Quenched tail estimate for the random walk in random scenery and in random layered conductance

Ryoki Fukushima

Kyoto University (RIMS)

The 7th Pacific Rim Conference on Mathematics
July 1, 2016

Joint work with J.-D. Deuschel (TU Berlin).
Slides will be available at my webpage.
Random walk in random scenery (RWRS)

- $\{z(x)\}_{x \in \mathbb{Z}^d, \mathbb{P}}$: IID random variables,
- $(S_n)_{n \in \mathbb{Z}_+}$: Random walk on \mathbb{Z}^d.

Random walk in random scenery:

$$W_n := \sum_{k=1}^{n} z(S_k).$$
Random walk in random scenery (RWRS)

- \(\{z(x)\}_{x \in \mathbb{Z}^d}, \mathbb{P} \): IID random variables,
- \((S_n)_{n \in \mathbb{Z}_+}: \) Random walk on \(\mathbb{Z}^d \).

Random walk in random scenery:

\[
W_n := \sum_{k=1}^{n} z(S_k).
\]

- Scaling limit (under \(\mathbb{P} \otimes P_0 \)) yields a self-similar process.

 \(d = 1, z: \alpha\)-stable, \(S: \beta_{>1}\)-stable \(\Rightarrow \) index \(= 1 - \frac{1}{\beta} + \frac{1}{\alpha \beta} \).

- CLT holds in transient case.
- \(d = 2 \) too (!) but for \(\frac{1}{\sqrt{n \log n}} W_n \) (Bolthausen 1989).
RWRS: continuous time

In this talk,

- \(\{z(x)\}_{x \in \mathbb{Z}^d}, \mathbb{P} \): IID, \(\geq 0 \) with \(\mathbb{P}(z(x) \geq r) = r^{-\alpha + o(1)} \),
- \((S_t)_{t \geq 0}, (P_x)_{x \in \mathbb{Z}^d} \): continuous time simple random walk.

Continuous time version of RWRS:

\[
A_t := \int_0^t z(S_u)du.
\]
RWRS: continuous time

In this talk,

- \(\{ \{ z(x) \} \}_{x \in \mathbb{Z}^d}, P \): IID, \(\geq 0 \) with \(P(z(x) \geq r) = r^{-\alpha + o(1)} \),
- \((S_t)_{t \geq 0}, (P_x)_{x \in \mathbb{Z}^d} \): continuous time simple random walk.

Continuous time version of RWRS:

\[
A_t := \int_0^t z(S_u)du.
\]

Naturally appears in random media:

- \(E_x[f(X_t)e^{A_t}] \) is a solution of \(\partial_t u = \Delta u + zu, u(0, x) = f(x) \).
- \((S_1^t, S_2^t + A_1^t)_{t \geq 0} \): diffusion in random shear flow.
- \((S_1^{A_t}, S_2^t)_{t \geq 0} \): random walk in layered conductance (later).
Tail estimates for RWRS

Many *annealed* results: $\mathbb{P} \otimes P_0(A_t \geq t^\rho)$.

- Natural tail assumption is $\mathbb{P}(z(x) \geq r) \approx \exp(-r^\alpha)$.

 "z has high exceedance" & "RW use it": both exponential.
 (To be explained more in the next slide.)

- Too many (and various) results to present.
 - Google search "Large and moderate deviations for random walks in random scenery: a review" by F. Castell.
Tail estimates for RWRS

Many *annealed* results: $\mathbb{P} \otimes P_0(A_t \geq t^\rho)$.

- Natural tail assumption is $\mathbb{P}(z(x) \geq r) \approx \exp(-r^\alpha)$.

 “z has high exceedance” & “RW use it”: both exponential.
 (To be explained more in the next slide.)

- Too many (and various) results to present.
 - Google search “Large and moderate deviations for random walks in random scenery: a review” by F. Castell.

Not so many *quenched* results: $P_0(A_t \geq t^\rho)$ for typical z.

- Brownian motion in Gaussian scenery,
 - Large deviation for $\frac{1}{t \sqrt{\log t}} A_t$: Asselah-Castell (2003),
 - Moderate deviations: Castell (2004),

- Brownian motion in bounded scenery,
 - Large deviation for $\frac{1}{t} A_t$: Asselah-Castell (2003).
Tail estimates for RWRS

Many *annealed* results: \(\mathbb{P} \otimes P_0(A_t \geq t^\rho) \).

- Natural tail assumption is \(\mathbb{P}(z(x) \geq r) \approx \exp(-r^\alpha) \).
 “\(z \) has high exceedance” & “RW use it”: both exponential.
 (To be explained more in the next slide.)

- Too many (and various) results to present.
 - Google search “Large and moderate deviations for random walks in random scenery: a review” by F. Castell.

Not so many *quenched* results: \(P_0(A_t \geq t^\rho) \) for typical \(z \).

- Brownian motion in Gaussian scenery,
 - Large deviation for \(\frac{1}{t^{\sqrt{\log t}}} A_t \): Asselah-Castell (2003),
 - Moderate deviations: Castell (2004),

- Brownian motion in bounded scenery,
 - Large deviation for \(\frac{1}{t} A_t \): Asselah-Castell (2003).

No results in Borodin and Kesten-Spitzer setting.
Light tail vs Heavy tail

Let

\[\ell_t := \int_0^t \delta_{s_u} \, du \Rightarrow A_t = \langle \ell_t, z \rangle. \]

The strategy for \(\{A_t \geq t^\rho\} \) under \(\mathbb{P} \otimes P_0 \) is

\[\{z(\cdot) \approx a_t \psi(\cdot)\} \text{ and } \{\langle \ell_t, \psi \rangle \geq t^\rho / a_t\}. \]

Assume \(\mathbb{P}(z(x) \geq r) \approx \exp(-r^\alpha) \).

- \(\alpha < 1 \Rightarrow \text{optimal } \psi = \delta_0. \)
- \(\alpha > 1 \Rightarrow \text{optimal } \psi \text{ has a non-trivial profile.} \)
Light tail vs Heavy tail

Let

\[\ell_t := \int_0^t \delta_{S_u} du \Rightarrow A_t = \langle \ell_t, z \rangle. \]

The strategy for \(\{ A_t \geq t^\rho \} \) under \(\mathbb{P} \otimes P_0 \) is

\[\{ z(\cdot) \approx a_t \psi(\cdot) \} \text{ and } \{ \langle \ell_t, \psi \rangle \geq t^\rho / a_t \}. \]

Assume \(\mathbb{P}(z(x) \geq r) \approx \exp(-r^\alpha) \).

- \(\alpha < 1 \Rightarrow \) optimal \(\psi = \delta_0 \).
- \(\alpha > 1 \Rightarrow \) optimal \(\psi \) has a non-trivial profile.

The quenched results by Asselah-Castell corresponds to the second regime. Search for a high exceedance in the \textit{physical space} instead of the probability space.
Main result 1: $\mathbb{P}(z(x) \geq r) = r^{-\alpha + o(1)}$.

Let $\rho > 0$. Then \mathbb{P}-almost surely,

$$P_0 (A_t \geq t^\rho) = \exp \left\{ -t^{p(\alpha,\rho)+o(1)} \right\}$$

as $t \to \infty$, where

$$p(\alpha, \rho) = \begin{cases} \frac{2\alpha \rho}{\alpha+1} - 1, & \rho \in \left(\frac{\alpha+1}{2\alpha} \lor 1, \frac{\alpha+1}{\alpha} \right], \\ \alpha(\rho - 1), & \rho > \frac{\alpha+1}{\alpha} \end{cases}$$

for $d = 1$ and

$$p(\alpha, \rho) = \begin{cases} \frac{2\alpha \rho - d}{2\alpha + d}, & \rho \in \left(\frac{d}{2\alpha} \lor 1, \frac{\alpha+d}{\alpha} \right], \\ \alpha(\rho - 1) / d, & \rho > \frac{\alpha+d}{\alpha} \end{cases}$$

for $d \geq 2$.
Illustration: $d = 1, \alpha \leq 1 (d \geq 2, \alpha \leq \frac{d}{2}$ is similar)

For $\rho < \frac{\alpha + 1}{2\alpha}$, we in fact have a polynomial decay. The threshold $\frac{\alpha + 1}{2\alpha}$ is the self-similar index found by Borodin and Kesten-Spitzer.
Illustration: $d = 1, \alpha > 1 \ (d \geq 2, \alpha > \frac{d}{2} \text{ is similar})$

When $\alpha > 1$, $\mathbb{E}[z(x)] < \infty$ and $P_0(A_t \geq ct) \to 1$ for $c < \mathbb{E}[z(x)]$. For $c \geq \mathbb{E}[z(x)]$, this is the standard large deviation regime.
Main result II: $P(z(x) \geq r) = r^{-\alpha + o(1)}$.

Let $d = 1$ and $\alpha > 1$ or $d \geq 2$ and $\alpha > \frac{d}{2}$. Then for any $c > \mathbb{E}[z(x)]$, P-almost surely,

$$P_0(A_t \geq ct) = \begin{cases}
\exp \left\{ -t^{\alpha-1 \alpha+1} + o(1) \right\}, & d = 1, \\
\exp \left\{ -t^{2\alpha-d \alpha+d} + o(1) \right\}, & d \geq 2
\end{cases}$$

as $t \to \infty$. (I.e., the extrapolation gives the correct exponent.)
Outline of the argument

Let us see how to get for \(d = 1 \) and \(\alpha > 1 \)

\[
P_0(A_t \geq ct) = \exp \left\{ -t \frac{\alpha-1}{\alpha+1} + o(1) \right\}.
\]

Lower bound: Let the random walk

- explore \([-t \frac{\alpha}{\alpha+1}, t \frac{\alpha}{\alpha+1}]\),
- there is \(z(x) \sim t \frac{1}{\alpha+1} \) almost surely,
- leave the local time \(\ell_t(x) \gtrsim t \frac{\alpha}{\alpha+1} \).

The first and the third event have probability

\[
\approx \exp\left\{ -t \frac{\alpha-1}{\alpha+1} \right\}.
\]
Outline of the argument

Let us see how to get for $d = 1$ and $\alpha > 1$

$$P_0(A_t \geq ct) = \exp \left\{ -t^{\frac{\alpha-1}{\alpha+1}} + o(1) \right\}.$$

Upper bound:

- Consider level sets $\mathcal{H}_k = \left\{ |x| \leq t^{\frac{\alpha}{\alpha+1}} : t^{(k-1)\epsilon} \leq z(x) < t^{k\epsilon} \right\},$
- fine control on the “geometry” of \mathcal{H}_k,
- a tail estimate for additive functional by Xia Chen (2001),

\Rightarrow Too difficult to get contribution from lower level sets:

$$P_0 \left(\ell_t(\mathcal{H}_k) \geq t^{1-k\epsilon} \right) \ll \exp \left\{ -t^{\frac{\alpha-1}{\alpha+1}} \right\}.$$
Xia Chen’s theorem, Stoch. Proc. & Appl. 2001

Suppose $f \geq 0$ and

$$E_x \left[\int_0^t f(S_u) du \right] \lesssim a(t)$$

uniformly $x \in \text{supp} f$. Let $0 \ll b(t) \ll t$. Then for $\lambda > 4$,

$$P_0 \left(\int_0^t f(S_u) du \geq \lambda a \left(\frac{t}{b(t)} \right) b(t) \right) \leq \exp \{ -c(\lambda)b(t) \}.$$

Remark

- There is a corresponding lower bound.
- If $a(\cdot)$ varies regularly, sharper bound available.
- Simpler case dates back to Khas’minskii (1959).
Suppose \(f \geq 0 \) and

\[
E_x \left[\int_0^t f(S_u)du \right] \lesssim a(t)
\]

uniformly \(x \in \text{supp} f \). Let \(0 \ll b(t) \ll t \). Then for \(\lambda > 4 \),

\[
P_0 \left(\int_0^t f(S_u)du \geq \lambda a \left(\frac{t}{b(t)} \right) b(t) \right) \leq \exp \{-c(\lambda)b(t)\}.
\]

Apply this to \(f = 1_{\mathcal{H}_k} \).

- \(E_x[\ell_t(\mathcal{H}_k)] = E_x[\int_0^t f(S_u)du] = \sum_y 1_{\mathcal{H}_k}(y) \int_0^t p_u(x, y)du \),
- Concentration inequality & Borel-Cantelli \(\Rightarrow \) uniform estimate.
- \(Q: E_x[\int_0^t z(S_u)du] \sim \sum_y G(x, y)z(y): \) extreme values?
Application to random layered conductance model

Let \(((X_t)_{t \geq 0}, (P^\omega_x)_{x \in \mathbb{Z}^{1+d}})\) be a continuous time Markov chain on \(\mathbb{Z}^2\) with jump rates

\[
\omega(x, x \pm e_i) = \begin{cases}
z(x_2), & i = 1, \\
1, & i = 2.
\end{cases}
\]

By using CTSRW \((S^1, S^2)\) on \(\mathbb{Z}^2\),

\[
(X^1_t, X^2_t)_{t \geq 0} = (S^1_{A^2_t}, S^2_{t})_{t \geq 0} \text{ with } A^2_t = \int_0^t z(S^2_u)du.
\]
Application to random layered conductance model

Let \(((X_t)_{t \geq 0}, (P^\omega_x)_{x \in \mathbb{Z}^{1+d}}) \) be a continuous time Markov chain on \(\mathbb{Z}^2 \) with jump rates

\[
\omega(x, x \pm e_i) = \begin{cases}
 z(x_2), & i = 1, \\
 1, & i = 2.
\end{cases}
\]

By using CTSRW \((S^1, S^2)\) on \(\mathbb{Z}^2 \),

\[
(X^1_t, X^2_t)_{t \geq 0} = (S^1_{A^2_t}, S^2_{A^2_t})_{t \geq 0} \text{ with } A^2_t = \int_0^t z(S^2_u)du.
\]

Anomalous behavior expected (Andres-Deuschel-Slowik 2016) to

\[
P^\omega_0 \left(X_t = t^\delta e_1 \right) \approx P_0 \left(S^1_{A^2_t} = t^\delta e_1 \right) = E_0 \left[p_{A^2_t}(0, t^\delta e_1) \right].
\]
Tail estimate for layered conductance model

For \mathbb{P}-almost every ω,

$$P_0^\omega \left(X_t = t^\delta e_1 \right) = \exp \left\{ -t^{q(\alpha, \delta) + o(1)} \right\}$$

as $t \to \infty$, where

$$q(\alpha, \delta) = \begin{cases}
0, & \delta < \frac{1}{2} \lor \frac{\alpha+1}{4\alpha}, \\
2\delta - 1, & \delta \in \left[\frac{1}{2}, \frac{\alpha}{\alpha+1} \right), \\
\frac{4\alpha\delta-\alpha-1}{3\alpha+1}, & \delta \in \left[\frac{\alpha}{\alpha+1} \lor \frac{\alpha+1}{4\alpha}, \frac{2\alpha+1}{2\alpha} \right], \\
\frac{\alpha(2\delta-1)}{\alpha+1}, & \delta \in \left(\frac{2\alpha+1}{2\alpha}, \frac{\alpha}{(\alpha-1)_+} \right), \\
\delta, & \delta \geq \frac{\alpha}{(\alpha-1)_+}.
\end{cases}$$

Extensions to higher dimensions & non-horizontal displacement.
Thank you!