j′(z, y) = 0. Now

Cotlar’s lemma implies that ‖
∑

Ak+Bj= S
t
kj‖ ≤ Ch0‖St

kj‖.
According to (4.5) we have ‖T t

0‖ ≤
∑

 ‖
∑

Ak+Bj= S
t
kj‖ ≤ Ch0

∑
 2−/2.

Whenm1 = n1, we have A1 = A2, B1 = B2 and thus δ1 = δ2 and x ∼ y. In
this case the operator

∑
Ak+Bj= S

t
kj should be substituted by a single operator

St
kj satisfying Ak +Bj = �.

Thus the conclusion for the operator T t
0 can be derived from a summation
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balance between (5.2) and (5.3).

(5.4) ‖T t
0‖ ≤ min

N>1

{
C1

∑
≥N

2−/2, C2λ
− 1

2

∑
<N

2(Δt)/2

}
≤ Cλ−1/[2(Δt+1)].

The estimates for the operator S̃t
kj is almost verbatim except that the

second estimate in (5.1) now becomes:

C1δ
α
1 δ

β
2 ≤ |xαyβZ̃tΓt| ≤ C2δ

α
1 δ

β
2 ,

where Z̃t = Ỹt or X̃t depending on the terminal branch point being (0, rt) as
in (3.19) or (st, 0) as in (3.20).

Similarly we can obtain the estimate:

(5.5) ‖T t
r‖ ≤ Cλ−1/[2(Δt+1)] or ‖T t

r‖ ≤ Cλ−1/[2(Δ′
t+1)]

depending on the terminal branch point being (0, rt) as in (3.19) or (st, 0)
as in (3.20). When t = 1, we have estimates ‖T 1

0 ‖ ≤ Cλ−1/[2(Δκ+1)] and
‖T 1

r ‖ ≤ Cλ−1/[2(Δκ+1)] with Δκ defined as in (3.9).
The (5.4) and (5.5) are the second conclusion of the Theorem as in (1.4).

§5.2. Sharp estimates

The sharpness of the estimates for the operators T t
0 and T t

r as in (5.4) and
(5.5) can be deduced from a scale transform in terms of the parameter λ within
the operators.

In fact, since we excluded the monadic monomials from the analytic phase
function P (x, y) of the operators T t

0 and T t
r , the two functions P (x, y)/(xy)

and P ′′
xy(x, y) have identical Newton polygons. Hence the estimate |P (x, y)| ≤

C|xy||X1|p1 |Y1|p
′
1 holds on both suppϕt

0 and suppϕt
r for the operators T t

0 and
T t

r . Here we used the same notations as in (3.11) and (3.19). As a result, there
is an adjustable parameter d ∈ N such that, the following estimates:

(5.6) |P (x, y)| ≤ C|Xt|δt |Yt|δ
′
t , and |P (x, y)| ≤ C|Xt|δt or C|Yt|δ

′
t

hold on suppϕt
0, and on suppϕt

r in the case of the terminal branch point (0, rt)
or (st, 0) as in (3.19) or (3.20) respectively. Under the assumption that each
branch point takes the form (0, rj) for 1 ≤ j < t and with the same notations
as in (4.1) and (4.2), the exponents δt := α1(2ñ1 +p1) and δ′t := m′

t

mt
δt for t > 1.

When t = 1, the exponents in (5.6) becomes δ1 := 2ñ1 + p1 and δ′1 := 2ñ′
1 + p′1.

The reason is simply that ∃d ∈ N such that |xy||X1|p1 |Y1|p
′
1 ∼ |Xt|δt |Yt|δ

′
t on
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suppϕt
0 whereas |xy||X1|p1 |Y1|p

′
1 ∼ |Xt|δt or |Yt|δ

′
t in the case of the terminal

branch point (0, rt) or (st, 0) on suppϕt
r with t ≥ 1.

In order to control the phases λP (x, y) of the operators T t
0 and T t

r with
t ≥ 1, we make a scale transform (Xt,Yt) = L(Xt, Yt) := (λσ1Xt, λ

σ2Yt) for
the operator T t

0 , or (Xt, Ỹt) := (λσ1Xt, λ
σ2 Ỹt) or (X̃t,Yt) := (λσ1X̃t, λ

σ2Yt)
for the operator T t

r in the case of the terminal branch point (0, rt) or (st, 0)
respectively. Here the exponents σ1 and σ2 of λ are to be determined. In this
way the estimates in (5.6) become:

λ|P (x, y)| ≤ C|Xt|δt |Yt|δ
′
t , and λ|P (x, y)| ≤ C|Xt|δt or C|Yt|δ

′
t

under the following restrictive equations on σ1 and σ2:

(5.7) δtσ1 + δ′tσ2 = 1, and δtσ1 = 1 or δ′tσ2 = 1

for the operator T t
0 , and for the operator T t

r in the case of the terminal branch
point (0, rt) or (st, 0) respectively.

Let (x, y) := T1 ◦ · · · ◦ Tt((Xt,Yt)) with Tj being the sequence of monomial
transforms as in (3.10) for 1 ≤ j ≤ t. Here for the operator T t

r , similar to the
definition of the variable Ỹt or X̃t in (3.19) or (3.20) in the case of the terminal
branch point (0, rt) or (st, 0), the variable Yt or Xt is defined as Yt := Ỹt+r(Xt)
or Xt := X̃t + s(Yt) respectively. Let us consider a rectangle Rh := [h, 2h] ×
[h, 2h] on the (Xt,Yt)-plane, (Xt, Ỹt)-plane or (X̃t,Yt)-plane with h > 0 whose
image on the (x, y)-plane is denoted as Rh := T1 ◦ · · · ◦ Tt(Rh). We choose
a, b, a′, b′ ∈ R such that the rectangle I := [a, b] × [a′, b′] ⊂ Rh. Suppose the
rectangle I corresponds to a rectangle I := [a, b] × [a′, b′] on the (x, y)-plane
under the scale transform L, i.e., I = L(I). Let δ1 and δ2 denote the horizontal
and vertical magnitudes of Rh respectively. Then similar to the derivation of
(5.2), ∃h > 0 such that we can prove the estimates

(5.8) (b− a)(b′ − a′) ≤ δ1δ2 ≤ C|xy|Γ2

t ∼ |Xt|2μt |Yt|2μ′
t ≤ (2h)2(μt+μ′

t)

for the operator T t
0 with Γt :=

∏t−1
j=1(Yj − rj) for t > 1 and Γ1 := 1. For the

operator T t
r in the case of the terminal branch point (0, rt) or (st, 0), the es-

timate (5.8) takes the form (b − a)(b′ − a′) ≤ C|xy|Ỹ2
t Γ

2

t ∼ |Xt|2μt |Ỹt|2 ≤
(2h)2(μt+1) or (b − a)(b′ − a′) ≤ C|xy|X̃ 2

t Γ
2

t ∼ |X̃t|2|Yt|2μ′
t ≤ (2h)2(μ

′
t+1)

respectively. This indicates an estimate on the area of the rectangle I as
(b − a)(b′ − a′) ≤ |Xt|2μt |Yt|2μ′

t ≤ (2h)2(μt+μ′
t)λ−2(μtσ1+μ′

tσ2) for the opera-
tor T t

0 , and (b − a)(b′ − a′) ≤ |Xt|2μt |Ỹt|2 ≤ (2h)2(μt+1)λ−2(μtσ1+σ2) or (b −
a)(b′ − a′) ≤ |X̃t|2|Yt|2μ′

t ≤ (2h)2(μ
′
t+1)λ−2(σ1+μ′

tσ2) for the operator T t
r in the

case of the terminal branch point (0, rt) or (st, 0) respectively. Thus if we define
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f(x) := χ[a,b](x) and g(y) := χ[a′,b′](y), then with the constant Ch depending
on h, the estimate

(5.9) ‖f‖‖g‖ ≤ Chλ
−(μtσ1+μ′

tσ2) = Chλ
−1/[2(Δt+1)]

holds for the operator T t
0 , and the estimate

(5.10)
‖f‖‖g‖ ≤ Chλ

−(μtσ1+σ2) = Chλ
−1/[2(Δt+1)] or

‖f‖‖g‖ ≤ Chλ
−(σ1+μ′

tσ2) = Chλ
−1/[2(Δ′

t+1)]

holds for the operator T t
r in the case of the terminal branch point (0, rt) or

(st, 0) respectively under the following restrictive equations on σ1 and σ2:

(5.11)
2(μtσ1 + μ′

tσ2) = 1/(Δt + 1), and

2(μtσ1 + σ2) = 1/(Δt + 1) or 2(σ1 + μ′
tσ2) = 1/(Δ′

t + 1)

corresponding to the estimates in (5.9) and (5.10). Now the exponents σ1

and σ2 of λ in the scale transform L can be determined from the restrictive
equations (5.7) and (5.11).

Next we consider a rectangle Rc := [c1, c2] × [c′1, c
′
2] on the (Xt,Yt)-plane,

(Xt, Ỹt)-plane or (X̃t,Yt)-plane such that T1 ◦ · · · ◦ Tt(Rc) ⊂ I ⊂ Rh. Here
for the operator T t

0 , the c′2 > c′1 > 0 satisfy ∃x0 ∈ [a, b] such that c′2 − c′1 ≤
|Yt(x0, b′)−Yt(x0, a′)|. Then ∃h > 0 such that the following estimates hold on
I as per Lemma 4.2 and Lemma 4.1:

|Yt(x0, b′) − Yt(x0, a′)| =
∫ b′

a′

∣∣∣∣∂Yt

∂y

∣∣∣∣ dy ≤ C

∫ b′

a′

|Yt|
|yΓt|

dy ≤ 2Ch(b′ − a′)
infRh

|yΓt|
.

The above two estimates yield a lower bound: b′ − a′ ≥ (c′2−c′1)
2Ch infRh

|yΓt|.
Similarly we can adjust c′1 and c′2 such that b − a ≥ (c′2−c′1)

2C′h infRh
|xΓt|. For

the operator T t
r in the case of the terminal branch point (0, rt) or (st, 0), we

substitute the variable Ỹt or X̃t for the variable Yt respectively in the above
estimates; and accordingly, we also have to substitute the Γt in the above
estimates by ỸtΓt or X̃tΓt respectively. Thus similar to the process of deriving
the estimates (5.9) and (5.10), after proving the following lower bounds on the
area of the rectangle I as (b− a)(b′ − a′) ≥ C ′

hλ
−2(μtσ1+μ′

tσ2) for the operator
T t

0 , and (b− a)(b′ − a′) ≥ C ′
hλ

−2(μtσ1+σ2) or (b− a)(b′ − a′) ≥ C ′
hλ

−2(σ1+μ′
tσ2)

for the operator T t
r in the case of the terminal branch point (0, rt) or (st, 0)

respectively, we can prove that ∃h,Ch > 0 such that:

(5.12) |〈T tf, g〉| ≥ Chλ
−1/(Δt+1) or |〈T̃ tf, g〉| ≥ Chλ

−1/(Δ′
t+1)
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under the same restrictive equations on σ1 and σ2 as in (5.11). Here the op-
erator T t in (5.12) denotes the operator T t

0 or the operator T t
r in the case of

the terminal branch point (0, rt); whereas the operator T̃ t in (5.12) denotes the
operator T t

r in the case of the terminal branch point (st, 0). Summarizing the
estimates in (5.9), (5.10) and (5.12), we have:

|〈T tf, g〉| ≥ Chλ
−1/[2(Δt+1)]‖f‖‖g‖ or |〈T̃ tf, g〉| ≥ Chλ

−1/[2(Δ′
t+1)]‖f‖‖g‖

with the operators T t and T̃ t defined as in (5.12). Thus we verified the sharp-
ness of the estimates in (5.4) and (5.5). In particular when t = 1, we need to
substitute Δκ for Δt or Δ′

t in the above estimates.
Lemma 4.4 further indicates that ‖T t

0‖, ‖T t
r‖ ≤ Cλ−1/[2(Δκ+1)]. Due to

the finiteness of the algorithm of operator decompositions in Section 3.3, as
well as the sharpness of the estimate on the operator T0 in (3.27), the operator
Tκ in (3.27) satisfies the sharp estimate ‖Tκ‖ ≤ Cλ−1/[2(Δκ+1)].

Finally, as per the operator decomposition in (3.24) and the definition in
(3.9), we can obtain the sharp estimate ‖Tλ‖ ≤ Cλ−1/[2(Δ+1)], which is the
first conclusion of the theorem as in (1.3).

We would like to draw attentions to a further research direction, which is
to generalize the theorem to high-dimensional oscillatory integral operators.
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