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Abstract

We define the elliptic Hecke algebras for arbitrary marked elliptic root systems in
terms of the corresponding elliptic Dynkin diagrams and make a ‘dictionary’ between
the elliptic Hecke algebras and the double affine Hecke algebras.

81. Introduction

1.1. Over the last fifteen years or so, there were remarkable developments
in the study of multi-variable orthogonal polynomials, attached to root systems.
One of these developments was due to Cherednik. In [C1], he defined an dif-
ference analogue of Knizhnik-Zamolodikov equations, so-called affine quantum
difference Knizhnik-Zamolodikov equations and established their equivalence
with the corresponding eigenvalue problem of Macdonald type. To prove the
above equivalence, he introduced a new class of algebras, so-called the double
affine Hecke algebras. Moreover, he proved Macdonald’s inner product conjec-
ture in [C2]. In a process of solving it, the double affine Hecke algebras also
played an important role.

Cherednik’s construction is generalized to an important class of non-
reduced root systems, (C),C,) by Noumi [N] and Sahi [Sa]. When n = 1
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(rank 1 case), the corresponding orthogonal polynomials are the Askey-Wilson
polynomial [AW] which include as special and limiting cases all the classical
families of orthogonal polynomials in one variable. In [M5], Macdonald formu-
lated all the above results uniformly.

1.2. In the middle of 1980’s, K. Saito [S] defined a notion of the marked
elliptic root systems which is a generalization of finite or affine root systems,
motivated by the study of simple elliptic singularities. Attaching each marked
elliptic root system, he introduced a diagram, so-called the elliptic Dynkin
diagram which describes the structure of a marked elliptic root system. In
addition, he gave a complete classification of marked elliptic root systems under
some suitable assumptions. In the original motivation, vertices in an elliptic
Dynkin diagram correspond to vanishing cycles and edges describe intersection
numbers of them.

After K. Saito’s work, he and Takebayashi studied the structure of the Weyl
groups associated to marked elliptic root systems, so-called the elliptic Weyl
groups [ST]. In particular, they found a new presentation of elliptic Weyl groups
in terms of the corresponding elliptic Dynkin diagrams. The explicit meaning
is as follows. In the finite and affine cases, it is well-known that the structure
of the Weyl groups can be described by the corresponding Coxeter-Dynkin
diagrams. Namely, the set of generators and relations of the Weyl group can
be read from the corresponding Coxeter-Dynkin diagram. As a generalization,
they gave a generating system of the elliptic Weyl group attached to vertices
of the elliptic Dynkin diagram and the defining relation which are described by
the ‘shape’ of it. These relations are called the elliptic Coxeter relations.

Since the Weyl groups of finite and affine root systems are Coxeter groups,
one can consider the corresponding Hecke algebras. In the elliptic case, as an
application of the K. Saito-Takebayashi’s presentation, Yamada [Y] defined a
g-analogue of elliptic Weyl groups called the elliptic Hecke algebras for “one-
codimensional” marked elliptic root systems which have only one dotted line
in their elliptic Dynkin diagrams. After that Takebayashi [T1], [T2] defined
them for arbitrary marked elliptic root systems except for the group (D) (c.f.
4.2). Yamada and Takebayashi also pointed out that elliptic Hecke algebras are
much like double affine Hecke algebras. More precisely, for some cases, they
stated that the elliptic Hecke algebras are embedded into the double affine
Hecke algebras.

1.3. The aim of this article to establish an explicit connection between
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the elliptic Hecke algebras and the double affine Hecke algebras. For that
purpose, we reformulate the uniform construction of the double affine Hecke
algebras due to Macdonald [M5]. In Section 2, we give a quick review of the
theory of the affine Hecke algebras. All statements in this section are well-
known. In Section 3, we introduce a notion of triplets. This is a basic datum
to define the double affine Hecke algebras and a key of our construction. For a
giving triplet, we define the double affine Hecke algebras and give some basic
properties of them. After recalling the theory of elliptic root systems in Section
4 following K. Saito [S], we give the definition of the elliptic Hecke algebras in
Section 5. They are defined by some generators and relations attached to the
elliptic Dynkin diagrams of the corresponding (marked) elliptic root system. In
addition, we give another presentation of them. (Proofs of the statements are
given in Section 7.) Section 6 is the main part of this article. For a giving
marked elliptic root system (R, G), we introduce the corresponding triplet and
the double affine Hecke algebra attached to it as in Section 3. On the other hand
we have another algebra (the corresponding elliptic Hecke algebra) attached to
(R, Q) as in Section 5. After that, we make a comparison between them. This
is a main result of this article (Theorems 6.2.3, 6.3.2).

1.4. Finally, we must refer the results of Takebayashi. As we already
mentioned above, he introduced a notion of the elliptic Hecke algebras. More
precisely, in [T1], he defined them for elliptic root systems of type (1,1) and
compare them and the double affine Hecke algebras by case-by-case checking.
After that, in [T2], he defined them for arbitrary marked elliptic root systems
except for the group (D) (c.f. 4.2), but he did not compare them and the
double affine Hecke algebras for arbitrary cases. In his definition, he use new
diagrams which are called the “completed elliptic Dynkin diagrams”. But, as
we mentioned above, the elliptic Dynkin diagram have a concrete meaning in
a geometrical setting. Therefore, in this article, we try to ‘re-define’ ellip-
tic Hecke algebras by using the original elliptic Dynkin diagrams, in stead of
the completed elliptic Dynkin diagrams and to make an explicit and uniform
‘dictionary’ between the elliptic Hecke algebras and the double affine Hecke
algebras for arbitrary cases.

The announcement of the results of this article already appeared as [SS].

§2. Affine Hecke Algebras

2.1. Affine root systems and affine Weyl groups. Let V be an n-
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dimensional real vector space with a positive definite symmetric bilinear form
(-,), Ry C V an irreducible finite root system and fix a,--- ,a, simple roots
in Ry. For a € Ry set a¥ := 2a/(a,a). Denote by Q(Ry) = ®Za; the root
lattice, (Q(Ro))+ = ®Z>oa;, P(Ry) = {\ € V | (\,a)) € Z} the weight lat-
tice, (P(Ro))+ the set of all dominant weights, (P(Rp))- = —(P(Ro))+ and
W (Rp) the corresponding Weyl group. Set Ry = {a" | a € Ro}. It is also an
irreducible finite root system.

Let F := V@Rc and we will interpret an element of F as a function on V by
(u+rc)(v) = (u,v) +r. We extend (-, ) to a positive semidefinite bilinear form
on F by (u; +ric,us+rac) := (uy,us). Let S(Rp) be the set of all vectors of the
form a+rc where a € Ry and r is any integer if %a & Ry (resp. any odd integer
if %a € Ry). Set ag := —0 + ¢ , where 6 is the highest root of Ryg. Then S(Ry)
is an irreducible reduced affine root system with simple roots ag,aq,:-- ,an.
We remark that ¢ can be written in the following form: ¢ = > n;a;, where
n; € Zso and ng = 1. The dual root system S(Rp)" := {a¥ | a € S(Ro)} is
also an irreducible reduced affine root system with a basis ag, - ,a,.

For later use, we introduce the following notation: set

_— { a;, if S = S(Ry),
" )aY, if S=S(Ro)Y.
For S = S(Rp) or S(Ry)", we denote by Q(S) := @ ,Zb; its root lattice.

If Ry of type X where X is one of the symbols A,, B,,, C,, BC,, D,, Fs,
E;, Eg, Fy, Go, we say that S(Ry) (resp. S(Ro)Y) is of type X (resp. XV). It is
known that any irreducible reduced affine root system S is isomorphic to either
S(Rp) or S(Rp)Y. In Appendix, we will present a complete list of irreducible
reduced affine root systems.

Firstly assume that S is an irreducible reduced affine root system. Namely
S = S(Ry) or S(Rp)V. Let W(S) be the affine Weyl group of S. It is generated
by reflections wy (f € S) where wy(g) = g— (g, f¥)f for g € F. Since (f¥)¥ =
f, we have wpv = wy and W(S(Rp)) = W(S(Ro)Y). Define the action of v € V
in F by t(v): f — f— (f,v)e. The following fact is well-known.

Theorem 2.1.1. (1) W(S) = W(Ry) x t(Q(Ry)). (2) W(S) is gener-
ated by w; = wyp, (i =0,---,n) and a Coxeter group which corresponds to the
affine Dynkin diagram of S.

Let W(S) := Wy x t(P(RY)) be the extended affine Weyl group. It is
easy to see that W(S) is a normal subgroup of W(S) and W (S)/W(S) =
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P(RY)/Q(RY). Let ST be the set of positive roots and S~ := —S*. For w €
W(S), define [(w) := |[STNw™1S~|. Ifw € W(S), its length with respect to the
generators wo, - - - , wy, is just equal to {(w). Define Q := {w € W(S) | l(w) = 0}.
It is a subgroup and W (S) = Q x W (S). Therefore Q = P(RY)/Q(RY). Since
Q is a subgroup of W(S ), it acts on S. Moreover, it is known that, Q preserves
the set of all simple roots. Therefore, for u € 2 such that u(b;) = b;, we have
uwiufl = wj.

For later use, we will explain an explicit structure of 2. Let v; be the
shortest element of W(Ry) such that v;w; € P(RY)—, where {w;}®, is the
set of all fundamental weights of P(RY). Let u; = t(w;)v; ' (1 <i < n) and
ug = 1.

Lemma 2.1.2. Set J = {j | 0 < j <mn, nj =1}. We have Q =
{u; | jeJ}.

Remark. We have already defined W (S) and W (S) for any irreducible
reduced affine root system (not only for S = S(Rp)). As we mentioned above,
W (S(Ro)) = W(S(Ry)Y). Moreover, by the construction, we have W (S(Ry)) =

W (S(Ro)).

Secondly assume S is an irreducible, non-reduced affine root system. In
this case, the following fact is known:

Fact 1. Let S1:={a€S|a/2¢ S} and Sy :={acS|2a¢S} We
have S = 57U Sy and both S; and S5 are reduced affine root systems with the
same affine Weyl group.

We say that S is of type (X7, X2) where X is the type of S; (¢ = 1,2). In this
case, the basis of S is that of S; and its affine Weyl group W (S) is equal to
W(S1) = W(S2).

2.2. Affine Hecke algebras. In this subsection, we assume S is reduced.

Definition 2.2.1. (1) Let B the group with generators T'(w) (w e W (S))
and relations:

T)T(w) =T(vw), ifl(v)+ (w)=1(vw).
(2) Let B be the subgroup of B generated by T; := T'(w;) (i = 0,--- ,n).

We write U; = T'(u;) for j € J. Tt is known that B is generated by Tj, U;.
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[t 721, Let T (resp. ) be
the ideal generated by the elements 7; — 7; where w; and w; are conjugate in

W (S) (resp. W(S)). Set

Consider a Laurent polynomial ring Z

Aa :Z[Tg:lv"' aTnil]/j- and Aa:Z[T(;ﬂ"" aTil}/I'

n

Obviously both A, and A, are isomorphic to some Laurent polynomial rings
in several variables. More precisely, if Ry is simply laced, A, is a Laurent
polynomial ring in one variable. If not, A, have two variables; one corresponds
to short roots and the other to long roots. If Ry is not of type Ay or Cy,, Z = 7.
Therefore we have A, = A,. In the case of type A;, A, has two variables.
These are 79, 7, which correspond to simple roots ag and a;. In the case of
type C,, A, has three variables. These are 7y, 7, and 7, = --- = 7,,_1. Here
ag and a, are long simple roots and the others are short simple roots.

Definition 2.2.2. (1) The extended affine Hecke algebra H(W(S)) is
the quotient of the group algebra A, [B] by the ideal generated by the following
relations:

(A1) (T; — )Ty + 7, 1) =0, fori=0,---n.

(2) The affine Hecke algebra H(W(S)) is the quotient of the group algebra
Aq[B] by the ideal generated by the same relations as (Al).

We regard A, as an Ag-algebra via a natural projection A, — A,. The A,-
algebra A, ® 4, H(W(S)) is naturally isomorphic to the subalgebra of H (W (S))
which is generated by T; (i =0,--- ,n).

Theorem 2.2.3. Under the convention which we mentioned above, we
have H(W (S)) = Q x (Aq @4, H(W(S))), where the action of Q on T; is the
same as Weyl group case.

There is another presentation of H(W (S)) which is very useful to study
affine Hecke algebras. For u/ € P(RY) define Y* € H(W (S)) as follows: (i) If
i € P(RY)4, then Y# := T(t(y)); (i) If o/ = N — v/ with N,/ € P(RY)4,
then Y* := T(t(N))T(t('))~".

For H(W(S)), we also define Y#' € H(W(S)) in the similar way by re-
placing P(Ry) with Q(Ry).

We introduce the following notation: let

—1 —1
21— 21 + (22— 25 )z
b(zlsz;I): ! 1— 22 2 )
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where 21,29 and x are indeterminates. When z; = z3, b(z1,29;x) has the
simpler form

-1
21 — 2
b (T = ————
(Zlv 215 I) 1— ¢
In the case of H(W(S)) such that Ry is of type A; or of type C,,, for 1 <i < n,
we set
7_i/ — { Ti, Z 7& n,
To, ©=mn.
For the other case, we set 7/ = 7; for any i = 1,--- ,n.

Theorem 2.2.4. (1) Y is well-defined for all i/ and
(A2) YRy =yt

(2) In the algebra H(W(S)) (resp. H(W(S))), the following relations hold

(called Lusztig’s relations) :
(A3) YHT, = Ty Wi t) = b(r;, 7/, Y~ ) (YH — ywili))y,

fori=1,--- ,n and y' € P(RY) (resp. Q(RY)).

(3) Let us consider the algebra generated by T; (i = 1,--- ,n) and Y* (' €
P(RY)) and relations (A1) fori=1,---,n, (A2) and (A3). Then it is isomor-
phic to H(W (S)). Further, by replacing P(RY) with Q(RY), the corresponding
algebra is isomorphic to H(W(S)).

§3. Double Affine Hecke Algebras

In this section, we give the definition of the double affine Hecke algebras
in terms of triplets. We remark that our definition is not new. It is only a
reformulation of the uniform construction of the double affine Hecke algebras
due to Macdonald [M5].

3.1. Triplets. Let us consider the following three types of datum Z = (Ry; S,
A) which we call a triplet :

(type I) Ry is a finite irreducible reduced root system,
S = S(Ro) or S(Rp)Y, As=Q(S") where S’ = S(Ry).

(type II)
Ry and S are as the same in type I, Ay = Q(S’) where S’ = S(Rg)".



852 YOSHIHISA SAITO AND MIDORI SHIOTA

(type III) Ry is of type Cy, (n > 1) (Here we denote C; = A;.);

S is of type (C),Cy), As = Q(S(Rg)").

(In Appendix, we present the detailed structure of the affine root system of
type (Cy/,Cn).)

Set
P(Ry), (typeI), P(R{), (typel),
L= P(RY), (typell), L' =4 P(RY), (typell),
Q(Ry), (type III), Q(R{), (type III)

In each case, let A := L @ Zcy. Here cg = e~ ¢ and e is the exponent of
Q= P(RY)/Q(RY),

Next we fix a normalization of (-,-). Recall a basis {a;}_, of S(Ry). For
type I and II, we normalize (-, -} as (6,6) = 2. Therefore we have a§ = —0+c =
ag. For type III, S = S; U Sy where S; = S(Ro)Y and Sz = S(Ry). Here Ry
is of type C,, (n > 1). In this case e = 2 and we normalize (-,-) as (6,0) = 4.
Therefore we have (ag,ag) = {an,a,) = 4 and (a;,a;) =2 (i =1,--- ,n —1).
Moreover a basis {a;'} of S; and a basis {a;} of Sy are related by the following
way:

1 0 ¢

1 .
@ =50 =—5+ 5 =500, @ =a; (=1 n-1)

Under the above convention, we immediately have the following lemma.
Lemma 3.1.1.  For any case, Ag is a sublattice of A.

Let us introduce the following notations:

(2] t Ia
aﬁ,:{a (type I)

7 Y aY, (type IT or III).

7

We remark that {a?}?zo is a basis of A,.
In each case, let

W(Z) = W(Ro) x t(L'), and W(Z), := W(Ro) x t(Q(RY)).

If = is of type I or II, the first one is the extended affine Weyl group of S and
the second is non-extended one. On the other hand, for type III, both are the



ELLiPTIC HECKE ALGEBRAS 853
affine Weyl group of S.

The first statement of the following lemma is due to Macdonald [M5] and
the second is trivial by the definition.

Lemma 3.1.2. (1) A is stable under the action of W(Z).
(2) As is stable under the action of W (Z2),.

3.2. Definition of double affine Hecke algebras. Let A be a commutative
ring defined by the following way:

A= A, (type I or II),
T ADEL (7)EY, (type 11D,

where Tg and 7} are new indeterminates.

Definition 3.2.1. Let = = (Ry; S, As) be a triplet given in the previous
subsection. For ¢ =0,--- ,n, let b;(x) = b(r;, Tf; x). Here we set Tf = 7; for all
¢ when Z is of type I or II and for ¢ # 0,n when = is of type III.

The double affine Hecke algebra H(E) is an associative A-algebra defined
by the following way.

If = is of type I or II, it is generated by T; (i = 0,---,n), U; (j € J),
X* (X € A) subject to the following relations:

(D1) T; and U; satisfy the same relations in H(W(S)),
(D2) XAXH = XPXN = X R

(D3) T X — X9, = by (X ) (X — X)),
(D4) U; XU = X,

If = is of type III, it is generated by T; (i = 0,--- ,n), X* (XA € A) subject
to the similar relations as (D1), (D2), (D3).

Following [M5], we say H(E) is the double affine Hecke algebra of type
(S,8") for a triplet = of type I or II. For a triplet of type III, we say H(Z) is
the double affine Hecke algebra of type (C),Ch,).

The following theorem is essentially due to Macdonald [M5].
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Theorem 3.2.2. (1) X is a central element. (2) Each of the following
sets
{X T (w)Y" | M€ A,w € W(Ry), ' € L'},
(YFT(w)X* | X € A,we W(Ry), ' € L'},
(X T(w) | X e A,w e W(B)}, {T(w)X*|AeAweW(E)}
forms a free A-basis of H(EZ).

Remark. In the original article [M5], the definition of H(Z) is slightly
different: e is the positive integer such that (L, L') = e~1Z, except in type 111
in which case e = 2. The central element gy := X is considered as a real
number such that 0 < gy < 1. 7; and 7'1.h are also considered as positive real
numbers. Assume qq, 7; and 7'2.h are algebraically free over Z and H(Z) is defined
as an algebra over K with same generators and relations, where K is a subfield
of R containing qq, all 7; and Tih. The original theorem is the following: each
of the four sets which is given by replacing A with L in the above theorem is

a K-basis of H(Z). But, in our situation, we can prove our statements by the
similar argument. So we omit the proof.

Definition 3.2.3.  The small double affine Hecke algebra H(Z)s is the
subalgebra of H(Z) which is generated by T'(w) (w € W(Z);) and X* (A € Ay).

We remark that H(Z), is just equal to H(Z) for = of type III.

Assume = of type I or II. By Lemma 3.1.1 (2), Definition 3.2.1 and Theorem
3.2.2, we immediately have the following statement.

Corollary 3.2.4. (1) The similar relations as (D1), (D2) and (D3) in
Definition 3.2.1 hold in H(E)s. (2) Each of the following sets

{X (W)Y | X € Ay,w € W(Ro), 1 € Q(Ro)"},
(Y T(w)X* | A€ Avw € W(Ro), 1’ € Q(Ro)"},
{X T (w) | A€ A w e W(E)}, {T()X? | A€ Ay,w € W(E),}
forms a free A-basis of H(E)s.
Therefore we have the following.

Corollary 3.2.5. As a set H(E)/H(E)s = (A/As) x Q.  Especially
H(Z)s is a subalgebra of H(Z) with a finite index.
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8§4. Summary of Elliptic Root Systems

4.1. Marked Elliptic root systems. Let F be an (n 4 2) dimensional real
vector space with a positive semi-definite symmetric bilinear form I : FxF — R
with the two-dimensional radical which is denoted by rad(I). If « € F satisfies
I(a, ) # 0, we say « is a non isotropic vector. For a non isotropic vector a € F,
put oV := 2a/I(, ) and define a reflection s, by sq(u) := u — I(u,a")a for
ue k.

Definition 4.1.1. A set R of non isotropic vectors in F' is called an
elliptic root system of rank n if the following conditions are satisfied: (i)
Q(R) ®z R = F. (Here Q(R) is the additive subgroup of F generated by
R.) (ii) sq(R) = R for any a € R. (iii) I(a, 8Y) € Z for any o, 3 € R. (iv) R is
irreducible. That is, there exists no partition of R into two non-empty subsets
R; and Ry such that I(a,3) =0 for all @ € Ry and 8 € Rs.

Let W(R) be the group generated by all reflections s, (v € R). We call
W (R) the elliptic Weyl group.

A subspace G of rad(I) of rank 1 defined over Q is called a marking and
the pair (R, Q) is called a marked elliptic root system.

We fix a generator §; of the rank 1 lattice GNQ(R): GNQ(R) = Zd,. For
a € R, set kq :=1nf {k € Zso | a+ k) € R} and o™ := a + k,01.

Let mq : F — F/G (resp. my : F — F/rad(I)) be the natural projection
and set Ry := m,(R) (resp. m¢(R) :== Ry). R, (resp. Rp) is an affine (resp.
finite) root system. In the present paper we assume that Ry is reduced, which
implies that R, is also reduced.

We fix a subset I'y = {ap, -+, an} of R such that m,(T',) forms a basis of
the affine root system R,. Let §, be the primitive imaginary root of R,. Then
0, can be written in the following form: J, = Z?:o nima (), (ni € Zsp). It
is well-known that there always exists an element a € ', say ag, such that
Nay = 1. Set 8o :=>" (nja; € Rand §:= )" | njoy.

By the construction it is easy to see that Q(R) has a following expression:

Q(R) = (_%0 Za) ® 78y = (é Zay) @ 761 & T,

For 0 < i < n, set m; := Ig(e, a;)n;/2kq,, where Iy is a constant multiple
of I normalized such that inf {Igr(a,«) | @ € R} is equal to 2. Consider the
subset Tynas := {a; € Ty | my = Mypaa} of Ty, where my,q, := max {m; | 0 <
i<n}. Put TF .. = {af | & € T}

max
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Let (R,G) be a marked elliptic root system belonging to I. Then RY :=
{aV € F | @ € R} is also an elliptic root system belonging to I. Moreover it
is known that the same space G defines a marking for RY. We call the pair
(RY, @) the dual marked elliptic root system of (R, Q).

4.2. Elliptic Dynkin diagrams. An elliptic Dynkin diagram I'(R, G) for a
marked elliptic root system (R, G) is a finite graph given by the following data:

(1) the vertex set of I'(R,G) isT':=T, UT,

max*

(2) two vertices a, 8 € I are connected according to the following conditions:
®Q ok if I(a, 3) = I(8,0) =0,

(
O 0B ifI(a,8Y) = I(B,aY) = —1,

(
(a, BY)
aO0——0F8  if I(o,8Y) = —pand I(3,a") = —1 for u = 2,3,
(@, 8Y) =1(B,a") = -2,
(a,BY)=1

2
O
|71
|1
|1
|1
|l
O
©
=
~
L
X
<
Il
=
Q
=
Il
DO

Afterwards we use the following conventions:

O——0=0—+—0=0—+0 forpu=1,
-1
O 0 = 0“0 for ju = 42, +3.

The following theorem is due to K. Saito [S].

Theorem 4.2.1. The isomorphism classes of marked elliptic root sys-
tems are completely classified by their elliptic Dynkin diagrams.

In Appendix, we will present a complete list of marked elliptic root systems
(R, G) under the assumption that Ry is reduced.

By the above classification theorem we have the following lemma.

Lemma 4.2.2.  The component T'(R,G) \ (Tyaz UTE 0r) = Ta \ Timax
is a disjoint union of A-type diagrams, say T'(A;,), -+, T'(A,).

For o € Tq, we set o := kq, . It is known that the set Q((R, G),) :=
@?:OZO[I forms a root lattice of an irreducible reduced affine root system
(R, @), with a basis {O‘I}?:O' In order to describe the explicit type of (R, G)aq,
we introduce a grouping of isomorphism classes of marked elliptic root systems
due to K. Saito [S]:
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(A) ALY (n>1), D&Y (n>4), BV (n=6,7,8),

(B) B (n>3), B&? (n>2), " (n>2), 03 (n>3), FM, F>?,
G G,

() BV (n>3), BSY (n>2), ¢ (n>2), ¢V (n>3), FVY, F3Y
Gél’l) Gé?;,l)

)

(D) Agl,l)*’ B£L2,2)* (n > 2), Cy(ll"l)* (n > 2)
Theorem 4.2.3.  If (R, G) belongs to the group A, B or C, we have

Q(R.) = Q(RY), if (R,G) belongs to the group A,
Q(U(R,G)q) = ¢ Q(R,), if (R, G) belongs to the group B,
Q(RY), if (R, G) belongs to the group C.

If (R, G) belongs to the group D, we have

QUAT L) 2 Q(S(A1),  QUBEP").) = QUCHY*),) = Q(S(BCy)).

If (R, G) belongs to the group A, B or C, there exists the irreducible reduced
finite root system R}O) such that Q(R,G), is isomorphic to Q(S(R}O))) or
Q(S(R;O))V). But in general, RSCO) is not isomorphic to Ry.

4.3. Boundary side. Let us introduce the notion of the boundary side due to
K. Saito and Takebayashi [ST]. For each pair o;, a;; € I'q which are connected
as a,0——o q, for p = 2%, 3% it is known that k(c, ;) := ka, /ka, is equal
to either 1 or u.

Definition 4.3.1. In the above setting, «; is called the boundary side
(or b-side for short) for the bond a;0—5—o o, with g = 2*1 3% if k(ay, ;) =
inf{1, u}.

Remark.  For the bond o, 0—5%—o0 a; for y = 2+ 3+!

a b-side.

, either a; or oy is

4.4. Hyperbolic extension of elliptic Weyl groups. Let (R,G) be a
marked elliptic root system. Consider the pair (F,I) of a vector space F over
R and a symmetric bilinear form I on F such that F is a 1-codimensional
subspace of F, I|p = I and rad(I) = G. Such (F,I) exists uniquely up
to isomorphisms. By the definition, we can regard R is a subset of F. Let
54 € O(F,I) be the reflection with respect to a € R and W(R, G) the group
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generated by all reflections §, (o € R) which is called the hyperbolic extension
of W(R).

K. Saito and Takebayashi [ST] gave a presentation of W(R, G) by genera-
tors attached to the vertices of the elliptic Dynkin diagram I'(R, G) and finitely
many relations. In their presentation, in addition to the ordinary Coxeter rela-
tions, new relations (so-called elliptic Coxeter relations) appeared. After [ST],
Yamada [Y] gave a modification of K. Saito and Takebayashi’s presentation for
one-codimensional cases. In this article, we generalize Yamada’s presentation
of ﬁ//(R7 G) for arbitrary marked elliptic root systems.

The following is K. Saito and Takebayashi’s presentation of ﬁ//(R7 G).

Theorem 4.4.1 ([ST)). W(R, G) is isomorphic to the group with gen-
erators ro (o € R) subject to the relations explained below.

For any subdiagrams of T'(R, G) isomorphic to the following list, we give
relations attach to the diagrams in the following table.

(W0) *0 re =1,
(W1-1) @0 Of  (rarp)® =1,
(W1-2) aO0—O0F (rars)® =1,

2:(:1
(W1-3) *aO——0F (rars)* =1,

3i1
(W1-4) *O——0948 (rars)® =1,

o
A~

(W2-1) : Je] (rarsraxrg)® =1,

: N (rprara=)’ = (rara=1s)?,
(W2-2) | 8 ’

(rgrarax)” commutes with ro, To*,

and rg,
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(W2—3) : | | : TalTp*Ta = Ta*Tgla*,
: : : : & TTarTg = T=ToTgx under (W0) and (W1-2),
o P
oo
o 5"
(W2_4) TaTa*TRTE* = Ta*T3T3*Tq

=Trprg=rala* = Tg*xTalTa*T3,

08 (rargra=rg)® =1,

(W3-1) : :O:\Qi\
Il
|

(W3-2) : : (rarprarrs)® = 1,
|1
L (raTsTa mrars)?® =1,
o

In the next diagram, we assume that o is b-side for the bond « o—h—0p for
po= 2% 3%,

(W3-3) O > 6"

I
I I _
| | Talg*Ta = Ta*T8Ta.
I I

|

In the next diagram, we assume p =1, o+l 3E3,

8

i N
(W4) o

|
|
y
O\:O:/O (rargrarpryrs-)® = 1.
|
B

However there are exceptions. In the diagram (W2-4), there are four subdia-
grams of type (W2-2). But, we do not assume the relations (W2-2) for these four
subdiagrams. We only assume the relations (W2-4).

The relations (W2-1)~(W4) are called elliptic Coxeter relations.



860 YOSHIHISA SAITO AND MIDORI SHIOTA

The following theorem is a generalization of Yamada’s presentation [Y].

Theorem 4.4.2.  W(R,G) has another presentation with generators ro,
(o € R) subject to the relations explained below.

For any subdiagrams of T'(R,G) isomorphic to the following list, we give
relations attach to the diagrams in the following table.

(E0) a0 r2 =1, (as same as (W0)),
(E1-1) a0 o) roTg = TgTa,

(E1-2) aO— OB Talgla = rgrarg,

(E1-3) a Q—zfl—Q Ié] Talgralg = rgralgla,

(E1-4) a Q—?Lio I¢; Talgralgrarg = rgralgralgra,

In the following diagrams, we always assume that o, 3,7 € T'y. For a € T'paqa, set
Tot = Tala*-

I

(E2-1) : : 0B TBLAITET At = Tt TETtTE,
Il
|

@ OK TBTAtTBT ot = Lot TBTHITSE,

|
(E2-2) | : 0B TRT i TTat commutes with To, Tax,
Il
' B
(E2-3) ' TgiTot = TRT4ITH,

S ToiTgt = ralgtTa under (E0) and (E1-2),
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(E2-4) mgTZEaT = :Eafmﬁdr)

Tt Tt commules with ra, Tax, Tgt and rg=.

In the next three diagrams, we assume that o is b-side for the bond « o—h o ¢}
for p = 2%t 3%,

o
+
(E3-1) i S
I 0 8 TaTpTotTg = TgTatT3Ta,
I

«
Bi
(E3-2) : : TALatTETat = TatTETatTS
B
: : =TalplatT3Ta,
o W

(ES-S) “O—>—20 B*

I
| Il —
| I xBTxaT =TpTatTa-
I Il

|

In the next diagram, we assume ~ does not belong to Tmaw U Upnae and p =
1 2:t1 3:[:1
) ) .

| M
(E4) « O/lo\\ TiTalyTgiTy = TyTaiToTal gt

I
|
I o
|
|

Howewver there are similar exceptions as Theorem 4.4.1. In the diagram (E2-4),
there are two subdiagrams of type (E2-2). But, we do not assume the relations (E2-2)
for these two subdiagrams. We only assume the relations (E2-4).

It is well-known that the relations (W0), (W1-1), (W1-2), (W1-3), (W1-4)
are equivalent to the relations (E0), (E1-1), (E1-2), (E1-3),(E1-4).
The following lemma is due to Yamada [Y].



862 YOSHIHISA SAITO AND MIDORI SHIOTA

Lemma 4.4.3.  Assume the relations (W0), (W1-1), (W1-2), (W1-3),
(W1-4) (equivalently, (E0), (E1-1), (E1-2), (E1-3), (E1-4)) hold.
(1) For a subdiagram of the form as (W2-1), we have

(rarprasT3)> =1 & 1T TETAt = TatTETalTs.
(2) For a subdiagram of the form as (W3-1), we have
(TaTprasT3)? =1 &  TarglatTs = raTatTpTa-
(3) For a subdiagram of the form as (W3-2), we have
(rargra*rg)?’ =1 and (rargra*rgrarg)z =1
& TRTATRTA = TatTRTatT3 = TaTBTatTaTq-
(4) For a subdiagram of the form as (W4), we have
(rarararg-ryra)’ =1 &  ZaiTary@aiTy = ryZgiTyTalpt,
(rargrargryra-)’ =1 &  ZaiTyTaZpiTa = TaZgiTal+t,

The following lemma is easily obtained from the definition of z,+ and the
relation (WO0).

Lemma 4.4.4. Under the same assumption as the previous lemma, we
have the following:
(1) For a subdiagram of the form as (W2-3),

TalB*Ta = Ta*TBTax <~ Tttt = TRLalg.
(2) For a subdiagram of the form as (W3-3),
TalB*Ta = Ta*TBTax < Tpilot = TRTaTS.

or a subdiagram of the form as - e following conditions are equiv-
3) F bdiag th W2-4), the following conditi qui
alent.

(1) rara=rarge = TarTgra=To = rarg=Talar = I'g*Talq*T3.

(i) zgtaat = xotxgr and xaixgr commutes with ro, Tox, T and -

Now we can state the difference of two presentations. In the first presen-
tation, we assume (W2-1) and (W3-1) for all subdiagram of that forms. On
the other hand, in the second presentation, we only assume (E2-1) and (E3-
1) for subdiagrams such that 8 belongs to I', and « is b-side for the bond



ELLiPTIC HECKE ALGEBRAS 863

a o——o g for = 2%!. Similarly, in the first presentation, we assume (W4)
for all subdiagram of that forms. On the other hand, in the second presentation,
we only assume (E4) for subdiagrams such that 7 is not belong to I'yq0 UT .

and p = 1,2%" 3%!. These are the difference of two presentations.

We remark that there is no difference between (W3-2) (resp. (W2-2)) and
(E3-2) (resp. (E2-2)). By the classification theorem of marked elliptic root
systems, in the subdiagram of the following form:

o

;

<

|
|
| 0B
|
ol

0B is alzclomatically an element of I', and « is automatically b-side for the bond
ao—%—0 5. Similarly, for the subdiagram of the form as (W2-2) or (E2-2), 3
is automatically an element of T',.

For a proof of Theorem 4.4.2, the remaining problems are the followings:
Assume that r, (o € R) satisfy the relation (E0)~(E4) (not (W0)~(W4)).
Then, the problems are;

(a) for all subdiagrams of the form as (W2-1), to prove

TRLAITRT ot = Lot TRL TS,
(b) for all subdiagrams of the form as (W3-1), to prove
TaTBTaiT = TBTat AT oy
(c) for all subdiagrams of the form as (W4), to prove
TRITaTy T3t Ty = Ty TatTyTaZpt  and  XgiTyTalgiTa = IalgtTal~ L4t

Firstly, let us prove (a). If 8 belongs to T',, the formula is nothing but
(E2-1). Therefore it is enough to show the following lemma.

Lemma 4.4.5.  For the diagram

*

(e

/

O

<
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we have 7“5* xoﬁm*xoﬁ = l'af’l"g*l'aﬂ“g* .

Proof. Such diagram is a subdiagram of

By (E2-3) and 231 = rgrg-, we have
rgx = x(ﬁmx;ﬂ.
Therefore we have

T+ LoiTg* Lot = LaiTRTail3
=Xy (Tgxangaf)x(;l
zxifrgxafrgx;} (by (E2-1))
= (zqt - :cafrgx;f)Q
=T i T3 TaiTgn-

O

+1
Secondly, let us prove (b). Assume « is b-side for the bond « o—3 o 8

in the diagram of the form as (W3-1). If g € I',, the formula is nothing but
(E3-1). For the case of 8 ¢ T',, we can prove the formula in the similar way as
Lemma 4.4.5. Therefore it is enough to show the following lemma.

Lemma 4.4.6.  In the diagram

*

[ 2:E
I
Il
Il
I

0B
|
o '@'/
] ) gE1
assume that 3 is b-side for the bond o o—>—o g . Then we have roT3T 173 =

TTatT3 -

Proof. By the classification of marked elliptic root systems, the above
diagram only appeared as a subdiagram of
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+1
where v is b-side for the bond « o—% o v . We remark that there are two

choices of embeddings of diagrams. Namely § = v or § = v*. We give the
proof only for the first case. For the second case we prove the formula by the
similar way.
By using (E3-3), we have
(4.4.1) T+ = TaTg«TaTg=T3.
Therefore we have
TaTpTatTp =TalTpTaTa*Ts
:rargrargrﬁ*rarg*rg (by (4.4.1))
=1rgrargralg-rors+ (by (E0) and (E1-3))
=1grargrgrargrqo (by (E1-3))
:7"57“&7“57“5*7“&7“5*7%7“& (by (E0))
=1graTa TaTe (by (4.4.1))

=TglatTpTla-

We need the next lemma for the proof of (c).
Lemma 4.4.7.  In the diagram

*

‘et

I |

I B
|

|

O
I
ol
) . o*+1
assume that o is b-side for the bond o o—>—o g . Then we have rgx,iraTot =
LatTpTatTs-
Proof. 1t is enough to show that

(442) rgraTaxTTalTax = Tala*TgTala*T3-
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We have
(44‘2) & TaxTgTala* = TalBTala* T Tala* T3
=T8Tala*T8Ta*Ts (by (E3-1))
= 1rgralgrarara- (by (E1-3))
< TaTa*TBTa = TaTBTaTBTa*TpB
=rgrargrara-1g (by (E1-3))
S TTalTa*T8Ta = TalBTala*T3-
This is nothing but the formula (E3-1). 0

Finally, let us prove (c). Consider the diagram of the form as (W4):

|
|
*Q I o7
[
\'o'/
B

where = 1,271 3%1 It is enough to show the formula for the case that
¥ € Thax UT,4p- In such case, p = 1,21 by the classification theorem of
elliptic Dynkin diagrams.

Lemma 4.4.8.  In the above diagram, we assume that v belongs to Iy qx

* — J—
Ul e Then we have TgiTaTyTaiTy = TyTgtTyTalgt GNd TgtTyToTgtTe =
TQIBTTQ’I"»YI@T.

Proof. In the following, we assume 7 € I';;,q,. For the case that v € I'}, ...

we can prove the formula by the similar method.
Since v € T'j42, the above diagram is a subdiagram of the following one:

8 y*

\i

|
“Q I
|

{

B By
In the following we assume p = 2*!. For the case that u = 1, we can prove
the lemma by the similar methods.
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Let us prove the first formula. By the classiﬁcatiircl)n theorem of marked

elliptic root systems, 7y is a b-side for the bond 8 o—3% o v .
Let us prove the following formulas:

(4.4.3) :L‘mﬂ;‘,yf = l'»yTCL'gT,

(4.4.4) TyTtTy = xmx?w.
Since (E3-3) and Lemma 4.4.7, we have (4.4.3). Indeed,
TRt Tyt = TRT TR = I,YTTﬂI,YTTBI’;Tl =T, Tgt-
On the other hand,

(4.4.4) & ryxgr = xmxiﬂ"w
=zt (zgta1)ry (by (4.4.3))
= .,17p2,1737 (by (E3-3))
=174 7p2,175. (by (E3-1))

Since w,+ = 7,74+, We have

TyXgt = Tyt TyT3L1 T3 = Tpt = Ty*TyTELy1T3
_ -1
= xWT Tgl’,yﬂ’g

S TR Tyt = TRT4Tp-
This is nothing but (E3-3). Therefore we have (4.4.4).
For the proof of the first formula, it is enough to show the following:
rar,,xmr,yxlgf = :chlr,,xmr,yraxm.
By (E1-1), (4.4.3) and (4.4.4) we have

(The left hand side) = raxfﬁ
= xfzy’r Ta

= (The right hand side).
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Let us prove the second formula. We have

ryraxmrang = rar,yxmrang (by (E1-1))

= ra@raliTy ety (by (4.4.4))
:raxmraxifrvngl (by (E1-1))
:Tammrax?ﬁx;fx;m (by (4.4.4))
= TQIBT’I‘O,IngTfY
= x;ﬂvﬂaxwram.
This is nothing but the second formula. We remark that the last equality
follows from (E2-1) if « € I’y or Lemma 445 if a ¢ T, (& a €l O

max)'

So the proof of Theorem 4.4.2 is completed.

85. Elliptic Hecke Algebras

5.1. Definition of Elliptic Hecke algebras. Let (R, G) be a marked elliptic
root system. Consider a Laurent polynomial ring Z[t!],er and let J be the
ideal generated by the elements ¢, — t3 where a and 3 are in a same W (R)-
orbit. Set A = Z[tX] er/JT.

We define the elliptic Hecke algebra H = H(R, G) associated with (R, Q)

as a deformation of the group algebra Z[W (R, G)].

Definition 5.1.1.  The elliptic Hecke algebra H = H(R, G) is an asso-
ciative A algebra with generators g, (« € T') subject to the relations

(HO) >0 (9o — ta)(ga + t(;l) =0

and (H1-1) ~ (H4) which are obtained from (E1-1) ~ (E4) by replacing r,, with
Jgo- Here we set x4t := gagar for a € T'pgz.

Remark. (1) In our previous announcement [SS], we assume the other
relations

BTt 9ot = Lot gt
for the subdiagrams of the form as (H3-1) (or (E3-1)). But these relations

follows from (H1-3) and (H3-1) by the similar computation as the proof of
Lemma 4.4.7. So we omit the above relations form the definition.
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(2) As we already mentioned in the introduction, Takebayashi [T2] defined the
elliptic Hecke algebras for marked elliptic root systems except for the group
(D) by using the “completed elliptic Dynkin Diagrams”. For a given marked
elliptic root system except for the group (D), one can show that our algebra
is isomorphic to Takebayashi’s one. Therefore our definition gives another
presentation of Takebayashi’s algebra attached by the original elliptic Dynkin
diagrams. In this article we omit the proof of the equivalence between our
presentation and Takebayashi’s one.

(3) Let (RY,G) be the dual marked elliptic root system of (R,G). By the
definition, it is easy to see that H(RY, @) is isomorphic to H(R, G).

5.2. Lusztig’s relations. Recall that, for «; € I'},4., we already defined
(5.2.1) Tt = Yo, G-
We remark that it is invertible by the definition.

Let us define T, for a; € Ty \ T'aa by the following way.

Definition 5.2.1.  Assume «; € Ty \ Tjnaz, then a; belongs to a com-
ponent T'(4;,) = {61, - ,0,.} (¢f Lemma 4.2.2.). Let us consider of the
following diagram :

B3
I K
IO\\ﬁl B2 By, u:1,2i,3i,

where [y is a vertex in I'yq, which is connected to I'(4;,). By using this
diagram we define
1 .
mﬁ;H = gﬁj+1xﬁ;gﬁj+lxg;f (OSJ Slk—l)
inductively. We remark that x st is already defined by (5.2.1). We also remark
that the above [y is uniquely determined by the classification theorem of elliptic
Dynkin diagrams (Theorem 4.2.1). We say (3 is the terminal vertex of «; which

trem
i .

is denoted by «
The following two propositions are key steps in this article.

Proposition 5.2.2. i (a; € T'y) are pairwise commutative. In other
wards, let N(R,G) be the subalgebra of H generated by {xiﬂai € Ty}. Then
N(R,G) is a commutative subalgebra of H. '
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For £ = foag +t §na:fl € Q((R,G),), set

2 1= (2,)% - ().

al,
By the aid of Proposition 5.2.2, it is well-defined.
Proposition 5.2.3.  Lusztig’s relations hold in H(R,G). Namely, we
have
Joi e — Ty, (&)Y = b(tﬂ(m taf ; x;fl)(xﬁ — Tsg, (5))’

i

fora; €Ty, £ € Q((R,G)a). Here we set to: = to, for a; € Lo\ T
Proofs of these propositions will be given in Section 7.
5.3. Another presentation of H(R, G).

Definition 5.3.1.  Let H(R, Q) be an associative A algebra with gener-
ators Jo,; (a; € Ty), £x (A € Q((R, G),)) subject to the following relations:

(H'0) (9o = ta)(fa; +15)) =0, (i €Ta),

(H71'1) gaigaj = gajgaia (”O Oaj

(H71'2) gaiga]‘ gai = ga]‘ gaigaj> (”O—O @
~ ~ A~ A ~ ~ A A 2j:

(H’].—?)) gaigajgaigaj = gajgaigajgaiy (”O—>—O @
o o 3+

(H71_4) gaigajgaigaj gaigaj = gaj gaigajgﬂtq‘,ga]‘ Yo,y YGO———0O Y

(H’Q) i‘)\i‘u = .f?u.f?,\ = i‘)_,.u, Tty =1, ()\,M IS Q((R, G)a),

(H’3) Jo; T — s, (0 Ja; = b(ta,slar; i;ﬁ)(@ — &5, (v)-

The following proposition will be used in the next section and we will prove
it in Section 7.

Proposition 5.3.2.  There is an isomorphism ® : H(R, G) — H(R, G)

defined by
Jo; 7 Ja; (i €T4) and  gor Q;}iaz (af €T} 0n)-

max

In other words, the system of the defining relations of H(R, G) gives another
presentation of H(R, G).
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This proposition says that H(R,G) has another presentation. Namely,
H(R,G) is an algebra with generators g,, (a; € I'y) and z) (A € Q((R,G)a)),
and relations (H’0) ~ (H’3) in Definition 5.3.1, by replacing §,, and &, with
Ja, and x, respectively.

5.4. PBW-type theorem for H(R,G). For i/ € Q(R}), we have introduced
Y# € H(R,) in Section 2.2. Let us recall the definition. We write i/ € Q(R})
as the following form: p/ = X' — v/ with X',v" € Q(RY)*. We define yr =
T(N))T(t(v'))~L. By the construction, T'(t(\')) and T(¢(+')) can be written
as

Tt\N)) =TT,

iN

and T(t(')) = Ty, - Ty

where w;, ---w;, and wj, ---w;,, are reduced expressions in W(R,) of t(\")
and t(v'), respectively.

By the defining relations (H’0) ~ (H’1-4), we can define a well-defended
element ¢,/ in H(R, G) as

Gt 1= Gy Gy Gy, )
By the similar method in [M5], we have PBW-type theorem for H(R, G).
Theorem 5.4.1.  Fach of the following sets

{irdudnr | A€ QUR,G)a)w € W(Ro) ' € QRAVY,

{Qu’gwik | A€ Q((R’ G)a)vw € W(RO)’NI € Q(Rf)v}’
{Zagw | A € QU(R,G)a),w € W(Ra)},  {guia | A€ QUR,G)a),w € W(Ra)}
forms a free A-basis of H(R, G).
Set
Y = q)_l@u’) (1 € Q(Ry)Y).

By Proposition 5.3.2 and Theorem 5.4.1 we have the following corollary.
Corollary 5.4.2.  Each of the following sets
{xAgwyu’ | A€ Q((R> G)a)yw € W(RO)J/ € Q(Rf)v}a

{yu’gwl'k | A€ Q((R’ G)a)vw € W(RO)’NI € Q(Rf)v}’
{x)\gw | A€ Q((R’ G)a)vw € W(Ra)}’ {gwx/\ | A€ Q((R’ G)a)vw € W(Ra)}
forms a free A-basis of H(R, G).
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§6. Elliptic Hecke Algebras and Double Affine Hecke Algebras

6.1. Triplets associated to elliptic root systems. In this section we assume
(R, G) is a marked elliptic root system which belongs to the group A, B or C.
Recall that the affine root system (R, G), is isomorphic to R, or RY. Let us
consider the following triplet

E(R,G) = (RY; Ry, Q((R, G)a)).

This is a triplet of type I or II in the sense of Section 3.1. In each case, we
normalize I so that I(6,6) = 2.
For (R,G) of type Agl’l), BE? or ¢ (n > 2), we consider another
triplet
0
T(R,G) = (Ry; Ra U R, Q((R.G)a))-

This is a triplet of type III. In each case, we normalize I so that I(6,60) = 4.

6.2. Triplets of type I or II. For a triplet Z(R, G), let us consider the cor-
responding double affine Hecke algebra H(Z(R, G)). Since Z(R, G) is a triplet
of type I or 1T, H(Z(R, G)) is an algebra over A = A,.

Recall that 7, : F — F/G and mn,(R) = R,. By the definition, the
following lemma is easy to verify.

Lemma 6.2.1. Leta, 8 € R. Then the following statements are equiv-
alent. (a) a and B are in the same W (R)-orbit. (b) ma() and w,(B) are in
the same W (Ry,)-orbit.

Let J, be the ideal of A generated by the elements ¢, —ts (o, 3 € I') where
(@) = me(B) and set A, := A/J,. By the construction, A, is generated by
ta; (0 <i<mn). From the above lemma, we easily have;

Corollary 6.2.2.  The map A, — A, defined by t,, — 7 (0 < i <n)
is an algebra isomorphism.

From now on, we shall identify these two algebras by the above isomor-
phism. Let A — A, and A, — A, be the natural projections. By taking a
composition of these maps, we have a homomorphism A — A, and we regard
A. as an A-algebra via this homomorphism.

Let us consider an A,-algebra A, @, H(R, G). We remark that the number
of unequal parameters of A, ®4 H(R, G) becomes smaller than one of H(R, G)
in general.
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By the definition of double affine Hecke algebras and Proposition 5.3.2, we
have the main theorem of this article.

Theorem 6.2.3.  The map © : A, @y H(R,G) — H(Z(R,Q)) defined
by
9o, — T, Tot xel (a; €T,)
18 an injective algebra homomorphism and the image just coincides with the
small double affine Hecke algebra H(Z(R,G))s. Namely, A, @5 H(R,G) is
isomorphic to H(E(R, G))s.

Proof. By Proposition 5.3.2, H(R, G) can be regarded as an algebra with
generators go, (o; € I'y) and ) (A € Q((R,G),)), and relations (H'0) ~ (H’3)
in Definition 5.3.1. Therefore © is well-defined and the image coincides with
H(ER,Q))s.

By the construction, we immediately have
@(zAgwa/):XAT(w)Y“' for any A€ Q((R,G),), weW (Ry), W €Q(Ry)".

Now the injectivity of © follows from Corollary 3.2.4 and Corollary 5.4.2. [

6.3. Triplet of type III. Assume (R,G) is of type Agl’l), B?? or ¢tV

(n > 2). In this case, the coordinate ring A of the elliptic Hecke algebra H(R, Q)
is given as follows;

B Z[ta—Ll,ta—L*l,tlﬂ,tli*l}, if (R, G) is of type Agl’l),
Z[toﬂ,toi*l,til,tfl,tf}], if (R,G) is of type B,(L2’2) or Cy(ll’l)

where t =t; =t;+ (1 <i<n-—1).

On the other hand, since Y (R, G) is a triplet of type III, the corresponding
double affine Hecke algebra H(Y(R,G)) is an algebra over A = Aa[(Tg)il,
(78)*]. Here

A ZIrE, Y, if (R, G) is of type Agl’l),
C\ zZrEt L 7 EY, if (R, G) s of type BE? or ¢V

r'n

and7=7; (1<i<n-1).

By the above considerations, it immediately follows that;
Lemma 6.3.1.  The map defined by
t—T, tj—T;, tp »—>7']h (j=0,n)

gives an isomorphism A — A.
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By this lemma, we may identify A with A.
Theorem 6.3.2.  The map defined by
Gos = Tiv gar = T;7'X% (a; €T,)
gives an isomorphism H(R,G) = H(Y(R,Q)).

Here, we remark that Ty = T4, since (R, G) is of type Agl’l), B,(,2’2)

et (n > 2).

or

Proof of Theorem 6.3.2.  As same as the proof of Proposition 6.2.3,
H(R,G) can be regarded as an algebra with generators g, (a; € I'y) and
zx (A € Q((R,G),)), and relations (H'0) ~ (H’3) in Definition 5.3.1, by Propo-
sition 5.3.2. By replacing g,, with T; and x, with X*, these are nothing but
the defining relations of H(T(R,G)). O

87. Proofs of the Propositions in Section 5

7.1. Preliminaries. Let us start from the following lemma which is easily

verified by case-by-case checking.
£1
Lemma 7.1.1.  Assume a;, a; €T, such that Gio—r—o @ (n=1,2,3).
Then the following formula holds:

i P s bosi
(7.1.1) Saj(OéT) _ {ai + pag, if p# 1 and a; is b-side,

¢ a; + a;, otherwise.

Lemma 7.1.2.  Assume a marked elliptic root system (R, G) is neither
of type Agl’l) nor Agl’l)*. LetT'(Ay,) = {01, -, 0.} be a connected component
0f Ta \Timaz and By € Tinas the unique vertex which is connected to T'(Ay,) (cf.
Definition 5.2.1). Then we have the following formulas:

(7.1.2) xﬁjxﬁj :wﬂ;wm (0<4,j <lg),

(7.1.3) gﬁixﬁ; - xsﬁi(gg)gm = b(tﬁmtﬁ,ﬂx;;)(x,@; - fsﬁi(ﬁjf)) (0<i,j <lg).

Proof. For simplicity we denote g; = gg,, ©; = g1 (¢t =0,---,1;) and
b; = b(tgi,tﬁ;;xg;). By the definition we have t5, = tg» for i = 1,--- .
Moreover by the classification theorem of marked elliptic root systems (Theo-
rem 4.2.1), it is known that tg, = tg; = tg, = --- = tg, . We denote it by t.
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Therefore we have b; = (t—t~1)/(1—x; ). By using Theorem 4.2.1 again, it is
also known that [ is b-side for the bond Boo—5—o 81 for y = 2,3. Therefore,
by Lemma 7.1.1, we have

(7.1.4) s, (B]) = il + 8] and sp,(8)) = B] + ] for p=1,2,3.

Let us prove (7.1.2). By the definition, the formula gizog120 = 0912091
holds for any t = 1,2+ 3%, Recall z; := glzoglxal. Therefore we have

(7.1.5) T1To = g1X0g1 = xoglzoglxal = ToT1

and
ToTg = (9213192331_1)330 = 330(92331921”1_1) = Tox2.

Next we show gox1g201 = 21g22192. Indeed, from (H1-1), (H1-2) and (7.1.5),
we have

J2192%1 — T1g2T1g2 = 9291960913?5192331 — 91330913?519233192
= (929170919271 — G1709192T192)To |
= (9291130919291330911”61 - 9155091929133091330_192)135
= (929170919291 %091 — 100919291 T09192) T
= (929155092919233091 — 9170929192209192 3352

)
= (9291927091 T09291 — 9192T09120929192) Ty >
) 2

1

(9192912091209291 — 91922091T0919291 Ty
1
0.

= g192(1z0g120 — !E091$091)9291$€62

From this formula and the definition of x5 we have
TaT1 = gaT1G2 = T1G2T1G2T] | = T1 2.
By the similar computation, we have (7.1.2).

Let us prove (7.1.3). Firstly we shall prove it for ¢ = 0 and j = 0. By (HO0)
we have

9oTo — To ' go = 9ogo- — Go-'
={(t—t"go+1}go- — {go — (t—t7")}
=(t—tY (o +1)

= bo(.’]?o — .Tal)

(7.1.6)
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This is nothing but the formula.
Secondly let us prove (7.1.3) for i = 0 and j = 1. Namely

(7.1.7) gor1 — Thx1go = bo(x1 — xhx1).

Assume p = 1. By (H1-2) we have go= 9190+ = g190~g1. Then we have gox1g9 =
xox1; since g1x0g1 = xox1 by (7.1.5), we have

9190+ 91 = go=g19o+ = 91909190*9190_*1 = 919090+ 91
= 909190909190+ = G19090* g1

= goT19o = ToT1.
By the above formula and (H0) we have

goZ1 — Tox1go = goT1 — ToT1 {go_l +(t— t‘l)}
(7.1.8) = —(t—t oz,

= bo(l‘l — .Tol‘l).

Assume p = 2. By the definition of x1, we have x1x9 = g120g1. Therefore, by
(H3-1) and (7.1.5), we obtain

goTox1 = gogiTogi = giXogigo = Tox149o-

By the above formula and (7.1.6) we have

gor1 — 45315190 = (g0 — 3?090560) T
(7.1.9) = {go - Io(ﬂfo go — bo(wo — xo }zl

= b0($1 — xoxl).
Assume g = 3. By (H3-2) and the definition of z1, we have
x%% = goToT19go-

y (7.1.6) and the above formula, we have

Jor1 — $0$190 = (g0 — xogo 15”3)%
(7.1.10) ={-(t—t"")(wo+2f +z}) }21

= bo(.’bl — l‘g(ﬁl)

Thus we have proved (7.1.7).
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We shall prove (7.1.3) for i = 0 and j = 2. From (H1-1) and (7.1.7), we
have
goT2 = gogaT1g227 "

= g {ahx190 + bo(21 — afhx1)} gowy '
= gaw1 92 {xfgor " + bo(1 — xf)zy '}
= gamrga [wh {wg e go + bo(ar ! — x5 ar ")} +bo(1 — zf)ay ']

= 921’192331_190

(7.1.11)

= Z290-

This is nothing but (7.1.3) for i =0 and j = 2.

By the definition and the formulas we already proved above, we immedi-
ately have goz; = ;g0 (j > 3). Therefore we have (7.1.3) for i = 0.

Let us prove (7.1.3) for ¢« = 1. Since g1x0g1 = zox1, we have the formula
for j = 0 by the similar argument of the proof of (7.1.8).
By (HO) we have
-1 _ 2 -1 —1,.—1
9121 — T3 g1 = g1Tog1Ty — oGy To
={(t=t""g1 + 1} zograg " — o {g1 — (t =t~ ") g’
(=t + 1)

= bl(Il — Il_l)

(7.1.12)

Therefore we have the formula for j = 1.
Next, we shall prove it for j = 2. By the similar argument of the proof of
(7.1.8), it enough to show that

(7.1.13) g1T2g1 = T1T2.
By (H1-1) and (H1-2) we have

917291 = g1{g2(g1209125 ") g2 (wogy 'xg g1 ) bon
= 920192095 G127
= 027192
=T1T2.
By the similar argument of the proof of (7.1.11), we have giz3 = x391.

Moreover, by the definition and the formulas we already proved above, we im-
mediately have g1z; = ;g1 (j > 4). Therefore we have (7.1.3) for ¢ = 1.
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By the similar computation, we have (7.1.3) for all ¢ and j. O

Lemma 7.1.3.  Let I" is of type Ang)*

(7.1.3) hold.

. Then the formulas (7.1.2) and

Proof. We have gor1g9or1 = T1g9oT190 and zg = goarlgoarl_l by the defi-
nitions. Therefore we have (7.1.2) by the similar way as (7.1.5). Let us prove
(7.1.3). In this case, (7.1.3) can be written as

givi —x; g = bi(z; —x;') (i=0,1),

4 4
gor1 — ToT1go = bo(21 — 2or1), G120 — Tox g1 = b1(wo — wo27)

where by = (to—ty ") /(1—z5 ') and by = {(t1 —t7") + (t1- — ti- D27 '} /(1-
x1_2). Since the first and second formulas are proved by the same computations
as (7.1.6) and (7.1.8), the remaining problem is the proof of the third formula.
By (H2-2), gor190z1 = zox? is a central element. Therefore we have

g1 — woz101 = (1 — Tig127 ) 0.
By the first formula for i = 1, we have

wigiay =27 (a7 g+ ba(z — a7 h))m
=z10171 + by (2] — 27)
=z1(z7 g1 + b1z — 27h)) + by (2] — af)
=g1 +bi(z] - 1).

Thus we have the formula. O

7.2. Proof of Proposition 5.2.2. The goal of this subsection is to prove the
following formula:

P =TTt for o, a5 € I'y.

It is enough to prove it in the following three cases: (a) a;,; € I'yge, (b)
a; € Tz and a; € Ty \ Tiaa, (€) i, 05 € T \ s

Case (a); If ; and «; are not connected, the statement is trivial by the
deﬁniﬁion. Therefore it is enough to show the formula for ¢ and j such that
@io—s—o0 @ (1 = 1,2% 00). If 1 = o0, the statement is automatically satisfied
by the defining relation (H2-4). For the case u = 1,2*!, we have the formula
by the similar computation as (7.1.5).



ELLiPTIC HECKE ALGEBRAS 879

Case (b); if a; = o™, the formula is nothing but (7.1.2). Assume o; #
az»”m and o € T'(A4;,). Let us denote oy, = a?”m. We remark that the formula
;X = T2, is already proved in case (a). Since there is no vertex in I'(4;,)
which is connected to «;, the statement is trivial by the definition.

Case (c); if o; and a; belong to the same connected component of I'y\I'ynqz,
the formula is nothing but (7.1.2). Otherwise, it is trivial by the definition.

So the proof of Proposition 5.2.2 is completed.

7.3. Proof of Proposition 5.2.3.
To prove Proposition 5.2.3, it is enough to show the following formula:

(7.3.1) Jai ot = Tg (o) = b(tamta;‘?x;frl)(xaf - (aT)) (0<i4,j <n).

Say Say;

For simplicity we denote g; = ga,, Ti = z,+ and b; = b(la,, tar; x;Tl).

By using the method of the proof of (7.1.6), we have the formula for i = J
and «; € I'pe-

Assume i # j. As same as the proof of Proposition 5.2.2, let us consider
the following three cases: (a) a;, @ € I'ag, (b) @ € Tiag and o € T \Tinaas
(C) i, € I, \ | R

Case (a); If o; is not connected to «a; in the elliptic Dynkin diagram,
the statement is clear by (HI1-1). Assume «; is connected to «;. By the
classification theorem of elliptic Dynkin diagrams, there are the following three

cases;
Zil e’}
a0 @i O——>—0 % @i O———0 9
| | | | | |
. I Il . I I Il |l
(i) I | (ii) I I (iif) | |
I Il I I Il Il
o) l . o | Lo, o) l o
i O——Q i O——0% OO

For the case (i), (7.3.1) can be written as
9i%j — XiX5;9; = bl(l‘] — l‘il‘j), gjTi — XixTjg; = bj(xl — le‘])

Since g;;9; = ¢;T:9; = ;T;, we have the statement by the similar computation
of the proof of (7.1.8).

For the case (ii), we may assume «; is b-side. In such case, (7.3.1) can be
written as

2 _ 2 _
gil; —X;X5G9; = bi(xj - xﬂj% gjTi; — XiX595 = bj(Iz’ - Iz‘l’j)~
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Since g;jx;g; = =iz, we have the second formula by the same way as the case
(1).

Let us prove the first formula. We remark that there is the following
subdiagram.

Then the first formula is proved by the similar method as the proof of
(7.1.9).
For the case (iii), (7.3.1) can be written as

GiZj — 22 7x;9; = bi(z; x2x]) g;x; — xifc?gj =b,(z; — QCZLL'?)

Since z;z; is a central element, we have g;z;x; = x;2;¢9; and g;x;x; = T;7;9;.
Therefore we have the statement as same as the proof of (7.1.9).

Case (b); If a; = o™ we already proved the formula in Lemma 7.1.2
and Lemma 7.1.3. Assume a; # 04;6””. Then «; and «; live in the following
positions:

*
a; ay =

T

| |

! ! )

! ! > & p=12%
! !

| L

tE'rm

Since «; and aj are not connected, (7.3.1) can be written as
(7.3.2) gix; =x;9; and gz, = ;95

The second formula is clear by the definition. If oy is not connected to oy =
a?”m, the first formula is also trivial. From now on we assume «; is connected
to ay and, in the following, we will give the proof of the first one for the case
that o; = ;. In the other cases, it is proved by the similar computation.

We remark that, in such case, both «; and oy belong to I';,4, and are con-
nected by a bond such that y = 1. Therefore we already proved the following
formula in the case (a): g;zr — z;219; = b;(xx — x;2%). Then we have the first
formula of (7.3.2) by the similar method of the proof of (7.1.11).
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Case (c); If both «; and ¢ are in the same connected component of T', \
Taz, (7.3.1) is already proved in Lemma 7.1.2. Otherwise, «; is not connected
to a;. Therefore (7.3.1) can be written as g;z; = x;¢; and g;z; = x;g;. Firstly
assume a!¢"m = az-”m. Then o; and «; live in the following positions:

/#N
| o = 1,2%1 351

|
|
@iQ I O %
|
|

\\:Sk//

Here we denote ap = o™ = o*"™. By (H2-1), (H3-1) and (H3-2), we have
9iTrGiTr = Txg;Trg; for any p and p’. On the other hand we have

Tk9j9iTkGi = GiTkJigiThk & gjgixkgixgzl = I;Zlgﬂkgz'gj-

by (H4). Therefore we have
gjxi = gjgz‘fl?kgﬂ;;l = x;;lgixk:gigj = giwkgia?;lgj = Tig;-

The formula g;z; = x;g; is also proved by the similar method.

Secondly assume o™ # %™, In such case, by (HI-1), g; commutes
with T(qtermyi. Moreover o is not connected to the connected component of
Iy \ I'ypes which contains «;. Therefore we have g;xz; = x;9;. The formula
9:T; = x;9; can be proved by the similar way.

So the proof of Proposition 5.2.3 is completed.

7.4. Proof of Proposition 5.3.2 I (Hecke relations and Coxeter relations).
In this and next subsection we will show the well-definedness of the map ®. For
this purpose, in this subsection, we will show that Hecke relations and usual
Coxeter relations hold in H(R, G).

For simplicity we denote t; = ta,, §i = a,, Ti = 2,1 for a; € [y and

*
mazx*

S P
tj« = ta;, Gj* = Gq, xa; for a;f el

*

Lemma 7.4.1.  For any o € T}, we have (G- —t;+)(g+ — tj_*l) =0.

Proof. By (H’3) we have

PN =1
gty — &;

~ (A ~—1
j gj:bj(xj—xj )

Here we denote b; = b(t;, ;-3 ") = {(t; —t; ') + (tj» — ;)i '}/ (1 - 2772).

Therefore the right hand side is equal to (t; — tj_l)irj + (tj — tj_*l). By (H’0)
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and the above equality we have

97 25 =195 — (t; —t; )}y
=271 + (- — 152).

Therefore we have

(g;'85)2 ={&;"g; + (t;» — t;.1)}9; ' 25
1

=1+ (t;- —t;:.1)9; '35

Hence we have the statement. O

The following statement is trivial by the definition.

Lemma 7.4.2.  Assume o« is not connected to o; (resp. cy-) in I'(R,

G), then gj«gi = §igj~ (resp. gj=Gix = Gi»Gj+)-
+1
”w
From now on we assume a; € I'g, oj € I'pyq4 such that @io——o @i for y =

1,2,3. Moreover we assume «; is the b-side for pn = 2,3. By the classification
theorem of elliptic Dynkin diagram and the definition of the coordinate ring A
we have the following:

(a) If =1 then t; =t¢;- in A.

(b) Assume p = 2. If the vertex ;- appears in I' then ¢; = ¢;» and t; # ¢+ in
A. On the other hand, if a;+ does not appear in I' then ¢; = ¢;-.

(c) If = 3 then a4+ does not appear in I and ¢; = t;-.

Lemma 7.4.3.  Let us denote § =i or j. Under the above assumption
sa /\b A

we have the following. (1) If sq, (aaj—f—ba;) = aa} +ba}, then Qﬁzfcfsﬁé’. = 27253y
(2) If ty = tyg- in A and san(aaz—l—ba;) = aaz—i—ba;—l—ag, then gyi¢abgy = 295y

Proof. The first statement is trivial by the definition. Let us show the
second one. By (H’3) we have

Since ty = t4=, we have E)ﬁ = (4 — tn*l)/(l - :21?1) Therefore the right hand
b

side is equal to —(ty — tufl)‘%? ’Z4. By the Hecke relation for gy, we have the

statement. O

Lemma 7.4.4. Let a; € 'y, € I'y00 be as same as in Lemma 7.4.3.
Moreover assume t; = t;- in A. Then the corresponding Coxeter relation for
gi and Gj= holds.
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Proof. Firstly we assume p = 1. In this case, the corresponding Coxeter
relation is

(7.4.1) 9i9j*9i = gj=9ig;+

and we claim that the condition t; = t;- is automatically satisfied. By the
definition of g;« and the Coxeter relation for g; and §;, one can easily see that
(7.4.1) is equivalent to the following formula (as same as in the proof of (7.1.7)):

(742) Ajji Aj = i‘zf]

But this formula holds from Lemma 7.4.3 (2) because sq; (aT) = aT + aT
Secondly assume p = 2. Then the corresponding Coxeter relation is

(7.4.3) 9i9;9:95 = 95+ GiG;* i-

By Lemma 7.4.3 we have

(7.4.4) 00 = T,  §j%i%; = Ti2;0;.

By using the above formulas and the Coxeter relation for g; and g;, it is easy
to see that (7.4.3) is equivalent to the following formula:

(7.4.5) Gitid? = @;2%g;.
Indeed, since g;- = gj z;,

(7.4.3) < §ig; '#;0:0; &5 = §; ' %;0:9; ' %50
© §:9; 19 (9650037 &5 = 9519 (962500) 37 259
@Qjﬁiﬁflﬁflii@jﬁflfj = Q;liixjgj Z; 0
#0007 9:0;8i8,0; 85 = 0718480, 2,9
& ;i xz—gj &85 0i

~2 PN
<:>gil‘i$j = Tix}

Q

This is nothing but (7.4.5). Since sai(az + 204}) = az + 20[}, (7.4.5) holds by
Lemma 7.4.3 (1).
Finally assume p = 3. Then the corresponding Coxeter relation is

(7.4.6) 9i95+9:95+9iG5* = 95+ 9:9:95+ 95+ Ji
and the condition ¢; = t;- is automatically satisfied. By Lemma 7.4.3 we have

Gi%iGi = i35, gm?



884 YOSHIHISA SAITO AND MIDORI SHIOTA

Therefore we have

0195+ 0:95+ 9id5= = 905 ' T50:9; ' %50:9; ' 25
= 0id; 07 ' 2id0; 85 0i0; ' &,

=3:0; ' 9; 153-71%@'532@1'@]1@;‘
:ngJ 1517 1l‘ gzgjgzx x g] 'TJ
:g1£7 T gjglgjglgj‘i’LA

—

=T, &, 20:070i00:0; %27

On the other hand, by a similar computation, we have

g] gzg] gzgj Ji =T T gjglgjglgjgle

By the Coxeter relation for §; and §; we have the statement. O

Lemma 7.4.5. Let oy, € I'yoq be as same as in Lemma 7.4.3 with
w=1. Then we have G~ J;= i+ = ;= Gi= 5= -

Proof. By Lemma 7.4.3 we have

By a similar computation we have
Towlow s —Afl"*l"./\.'\/\"“
95 9ix 95 = Ly Lj Gj9i95LiLj-

Therefore we have the statement by the Coxeter relation for g; and g;. O

2i1
Assume «;, a; € I'yae such that “o——o @ and «; is the b-side.
Namely we consider the following situation:

In this case we recall that t; = t;« and t; # t;+ in A.
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The remaining problems are: (i) The Coxeter relation for §; and §;-, (ii)
That for g;» and g;, (iii) That for g;+ and gG;-.

We have (i) by the same computation as the proof of (7.4.3).

Let us prove (ii). By Lemma 7.4.3 we have

glijgl = i'iijja and g](l%ii'] = "%Zii']gj
Therefore we have

ANa A~ Al A A AT A
9i9i*959i = 959; Ligdj9; Ti

=958 25 9i90i% i
foliﬁflﬁjﬁiﬁjﬁi:ﬁﬁ?j-
On the other hand we have
A A~ a _ala—laa an aon
9i+959i+95 = X; T; 9i959i9;Lix;

by the similar way. Therefore we have §;gi-§;Gi~ = §i=GjGi~G; by the Coxeter
relation for g; and g;.

Finally, we shall prove §;=g;«Gj= i~ = §i=Gj=giGj=. By the similar compu-
tation as the proof of (ii), we have

Aoa A A el AT a—la—1Aa—1A 2243
95*9i*Gj*Gix = Xy "T; 7G5 9y 95 G TG and
i U UV Ul P S P |
9ixGj*Gixgj* = XT; T; Gig; G; G5 TiTj-

By the Coxeter relation for g; and §; we have the statement.

Thus, we have proved all Hecke and Coxeter relations.

7.5. Proof of Proposition 5.3.2 II (elliptic Coxeter relations). Firstly
let us prove elliptic Coxeter relations (H2-1) ~ (H4) except for (H2-2) and
(H2-4).

(H2-1) Since s3(3") = af + 81 and tg = ts., we have §piqids = TotZgt by
Lemma 7.4.3. Therefore the formula comes from (H’2).

(H2-3) The formulas are already proved in Lemma 7.4.3 (2).

(H3-1) The formula comes from Lemma 7.4.3 (1). Indeed, it is equivalent to
GaZatTgt = Tt Tgtda. Since a is b-side, so(af 4+ 1) = (—af) + 2af +
Bt = af + 7. Therefore we have the formula.
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(H3-2) The first equality is proved by the same argument as (H2-1). The second
one is equivalent to ﬁi@w = JaZatTptda. As we already mentioned
in the last subsection, t, = t,-. Moreover so(af + 37) = 2at + gf.
Therefore we have the second equality by Lemma 7.4.3 (2).

(H3-3) Since « is b-side, t3 = tg« and sg(al) = af + g1, Thus we have the
formula form Lemma 7.4.3 (2).
+1

(H4) Since « is not belong to I'y,4., for the bond doh 0B ,pu=10r p=
2,3 and 3 is b-side. Therefore we have §oZtJo = TotZgt. Therefore
the formula is reduced to ZgtJyZatTgt = Lg12a1g,Tgt. Since o and 7y
are not connected, g,Z,t = L4t G- Thus we have a statement.

Let us prove (H2-2). This diagram only appears in of type Agl’l)*. (a=m

and 5 = ag.) In this case, so(aT) = 048 + al and ty = tg-. Then we have the
first formula by the similar argument as (H2-1).

We remark that go@1d021 = £047. Since sﬁ(ag—i—?a]{) = a$+2a1r (1=0,1),
we have gy 2027 = 20233y by the similar computations as Lemma 7.4.3 (1). Since
g1+ = g;lfcl, g1~ also commutes with i:o:i"%.

Finally we shall prove (H2-4). This diagram only appears in of type Agl’l).
(e = ap and 8 = «3.) The first equality is nothing but one of the defining re-
lations. Since sﬁ(ag +al) = of +al (#=0,1), we can show that i, is a
central element by the similar argument as the proof of (H2-2).

So we have all elliptic Coxeter relations.

7.6. Proof of Proposition 5.3.2 III. Let us prove Proposition 5.3.2. From
7.3 and 7.4, we already know the map ® : H(R, G) — H(R, Q) defined by
Ja; 7 Ja; (i €T,) and Jar — g;}joﬂ_‘ (a7 €T5,00)

max

is a well-defined algebra homomorphism.

Let us consider ¥ : H(R, G) — H(R, G) defined by
Ja; 7= G, and Tt — T,

for a; € T'y. By Proposition 5.2.2 and 5.2.3, the map V¥ is also a well-defined
algebra homomorphism. Since

vo é(gai) = \Ij(gﬂ(z) = Yo, (ai € Fa)5
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Vo d(gar) = U(ga,2,1) = gar (0] € Thray),
U o @ is the identity map of H(R, G).

Let us prove ® o ¥ is the identity map of H(R, G). The following formulas
are obvious:

Qo \Ij(gou) = gai (ai € Fa)?
do \I/(i'at) = j"oﬂ (aj S Fmaw).
For a; € T'y \ T'yaq, recall that Gy = a?”m € I'imaz and 3 := «; live in the
following positions in the elliptic Dynkin diagram:

63 — (a;ev-'m)*

Z
>
Il
2
=
I
\:—‘
B
s
@
H_

| H
|
|

I

I

;

__ _term
Bo = aj

Since all Hecke, Coxeter and elliptic Coxeter relations hold in H(R, G), we have

A . PO a1
l'ﬁ;’n_H - gﬁm+1xl@jngﬁm+1xﬂ7tn (O <m<Il-— 1)

Since By = a‘;erm € I'ax, we have @ o \I](fi'ﬁf) = .’,i'ﬁf. By induction on m, we
0 0
have

R R N A A1
QoW(iy ) =P W(is,, Es BT, )
R S A1
=981 Ty 9Bmia L gp
=Tl

Therefore ® o W(Z 1) = &+ for all a; € I';. Namely, @ o ¥ is the identity map
of H:H(R, @) and the proof of Proposition 5.3.2 is completed.

Appendix A. A List of Reduced Affine Root Systems

We will present a complete list of reduced affine root systems. In this arti-
cle, we use Macdonald’s notations for the types of reduced affine root systems.
(See [M5].) In this list, £1, 9, - is a sequence of orthonormal vectors in a real
vector space.

For each root system, we shall exhibit the Dynkin diagram and
(a) the name of that type, in Kac’s notation;

(b) roots of that type;
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(c) a basis.
ao
S(An) /O\ (n>2) oO—O0 (n = 1)
o—O0——--——0—0 w0 o
ay Qn
(a) A
(b) *(ei—¢gj)+rc(1<i<j<n+1,reZz).
(¢) ag=—e1+en+ec, a;=¢g;—¢ip1 (1 <i<n).
ag
2
S(By) z>o—o—————o—-—o (n>3)
a9 Ay —1 [67%)
a1
(a) BY.
(b) Hei+rc(1<i<n,reZ); =Zete+rc(l<i<j<n,rel).
() ap=—-e1—e2+¢, a=¢g—¢cip1 (1<i<n—1), ap=cy.
[e70)
2
S(B)" >@—%———M (n22)
a2 QAn—1 QAn
a1

(a) Ay s
(b) £2e;+2rc(1<i<n,r€Z); =zxexej+rc(1<i<ji<n,reZ).

(¢) ap=—e1—ea+¢, a;=¢;—¢ci41 1 <i<n-—-1), a,=2¢e,.
2 2
S(Cp) o——0—O0—————0—=0 (n>2)
(o7} aq Ap—1 Qp
(a) CW

(b) £2e,+rc(1<i<n,re€Z); e tej+rc(1<i<ji<n,reZ).
(¢) ap=-2e1+¢, a;=¢,—¢€;411 1<i<n-—-1), a,=2e,.



ELLiPTIC HECKE ALGEBRAS 889

S(Cp)Y o—~—0—O0——-———0—0 (n>2)

2
(a) D,
(b) Hei+3rc(1<i<n, reZ); =Hetej+rc(1<i<j<n,rel).

(C) a0:—€1+%c, aizai—5i+1(1§i§n—1), Ay = Ep-
2 4
S(BC,) O0——0—O0—————0—0(">2) O0—0 (n=1)
ag aq Qp—1 Qp @o a1
(a) Af).

(b) Hei+rc(1<i<n, reZ); =£25+2r+1l)c(1<i<mn, recZ);
te, e +re(1<i<j<n, relZ).
(¢) ap=-2e1+4+¢, a;=¢;—€i11 (1<i<n-1), a,=c¢p,.

o Qn—1
S(Dy) O\o—o———— — (n > 4)
O/a2 Otn—z\o
(a) DY
(b) iEii€j+TC(1§i<j§n,TEZ).
(C) apg = —€1 —€2+¢, a;=¢&; —Ei+1 (1 Siﬁn—l), Ap = Ep—1 + Enp-

In the following three cases, let

1
wimei— (o1 4 te) (1<i<9).

9
Qg as
o0
S(Es) O—0—=0
ar g asz O\ - -
ag ag
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(b) £(wi—w;j)+rc(1<i<j<6, relZ)
Fwitwjtwy)+re(1<i<j<k<6,reZ);
H(wi+wa+ - 4ws)+re (rel).

(¢) ao=—(wi+ - Fws)t+ec, a =w;—wiy1 (1 <i<5), ap=wstws+ws.

@y [P a3 Qg a5 73] @o
O O
S(E7) l
Qaz

(a) BV,

(b) H(wi—wj)+rc(1<i<j<7, rei)
twitwjtwy)+re(1<i<j<k<T7 relZ);
Fw+ @i+ tws) +re (1<i <7, r€Z).

(¢) ag=—(wi+ - Hwr)te, a; =w;i—wiy1 (1 <i<6), a7 =ws+ws+wr.

ap ay a2 o3 o as (73 ar

O N N N O
S(Es) g[
og

(a) EU.

(b) £(w;i—w;j)+rc(1<i<j<9, reli)
Hwitwjtwy)+re(1<i<j<k<9, reZ);

() ag=(wi—wa2)+e, a;=wit1—wiy2 (1<i<7), ag=wr+ws+wo.

(a) £V

(b) ei+rc(1<i<4, reZ); =+etei+rc(1<i<yj<4, rel)
1(ker + teg + teg + tey) +re (r € Z).

(¢) ap=—€1—¢ea+c¢, a1 =¢eg—¢€3, ay=¢€3—E4, as= ey,
a4:%(61—62—€3—64).
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(a) EP.

(b) £2e;+2rc(1<i<4,re€Z);, sexej+re(1<i<j<A4, rel)
te1 + deo + ez + £e4 + 2rc (’I” S Z).

(¢) ag=—e1—ea+e, ay=éegx—c3, Gy =¢E3—¢eq, a3 = 2ey,
a4 = €1 — €9 — E3 — &4.

(b) +(g;— 3(ex+ea+es))+re(1<i<3, rel)
t(e;—¢gj)+re(1<i<j<3, rel).
(¢) ap=¢€1—¢ex+c¢, aj =e9—es, a2:€3—%(€1+€2+€3).

(a) D).

(b) i(?)Ei — (61 + &2 +€3)) + 3rc (1 <i1<3, re Z);
t(e;—¢gj)+re(1<i<j<3, reZ).

(C) ag =¢€1—€&3+¢, a; =¢€z— €3, a2:3€3—(€1+€2+€3).

Appendix B. Non-Reduced Affine Root System of Type (CY,C,,)

The non-reduced affine root system of type (C,/,Cy,) (n > 1) is realized as
follows:

roots: +eg; + %rc, 12, +rc(1<i<n, relz),
te,te;+re(1<i<ji<n, reZ).

basis: ag = —e1 + %c, a;=¢;—¢eir1 (1<i<n-—-1), a,=c¢e,.

Dynkin diagram:
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* 2 2 x * 00 ok
O——0O——O———— —O——0 (n>2) Oo——O0 (n=1)
[e75) aq Qp—1 QA [e7s] (&5}

Appendix C. A List of Marked Eliptic Root Systems

In this paragraph, we will present a complete list of marked elliptic root
systems (R, G) with the following assumption,

both R, = R/G and Ry = R/radl are reduced.

As we mentioned before, they are classified by their elliptic Dynkin diagrams.
In the following list, the names of marked elliptic root systems X (*12) are
taken form . For each type, we shall exhibit the elliptic Dynkin diagram and
(a) {ka, }iz0,.. ;n3 {Miti=0,.. n;

(b) all roots,

(c) the explicit form of ag, -+ , an,

(d) Rfv a (R G)a’

(e) the dual marked elliptic root system (RY,G) of (R, G).

* *
B ay

1,1 .
AfY ¥

(a) ko, =1;m;=1(i=0,1).
(b) £(2e1) 4+ rdy + 89 (r,s € Z).

(¢) ap=—2e1+3dy, a1 =2;.

(d) Ry = Ay, Ry =5(41), (R, G)a = 5(A1).
(

e) (Agl’l))v = Agl’l) (self-dual).

(a) ko, =1;m;=1(0<i<n).
(b) (ei—¢gj)+rdi+sd (1<i<j<n+1, rsecl).
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(c) ag=—e14+en+0y =g —ei1 (1<i<n).
(d) Ry=A,, Ry =5(A,), (R,G)a =S(Ap).
(&) (ALY = AT (self-dual).

=%

1,1)% :

ALY Q\\g
(e %)) I 1J

(a) kag =2, kay =1;mg=1/2, m; = 1.

(b) +ey + 781 + b2 (r, s € Z such that rs = 0 mod 2).

(¢) ap=—e1+8, aj=c¢.

(d) Ry = A1, Ry =S(A1), (R, G)a =S(41).

(e) (Agl’l)*)v = Agl’l)* (self-dual).
a a3 ag

B X Lo (n23)
S S S S g

(a) ko, =1(0<i<n)ymeg=2,m =2,m;=42<i<n-1),
m, = 2.
(b) e +rd1+s02 (1<i<n+1, r,secZ),
te,tej+réi+sd (1<i<j<n+1, rsel).
(¢) ap=—e1—e2+0d2, a=¢;—¢€i11 (1<i<n-—1), a,=c¢é,.
(d) Ry = By, R, :S(Bn)v (RvG)a :S(Bn)v~

(€ (BYMY)Y =0P?.

@o Qg ag_g ag
w2) N NS >3
n [ I :/___\‘I I 1 :

oy o on1 2 ap

(a) ko, =20<i<n—1)ky, =1,mo=1,m =1, m; =2 (2<i<n).
(b) Le;+716+8) (1<i<n+1, r,seZ),
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te;te; +2r61+802 (1<i<j<n+1, rseZ).
(¢) ap=—€1—¢e2+02, aj=¢;—¢c;41 1<i<n-—-1), a,=c¢,.
(d) Ry =By, Ra=5(By), (R,G)s = 5(By).
(e) (B =02,
aj ay_q
g oIS O e
aq Qp—1
(a) ko, =1(0<i<n);mo=1,m;=2(1<i<n-1),m,=1
(b) Lei+1rd1+s02 (1<i<n+1, rseZ),
te;te;+101+2s0 (1<i<j<n+1, rseZ).
() ap=—e1+8, a=¢c;—ci11 1<i<n-—-1), a,=c¢p.
(d) Ry =By, Ra=5(Cy)Y, (R,G)a =S(Cy).
(e) (B =c?.
Qg Qy an_y 2%
w S T e
| v N |
CADI s A ; A o ¢
(o)) 2 g Ay —1 2 [a7%%
(@) koo =1, ko, =2(1<i<n—-1),k, =1,m;=1(0<1i<n).
(b) +e; + 11 + 509 (1§i§n+1, T,SEZ),
te,te; +2r01 +2s02 (1<i<j<n+1, r,seZ).
(C) 0402—51-1-(52, Q; = €; — €41 (1§i§n—1), Oy = Ep-
(d) Ry =B,, R,=5(C,)Y, (R,G)y=S(Cp)".
) Qq an_q a,
ctn G o (=2
" | v ~ | ( )
= - - - =0
aq aq Qp—1 Qn
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(b) £2g;+7161+502 (1 <i<n+1, r,s€Z),
te,ej+réi+sd (1<i<j<n+1, rsel).

(¢) ap=—-2e14+062, a,=¢;—¢€i4+1 (1<i<n-1), a,=2¢,.

(d) Rf =Cp, R, = S(Cn)a (Ra G)a = S(Cn)v

(e (cM)y =B3?.

* *
@y A1

o
gy

1
a1 Qn

o

e

(n>2)

/N

)

(a) hay=2 ko, =1 (1<i<n—1), ko, =2
mo=1,m;=2(1<i<n-1), m, =1.

(b) £2e;,+ 2161+ 802 (1<i<n+1, r,s €Z),
te;tej+101+50 (1<i<j<n+1, rselZ).

(¢) ap=—-2e1+08, a=¢,—ci11 1<i<n-—1), a,=2e,.

(d) Ry =0Ch, Ra=5(Cp), (R,G)q = S(Ch).

(e) (O =BEY.

@o a; 0‘jl—l A,

o D O wey
o——0—---—3F~0
(5§ (£5) 0tn—12 Qn

(a) ko, =1(0<i<n);mo=1,m =1,m;=2(2<i<n).

(b) £2e;+7161+2802 (1<i<n+1, r,s€Z),
te,tej+ro1+sd (1<i<j<n+1l, rseZ).

(¢) ap=—-2e1+08, a;=¢;—ci41 1<i<n-—-1), a,=2e,.

(d) Ry=0Ch, Ry =5(Bn)Y, (R,G)q = S(Bn).

(e (CMy =B,

o :
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(a) ko, =1(0<i<n-—-1),k, =2
mo=1m =1,m;=22<i<n-1), m,=1.
(b) £2eg;+2rd; +2s02 (1 <i<n+1, r,s€Z),
te,tej+réi 480 (1<i<j<n+1, rseZ).
(¢) ap=-2e1+4+062, a;=¢;—¢ci11 (1<i<n-—1), «a,=2¢,.
(d) Ry=0Cy, Ra=5(Bn)Y, (R,G)q=5(Bn)".
(€ (CP?)Y =B,

of a1 ag

2,2 NG LN
B'I('L )* O [ | :/ \‘l I () (n 2 2)

DA D TS

g Qp—1 2 Qnp

(a) ko, =20<i<n—1)k, =1me=1/2,m; =1 (1<i<n).

(b) £e;+7rd1+3502 (1 <i<n+1, r,s€Zsuch that rs = 0 mod 2),
*e;+e; +2r61 +280 (1<i<j<n+1, rseZ).

(¢) ap=—€14+02, a=¢;—¢€i1 (1<i<n—-1), a,=¢cn,.

(d) Ry = B,, Ry =5(Cy)Y, (R,G)s = S(BC,).

(e) (B7(12,2)*)v — o(LDx

(62} Q1 n

ot X (Xl (22
“M———H
a1 Oén—12 Qn

(@) kay=2,key,=11<i<n);mo=1m; =2 (1<i<n).

(b) +2e;+76 +852 (1<i<n+1, r,s €Zsuch that rs = 0 mod 2),
te,tej+rd1 486 (1<i<j<n+1, rseZ).

ag = —2e1 + d9, a; = €5 — €441 (1§i§7’l—1), ap = 2e,.

Ry =Cy, Ry = 5(Cr), (R,G)q = S(BC,).

(e) (Cy(Ll,l)*)\/ _ B'SLQ’Z)*'

a7
\Q‘/\_/
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@0 Ot; [ S ap

o SAXE I mea
CAN S A &N O A
Q1 a2 Ol —1 (a7

(a) ko, =1(0<i<n);
mozl,mlzl,mi:2(2§i§n—1),mn_1:1,mn:1.

(b) i&ii€j+7“51+8(52(1§i<j§n+1, T,SEZ).
(C) g = —¢€1 —52+(52, Q; = €; — Ej+1 (1 <i1<n-— 1), Qp = Ep_1 + Ep.
(d) Ry = Dy, Ra = S(Dy), (R,G)a = S(D).
(e) (Dgl’l))v = pi+Y (self-dual).
oy o aq
1,1 i
BV o—a <
(e 77) ag |
a3 (a7} [67%:

(a) ko, =1(0<1i<6);
mo=1,m; =1 me=2 mg=3 my=2 ms=1, mg=2.
(b) £(wi—wj)+1é1+8d 1<i<ji<6,rsecZ),
Hwitwjtwp)+rd+s0 (1<i<j<k<6, rsel),
+(wy +we+ - +wg) + 711 + 802 (1,8 € Z),
(¢) ap=—(wi+ - Fws)+de, @ =w;i—wit1 (1 <i<5), ag=wstws+ws.
(d) Ry = Es, Ry =S(Es), (R,G)o = S(Eg).
(&) (ESMY)Y = EMY (self-dual).

o as Qe @0
' SIS O
Qg as Qo g

(a) ko, =1(0<i<T);
mo=1,m; =1 me=2 mg=3 my =4, ms=3, mg=2, my=2.
(b) +(wi—wj)+1ré1+8d 1<i<ji<T7 rsecl),
Fwitwjtwp)+rdi+s0 (1<i<ji<k<T7 rsel),
T+ 0+ twr)Frdr st (1<i<j<T7 rseZ),
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(¢) ag=—(wi+ 4ws)+d2, a;=w;i—wit1 (1<i<6), ar=wstwstwr.
(d) Ry =EFE7, R, =S(E7), (R,G), = S(Er).
() (B8 = B (self-dual).

Qg [e71 asg Qaz aq @o
O
[
(1,1) o
E8 @) [
asg ~/
(0% Qg T

(a) ka, =1(0<1i<8);
mo=1,m;1 =2, me=3,mg=4, myg =5, msg =6, mg =4, my; =2,
mg = 3.
(b) H(wij —wj)+71d+s6 (1<i<j<9, rsel),
Hwi +wj+w) +ror+50 (1<i<j<k<9, rsel),
(€) ay=wi —wa+0d2, & =wip1 —wip2 (1<i<7), ag=wr+ws+wo.
(d) Ry = Es, Ry = S(Es), (R,G)q = S(Es).
(e) (Eé(;l’l))v = Eél’l) (self-dual).

FiY o—o_ ! 0o—=O0

(a) ko, =1(0<i<4);mog=2,my =4, mg=06, mg=4, my=2.

(b) 4e;+716 +80 (1 <i<4, r,se),
te,tej+rd+80 (1<i<j<d4, rselZ),
%(iel + tegy + teg + tey) + 761 + 802 (1,8 € Z).

(C) ap = €1 —624—(52, ] = €9 —E3, Qg =€E3—&4, (3 =€&4—O0, ay =0,
where o = %(61 +e9 +e3+¢e4).

(d) Ry=Fy, R, =S(Fy), (R,G)y = S(Fy)".

() (Fy"V)Y = p*?.
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Fi? o—o—=0o_ '' ©

(a) koo =2, kay =2, kay =2, kay =1, kay = 15
mo=1,my =2, mg =3, mg=4, my =2.
(b) e, +7161+502 (1<i<4, r,seZ),
te,te; +2rd1 + 802 (1<i<j<d4, rselZ),
%(ial + teg + fe5 + £e4) + 761 + 802 (1,8 € Z).
(C) g =€1—€3+02, 1 =¢E2—€3, Qo =€3—E4, Q3=¢E4—0,
(d) Ry =Fy, R, = S(Fy), (R,G)a = S(Fy).
(e) (F")Y = F(*".

(a) ko, =1(0<i<4);mo=1,m3 =2, mg=3,mg=4,my=2.
(b) 42+ 718 + 2802 (1<i<4, r,s €Z),
te,tej+rdi+sd (1<i<j<4, rsel),
+e1 + teg + teg + teg + 101 + 2805 (1,5 € Z).
() ap=¢€1—e2+0ds, a1 =e3—€3, qp=¢e3—¢4, Q3=2¢y,
Q= —€1 — E9 — €3 — &4.
(d) Ry =Fy, R, = S(Fy)V, (R,G), = S(Fy).

(&) (F*V)Y = FM.

PP o—q

(a) koo =1, kay =1, ko, =1, kay =2, kay =2;
mozl,m1:2,m2:3,m3:2,m4:1.
(b) +2e; + 2rdy + 2562 (1 <i1<4, rse Z),

899

gy = 0.
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de,tej+réi 480 (1<i<j<4, rsel),
te1 + teg + teg + teg + 2161 + 2805 (1, s € Z).

(¢) ap=¢€1—€3+02, a1 =e9—¢€3, qg=¢€3—E4, Q3=2¢cy,
gy — —&1 — &9 —E3 — &4.

(d) Ry =Fy, Ry = S(F1)Y, (R,G)q = S(Fy)".

(e) (Fy*)v =rF.

*
ay

O
I

N
QMQQ
aq
(a) ka, =1(0<i<2);mp=3,m =6, mg=3.

(b) +(g; — %(51 +eatez))+rd+s5 (1<i<3, rseZ),
t(ei—¢gj)+rdi+s0 (1<i<j<3, rsel).

() ag=—e1+e3+0, ar=¢1—¢c2, az=cs— 5(c1+e2+e3).

(d) Ry =Ga, Ry = S(Ga), (R,G)a = S(Ga)".

(e) (Gf")Y =a™.

(a) koo =3, kay =3, kay =1;mg =1, my =2, mg =3.

(b) :l:(ei — %(51 + €92 —|—€3)) + 701 + 809 (1 <1<3, rse Z),
i(ai—aj)+3r61+562 (1 <i<j <3, T,SEZ).

(C) g = —€1 + €3 +(52, o] = €1 — €2, Qg =¢Eg — %(61 + €92 +€3).

(d) Ry = Ga, Ra = S(Ga), (R, G)a = S(Ga).

(e) (G =GP,

M oo
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(a) ko, =1(0<i<2);mog=1,m; =2, mg=3.

(b) £(3e; —(e1+e2+e3))+rd+3s02 (1<i<3, r,seZ),
+(e;—¢gj)+ror+s (1<i<j<3 rsel).

(¢) ap=—e1+e3+0d2, ar=¢c1—¢€2, ag=—¢€1+ 22 —¢3.

(d) Ry =G R, =5(G2)Y, (R,G)q = S(G2).

() (GPY)V =687,

o
G5 O/ioi\o

e31]

(a) kay =1, ko, =1, kay =3, mo=1,m3 =2, my =1

(b) +(3e; —(e1+e2+¢€3))+3rd +3s0 (1<i<3, r,s€Z),
t(ei—¢gj)+rdi+sd (1<i<j<3, rsel).

(¢) ap=—e1+e3+02, a=¢1—¢c2, ag=—c1+ 2 —¢3.

(d) Ry =G R, =5(G2)Y, (R,G)q = S(G2)".

(e) (G")v =ay.

Appendix D. The Triplet Associated with (R, G) and the
Corresponding Double Affine Hecke Algebra

We will present a list of the triplet associated with a marked elliptic root
system (R, ) and the corresponding double affine Hecke algebra. In the fol-
lowing table, we shall exhibit;

(a) the corresponding triplet and its type;
(b) the type of corresponding double affine Hecke algebra in the sense of [M5].

As we proved in Section 6, for a triplet of type I or II, A, ®4 H(R,G)
is isomorphic to the small double affine Hecke algebra H(Z(R,G)), and, for a
triplet of type III, H(R, G) is isomorphic to H(T (R, G)). In the following table,
X means that we do not consider the corresponding triplet.
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Type of (R, G)

(2)

(b)

1,1
ALY

E(R, G) = (A1;5(A41),Q(S(A1

(type I or II)

)

(5(A1), S(A1))

T(R7G)=(A1;s(($;)£§)(m) ;Q(S(A1))) @y, cn)
ATTDF x X
ALY (> 2) e ft?gﬁ(fr"l)f)msmn))) (5. 5t
B (n>3) O ey 4 (S(Bn), S(Bn))
PE E(R,G) = (B&;yigsz%Q(S(Bn))) (S(Bn),S(Bn))
B2 (n>2) S ety ) (S(Cn)¥,S(Cn))
R R S Ty
T(R,G) = (cn;S(g;I))e ;JHL?(Cn),Q(S(Cn) ) (€Y, Cn)
o (> 2) = ety ST st sien)
T(R,G) = (Cw; 5 (g;g;lfl()cn) QECIN (v om
0D (>3 E(R,G) = (C&;yié I)),Q( (Cn))) (S(Cn), S(Cn))
e (> 3 =R =B %f%))vﬁQ(S(BnW (S(Bn)¥,S(Bn)¥)
B (n > 2) x
o n>2) x -
DD (> ) et )| (800S0
B =gy SRS ((tfg’oi(ﬂ"l)I)Q(S(E"))) (SEn). 5(E)
e E(R,G) = (IZL;SC(I%),Q(S(FAL))) (S(Fy), S(Fy))
FY SO e 1Y (S(Fa)™, S(Fy))
R SO ety sty
S E(R,G):(G(zt;yiicizlg,Q(S(Gz) ) (S(Ga), S(G2)Y)
T E(R,G) = (G(i;iéGI)z),Q(S(Gz))) (S(Ga), S(G2))
Y S e ey LI (s(69)v,s(6)
o E(R, ) = (G2: 5(G2)7,Q(5(G2)")) (S(G2)Y, $(G2)Y)

(type II)




Remark .

as of type I or II.
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For a finite root system Rg of type A,,D,,E,, S(R
S(Rp). Therefore, for Asll’l), D,(Il’l), E,(LM), we can regard the triplet =

0)"
(R,

Appendix E. A List of Unequal Parameters

We will present a list of unequal parameters for an elliptic Hecke algebra

H(R, G) and the corresponding double affine Hecke algebra H(Z(R, G)).
remark that, for each case, E(R, G) is a triplet of type I or II.
We shall exhibit in the following table:

a) the number of unequal parameters in H(R, G),

b) independent variables in A,

(
(
(¢c) the number of unequal parameters in H(Z(R, G)),
(

d) independent variables in A.

Type of (R, G)

(2)

(b)

A7 to, o+, 11, - r=n=mn

Agl,l)* to,tlatl* X X

AMY (n>2) | 1 it 1 Ll
(0<i<n) (0<i<mn)

tn,

B(Ll) (n > 3) 2 t = tO = tl = tz = ti* 2 Tn;'T ek

' 0<i<n-—1)
(2<i<n-1)
tn7t'll*7
T =
B7(7,172) (n > 3) 3 t = tO = tl = ti = ti* 2 n,'T Ti
. 0<i<n-1)
2<i<n-1)

B¢V (n>2) | 3 | otwiTh=le g 0= T =R
(1<i<n-—1) (1<i<n-1)
thtO*ytnytn*a

B»,(1272) (TL > 2) 5 t = t,L _ ti* 2 T0o = jr’nuT =T;

’ (1<i<n-1)
(1<i<n-1)
t07t0*atn7tn*7
T0O = Tn, T =T;
o (n>2) 5 t=1t; =t 2 v
' (1<i<n-1)
(1<i<n-1)
tot, t =1, = t:« T0 = Tn,.T =T,
CT(L1’2) >9 3 05 bns 7 7 9 0 ns [
(n>2) (1<i<n-—1) (1<i<n-1)
tn,tn*v
Tn, T =T
07(12,1) ( >3) 3 t=tg =1t =t; = t; 2 .

(2<i<n-1)
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Type of (R, G) (c) (d) (e) ()
tns
(2,2) " Tn, T =T
) (n>3) 2 | t=to=ti=ti=ti | 2 ~
. (0<i<n-—1)
2<i<n-1)
,(L2’2)* (’I’L > 2) 4 05 bns n'a 2 ? X X
(1<i<n-1)
0(1)1)* > 9 4 05 bny bn*, 7 1 X X
n (n>2) (1<i<n-—1)
t=t T=T
D(lvl) > 4 1 « 1 !
w2 4) (ael) (O<i<n)
t=t T=T
E(l’l) n:6r\/8 1 ¢ 1 '
w ) (aeT) (0<i<n)
Fil,l) 5 0 1 2 2%, 9 T0 T1 T2,
t3 =1ty T3 = T4
2 2 0T TRT 2 nEnER
= t3*7 t4 = T3? T4
F2D P eThEREB g 0ERTR
:t3*7 t4 :7—33 7—4
Fva) ) o 1 9 o, 9 To = T1 = T2,
t3 =14 T3 = T4
G(lrl) 2 = = =
2 to =t = t1=, to 2 To=T1, T2
Gglﬁ) ) to =t1, to = to- 2 To=T1, T2
Gy 2 | to=tita=tr | 2| m=m, 7
Gé?’:s) 2 to =11 = t1*7 to 2 T0 = T1, T2

Remark.  For an elliptic root system of type Agl’l), BT(?’Q) or C'T(Ll’l) (n>
2), we consider another double affine Hecke algebra H(Y (R, G)). The explicit
forms of unequal parameters in H(Y (R, G)) were already given in 6.3.
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