
Extended Affine Root System V
(Elliptic Eta-product and their Dirichlet series)

Kyoji Saito
RIMS, Kyoto University

Abstract. According to the decomposition
∏

i(λ
i−1)e(i) of the characteristic polyno-

mial of the Coxeter element of a marked elliptic root system (R,G), we attach the product
η(R,G)(τ) :=

∏

i η(iτ)
e(i) of Dedekind eta-function and call it an elliptic eta-product (1.2.1).

Theorem. The Fourier coefficients at infinity of the elliptic eta-product η(R,G) are
non-negative integers if and only if the elliptic eta-product is not a cusp form. This is the

case when (R,G) is one of the 4 types: D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or E

(1,1)
8 .

One direction of the theorem: an eta-product is not a cusp form if all Fourier coefficients
at ∞ are non-negative is a general fact (§2 Lemma 3). The proof of the opposit direction
is achieved by a study of the attached Dirichlet series. We explain this below. To state it,
we use a numerical invariant ν(R,G) of (R,G), called the dual rank ((2.2.2) or (A3.5)).

1) We show that an elliptic eta-product η(R,G) is holomorphic (resp. cuspidal) if and
only if ν(R,G) is non-positive (resp. negative) ((2.9) Lemma 4). In fact, ν(R,G) is always
non-positive, and is equal to 0 if and only if the weight of the eta-product is 1 and (R,G)
is simply laced ((2.9) Lemma 5). The elliptic root systems with ν(R,G) = 0 are classified

into types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or E

(1,1)
8 (see Appendix 1 and its Example).

2) We show that the Dirichlet series L(R,G) attached to an elliptic eta-product η(R,G)
of weight 1 is equal to either an Artin L-function or a difference of two Artin L-functions
attached to rank 2 representations of Gal(E(R,G)/Q) where E(R,G) is a Kummer extension

Q(ζmred , x1/m
∗

) of Q(ζmred) for ζmred := exp(2π
√
−1/mred) and mred and m∗ are nu-

merical invariants of (R,G) ((2.5.1), (2.7.2)). The extension is trivial (⇔ m∗ = 1) if and
only if ν(R,G) = 0 ((3.2) Theorem). The E(R,G) is either Q(ζ4), Q(ζ3), Q(ζ8) or Q(ζ12)

according to the 4 types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or E

(1,1)
8 of (R,G) with ν(R,G) = 0.

3) As a corollary of 1) and 2), if ν(R,G) = 0 then each summand of L(R,G) decomposes
into a product of two Dirichlet L-functions, where Euler factors for bad primes are trivial.
This implies the non-negativity of the Dirichlet coefficients of L(R,G) (§4 (4.1)).

The theorem gives a partial affirmative answer to a conjecture ([Sa3,§13]) on non-
negativity of Fourier coefficients of eta-products attached to a regular system of weights.
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Table 3. Dirichlet series for 1-codimensional elliptic root systems
§4. Fourier-Dirichlet coefficients for an elliptic root system of codimension 1

Table 4. Fourier coefficients of 1-codimensional elliptic eta-products

§1. Elliptic eta-product
In §1, we define the elliptic eta-product (1.2.1) associated to an elliptic root system

and then explain the contents of the paper. We summarize necessary facts on elliptic root
systems in Appendices 1 and 3 and Tables 1 and 2 (for details, see [Sa1]).

(1.1) We fix a notion: eta-product studied by many authors (eg.[H-M][D-K-M][Koi][Ma][G-
O]). Let h be a positive integer, and call it a Coxeter number in the sequel. An element
ϕ ∈ Q(λ) is called a cyclotomic function belonging to h, if it has an expression:

(1.1.1) ϕ(λ) =
∏

i|h
(λi − 1)e(i),

for some e(i) ∈ Z (which may be negative). Note: i) the e(i) is uniquely determined from
ϕ, ii) the h is a common multiple of the i’s with e(i) 6= 0 but is not uniquely determined
from ϕ. The multiplicity of zero (= − the order of pole) of ϕ(λ) at λ = 1 is given by

(1.1.2) 2a0 :=
∑

i|h
e(i) .

We call the a0 ∈ 1
2Z the weight for a reason explained below (or the genus for a geometric

background [Sa2,3]). The eta-product attached to ϕ is defined by

(1.1.3) ηϕ(τ) :=
∏

i|h
η(iτ)e(i),

where η(τ) := q1/24
∏∞
n=1(1−qn) for q = exp(2π

√
−1τ) and τ ∈ H := {τ ∈ C | Im(τ) > 0}

is the Dedekind eta-function. Note that the eta-product does not depend on a choice of
the Coxeter number h. The Coxeter number h shall play a role when we introduce the dual
eta-product in the next section (2.2.2). The ηϕ is an automorphic form of weight a0, and
it can be developed in a series in fractional powers of q, whose coefficients will be referred
to as Fourier coefficients at ∞ (see §2 for details on automorphicity of ηϕ(τ)).

In the remaining part of §1, we apply the correspondence: ϕ 7→ ηϕ to the characteristic
polynomial ϕ(R,G) of a Coxeter element for an elliptic root system (R,G) (for elliptic root
systems and their Coxeter elements, see Appendix 1. or [Sa1]). A reader, who wants a
quick view in the general properties of the eta-product, may jump to §2.

Remark. Let the ϕ (1.1.1) be a proportion ϕ+/ϕ− of two characteristic polynomials
of two linear transformations c±. Then the eta product ηϕ(τ) is described in (1.1.4) as a
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trace of the level 1 representation S(c+) ⊗ Λ(−c−) of c± in conformal field theory. Since
the author could not find a reference for the description, we give a sketch of proof. In the
setting of the present article, c+ is the elliptic Coxeter element c (Appendix 1) and c− = ∅
(i.e. ϕ = det(λ · id− c)). But we shall not use the description in the present article.

Let H± be finite dimensional vector spaces equipped with the actions c± ∈ GL(H±)
such that ϕ = ϕ+/ϕ− for ϕ± := det(λ · idH± − c±). Let H±(−1), H±(−2), H±(−3),· · · be
an infinite sequence of copies of H±, respectively. We consider the vector space:

V := S (H+(−1)⊕H+(−2)⊕H+(−3)⊕ · · ·)⊗ Λ (H−(−1)⊕H−(−2)⊕H−(−3)⊕ · · ·) ,

where S(·), Λ(·) expresses the symmetric tensor algebra and the Grassmann algebra, re-
spectively. The space V is graded by counting non-trivial elements of H±(−n) to be of
degree n for n ∈ Z>0. So, V = ⊕∞n=1Vn where each graded piece is of finite dimensional.
Let deg be the degree operator on V (i.e. deg(x) = n · x for x ∈ Vn).

The copies of the actions of ±c± on the H±(−n) induce a diagonal action on V ,
denoted by S(c+)⊗Λ(−c−). It preserves each graded piece Vn. Then one has the formula:

(1.1.4) ηϕ(τ) = q(rank(H+)−rank(H−))/24/TrV
(

S(c+)⊗ Λ(−c−) · qdeg
)

.

This is a trivial consequence of a formula: TrV
(

S(c+)⊗ Λ(−c−) · qdeg
)

=
∏∞
n=1 φ−/φ+(q

n),
where the notation are as above except φ±(λ) := det(id− λ · c±) for arbitrary (not neces-
sarily quasi-unipotent) linear transformations c± on H±. If ϕ = λµ · · · ± 1 is a cyclotomic
polynomial then ηϕ(τ) = qµ

∏∞
n=1 φ(q

n) for φ := ±ϕ.

(1.2) Recall [Sa1] that a marked elliptic root system is a pair (R,G) where R is a generalized
root system (Appendix 1) belonging to a semipositive root lattice (Q, q) of sign (l, 2, 0), and
G, called a marking, is a rank 1 subspace of 2-dimensional radical(q)⊗Q. One attaches an
elliptic Dynkin diagram Γ(R,G) (see Appendix 1 (A1.3) and its following statements) to
(R,G), whose vertices form a basis of the root system R. A Coxeter element c(R,G) is a
product of reflexions onQ(R) attached to all vertices of Γ(R,G) in a suitable sequence. The
c(R,G) is of finite orderm(R,G) (A1.5) and its conjugacy class in Aut(R) is unique. Thus,
the polynomial ϕ(R,G)(λ) := det(λI − c(R,G)) is a cyclotomic polynomial well defined for
(R,G). For explicit descriptions of ϕ(R,G), one is referred to (A1.7), Table 1 or (A3.2).

Definition. An elliptic eta-product for (R,G) is the eta-product (1.1.3) attached to
the characteristic polynomial ϕ(R,G) of a Coxeter element of (R,G):

(1.2.1) η(R,G)(τ) := ηϕ(R,G)
(τ).

As for the Coxeter number of the cyclotomic function ϕ(R,G)(λ), put h := m(R,G) =:
the order of the Coxeter element c(R,G) (see (A1.5) for an explicit formula).

The goal theorem of the paper is formulated in Abstract and is proven in §4 (4.1). It is
inspired from a duality theory of regular system of weights [Sa3,§13]. Namely, we conjecture
that the Fourier coefficients at ∞ of the eta-product attached to a regular weight system
are non-negative if and only if it is not a cusp-form. The elliptic eta-products of types
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E
(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 treated in the present paper are the first non-trivial affirmative

examples of the conjecture (see Appendix 2 for more details).

Remark. An eta-product in general may have negative Fourier coefficients at∞ even
if it is not a cusp form. See examples at (4.2) taken from the Conway group.

(1.3) The contents of the present paper are as follows.
In Appendix 1, we recall definitions of an elliptic root system (R,G) and its diagram

Γ(R,G) ([Sa1]). We describe the characteristic polynomial ϕ(R,G) (A1.7), the Coxeter
number m(R,G) (A1.5) and the genus a0 (A1.8) in terms of the diagram Γ(R,G) (sum-
marized in Table 1). In Appendix 2, we explain the motivation of the present article and
the relationship with the duality theory of regular system of weights [Sa2,3].

In the first half of §2, we study automorphicity of eta-products in general. Level Nϕ

and character εϕ of an eta-product is calculated in (2.5.1), (2.5.2) and (2.5.3) (Lemma 1).
We show that an eta-product is holomorphic (resp. cuspidal) at the cusps at Z, if and only
if the numerical invariant νϕ, called the dual rank (2.2.2), is ≤ 0 (resp. < 0) (Lemma 2)
and that if νϕ < 0 then all Fourier coefficients at ∞ cannot be non-negative (Lemma 3).

On the other hand, we prove that i) the elliptic eta-product is always holomorphic
and it is cuspidal if and only if the dual rank ν(R,G) < 0 (Lemma 4), and ii) ν(R,G) = 0 if
and only if (R,G) is 1-codimensional (A1.4) and simply laced (Lemmas 5 and 6). Here,
the 1-codimensionality is equivalent to the weight a0 of the eta-product being equal to 1
(A1.8). The classification (Table 2 in Appendix 3) says that the elliptic root system with

ν(R,G) = 0 are the types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or E

(1,1)
8 .

In §3, we study the Dirichlet series L(R,G)(s) (3.1.1) attached to the elliptic eta-
product. (3.2) Theorem and its following Table 3 describe the L(R,G)(s) for the 1-
codimensional elliptic root system (R,G) (except for one case where a datum x (see below)
is yet undetermined) as follows.

The Dirichlet series attached to a 1-codimensional elliptic root system is either equal
to an Artin L-function L(s, ρ) attached to a representation ρ : Gal(E(R,G)/Q)→ GL2(Z),

a difference 1
4

(

L(s, ρ(+))− L(s, ρ(−))
)

of two Artin L-functions attached to two represen-

tations ρ(±) : Gal(E(R,G)/Q) → GL2(Z), or a difference
√
−1
4 (L(s, ρ)− L(s, ρ̄)) of two

Artin L-functions attached to a representation ρ : Gal(E(R,G)/Q) → GL2(Z[
√
−1]) with

the conductor = N(R,G) and the character det(ρ) = ε(R,G) given in Lemma 1, respectively.

Here E(R,G) is a Kummer field Q(ζmred , x1/m
∗

) for mred,m∗ ∈ Z>0 in (2.5.1), (2.7.2) and
some x ∈ Z. The Kummer extension E(R,G)/Eab

(R,G) is trivial if and only if the dual rank

ν(R,G) is 0. Any of L(s, ρ), L(s, ρ
(±)) or L(s, ρ̄), called the Artin summand, has trivial

Euler factors for the primes p with p|N(R,G).
The proof of the theorem is achieved by inspection on Fourier coefficients of the

elliptic eta-product for each type. One, first, give a guessing form of the Dirichlet series as
described above. Then, one applies theorems by Hecke [36], Weil [W] and by Deligne-Serre
[D-S] on the bijections between the set of normalized new forms and Eisenstein series and
the set of odd complex 2-dimensional representations of Galois groups ((3.2) Assertion).
Explicit descriptions of E(R,G), ρ, ρ

(±) and L(s, ρ), L(s, ρ(±)) are given in Table 3.
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If ν(R,G) = 0, the Galois group is an abelian group isomorphic to (Z/mredZ)× and
hence the representation(s) split into direct sums of 1-dimensional representations. So, the
Artin summand(s) decompose into product(s) of Dirichlet L-functions ([Hecke 36, §10]). In
fact, the L(R,G)(s) is either of the forms L(s, 1)L(s, ε) or 14 (L(s, 1)L(s, ε) −L(s, χ)L(s, χε))
for some characters ε and χ ∈ Hom((Z/mredZ)×, {±1}). Some elementary calculations
in §4 (4.1) using the Euler product expression of the Dirichlet L-functions confirm the
non-negativity of Dirichlet coefficients for L(R,G). This proves the goal Theorem stated

at Abstract: Fourier coefficients for the types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 are non-

negative. Explicit formulae of the Fourier-Dirichlet coefficients for 1-codimensional elliptic
root systems are given in Table 4.

The proof seems a bit involved and non-conceptual. One should look for a conceptual
understanding of the non-negativity of Fourier coefficients, which should lead to an answer
to the general conjecture in [Sa3,§13] (cf. Appendix 2).

After the present paper is written, Victor Kac has pointed out to the author about a

coincidence of the elliptic eta-products for the types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 with

the theta-functions for the lattices QR +Zρ/h for finite root lattices QR of rank 2 (i.e. of
types A1 × A1, A2, B2 and G2) together with the Weyl vector ρ (see [Ka, (3.34)]). Prof.
Atkin has pointed out that these eta-products are unary-theta-functions in the sense [?],
which can be expressed by Eisenstein serieses. Also D. Zagier explained the author that
the proof of the goal theorem could be reduced to the classical theory of qudratic forms

so far as one concerns only on the four types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 . To clarify

these facts may ask another work, but still their connection with the general conjecture
(including the cases when the eta-products are no more holomorphic) seems still unclear to
the author. Therefore, the author dicided to publish the paper in the present (old) form,
since it contains some other aspects.

Acknowledgment. The author is grateful to Y. Ihara for a helpful discussion, who
referred the author to the works of Deligne-Serre [D-S] and Serre [Se]. The author is
grateful to R. Borcherds, where the proof of §2 Lemma 3 is due to him, which simplify the
early version of the present article. The author is grateful to M. Kashiwara for the help by
the computer experiment at an early stage of the work. He is gratefull also to D. Zagier
for discussions to help the understanding the problem in connetion with quadratic forms.

Appendix 1. Marked elliptic root systems and their diagram

We recall ([Sa1]) the definition of a marked elliptic root system (R,G) and its diagram
Γ(R,G) and codimension cod(R,G). We give the explicit formula of the characteristic
polynomial ϕ(R,G) (A1.6-7), the Coxeter number m(R,G) (A1.5) and the genus a0 (A1.8).

Definition. Let us call a set R of non-isotropic elements in an even lattice (Q, q) (i.e.
a pair of a free abelian group Q of finite rank and a quadratic form q on it) a generalized root
system belonging to (Q, q) if 1) R generates Q, 2) for all α and β ∈ R one has I(α∨, β) ∈ Z,
where α∨ := α/q(α) and I(x, y) := q(x+ y)− q(x)− q(y), 3)the reflexion wα w.r.t. α ∈ R
(i.e. wα(u) = u − α∨I(α, u)) preserves the set R, and 4) if R = R1 ∪ R2 and R1 ⊥ R2
w.r.t. q then either R1 = φ or R2 = φ. The group W (R) generated by reflexions wα for
all α ∈ R is called the Weyl group of the root system R.
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One has the equivalence: #R < ∞ ⇐⇒ #W (R) < ∞ ⇐⇒ q is definite. This
is the case of finite root systems studied in classical literatures ([B]). If q is semi-definite
with 1-dimensional radical rad(q) := Q⊥, then R is an affine root system in the sense of
Macdonald. Our interest in the paper is on the next case with two dimensional radicals:

Definition. A marked elliptic root system is a pair (R,G) where R is a generalized
root system belonging to a semipositive lattice (Q, q) with rank(rad(q)) = 2 and G is a
rank 1 subspace of rad(q)⊗Z Q. Put l := rank(Q/rad(q)) = rank(Q)− 2.

The image Ra of R by the projection Q → Qa := Q/G ∩ Q is an affine root system,
which we assume to be reduced. Once for all, we choose and fix a set Γaff ⊂ R which is
projected bijective to a simple root basis of Ra. The Γaff is unique up to an isomorphism
of (R,G). As usual (eg. [B,chVI,§4]), an affine Dynkin diagram structure for the root
system Ra is attached to Γaff , identifying Γaff with the set of vertices of the diagram.

Let nα ∈ Z>0 for α ∈ Γaff be a system of integers such that gcd{nα | α ∈ Γaff} = 1
and b :=

∑

α∈Γaff nαα belongs to rad(q) (i.e. the projection of b in Qa is a base of the set

of null roots of Ra). Fix a generator a of G∩Q ' Z. Then, a and b form an integral basis
of the radical of q (i.e. rad(q) = Za⊕ Zb), and one has Q =

∑

ZΓaff ⊕ Za. For any root
α ∈ R, put k(α) := inf{k ∈ Z>0 | α+ k · a ∈ R} and α∗ := α+ k(α) · a.

The exponents of the marked elliptic root system (R,G) are, by definition, 0 and

(A1.1) mα :=
q(α)

k(α)
· nα

for α ∈ Γaff . Let mmax := max{mα | α ∈ Γaff} be the largest exponent. Put

(A1.2) Γmax := {α ∈ Γaff | mα = mmax} and Γ∗max := {α∗ | α ∈ Γmax}.

Finally, we define the root basis for the marked elliptic root system (R,G) by

(A1.3) Γ(R,G) = Γaff ∪ Γ∗max.

The Γ(R,G) is called the root basis, since it has properties: i) Q(R) =
∑

α∈Γ(R,G) Zα,

ii) W (R) =< wα | α ∈ Γ(R,G) > and iii) R = ∪α∈Γ(R,G)W (R) · α. To Γ(R,G), we
attach the elliptic diagram defined by i) vertices are in one to one correspondence with
Γ(R,G), ii) bonds among the vertices are defined according to usual convention (e.g.
[B]), except for newly introduced double dotted bond o===o between vertices α and α∗
for α ∈ Γmax (characterized by I(α∨, α∗) = I(α, α∗∨) = 2 ([Sa1,I,§9], see the Example
below). The elliptic diagram is uniquely determined from the isomorphism class of (R,G)
independent of choices of Γaff and a. Conversely, the elliptic diagram Γ(R,G) determines
the isomorphism class of the marked elliptic root system (R,G) ([Sa1,I,(9.6) Theorem]).
We shall identify the elliptic diagram with the root basis Γ(R,G).

We call a marked elliptic root system (R,G) to be simply laced if the bonds of its
diagram Γ(R,G) are either simply laced (o—–o) or doubly dotted (o= = =o). Simply

laced elliptic root systems are the types A
(1,1)
l (l ≥ 2), D

(1,1)
l (l ≥ 4) and E

(1,1)
l (l = 6, 7, 8).
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The cardinality of Γmax is called the codimension of (R,G):

(A1.4) codim(R,G) := #Γmax = #Γ∗max = #{◦ === ◦}.

One observes that i) the compliment Γaff \ Γmax = Γ(R,G) \
(

Γmax ∪ Γ∗max
)

is a
disjoint union of Al-type diagrams, say Γ(Al1), . . . ,Γ(Alr ), ii) one has the equality:

(A1.5) m(R,G) := max{l1 + 1, · · · , lr + 1} = lcm{l1 + 1, · · · , lr + 1},

and iii) the exponents on the branch Γ(Ali) are given by an arithmetic progression:

(A1.6)
1

li + 1
·mmax, · · · ,

li
li + 1

·mmax

([Sa1,I,(8.4)iv)]). A Coxeter element c(R,G) is defined as a product of reflexions wα for
α ∈ Γ(R,G) in such sequence that wα∗ comes next to wα for α ∈ Γmax. Since Γaff is a
tree, the conjugacy class of c(R,G) in W (R) does not depend on the order of the product.

Lemma A ([Sa1,I,§9(9.7)Lemma A]). A Coxeter element c(R,G) of (R,G) is of finite
order m(R,G). The characteristic polynomial ϕ(R,G) := det(λI − c(R,G)) is given by

(A1.7) ϕ(R,G)(λ) = (λ− 1)
∏

α∈Γaff
(λ− exp(2π

√
−1mα/mmax)).

Of course by definition, deg(ϕ(R,G)) = rank(Q(R)) = l+2. The (A1.2), (A1.6) and (A1.7)
determine ϕ(R,G) from the diagram Γ(R,G). Comparing (A1.4) with the fact: 2a0 (1.1.2)
is the multiplicity of zeros of ϕ(R,G)(λ) = 0 at λ = 1, we obtain:

Corollary. The genus a0 of a marked elliptic root system is given by

(A1.8) 2a0 = codim(R,G) + 1.

This implies: a0 = 1 ⇔ codim(R,G) = 1. That is: the weight a0 of the eta-product η(R,G)
of a marked elliptic root system (R,G) is equal to 1, if and only if it is 1-codimensional.

Example. We exhibit diagrams Γ(R,G) together with their exponents for simply
laced and 1-codimensional elliptic root systems (R,G). One has mmax = m(R,G).

D
(1,1)
4 E

(1,1)
7

E
(1,1)
6 E

(1,1)
8
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Table 1. Marked elliptic root systems and their exponents.

Type m(R,G) exponents codim ϕ(R,G)

A
(1,1)
l l ≥ 1) 1 0, mi = 1 (0 ≤ i ≤ l) l + 1 (λ− 1)l+2

A
(1,1)∗
1 2 0, 1/2, 1 1 (λ2 − 1)(λ− 1)

B
(1,1)
l (l ≥ 3) 2 0, 2, 2, 2, mi = 4 (3 ≤ i ≤ l) l − 2 (λ2 − 1)3(λ− 1)l−4

B
(1,2)
l (l ≥ 2) 2 0, 1, 1, mi = 2 (2 ≤ i ≤ l) l − 1 (λ2 − 1)2(λ− 1)l−2

B
(2,1)
l (l ≥ 2) 2 0, 1, 1, mi = 2 (2 ≤ i ≤ l) l − 1 (λ2 − 1)2(λ− 1)l−2

B
(2,2)
l (l ≥ 2) 1 0, mi = 1 (0 ≤ i ≤ l) l + 1 (λ− 1)l+2

C
(1,1)
l (l ≥ 2) 1 0, mi = 1 (0 ≤ i ≤ l) l + 1 (λ− 1)l+2

C
(1,2)
l (l ≥ 2) 2 0, 1, 1, mi = 2 (2 ≤ i ≤ l) l − 1 (λ2 − 1)2(λ− 1)l−2

C
(2,1)
l (l ≥ 2) 2 0, 1, 1, mi = 2 (2 ≤ i ≤ l) l − 1 (λ2 − 1)2(λ− 1)l−2

C
(2,2)
l (l ≥ 3) 2 0, 1, 1, 1, mi = 2 (3 ≤ i ≤ l) l − 2 (λ2 − 1)3(λ− 1)l−4

B
(2,2)∗
l (l ≥ 2) 2 0, 1/2, mi = 1 (1 ≤ i ≤ l) l (λ2 − 1)(λ− 1)l

C
(1,1)∗
l (l ≥ 2) 2 0, 1, mi = 2 (1 ≤ i ≤ l) l (λ2 − 1)(λ− 1)l

BC
(2,1)
l (l ≥ 1) 2 0, 2, mi = 4 (1 ≤ i ≤ l) l (λ2 − 1)(λ− 1)l

BC
(2,4)
l (l ≥ 1) 2 0, 1, mi = 2 (1 ≤ i ≤ l) l (λ2 − 1)(λ− 1)l

BC
(2,2)
l (1) (l ≥ 2)2 0, 2, 2, mi = 4 (2 ≤ i ≤ l) l − 1 (λ2 − 1)2(λ− 1)l−2

BC
(2,2)
l (2) (l ≥ 2)1 0, mi = 2 (0 ≤ i ≤ l) l + 1 (λ− 1)l+2

D
(1,1)
l (l ≥ 4) 2 0, 1, 1, 1, 1, mi = 2 (4 ≤ i ≤ l) l − 3 (λ2 − 1)4(λ− 1)l−6

E
(1,1)
6 3 0, 1, 1, 1, 2, 2, 2, 3 1 (λ3 − 1)3(λ− 1)−1

E
(1,1)
7 4 0, 1, 1, 2, 2, 2, 3, 3, 4 1 (λ4 − 1)2(λ2 − 1)(λ− 1)−1

E
(1,1)
8 6 0, 1, 2, 2, 3, 3, 4, 4, 5, 6 1 (λ6 − 1)(λ3 − 1)(λ2 − 1)(λ− 1)−1

F
(1,1)
4 3 0, 2, 2, 4, 4, 6 1 (λ3 − 1)2

F
(1,2)
4 4 0, 1, 2, 2, 3, 4 1 (λ4 − 1)(λ2 − 1)

F
(2,1)
4 4 0, 1, 2, 2, 3, 4 1 (λ4 − 1)(λ2 − 1)

F
(2,2)
4 3 0, 1, 1, 2, 2, 3 1 (λ3 − 1)2

G
(1,1)
2 2 0, 3, 3, 6 1 (λ2 − 1)2

G
(1,3)
2 3 0, 1, 2, 3 1 (λ3 − 1)(λ− 1)

G
(3,1)
2 3 0, 1, 2, 3 1 (λ3 − 1)(λ− 1)

G
(3,3)
2 2 0, 1, 1, 2 1 (λ2 − 1)2

Fact. The characteristic polynomial of the next types are non-reduced (cf. (2.7)):

B
(1,2)
2 , B

(2,1)
2 , C

(1,2)
2 , C

(2,1)
2 , B

(1,1)
4 , C

(2,2)
4 , F

(1,1)
4 , F

(1,2)
4 , F

(2,1)
4 , F

(2,2)
4 , G

(1,1)
2 , G

(3,3)
2

Appendix 2. Eta-products arising from Weight Systems

In this appendix we review the conjecture mentioned at the end of (1.2). Recall [Sa2]
that a system W = (a, b, c;h) of 4 integers with 0 < a, b, c < h is called regular if the
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rational function:

χW (T ) := T−h
(Th − T a)(Th − T b)(Th − T c)

(T a − 1)(T b − 1)(T c − 1)

does not have a pole except at T = 0. Then, one has a finite sum development χW (T ) =
∑µ

i=1 T
mi , wheremi ∈ Z are called exponents. Then ϕW (λ) :=

∏µ
i=1(λ−exp(2π

√
−1mi/h))

is a cyclotomic polynomial of Coxeter number h. We consider the associated eta-product
ηW (τ) := ηϕW (τ).

The weight a0 (which we call genus to avoid the confusion with the weights a, b and c) is
integral due to the symmetry of exponents: χW (T ) = ThχW (T−1). The eta-product ηW is
holomorphic (resp. cuspidal) if and only if the dual-rank νW (2.2.2) is non-positive (resp.
negative) ([Sa3, Lemma 13.4], cf. (2.9) Lemma 4). Then,

Conjecture ([Sa3,§13 Conj.13.5]). Fourier coefficients at ∞ of an eta-product ηW
attached to a regular weight system are non-negative if and only if ηW is not a cusp form.

Ex. The following is the list of weight systems whose exponents are non-negative ([Sa2]).

Type weights Coxeter # genus rank dual-rank ϕW

Al (1, b, l + 1− b; l + 1) l + 1 0 l l (λl+1−1)
(λ−1)

D1 (2, l − 2, l − 1; 2l − 2) 2l − 2 0 l l (λ2(l−1)−1)(λ2−1)
(λl−1)(λ−1)

E6 (3, 4, 6; 12) 12 0 6 6 (λ12−1)(λ3−1)(λ2−1)
(λ6−1)(λ4−1)(λ−1)

E7 (4, 6, 9; 18) 18 0 7 7 (λ18−1)(λ3−1)(λ2−1)
(λ9−1)(λ6−1)(λ−1)

E8 (6, 10, 15; 30) 30 0 8 8 (λ30−1)(λ5−1)(λ3−1)(λ2−1)
(λ15−1)(λ10−1)(λ6−1)(λ−1)

Ẽ6 (1, 1, 1; 3) 3 1 8 0 (λ3−1)3
(λ−1)

Ẽ7 (1, 1, 2; 4) 4 1 9 0 (λ4−1)2(λ2−1)
(λ−1)

Ẽ8 (1, 2, 3; 6) 6 1 10 0 (λ6−1)(λ3−1)(λ2−1)
(λ−1)

The set of exponents for the weight system Al, Dl, El or Ẽl coincides with that of a

root system of type Al, Dl, El or E
(1,1)
l , respectively. So, by definition, the eta-product

for a root system above coincides with that for the correspoinding weight system.
The characteristic polynomial ϕW for the types Al, Dl and El are selfdual (see Remark

below). Then the eta-product ηW is neither cuspidal nor holomorphic, and its Fourier
coefficients are non-negative (see [Sa3, §12,§13 Assertion 13.6]).

The eta-products for Ẽl (= elliptic eta-products for E
(1,1)
l ) for l = 6, 7 and 8 are

non-cuspidal holomorphic automorphic forms (see §2 Lemma 4). In [Sa3, §13 Ex.13.7],
we gave a sketch of a proof of the non-negativity of their Fourier coefficients using their
L-functions. Actually, the present paper shall give its complete proof, and so, gives the
first non-trivial answer to the conjecture above.

Remark. Two polynomials ϕ(λ) =
∏

i|h(λ
i − 1)e(i) and ϕ∗(λ) =

∏

j|h(λ
j − 1)e

∗(j) of

the same Coxeter # h are called dual to each other if e(i) + e∗(h/i) = 0 for i | h ([Sa3]).
Eg. Al, Dl and El are selfdual. The Fourier coefficients of ηϕ and ηϕ∗ for such dual pair
are trivially non-negative. The concept of duality extends in a obvious manner to arbitrary
cyclotomic functions (see (2.2)), which is a key concept to understand eta-products in §2.
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§2. Automorphicity of the eta-product
In this section, we first study the automorphic properties of eta products in general.

There are several literatures (e.g. [H-M][D-K-M][Ko][Ha]) on the subject when the weight
a0 is an (even) integer. We modify and sharpen them using the concept of the duality
(2.2) in order to include the half integral weight case to cover all elliptic eta-products.
Precisely, first, the character and the level of an eta-product are determined by a help of
dual numerical invariants (Lemma 1). Then, we formulate a criterion on a eta-product to
be holomorphic or cuspidal in terms of the dual-rank νϕ (2.2.2). Namely, the eta product
ηϕ is holomorphic (resp. cuspidal) at the cusps in Z if and only if its dual rank is non-
positive (resp. negative) (Lemma 2). On the other hand, one observes that the dual rank
νϕ is non-negative if all Fourier coefficients at ∞ are non-negative (Lemma 3).

In the latter half of the section and in the Appendix 3, we prove stronger results on
elliptic eta-products: 1) an elliptic eta-product η(R,G) is holomorphic (resp. cuspidal) if
and only if the dual rank ν(R,G) is non-positive (resp. negative) (Lemma 4), and 2) the
dual rank ν(R,G) is, in fact, non-positive for any elliptic root system (R,G) and is equal
to 0 if and only if the elliptic root system is 1-codimensional and simply laced (Lemma

5). Such root system (R,G) are classified into the types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 .

That is: an elliptic eta product is always holomorphic and it is not a cusp form if it is one
of the above 4 types.

Notation. The argument of the value
√
z for z ∈ C is chosen in the interval (−π/2, π/2].

(2.1) First, we introduce numerical invariants for a cyclotomic function ϕ (1.1.1). Put

rank: µϕ := deg(ϕ) =
∑

i|h
i · e(i) ∈ Z,(2.1.1)

discriminant: dϕ :=
∏

i|h
ie(i) ∈ Q.(2.1.2)

We shall denote by dsf ∈ Z>0 the square free part of dϕ (ie. the smallest positive integer

with dϕ/dsf ∈
(

Q×
)2
). Obviously, one has dsf |h.

(2.2) The dual cyclotomic function with the Coxeter number h and the dual eta-product
are defined by

(2.2.1)

ϕ∗(λ) :=
∏

i|h
(λh/i − 1)−e(i),

η∗ϕ(τ) := ηϕ∗(τ) =
∏

i|h
η((h/i) · τ)−e(i).

Obviously, one has ϕ∗∗ = ϕ and η∗∗ϕ = ηϕ. We define the dual numerical invariants.

(2.2.2)



































dual genus: 2a∗0 = −
∑

i|h
e(i),

dual rank: νϕ := µϕ∗ = deg(ϕ∗) = −
∑

i|h
(h/i) · e(i),

dual discriminant: d∗ϕ := dϕ∗ =
∏

i|h
(h/i)−e(i).

10



The next numerical relations follow immediately from the definitions.

a0 + a∗0 = 0.(2.2.3)

dϕ = h2a0 · d∗ϕ(2.2.4)

This implies dsf = d∗sf if 2a0 is an even integer, and lcm(dsf , d
∗
sf )/gcd(dsf , d

∗
sf ) is equal

to the square free part of h if 2a0 is an odd integer. Sometimes, it is convenient to use a
notion of a cyclotomic function ϕ̂ := (ϕ∗)−1 instead of the dual function ϕ∗:

(2.2.5) ϕ̂(λ) :=
∏

i|h
(λh/i − 1)e(i)

Numerical invariants (1.1.2), (2.1.1) and (2.1.2) attached to ϕ̂ are â0 = a0, µϕ̂ = −νϕ and

dϕ̂ = (d∗ϕ)
−1 (hence d̂sf = d∗sf ). The attached eta-product is

(2.2.6) η̂ϕ(τ) := ηϕ̂(τ) =
(

η∗ϕ(τ)
)−1

=
∏

i|h
η((h/i)τ)e(i).

(2.3) The duality between ϕ and ϕ∗ are equivalent to (cf [Sa3, (13.3)])

(2.3.1)
ηϕ(−1/hτ) · η∗ϕ(τ) = (τ/

√
−1)a0/

√

d∗ϕ,

ηϕ(τ) · η∗ϕ(−1/hτ) = (
√
−1/τ)a0/

√

dϕ,

(use the fact: η(−/τ) =
√

τ/
√
−1η(τ)). So, we obtain a formula for η̂ϕ in terms of ηϕ:

(2.3.2) η̂ϕ(τ) =
√

d∗ϕ ηϕ(−1/hτ)(τ/
√
−1)−a0 .

(2.4) We recall automorphic forms of half-integral weights [Sh]. We fix notation according
to [Kob]. For an odd integer d and any integer c, let us define the residue symbol

(

c
d

)

as
follows. If d > 0 and is prime it is the Legendre symbol. It is extended for all odd d > 0
multiplicatively. If d < 0 then

(

c
d

)

=
(

c
|d|
)

for d < 0 and c > 0 and
(

c
d

)

= −
(

c
|d|
)

for d < 0

and c < 0. Put
(

0
±1
)

:= 1. For odd d, we define also

(2.4.1) εd :=
{

1 if d ≡ 1 mod 4;√
−1 if d ≡ 3 mod 4.

So εd =
√

(−1
d

)

. Recall that Γ0(N) :=
{

(

a b
c d

)

∈ SL2(Z) | c ≡ 0 mod N
}

for a positive

integer N . For A =

(

a b
c d

)

∈ Γ0(4) and τ ∈ H, put

11



(2.4.2) j(Ã, τ) :=
( c

d

)

ε−1d
√
cτ + d.

In particular, j(Ã, τ) = 1 for A =

(

−1 b
0 −1

)

and b ∈ Z. It is known ([Kob, ch.IV]) that

they satisfy the cocycle condition: j(ÃB, τ) = j(Ã, τ)j(B̃, τ) for A,B ∈ Γ0(4).
Let 2k,N ∈ Z>0 and assume that N ≡ 0 mod 4 if 2k is odd. Let ε be a Dirichlet

character mod N such that ε(−1) = 1 or (−1)k according as 2k is odd or even. A holo-
morphic function f(τ) on the complex upper half plane H is called a weakly holomorphic
automorphic form of type (k, ε) and of level N , if for all A ∈ Γ0(N) one has:

(2.4.3) f |kÃ(τ) := j(Ã, τ)−2kf
(aτ + b

cτ + d

)

= ε(d)f(τ) if 2k is odd,

(2.12) f |kA(τ) := (cτ + d)−kf
(aτ + b

cτ + d

)

= ε(d)f(τ) if 2k is even.

(2.5) We state a lemma which determine the type and level of eta-products (c.f. [H-M,
theorem 1],[Ha, (3.6) Theorem] for even 2a0).

Lemma 1. Let a cyclotomic function ϕ(λ) (1.1.1) and its dual ϕ∗(λ) (2.2.1) be given.
Let ηϕ(τ) (1.1.3) and η

∗
ϕ(τ) (2.2.1) be the attached eta-product and dual eta-product. Then

ηϕ(mϕτ) (resp. 1/η
∗
ϕ(m

∗
ϕτ) ) is a weakly holomorphic (i.e. holomorphic except at cusps)

automorphic form of type (a0, εϕ) (resp. (a0, ε
∗
ϕ)) on the group Γ0(Nϕ). Here

(2.5.1)
mϕ := 24/gcd(24, µϕ), m∗ϕ := 24/gcd(24, νϕ),

Nϕ := hmϕm
∗
ϕ,

and εϕ and ε
∗
ϕ are Dirichlet characters mod Nϕ given as follows. If 2a0 is even,

(2.5.2) εϕ(d) = ε∗ϕ(d) =















(

dsf (−1)a0

d

)

for d odd,
(

d

dsf

)

for d even.

If 2a0 is odd, then Nϕ ≡ 0 mod 4. Then the characters εϕ and ε
∗
ϕ mod Nϕ are given by

(2.5.3)















εϕ(d) =

(

2mϕdsf
d

)

for d odd,

ε∗ϕ(d) =

(

2m∗ϕd
∗
sf

d

)

for d odd.
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Proof. We prove the rules (2.4.3) or (2.4.4) only for f(τ) := ηϕ(mϕτ), since similar
rule holds for η∗ϕ(m

∗
ϕτ) by duality, and then one gets the rule for η̂ϕ(m

∗
ϕτ) = 1/η∗ϕ(m

∗
ϕτ).

Note that the definitions of mϕ and m∗ϕ (2.5.1) imply:

(2.5.4) mϕ · µϕ ≡ 0 mod 24, m∗ϕ · νϕ ≡ 0 mod 24.

Recall a transformation rule for η(τ) ([Ra, p.163]). Let

(

a b
c d

)

∈ SL(2,Z) with c > 0.

Then one has η
(

aτ+b
cτ+d

)

= ε(a, b, c, d)
√

cτ+d√
−1 η(τ) with

ε(a, b, c, d) =



















(

d

c

)

exp

(

π
√
−1(1− c)

4

)

exp

(

π
√
−1

12

(

c(a+ d− bcd) + bd
)

)

if c odd,

( c

d

)

exp

(

π
√
−1d
4

)

exp

(

π
√
−1

12

(

c(a− d− ad2) + bd
)

)

if d odd.

Case A. 2a0 ≡ 0 mod 2.

One has to show f(τ)|a0A = εϕ(d)f(τ) for A =

(

a b
c d

)

∈ Γ0(Nϕ).

If c = 0, then a = d = ±1, and so (cτ + d)a0 = (±1)a0 = εϕ(d). Hence, f(τ)|a0A =

(±1)a0
∏

i|h η(mi(τ ± b))e(i) = εϕ(±1)f(τ)exp(±π
√
−1
12 bmϕ

∑

i|h ie(i)) where the last expo-

nential factor reduces to 1 due to (2.5.4).
Let c 6= 0. Since εϕ(−1) = (−1)a0 , by replacing A by −A if necessary, we may assume

c > 0. Put c = kmϕm
∗
ϕh for k ∈ Z>0. Since (c, d) = 1, we separate two cases.

Case A.1. d ≡ 1 mod 2

f |a0A(τ) =
∏

i|h

{

η
( amϕiτ +mϕib

(kmϕm∗ϕh/mϕi)mϕiτ + d

)√

kmϕm∗ϕhτ + d
−1}e(i)

=
∏

i|h

{

ε(a, bmϕi, km
∗
ϕh/i, d)

√
−1−1/2η(mϕiτ)

}e(i)

= f(τ)
∏

i|h

(

(km∗ϕh/i

d

)

exp
(π
√
−1(d− 1)

4

)

)e(i)

exp
(π
√
−1

12

(

(a− d− ad2)
∑

i|h
e(i)km∗ϕh/i+ dbmϕ

∑

i|h
ie(i)

))

.

Due to (2.5.4), the last exponential factor reduces to 1. Recalling the definitions of the
genus a0, dual discriminant d∗ϕ and its square free part d∗sf , we get easily

= f(τ)
(km∗ϕ

d

)2a0
.
(d∗sf
d

)

exp
(π
√
−1(d− 1)2a0

4

)

.
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Noting that 2a0 is an even integer, we get

= f(τ)
(dsf
d

)

exp
(π
√
−1(d− 1)a0

2

)

.

This is the formula to be proven.

Case A.2. c ≡ 1 mod 2

By assumption, c/mϕi = km∗ϕh/i is also an odd integer. Therefore, one proceeds:

f |a0A(τ) =
∏

i|h

{

η
( amϕiτ +mϕib

(kmϕm∗ϕh/mϕi)mϕiτ + d

)√

kmϕm∗ϕhτ + d
−1}e(i)

=
∏

i|h

{

ε(a, bmϕi, km
∗
ϕh/i, d)

√
−1−1/2η(mϕiτ)

}e(i)

= f(τ)
∏

i|h

(

( d

km∗ϕh/i

)

exp
(

−
π
√
−1km∗ϕh/i

4

)

)e(i)

exp
{π
√
−1

12

(

(a+ d− bcd)
∑

i|h
e(i)km∗ϕh/i+ dbmϕ

∑

i|h
ie(i)

)}

.

Due to (2.5.4), the last exponential factor reduces to 1. Recalling the definitions of the
genus a0, dual discriminant d∗ϕ and its square free part d∗sf , we get easily

= f(τ)
( d

km∗ϕ

)2a0
( d

d∗sf

)

exp
(π
√
−1km∗ϕν
4

)

.

Noting that 2a0 is an even integer and that 24|m∗ϕν, we get

= f(τ)
( d

dsf

)

.

Case B. 2a0 ≡ 1 mod 2.

One has to show f |a0Ã(τ) = εϕ(d)f(τ) for A =

(

a b
c d

)

∈ Γ0(Nϕ).

Let us prove Nϕ ≡ 0 (4). If h ≡ 0 (4) then there is nothing to prove. If 26 |h, then
i ≡ h/i ≡ 1 mod 2 for all i with e(i) 6= 0, and hence, by definitions, µϕ ≡ νϕ ≡ 2a0 ≡ 1
mod 2. So, mϕ ≡ m∗ϕ ≡ 0 (8). If 2|h and 46 |h, then i+ h/i ≡ 1 for all i with e(i) 6= 0, and
hence, by definitions, µϕ + νϕ ≡ 2a0 ≡ 1 mod 2. So, either mϕ ≡ 0 (8) or m∗ϕ ≡ 0 (8).

Since 4|Nϕ|c, c is even and hence d is odd. If c = 0, then a = d = ±1, and so j(Ã, τ) =

1 = εϕ(d). Hence, f(τ)|a0Ã =
∏

i|h η(mϕi(τ ± b))e(i) = f(τ)exp(±ϕ π
√
−1
12 bm

∑

i|h ie(i))

where the last exponential factor reduces to 1 due to (2.5.4).
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Let c 6= 0. Since εϕ(−1) = 1, by replacing A by −A if necessary, we may assume
c > 0. Put c = kmϕm

∗
ϕh for k ∈ Z>0.

f |a0Ã(τ) =
∏

i|h

{

η
( amϕiτ +mϕib

(kmϕm∗ϕh/mϕi)mϕiτ + d

)( c

d

)−1
εd

√

kmϕm∗ϕhτ + d
−1}e(i)

=
∏

i|h

{

ε(a, bmϕi, km
∗
ϕh/i, d)

√
−1−1/2

( c

d

)−1
εdη(mϕiτ)

}e(i)

= f(τ)
∏

i|h

(

(c/mϕi

d

)

exp
(π
√
−1(d− 1)

4

)

( c

d

)−1
εd

)e(i)

exp
{π
√
−1

12

(

(a− d− ad2)
∑

i|h
e(i)km∗ϕh/i+ dmϕ

∑

i|h
ie(i)

)}

.

Due to (2.5.4), the last exponential factor reduces to 1. A direct calculation shows that

exp
(π
√
−1(d−1)
4

)

· εd = (−1)(d2−1)/8 =
(

2
d

)

. Recalling the definitions of the genus a0, dis-
criminant dϕ and its square free part dsf , we get easily

= f(τ)
(mϕ

d

)2a0
(dsf
d

)(2

d

)2a0
.

Since 2a0 is odd, this is the formula to be proven. Q.E.D.

(2.6) Remark. 1. Formula (2.3.1) is reformulated as

(2.6.1) η̂ϕ(m
∗
ϕτ) =

(

mϕ

m∗ϕ

)a0/2
√
D√
−1a0

ηϕ(mϕ·)|a0σ(τ),

where D := h−a0dϕ = ha0dϕ∗ , σ :=

(

0 1
−Nϕ 0

)

and f(m∗ϕ·) means the function f(m∗ϕτ).

(2.7) If ϕ is non-reduced (see definition below), then one needs a slight careful treatment
of the eta product ηϕ, on which we discuss in this paragraph. The goal results are given
in Facts, which are used in §3 and 4. For a given cyclotomic function ϕ (1.1.1), put

g := gcd{i | e(i) 6= 0} and g∗ := h/lcm{i | e(i) 6= 0}.
We say ϕ is reduced if g = 1 and dual-reduced if g∗ = 1. So, ϕ is reduced (resp. dual-
reduced) iff ϕ∗ is dual-reduced (resp. reduced). We say ϕ is non-reduced if g 6= 1.

Let us define the reduction ϕred of ϕ with the reduced Coxeter number hred by

(2.7.1) ϕred(λ) :=
∏

i|h
(λi/g − 1)e(i) and hred := h/g.

Then (ϕred)∗ = ϕ∗ is dual-reduced with respect to the Coxeter number hred. One has the
relations: ηϕ(τ) = ηϕred(gτ) and η

∗
ϕ(τ) = η∗ϕred(τ) . The numerical invariants are changed

as: ared0 = a0, µ
red
ϕ = µϕ/g, ν

red
ϕ = νϕ. Therefore,

(2.7.2) mred
ϕ := 24/gcd(24, µred) and m∗redϕ := 24/gcd(24, νred) = m∗ϕ.
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satisfies: mred
ϕ /(mred

ϕ , g) = mϕ and mred
ϕ hred | mϕh. In particular, one has:

(2.7.3) ηϕ(mϕτ) = ηϕred((g/gcd(m
red
ϕ , g))mred

ϕ τ).

Let us summarize some Facts, which will be used in §3 and 4 (for a proof of Fact 2,
use Tables 1 and 2 and their following Facts. For a proof of (2.7.4), use (2.7.3)).

Fact 1. The next 4 conditions are equivalent: i) g | mred
ϕ , ii) mred

ϕ hred = mϕh, iii)

Nϕ = Nϕred and iv) ηϕ(mϕτ) = ηϕred(m
red
ϕ τ). We shall call such ϕ tamely non-reduced.

2. The characteristic polynomial of an elliptic root system is either reduced or tamely
non-reduced.

3. Let ϕ be reduced or tamely non-reduced. Suppose p|mred
ϕ for a prime p, then

(2.7.4) ηϕ(mϕτ)|Up = 0 ,

where Up is one of the Hecke operators acting on formal power series in q given by
(
∑

c(n)qn)|Up :=
∑

c(pn)qn (cf. [Kob, 5.12]). This implies that the p-th Euler factor
(if it exists) for the Dirichlet series attached to ηϕ(mϕτ) is equal to 1.

(2.8) We analyze Fourier expansions of eta-products at a cusp point a/c ∈ Q ∪ {∞} for
a, c ∈ Z with (a, c) = 1. Recall ([O],[Kob]) that a weakly holomorphic automorphic form
f of weight k is holomorphic (resp. vanishing) at the cusp if the expansion of f |kA(τ) for
A =

(

a b
c d

)

∈ SL2(Z) in the powers of q := exp(2π
√
−1τ) has only non-negative (resp.

positive) exponents. The f is called a cusp form if it is vanishing at all cusp points.

For a given ϕ (1.1.1), put Φϕ(ξ) = Φ(ξ) :=
∑

i|h h
(i,ξ)2

iξ, e(i) for ξ ∈ Z. The ξ · Φ(ξ)
depends only on ξ mod h. Recall Definitions (2.1.1) and (2.2.2) so that one has Φ(h) = µϕ
and Φ(1) = −νϕ. The Fourier expansion of the eta-product (1.1.3) at a/c for a, c ∈ Z
with (a, c) = 1 starts with the term qc·Φ(c) for q := exp(2π

√
−1τ/24mh) (eg. [H-M][Sa3]).

Hence one obtains:

Lemma 2. The eta-product ηϕ(τ) is holomorphic (resp. vanishing) at a cusp point
a/c for a, c ∈ Z with gcd(a, c) = 1 if and only if c · Φϕ(c) ≥ 0 (resp. > 0). In particular,

the eta product ηϕ is























holomorphic

{

at the ∞ if and only if µϕ ≥ 0 ,

at cusps in Z if and only if νϕ ≤ 0 ,

vanishing

{

at the ∞ if and only if µϕ > 0 ,

at cusps in Z if and only if νϕ < 0 .

The proof of the next lemma given here is due to Borcherds. This simplifies the original
version of the present article, where one proved case by case for particular eta-products.

Lemma 3. If all Fourier coefficients at ∞ of ηϕ are non-negative, then νϕ ≥ 0.

Proof. Suppose νϕ < 0. Then, the Fourier expansion of ηϕ at 0 implies: limt→0 ηϕ(
√
−1t)

= 0. On the other hand, the Fourier expansion
∑

n c(n)q
n at∞ implies: limt→0 ηϕ(

√
−1t)

= lims→1
∑

n c(n)s
n, which cannot be 0 if all c(n) are non-negative. q.e.d.
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Remark. 1. One has Φ(ξ) = Φ((ξ, h)). Therefore, an eta-product is holomorphic
(resp. cuspidal) if and only if Φ(c) ≥ 0 (resp. > 0) for c ∈ Z>0 with c|h.

2. For k ∈ Z>0, one has Φϕk(ξ) =
(k,ξ)
k Φϕ(

ξ
(k,ξ) ) where ϕk(λ) := ϕ(λk). Therefore,

an eta-product ηϕ is holomorphic or cuspidal if and only if ηϕred is so.
3. One has: Φϕ(h/ξ) = Φϕ̂(ξ) = −Φϕ∗(ξ) for ξ|h. This implies that ηϕ is holomorphic

or cuspidal if and only if η̂ϕ is so.
4. The following sharpening of Lemma 3. gives constraint on the Fourier coefficients

of ηϕ(mτ) =
∑

n∈Z
c(n)qn at ∞, but, we shall not use this fact in the present article.

(2.8.1)
∑

n∈Z

c(n)e−V T ∼ O
(

T−a0exp(νϕ/ (24mϕhϕT ))
)

(T ↓ 0) .

Here the major part of the right hand side is the second exponential factor whose exponent
−νϕ/24mϕhϕ is equal to −n/Nϕ where −n is the leading degree of η∗ϕ(m

∗
ϕτ) in q =

exp(2π
√
−1τ) and Nϕ is the level given in (2.5.1).

(2.9) Let us return to the study of elliptic eta-products. First, from Lemma 2, one obtains
a numerical criterion for elliptic eta-products to be holomorphic or cuspidal as follows.

Lemma 4. An elliptic eta-product η(R,G) is holomorphic (resp. cuspidal), if and only
if the dual rank ν(R,G) := νϕ(R,G)

is non-positive (resp. negative).

Proof. One has to show that Φ(ξ) ≥ 0 (resp. > 0) for all ξ ∈ Z>0 with ξ|m(R,G)
if and only if ν(R,G) ≤ 0 (resp. < 0). Since Φϕ(1) = −νϕ, the condition is necessary.
Since Φϕ(h) = µϕ =: µ(R,G) = l + 2 > 0, the condition is already sufficient if the Coxeter
number h := m(R,G) is a prime number (recall the above Remark 1). These cover almost

all types of elliptic root systems except for the types E
(1,1)
7 , E

(1,1)
8 , F

(1,2)
4 and F

(2,1)
4 where

teh Coxeter number m(R,G) is 4, 6, 4 and 4, respectively (see Table 2). In view of Remark

2 after Lemma 2, the proof for the types F
(1,2)
4 and F

(2,1)
4 are done already. For the proof

of remaining cases, the following calculations are sufficient.

Φ
E

(1,1)
7

(2) = 4 2
2

2·42 + 4 2
2

2·2 − 4 1
2·1 = 6 > 0,

Φ
E

(1,1)
8

(2) = 6 2
2

2·6 + 6 1
2

2·3 + 6 2
2

2·2 − 6 1
2·1 = 6 > 0,

Φ
E

(1,1)
8

(3) = 6 3
2

3·6 + 6 3
2

3·3 + 6 1
2

3·2 − 6 1
3·1 = 8 > 0. Q.E.D.

In fact, we shall prove the next lemma in Appendix 3.

Lemma 5. i) For all elliptic root system (R,G), one has ν(R,G) ≤ 0.
ii) The equality ν(R,G) = 0 holds if and only if the root system (R,G) is (a) 1-

codimensional and (b) simply laced. For definitions of simply lacedness and 1-codimensionality,
see Appendix 1 and its Example.

As a result of Lemmas 4 and 5 and the classification (Table 2 ), one obtains:

Corollary. All elliptic eta-products are holomorphic. An elliptic eta-product is not

cuspidal if and only if the root system is one of types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or E

(1,1)
8 .
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Appendix 3. Rank, dual-rank and σ-rank of an elliptic root system

In this Appendix, we give a proof of Lemma 5. The proof is achieved by introducing
a numerical invariant, called σ-rank, and proving its invariance by foldings and mean
foldings of elliptic diagrams (Lemma 6). At the end of Appendix 3, we give Table 2 of
rank, dual-rank, σ-rank, conductors and discriminants for elliptic root systems.

First, let us define the σ-rank. For a characteristic function ϕ(λ) (1.1.1) with non-
vanishing genus a0, we introduce the σ-rank by

(A3.1) σϕ := (µϕ − νϕ)/a0,

where µϕ, νϕ and a0 are the rank (2.1.1), dual rank (2.2.2) and genus (1.1.2) for ϕ. One
easily checks that the σ-rank has the stability:

σϕ = σϕ̂ = σϕ∗ .

For an elliptic root system (R,G), we define the elliptic σ-rank σ(R,G) := σϕ(R,G)
. The

next Lemma 6 ii) on elliptic σ-rank will be used in a proof of Lemma 5 ii) b).

Lemma 6. i) The σ-rank for any elliptic root system is a positive integer.
ii) The σ-rank does not change by a folding or mean folding of an elliptic diagram,

where the (mean) foldings are defined below.

We shall give proofs of Lemmas 5 and 6 simultaneously.
First, we recall the definition of foldings and mean foldings of elliptic root systems ([Sa1,I,§12]).
Assume that (R,G) is neither of the typesA

(1,1)∗
1 , B

(2,2)∗
l , C

(1,1)∗
l , BC

(2,2)
l (1) norBC

(2,2)
l (2).

Let Γaff ⊂ R be, as in Appendix 1, a lifting of a simple basis of Ra := R/G, which we iden-
tify with the affine diagram for Ra. An automorphism h of the affine diagram Γaff can be
lifted to an automorphism of the elliptic diagram Γ(R,G) (A1.3) and extended to an auto-
morphism r(h) ∈ Aut(R, rad(q)) of the elliptic root system such that r(h)|Γaff = h, since
h preserves the exponents (A1.1). In particular, the action on Γ(R,G) preserves the maxi-
mal exponent part Γmax (A1.2) and permutates the components of Γaff \Γmax. Let H be a
subgroup of Aut(Γaff ) such that there exists at least a vertex of Γaff which is fixed by H.
For any α ∈ R, put TrH(α) :=

∑

β∈Hα β ∈ FH and TrH(α) := (#Hα)−1
∑

β∈Hα β ∈ FH ,

where FH is the H-fixed point subspace of F = Q(R)⊗R.
Lemma-Definition([Sa1,I,(12.3)]) The image sets TrH(Γ(R,G)) and TrH(Γ(R,G))

in FH of the simple basis Γ(R,G) form simple basis of certain marked elliptic root systems
(RH , G) and (RH , G) belonging to FH , respectively. We call Γ(RH , G) := TrH(Γ(R,G))
and Γ(RH , G) := TrH(Γ(R,G)) the folding and mean folding of Γ(R,G), respectively.

Proof of Lemmas 5 and 6. As in Appendix 1, let Γ(Al1), . . . ,Γ(Alr ) be the com-
ponents of Γaff \ Γmax. Put c := codim(R,G). Using the description (A1.6) of exponents
on Γ(Ali) (1 ≤ i ≤ r) , we obtain descriptions of the characteristic polynomial (A1.7) and
its rank:

(A3.2) ϕ(R,G)(λ) := (λ− 1)c+1
r
∏

i=1

(

(λli+1 − 1)/(λ− 1)
)
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(A3.3) µ(R,G) := µϕ(R,G)
= deg(ϕ(R,G)) = 1 +#(Γaff ) = 1 + c+

r
∑

i=1

li .

Putting m := m(R,G) (A1.5) (which should not be confused with m(R,G) (2.5.1)), we get
the dual characteristic function and the dual rank:

(A3.4) ϕ∗(R,G)(λ) := (λm − 1)−(c+1)
r
∏

i=1

(

(λm − 1)/(λm/(li+1) − 1)
)

(A3.5) ν(R,G) := µϕ∗
(R,G)

= deg(ϕ∗(R,G)) = −
r
∑

i=1

(

m

li + 1
−m

)

− (c+ 1)m

Let us show i) the non-positivity: ν(R,G) ≤ 0, and ii) ν(R,G) = 0 implies c = 1.
If r = 0 then clearly ν(R,G) = −(c + 1)m < 0. For r > 0 rewrite (A3.5) as ν(R,G) =

−∑r
i=1m/(li + 1)− (c+ 1− r)m. The first term is always strictly negative. The second

term becomes positive when r > c+1 ≥ 2. This is the cases when r = 3 and c = 1, or when

r = 4 and c ≤ 2. In the first case, there are 3 types of elliptic diagrams: E
(1,1)
6 , E

(1,1)
7 and

E
(1,1)
8 . Then the equality ν(R,G) = m(1 −∑3

i=1 1/(li + 1)) = 0 is trivial and well-known

for the three. In the latter case of r = 4, the diagrams are of type D
(1,1)
l (l ≥ 4). Then

one has m = 2 and c = l − 3. Thus, ν(R,G) = 2(1− c), which is non-positive and is equal

to 0 only if c = 1 when (R,G) is of type D
(1,1)
4 . Thus, Lemma 5 i) and ii) a) are proven.

Before Lemma 5 ii) b), we prove Lemma 6. Using (A1.8), (A3.3) and (A3.5), one gets:

(A3.6) σ(R,G) = (a0)
−1

r
∑

i=1

(

li +
m

(li + 1)
−m

)

+ 2(m+ 1) .

Let us calculate the contribution of the branch Γ(Ali) in the first term of (A3.6). Since
(li + 1)|m (cf. (A1.5)) and m = 1, 2, 3, 4 or 6, one can list all cases easily as follows.

i) Let m = 1, 2, 3, 4 or 6 and li + 1 = m. Then, one has: li +m/(li + 1)−m = 0. Let
us call this case a longest branch. So, a longest branch gives no-contribution to σ(R,G).

ii) Let m = 4 and li = 1. Then, one has c = 1 and li +m/(li + 1)−m = −1.
iii) Let m = 6 and li = 1. Then, one has c = 1 and li +m/(li + 1)−m = −2.
iv) Let m = 6 and li = 2. Then, one has c = 1 and li +m/(li + 1)−m = −2.

Since the number of non-longest branches is at most 2, we obtain i) of Lemma 6.
Let us consider (mean) folding by a group H. By the action of H on Γ(R,G), the

longest branches are permuted, so the Coxeter number m (A1.5) is unchanged. On the
other hand, the set of non-longest branches are fixed by H. Therefore, in view of the
formula (A3.6) and above fact i), the σ-rank is unchanged by the folding. This proves the
ii) of Lemma 6.

Let us prove ii) b) of Lemma 5: to prove that ν(R,G) = 0 implies Γ(R,G) is simply
laced. Suppose not. This implies that the Γ(R,G) can be realized as a non-trivial (mean)
folding of another elliptic diagram, say Γ(R̂, Ĝ), where we may assume c = codim(R,G) =
codim(R̂, Ĝ) = 1 and µ(R,G) < µ(R̂,Ĝ) ([Sa1,I, (12.5)]). Then the equality σ(R,G) = σ(R̂,Ĝ)
implies ν(R,G) − ν(R̂,Ĝ) = µ(R,G) − µ(R̂,Ĝ) < 0. This is a contradiction to ν(R̂,Ĝ) ≤ 0.

These complete the proofs of Lemmas 5 and 6. Q.E.D.
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Table 2. rank, dual-rank, σ-rank, conductors and discriminants

Type µ(R,G) ν(R,G) σ(R,G) m,mred,m∗ N(R,G) d(R,G) d∗(R,G)

A
(1,1)
l l ≥ 1) l + 2 −l − 2 4 1 1

A
(1,1)∗
1 3 −3 6 8, 8, 8 128 2 1/2

B
(1,1)
l (l ≥ 3) l + 2 −2l + 5 6 23 24−l

B
(1,1)
3 5 −1 6 24, 24, 24 1152 23 2

B
(1,2)
l (l ≥ 2) l + 2 −2l + 2 6 22 22−l

B
(1,2)
2 4 −2 6 6, 12, 12 144 22 1

B
(2,1)
l (l ≥ 2) l + 2 −2l + 2 6 22 22−l

B
(2,1)
2 4 −2 6 6, 12, 12 144 22 1

B
(2,2)
l (l ≥ 2) l + 2 −l − 2 4 1 1

C
(1,1)
l (l ≥ 2) l + 2 −l − 2 4 1 1

C
(1,2)
l (l ≥ 2) l + 2 −2l + 2 6 22 22−l

C
(1,2)
2 4 −2 6 6, 12, 12 144 22 l

C
(2,1)
l (l ≥ 2) l + 2 −2l + 2 6 22 22−l

C
(2,1)
2 4 −2 6 6, 12, 12 144 22 l

C
(2,2)
l (l ≥ 3) l + 2 −2l + 5 6 23 24−l

C
(2,2)
3 5 −1 6 24, 24, 24 1152 23 2

B
(2,2)∗
l (l ≥ 2) l + 2 −2l − 1 6 2 2−l

C
(1,1)∗
l (l ≥ 2) l + 2 −2l − 1 6 2 2−l

BC
(2,1)
l (l ≥ 1) l + 2 −2l − 1 6 2 2−l

BC
(2,1)
1 3 −3 6 8, 8, 8 128 2 1/2

BC
(2,4)
l (l ≥ 1) l + 2 −2l − 1 6 2 2−l

BC
(2,4)
1 3 −3 6 8, 8, 8 128 2 1/2

BC
(2,2)
l (1) (l ≥ 2) l + 2 −2l + 2 6 22 22−l

BC
(2,2)
2 (1) 4 −2 6 6, 12, 12 144 22 l

BC
(2,2)
l (2) (l ≥ 2) l + 2 −l − 2 4 1 1

D
(1,1)
l (l ≥ 4) l + 2 −2l + 8 6 24 26−l

D
(1,1)
4 6 0 6 4, 4, 1 8 24 22

E
(1,1)
6 8 0 8 3, 3, 1 9 33 3

E
(1,1)
7 9 0 9 8, 8, 1 32 25 2

E
(1,1)
8 10 0 10 12, 12, 1 72 2232 1

F
(1,1)
4 6 −2 8 4, 12, 12 144 32 1

F
(1,2)
4 6 −3 9 4, 8, 8 128 23 1/2

F
(2,1)
4 6 −3 9 4, 8, 8 128 23 1/2

F
(2,2)
4 6 −2 8 4, 12, 12 144 32 1

G
(1,1)
2 4 −2 6 6, 12, 12 144 22 1
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G
(1,3)
2 4 −4 8 6, 6, 6 108 3 1/3

G
(3,1)
2 4 −4 8 6, 6, 6 108 3 1/3

G
(3,3)
2 4 −2 6 6, 12, 12 144 22 1

Here, m := m(R,G) := 24/gcd(24, µ(R,G)), m
∗ := m∗(R,G) := 24/gcd(24, ν(R,G)) (2.5.1) and

mred := mred
(R,G) (2.7.2). By definition, one has i) if ν(R,G) = 0 ⇒ m∗(R,G) = 1, and ii)

m(R,G)|mred
(R,G).

We state some facts which are observed from the Table 2 and are used in the sequel.

Fact 1. i) m∗(R,G) = 1 ⇒ ν(R,G) = 0 and ii) m∗(R,G)|mred
(R,G) for 1-codimensional

(R,G). These 2 facts are more precisely formulated as:

(T2.1) m∗(R,G) =

{

1 if ν(R,G) = 0,

mred
(R,G) else.

Fact 2. i) For all (R,G), the discriminant d(R,G) is an integer and one has the equality:
{p | prime number with p|m(R,G)} = {p | prime number with p|d(R,G)}.

ii) For all 1-codimensional (R,G), one has the equality:
{p | prime number with p|mred

(R,G)} = {p | prime number with p|N(R,G)}

iii) One has the inclusion relation: the set of i) ⊂ the set of ii) ⊂ {2, 3}.
Remark. Due to Lemma 2., the positivity µ(R,G) > 0 implies that the dual elliptic

eta-product η∗(R,G) is neither a cuspidal nor a holomorphic form. So, the “dual considera-
tion” to the goal theorem in the abstract suggests that their Fourier coefficients of η∗(R,G)
are non-negative integers. In fact, this is true and is proved in a stronger form as follows.

Assertion. All Fourier coefficients of a dual elliptic eta-product are positive integers.

Proof. It is sufficient to show the positivity of the Taylor coefficients of ϕ∗(R,G)(λ) at

λ = 0, due to an expression η∗ϕ(τ) = qν/24
∏∞
n=1 ϕ

∗(qn). If e∗(i) ≤ 0 for all i, this is trivial.

Rest cases to be checked are the types B
(1,1)
3 , C

(2,2)
3 , D

(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 , for

which we have the following explicit descriptions.

ϕ∗
B

(1,1)
3

= ϕ∗
C

(2,2)
3

= (λ2−1)
(λ−1)3 = 1+λ

(1−λ)2 = 1 + 3λ+ 5λ2 + 7λ3 + 9λ4 + 11λ5 + · · · ,

ϕ∗
D

(1,1)
4

= (λ2−1)2
(λ−1)4 = 1 + 4λ

(1−λ)2 = 1 + 4λ+ 8λ2 + 12λ3 + 16λ4 + 20λ5 + · · · ,

ϕ∗
E

(1,1)
6

= (λ3−1)
(λ−1)3 = 1 + 3λ

(1−λ)2 = 1 + 3λ+ 6λ2 + 9λ3 + 12λ4 + 15λ5 + · · · ,

ϕ∗
E

(1,1)
7

= (λ4−1)
(λ2−1)(λ−1)2 = 1 + 2λ

(1−λ)2 = 1 + 2λ+ 4λ2 + 6λ3 + 8λ4 + 10λ5 + · · · ,

ϕ∗
E

(1,1)
8

= (λ6−1)
(λ3−1)(λ2−1)(λ−1) = 1 + λ

(1−λ)2 = 1 + λ+ 2λ2 + 3λ3 + 4λ4 + 5λ5 + · · · .

Remark. The rank, discriminant and dual discriminant for a regular system W of
weights are positive integers. It is proven [Sa3,§13] that an eta-product ηW is holomorphic
(resp. cuspidal) if and only if the dual-rank νW is non-positive (resp. negative).
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§3. Dirichlet series for 1-codimensional elliptic root systems

In this section, we formulate the main theorem of the present paper, which describes
the Dirichlet series attached to the elliptic eta-products for 1-codimensional elliptic root
systems by a use of Artin L-functions. The explicit results are exhibited in Table 3.

(3.1) First, for a given cyclotomic function ϕ (1.1.1), we define Dirichlet series:

(3.1.1) Lϕ(s) :=
∞
∑

n=1

c(n)n−s

(3.1.1)∗ L∗ϕ(s) :=
∞
∑

n=1

c∗(n)n−s

ˆ(3.1.1) L̂ϕ(s) :=

∞
∑

n=1

ĉ(n)n−s

where c(n), c∗(n) and ĉ(n) are Fourier coefficients at infinity of the expansions:

ηϕ(mϕτ) =
∑

n c(n)q
n, η∗ϕ(m

∗
ϕτ) =

∑

n c
∗(n)qn and η̂ϕ(m

∗
ϕτ) =

∑

n ĉ(n)q
n

of the eta-products attached to ϕ (cf. §2 Lemma 1). It is well known that the Dirichlet
series converge on the right complex half s-plane and extend meromorphically to the whole
s-plane. The duality formula (2.3.1) is reformulated as a functional equation:

(3.1.2) Λϕ(a0 − s) = cϕΛ
∗
ϕ(s),

where Λϕ(s) := Ns/2(2π)−sΓ(s)Lϕ(s), Λ∗ϕ(s) := Ns/2(2π)−sΓ(s)L∗ϕ(s) and cϕ: a constant.

(3.2) We denote by L(R,G) and L̂(R,G) the Dirichlet series (3.1.1) and ˆ(3.1.1) attached
to the characteristic polynomials ϕ(R,G) (A1.7) and ϕ̂(R,G)(λ) (2.2.5) for a marked ellip-
tic root system (R,G), respectively. Before we state the main theorem of the present
article, we recall some numerical invariants: m := 24/gcd(24, µ(R,G)) (2.5.1), mred :=

24/gcd(24, µred(R,G)) (2.7), m
∗ := 24/gcd(24, ν(R,G)) (2.5.1), N(R,G) := mm∗m(R,G) (2.5.1),

ε(R,G):= the Dirichlet character (2.5.2) attached to a marked elliptic root system ϕ(R,G).

Theorem. Let (R,G) be a 1-codimensional marked elliptic root system (cf. (A1.8)).
There exist a Kummer extension E(R,G) := Q(ζmred , x1/m

∗

) of the cyclotomic field Eab
(R,G) =

Q(ζmred) and one or two representation(s), say ρ, or ρ(+) and ρ(−): Gal(E(R,G)/Q) →
GL2(Z) or GL2(Z[

√
−1]) with ker(ρ) or ker(ρ(+)) ∩ ker(ρ(−)) = {1}, det(ρ) or det(ρ(±))

= ε(R,G) (through the identification Gal(E
(ab)
(R,G)/Q) '

(

Z/mredZ
)×
) and the conductor

= N(R,G) such that for the Artin L-functions L(s, ρ) or L(s, ρ
(+)) and L(s, ρ(−)) attached

to them, one has the following i) - v).
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i) The Dirichlet series L(R,G)(s) is equal to one of the next three forms:

L(s, ρ), 1
4 (L(s, ρ

(+))− L(s, ρ(−))) or
√
−1
4 (L(s, ρ(+))− L(s, ρ(−))).

ii) L(s, ρ), L(s, ρ(+)) and L(s, ρ(−)) have trivial Euler factor for the prime with p|N(R,G).
iii) The Dirichlet series L̂(R,G)(s) is a linear combination of L(s, ρ) or of L(s, ρ

(+))

and L(s, ρ(−)) with coefficients in Euler factors for the primes p with p|N(R,G).
iv) The extension E(R,G)/E

ab
(R,G) is trivial if and only if ν(R,G) = 0.

v) If ν(R,G) = 0, then the representation(s) decompose(s) as ρ = 1⊕ε(R,G), or ρ(+) =

1⊕ ε(R,G) and ρ
(−) = χ(R,G) ⊕ ε(R,G)χ

−1
(R,G) for a character χ(R,G) on (Z/mredZ)×.

Definition. We shall call L(s, ρ), L(s, ρ(+)) and L(s, ρ(−)) the Artin summand of the
Dirichlet series L(R,G).

(3.3) The remaining of the present section gives a plan of the proof of the theorem.
The proof is achieved by explicit descriptions of L(R,G) and L̂(R,G) obtained for each

types separately by 4 steps explained below. Detailed results are summarized in the Table
3. Since the process to describe L(R,G) and L̂(R,G) are similar, we explain only for L(R,G).
According to theorems due to Hecke, Weil, Langlands, Deligne and Serre ([He, 22-36][W][D-
S][Se]), the Mellin transform induces 1) a bijection between the set of suitably normalized
new forms of weight 1 with level N and an odd character ε and the set of Artin L-functions
of two dimensional linear irreducible representation ρ of the Galois groups over the rational
numbers with conductor N and ε = det(ρ), and also 2) a bijection between the set of
normalized primitive Eisenstein series of weight 1 and the set of reducible 2-dimensional
Galois representations (see [Se] for detailed account on the subject, and [He36] for the case
of reducible representations). Therefore, if an eta-product is already a Hecke eigenform
and is a new form, then the main part of the theorem is a consequence of this general
theorem. But, in fact, the elliptic eta-product is not always an eigenform, and hence the
following facts still need to be proven.

i) An elliptic eta-product η(R,G) is either a normalized new form (and a Hecke eigen-
form) or a difference of two normalized new forms so that its Mellin transform is either an
Artin L-function or a difference of two Artin L-functions as described in the theorem.

ii) The Euler factor for p with p|N(R,G) in L(R,G) and in its summands is trivial due
to (2.7.4) and §2 Table 2 Fact 2. ii) (this is not always true for all eta-products, see (4.2)).

iii) The dual L̂(R,G)(s) is a linear combination of the summands with coefficients in
Euler factors in primes p with p|N(R,G).

iv) If an elliptic eta-product η(R,G) is not cuspidal, then each summand in the above
i) should not be a cusp form and should belong to Galois representations of the same
cyclotomic field Q(ζmred). The decomposition of ρ or ρ(±) takes some particular form as
described in the theorem. Let us explain how we proceed these.

1. Let a 1-codimensional marked elliptic root system (R,G) be given. Its characteristic
polynomial ϕ(R,G) is given in (A1.7). Using §2 Lemma 1, we know the level N = N(R,G)

and the character ε(R,G) of the eta-product η(R,G)(mτ)
(

= ηred(R,G)(m
redτ)

)

.
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2. Calculate the Fourier coefficients c(n) for n ∈ Z>0 of η(R,G)(mτ) at ∞ until a

degree n0 which is larger than
N(R,G)

12 ·∏p|N(R,G)
(1 + p−1).

3. Construct a Dirichlet series L, which is one of the following 3 forms:

L(s), 1
4 (L

(+)(s)− L(−)(s)) or
√
−1
4 (L(+)(s)− L(−)(s))

where each summand L(s) or L(+)(s) and L(−)(s) has an Euler product expansion of the
form

∏

p6 |N (1−app−s+ε(R,G)(p)p
−2s)−1, such that the Fourier coefficients in step 2 agree

with the Dirichlet coefficients of L up to degree n0. Here, the Euler factor for the prime p
with p|N(R,G) does not appear because of (2.7.4) and §2 Table 2 Fact 2. ii).

This step is nontrivial and quite involved. It is achieved by inspection for each cases.
We omit the calculations.

4. Find a Galois field E(R,G) and complex 2-dimensional linear representation(s) ρ or

ρ(±) of the Galois group Gal(E(R,G)/Q) with the constrains ker(ρ) = {1} or ker(ρ(+)) ∩
ker(ρ(−)) = {1} and the conductor= N(R,G) such that the Artin L-function(s) attached to
the representation(s) are equal to the summand(s) that appeared in the step 3. That is:

L(s) = L(s, ρ) or L(+)(s) = L(s, ρ(+)) and L(−)(s) = L(s, ρ(−)).
In fact, E(R,G) is obtained as a Kummer extension of the cyclotomic field Eab

(R,G) =

Q(ζmred). The extension is determined by inspection of Euler factors in the step 3. In
particular we observe that the extension is trivial if and only if ν(R,G) = 0.

5. Assertion. Under the 1-4 above, the Dirichlet series L(R,G) coincides with L.

Proof. In view of the step 4, the Mellin inverse transform fL of L is an automorphic
form of type (1, ε(R,G)) on the group Γ0(N) due to the theorems of Hecke[H36] in case ρ is
reducible and Weil [W] in case ρ is irreducible. The coincidence of the Fourier coefficients
at infinity up to the degree n0 (step 3.) implies η(R,G)(mτ) = fL (cf. [Ogg, Prop.7]). Hence
the Mellin transform L(R,G) of η(R,G)(mτ) should coincide with that L of fL. Q.E.D.

Table 3. Dirichlet series for 1-codimensional elliptic root systems

Let (R,G) be a marked elliptic root system and let ϕred(R,G) be the attached reduced

characteristic polynomial ((A1.7) and (2.7.1)). Recall the facts (2.7) that the elliptic
eta-products: η(R,G)(mτ), η̂(R,G)(m

∗τ), the Dirichlet series: L(R,G)(s), L̂(R,G)(s) and the

numerical invariants: mred
(R,G), m

∗
(R,G), N(R,G) depend only on ϕred(R,G).

There are 8 reduced characteristic polynomials attached to 1-codimensional marked
elliptic root systems. Accordingly, the table is divided into 8 groups, labeled by roman
numeral I-VIII. For each P∈ {I,II,III,· · ·,VIII}, the following data 0)-vi) are exhibited.

0) The list of types of elliptic root systems (R,G) belonging to the group.
i) Characteristic functions ϕP := ϕred(R,G), ϕ(R,G) and ϕ̂P := ϕ̂(R,G).

ii) Elliptic eta-products ηP (τ) := η(R,G)(mτ) and η̂P (τ) := η̂(R,G)(m
∗τ).

iii) The numerical invariants: NP := N(R,G), m
red
P := mred

(R,G), m
∗
P := m∗(R,G).

The Dirichlet character εP := ε(R,G) mod mred
P for the eta-products.

iv) a) The expressions of the Dirichlet series LP (s) := L(R,G)(s) and L̂P (s) := L̂(R,G)(s)

24



L(s, ρ), 1
4 (L(s, ρ

(+))− L(s, ρ(−))) or
√
−1
4 (L(s, ρ(+))− L(s, ρ(−)))

b) Euler product expression of each summand: L(s, ρ), L(s, ρ(+)) and L(s, ρ(−)).
c) Decomposition of each summand into Dirichlet L-functions (in case of ν(R,G) = 0).

v) The Kummer extension EP := E(R,G) over E
ab
P = Q(ζmred) .

A presentation of the Galois group Gal(E(R,G)/Q) in terms of suitably chosen
Frobenius σp for primes p and their relations.

vi) Representation(s) ρ or ρ(±) : Gal(E(R,G)/Q)→ GL2(Z[
√
−1]).

The decomposition of the representation(s) (in case of ν(R,G) = 0):

ρ = 1⊕ ε(R,G), or ρ(+) = 1⊕ ε(R,G) and ρ(−) = χ(R,G) ⊕ ε(R,G)χ
−1
(R,G).

I. Types: B
(2,1)
2 , C

(1,2)
2 , BC

(2,2)
2 (1), G

(1,1)
2 , G

(3,3)
2 , F

(1,1)
4 , F

(2,2)
4

i) characteristic functions ϕI(λ) = ϕ̂I(λ) := (λ− 1)2

(λ2 − 1)2 =ϕ
B

(2,1)
2

(λ) = ϕ
C

(1,2)
2

(λ) = ϕ
BC

(2,2)
2 (1)

(λ) = ϕ
G

(1,1)
2

(λ) = ϕ
G

(3,3)
2

(λ)

(λ3 − 1)2 =ϕ
F

(1,1)
4

(λ) = ϕ
F

(2,2)
4

(λ)

(λ− 1)2 =ϕ̂
B

(2,1)
2

(λ) = ϕ̂
C

(1,2)
2

(λ) = ϕ̂
BC

(2,2)
2 (1)

(λ) = ϕ̂
G

(1,1)
2

(λ) = ϕ̂
G

(3,3)
2

(λ) = ϕ̂
F

(1,1)
4

(λ) = ϕ̂
F

(2,2)
4

(λ)

ii) elliptic eta-products

ηI(τ) := η(12τ)2 =η
B

(2,1)
2

(6τ) = η
C

(1,2)
2

(6τ) = η
BC

(2,2)
2 (1)

(6τ) = η
G

(1,1)
2

(6τ) = η
G

(3,3)
2

(6τ)

=η
F

(1,1)
4

(4τ) = η
F

(2,2)
4

(4τ)

η̂I(τ) := η(12τ)2 =η̂
B

(2,1)
2

(12τ) = η̂
C

(1,2)
2

(12τ) = η̂
BC

(2,2)
2 (1)

(12τ) = η̂
G

(1,1)
2

(12τ) = η̂
G

(3,3)
2

(12τ)

=η̂
F

(1,1)
4

(12τ) = η̂
F

(2,2)
4

(12τ)

=q − 2q13 − q25 + 2q37 + q49 + 2q61 − 2q73 − 2q97 − 2q109 + q121 + 2q157 + 3q169 · · ·

This eta-product was already studied in [H 22,23, pp425,426,448], [Se, pp242,243,244].

iii) Level N , mred, m∗ and character

NI = 144, mred
I = 12, m∗I = 12, εI(d) = ε∗I(d) =

(−1
d

)

.

εI(1) = εI(5) = 1, εI(7) = εI(11) = −1.

iv) Dirichlet series

LI(s) = L̂I(s) = L(s, ρ)

=
∏

p≡1(12)

12≡∃x4(p)

1

(1− p−s)2

∏

p≡1(12)

126≡∀x4(p)

1

(1 + p−s)2

∏

p≡5(12)

1

1 + p−2s

∏

p≡7or11(12)

1

1− p−2s
.
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v) Kummer extension and Galois group

EI := Q(
√
−1, 4

√
12) = Q(ζ12,

4
√
12) ⊃ Eab = Q(ζ12), where ζ12 = (

√
3 +

√
−1)/2.

Gal(EI/Q) =< σ1B , σ5, σ7, σ11 | σ21B = σ27 = σ211 = (σ5σ7)
2 = (σ5σ11)

2 = 1,

σ25 = (σ7σ11)
2 = σ1B ∈ center, σ5σ7σ11 ∈< σ1B >>,

where σ1B stands for a Frobenius for the primes p in B := {p ∈ Z>0 | prime number p ≡ 1
(12) and ∀x4 6≡ 12 (p)} = {13, 73, 97, 109, 181, 229, 241, 277, 339, 409, 421, 457, 541, · · ·}.
One has the abelianization:

1 −→ Z/2Z −→ Gal(EI/Q) −→ (Z/12Z)× −→ 1,

where the kernel Z/2Z is generated by σ1B .

vi) Representation
ρ is the irreducible two-dimensional linear representation of Gal(EI/Q).

ρ(σ1B) = −
(

1 0
0 1

)

, ρ(σ5) = ±
(

0 −1
1 0

)

, ρ(σ7) = ±
(

0 1
1 0

)

, ρ(σ11) = ±
(

1 0
0 −1

)

.

Here, the sign ± may be chosen independent and arbitrary.

II. Types A
(1,1)∗
1 , BC

(2,1)
1 , BC

(2,4)
1 , F

(1,2)
4 , F

(2,1)
4

i) characteristic functions ϕII(λ) = ϕ̂II(λ) := (λ2 − 1)(λ− 1)

(λ2 − 1)(λ− 1) = ϕ
A

(1,1)∗
1

(λ) = ϕ
BC

(2,1)
1

(λ) = ϕ
BC

(2,4)
1

(λ)

(λ4 − 1)(λ2 − 1) = ϕ
F

(1,2)
4

(λ) = ϕ
F

(2,1)
4

(ϕ)

(λ2 − 1)(λ− 1) = ϕ̂
A

(1,1)∗
1

(λ) = ϕ̂
BC

(2,1)
1

(λ) = ϕ̂
BC

(2,4)
1

(λ) = ϕ̂
F

(1,2)
4

(λ) = ϕ̂
F

(2,1)
4

(λ)

ii) elliptic eta-products

ηII(τ) := η(16τ)η(8τ) = η
A

(1,1)∗
1

(8τ) = η
BC

(2,1)
1

(8τ) = η
BC

(2,4)
1

(8τ)

= η
F

(1,2)
4

(4τ) = η
F

(2,1)
4

(4τ)

η̂II(τ) := η(16τ)η(8τ) = η̂
A

(1,1)∗
1

(8τ) = η̂
BC

(2,1)
1

(8τ) = η̂
BC

(2,4)
1

(8τ)

= η̂
F

(1,2)
4

(4τ) = η̂
F

(2,1)
4

(4τ)

= q − q9 − 2q17 + q25 + 2q41 + q49 − 2q73 + q81 − 289 − 2q97 + 2q113 − q121 · · ·

iii) Level N , mred, m∗ and character

NII = 128, mred
II = 8, m∗II = 8, εII(d) = ε∗II(d) =

(−2
d

)

.
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εII(1) = εII(3) = 1, εII(5) = εII(7) = −1.

iv) Dirichlet series

LII(s) = L̂II(s) = L(s, ρ)

=
∏

p≡1(8)

−4≡∃x8(p)

1

(1− p−s)2

∏

p≡1(8)

−46≡∀x8(p)

1

(1 + p−s)2

∏

p≡3(8)

1

1 + p−2s

∏

p≡5or7(8)

1

1− p−2s

v) Kummer extension and Galois group

EII := Q(
√
−1,

√
−2, 8

√
−4) = Q(ζ8,

8
√
−4) ⊃ Eab

II = Q(ζ8), where ζ8 = (
√
2+
√
−2)/2.

Gal(EII/Q) =< σ1B , σ3, σ5, σ7 | σ21B = σ25 = σ27 = (σ3σ5)
2 = (σ3σ7)

2 = 1,

σ23 = (σ5σ7)
2 = σ1B ∈ center, σ3σ5σ7 ∈< σ1B >>,

where σ1B stands for a Frobenius for the primes p in B := {p ∈ Z>0 | prime number
p ≡ 1 (8) and ∀x8 6≡ −4 (p)} = {17, 73, 89, 97, 193, 233, 241, 281, 369, · · ·}. One has the
abelianization:

1 −→ Z/2Z −→ Gal(EII/Q) −→ (Z/8Z)× −→ 1,

where the kernel Z/2Z is generated by σ1B .

vi) Representation
ρ is the irreducible two-dimensional linear representation of Gal(EII/Q).

ρ(σ1B) = −
(

1 0
0 1

)

, ρ(σ3) = ±
(

0 −1
1 0

)

, ρ(σ5) = ±
(

0 1
1 0

)

, ρ(σ7) = ±
(

1 0
0 −1

)

.

Here, the sign ± may be chosen independent and arbitrary.

III. Types B
(1,1)
3 , C

(2,2)
3

i) characteristic functions

ϕIII(λ) := (λ2 − 1)3(λ− 1)−1 = ϕ
B

(1,1)
3

(λ) = ϕ
C

(2,2)
3

(λ)

ϕ̂III(λ) := (λ− 1)3(λ2 − 1)−1 = ϕ̂
B

(1,1)
3

(λ) = ϕ̂
C

(2,2)
3

(λ)

ii) elliptic eta-products

ηIII(τ) := η(48τ)3η(24τ)−1 = η
B

(1,1)
3

(24τ) = η
C

(2,2)
3

(24τ)

= q5 + q29 − q53 − q101 − 2q125 + q149 − q173 − q197 + q245 + q269 − q293 + q317 + 2q365 · · · .

η̂III(τ) := η(24τ)3η(48τ)−1 = η̂
B

(1,1)
3

(24τ) = η̂
C

(2,2)
3

(24τ)

= q − 3q25 + q49 + 2q73 + 2q97 − q121 − 4q145 + q169 − 2q193 + 2q241 + 4q265 − q289 + 2q313 · · ·
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iii) Level N , mred, m∗ and character

NIII = 1152, mred
III = 24, m∗III = 24, εIII(d) = ε∗III(d) =

(−2
d

)

.

εIII(1) = εIII(11) = εIII(17) = εIII(19) = 1,

εIII(5) = εIII(7) = εIII(13) = εIII(23) = −1.

iv) Dirichlet series

LIII(s) =

√
−1
4

(

L(s, ρ(+))− L(s, ρ(−))
)

L̂III(s) =
1

2

(

L(s, ρ(+)) + L(s, ρ(−))
)

where for χ ∈ {±}

L(s, ρ(χ)) =
∏

p≡1(24)

a≡∃x2(p)

1

(1− p−s)2

∏

p≡1(24)

a6≡∀x2(p)

1

(1 + p−s)2

×
∏

p≡5(24)
U

1

(1− χ
√
−1p−s)2

∏

p≡5(24)
V

1

(1 + χ
√
−1p−s)2

×
∏

p≡7,13,23(24)

1

1− p−2s

∏

p≡11,17or19(24)

1

1 + p−2s
.

v) Kummer extension and Galois group

EIII := Q(
√
−1,

√
−2,

√
−3, 2

√
a) = Q(ζ24,

2
√
a) ⊃ Eab

III = Q(ζ24) for ζ24 =

√
3 + 1 +

√
−3−

√
−1

2
√
2

.

Gal(EIII/Q) =<σ1B , σ5U , σ5V , σ7, σ11, σ13, σ17, σ19, σ23 | σ5U = σ−15V ∈ center,
σ21B = σ27 = σ213 = σ223 = 1, σ25U = σ25V = σ1B

σ7σ5U = σ11, σ13σ5U = σ17, σ23σ5U = σ19,

σ7σ13σ23 = σ±15U >,

where σ1B stands for a Frobenius for the primes p in B := {p ∈ Z>0 | prime number p ≡ 1
(24) and ∀x2 6≡ a (p)} = {193, 337, 409, 433, 457, 601, 673, 769, 937, 1129, 1153, 1249, 1297, · · ·},
and σ5U and σ5V stand for Frobenius for the primes p in U := {p ∈ Z>0 | prime number p ≡
5 (24) and } = {5, 29, 149, 269, 317, 389, 509, 677, 701, 1013, 1061, 1109, 1277, 1201, 1493, 1613, 1733, · · ·}
and V := {p ∈ Z>0 | prime number p ≡ 5 (24) and } = {53, 101, 173, 197, 293, 461, 557, 653, 773,
797, 821, 941, 1181, 1229, 1373, 1637, 1709, 1949, 1973, · · ·}, respectively. One has the abelian-
ization:

1 −→ Z/2Z −→ Gal(EIII/Q) −→ (Z/24Z)× −→ 1,
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where the kernel Z/2Z is generated by σ1B .

vi) Representations: ρ(±) are the irreducible two-dimensional linear representations of
Gal(EIII/Q), which are complex conjugate to each other. For χ ∈ {±}

ρ(χ)(σ1B) = −
(

1 0
0 1

)

, ρ(χ)(σ5U ) = −ρ(χ)(σ5V ) = χ ·
√
−1
(

1 0
0 1

)

, ρ(χ)(σ7) = ±
(

1 0
0 −1

)

,

ρ(χ)(σ11) = ±χ
√
−1
(

1 0
0 −1

)

, ρ(χ)(σ13) = ±χ
√
−1
(

0 −1
1 0

)

, ρ(χ)(σ17) = ±
(

0 1
−1 0

)

,

ρ(χ)(σ19) = ±χ
√
−1
(

0 1
1 0

)

, ρ(χ)(σ23) = ±
(

0 1
1 0

)

,

IV. Types: D
(1,1)
4

i) characteristic functions

ϕIV (λ) = ϕ
D

(1,1)
4

(λ) = (λ2 − 1)4(λ− 1)−2

ϕ̂IV (λ) = ϕ̂
D

(1,1)
4

(λ) = (λ− 1)4(λ2 − 1)−2

ii) elliptic eta-products

ηIV (τ) := η(8τ)4η(4τ)−2 = η
D

(1,1)
4

(4τ)

= q + 2q5 + q9 + 2q13 + 2q17 + 3q25 + 2q29 + 2q37 + 2q41 + 2q45 + q49 + 2q53 · · · .

η̂IV (τ) := η(τ)4η(2τ)−2 = η̂
D

(1,1)
4

(τ)

= 1− 4
(

1− q2 − q4 + 2q5 − q8 + q9 − 2q10 + 2q13 − q16 + 2q17 − q18 − 2q20 · · ·
)

.

iii) Level N , mred, m∗ and character

NIV = 8, mred
IV = 4, m∗IV = 1, εIV (d) = ε∗IV (d) =

(−1
d

)

.

εIV (1) = 1, εIV (3) = −1.

iv) Dirichlet series

LIV (s) = L(s, 1)L(s, εIV ),

L̂IV (s) = −41− 21−s

1− 2−s
L(s, 1)L(s, εIV ),

where for ε ∈ {1, εIV }

L(s, ε) =
∏

p≡1(4)

1

1− p−s

∏

p≡3(4)

1

1− ε(p)p−s
.
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v) Kummer extension and Galois group

EIV = Eab
IV := Q(

√
−1) = Q(ζ4), where ζ4 =

√
−1.

Gal(EIV /Q) =< σ3 | σ23 = 1 >= (Z/4Z)×

vi) Representation
ρ = 1⊕ εIV ,

where 1 and εIV are the trivial and non-trivial characters on (Z/4Z)×, respectively.

V. Types: G
(1,3)
2 , G

(3,1)
2

i) characteristic functions

ϕV (λ) = ϕ̂V (λ) = ϕ
G

(1,3)
2

(λ) = ϕ
G

(3,1)
2

(λ) = (λ3 − 1)(λ− 1)

ii) elliptic eta-products

ηV (τ) := η(18τ)η(6τ) = η
G

(1,3)
2

(6τ) = η
G

(3,1)
2

(6τ)

η̂V (τ) := η(18τ)η(6τ) = η̂
G

(1,3)
2

(6τ) = η̂
G

(3,1)
2

(6τ)

=q − q7 − q13 − q19 + q25 + 2q31 − q37 + 2q43 − q61 − q67 − q72 − q79 + q91 · · · .

iii) Level N , mred, m∗ and character

NV = 108, mred
V = 6, m∗V = 6, εV (d) = ε∗V (d) =

(−3
d

)

.

εV (1) = 1, εV (5) = −1.

iv) Dirichlet series

LV (s) = L̂V (s) = L(s, ρ)

=
∏

p≡1(6)

2≡∃x3(p)

1

(1− p−s)2

∏

p≡1(6)

26≡∀x3(p)

1

1 + p−s + p−2s

∏

p≡5(6)

1

1− p−2s
.

v) Kummer extension and Galois group

EV := Q(
√
−3, 3

√
2) = Q(ζ6,

3
√
2) ⊃ Eab

V = Q(ζ6), where ζ6 = (1 +
√
−3)/2.

Gal(EV /Q) =< σ1B , σ5 | σ31B = σ25 = (σ1Bσ5)
2 = 1 >,
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where σ1B stands for a Frobenius for the primes p in B = {p ∈ Z>0 | prime number p ≡ 1
(6) and ∀x3 6≡ 2 (p)} = {7, 13, 19, 37, 61, 67, 73, 79, 97, · · ·}. One has the abelianization

1 −→ Z/3Z −→ Gal(EV /Q) −→ (Z/6Z)× −→ 1,

where the kernel Z/3Z is generated by σ1B .

vi) Representation
ρ is the irreducible two-dimensional linear representation of Gal(EV /Q).

ρ(σ1B) =

(

−1 ∓1
±1 0

)

, ρ(σ5) =

(

0 1
1 0

)

.

VI. Type E
(1,1)
6

i) characteristic functions

ϕV I(λ) = ϕ
E

(1,1)
6

(λ) = (λ3 − 1)3(λ− 1)−1

ϕ̂V I(λ) = ϕ̂
E

(1,1)
6

(λ) = (λ3 − 1)−1(λ− 1)3

ii) elliptic eta-products

ηV I(τ) := η(9τ)3η(3τ)−1 = η
E

(1,1)
6

(3τ)

= q + q4 + 2q7 + 2q13 + q16 + 2q19 + q25 + 2q28 + 2q31 + 2q37 + 2q43 + 3q49 + · · · .

η̂V I(τ) := η(τ)3η(3τ)−1 = η̂
E

(1,1)
6

(τ)

= 1− 3
(

q − 2q3 + q4 + 2q7 − 2q9 − 2q12 + 2q13 + q16 + 2q19 − 4q22 + q25 · · ·
)

.

iii) Level N , mred, m∗ and character

NV I = 9, mred
V I = 3, m∗V I = 1, εV I(d) = ε∗V I(d) =

(−3
d

)

.

εV I(1) = 1, εV I(2) = −1.

iv) Dirichlet series

LV I(s) = L(s, 1)L(s, εV ),

L̂V I(s) = −31− 31−s

1− 3−s
L(s, 1)L(s, εV ),

where for ε ∈ {1, εV }

L(s, ε) =
∏

p≡1(3)

1

1− p−s

∏

p≡2(3)

1

1− ε(p)p−s
.
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v) Kummer extension and Galois group

EV I = Eab
V I := Q(

√
−3) = Q(ζ3), where ζ3 = (−1 +

√
−3)/2.

Gal(EV I/Q) =< σ2 | σ22 = 1 >= (Z/3Z)×

vi) Representation
ρ = 1⊕ εV I

where 1 and εV I are the trivial and non-trivial characters on (Z/3Z)×, respectively.

VII. Type E
(1,1)
7

i) characteristic functions

ϕV II(λ) = ϕ
E

(1,1)
7

(λ) = (λ4 − 1)2(λ2 − 1)(λ− 1)−1

ϕ̂V II(λ) = ϕ̂
E

(1,1)
7

(λ) = (λ− 1)2(λ2 − 1)(λ4 − 1)−1

ii) elliptic eta-products

ηV II(τ) :=η(32τ)
2η(16τ)η(8τ)−1 = η

E
(1,1)
7

(8τ)

= q3 + q11 + q19 + 2q27 + q43 + 2q51 + q59 + q67 + q75 + q83 +99 +q107 + 2q123 · · · .

η̂V II(τ) :=η(τ)
2η(2τ)η(4τ)−1 = η̂

E
(1,1)
7

(τ),

= 1− 2
(

q + q2 − 2q3 − q4 + 2q6 − q8 + 3q9 − 2q11 − 2q12 − q16 + 2q17 + 3q18 · · ·
)

.

iii) Level N , mred, m∗ and character

NV II = 32, mred
V II = 8, m∗V II = 1, εV II(d) = ε∗(d) =

(−2
d

)

.

εV II(1) = εV II(3) = 1, εV II(5) = εV II(7) = −1.

iv) Dirichlet series

LV II(s) =
1

4

(

L(s, 1)L(s, εV II)− L(s, χV II)L(s, εV IIχ
−1
V II)

)

,

L̂V II(s) = −21− 21−2s

1− 2−s
L(s, χV II)L(s, εV IIχ

−1
V II),

where we put L(s, 1) = L++(s), L(s, εV II) = L−+(s), L(s, χV II) = L+−(s) and L(s, εV IIχ
−1
V II) =

L−−(s), and for ε, χ ∈ {±1}

Lεχ(s) =
∏

p≡1(8)

1

1− p−s

∏

p≡3(8)

1

1− χp−s

∏

p≡5(8)

1

1− εp−s

∏

p≡7(8)

1

1− εχp−s
.
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v) Kummer extension and Galois group

EV II = Eab
V II := Q(

√
−1,

√
−2) = Q(ζ8), where ζ8 = (

√
2 +

√
−2)/2.

Gal(EV II/Q) =< σ3, σ5, σ7 | σ2i = (σiσj)
2 = σ3σ5σ7 = 1 >= (Z/8Z)×

vi) Representations

ρ(+) = 1⊕ εV II , ρ(−) = χV II ⊕ εV II · χ−1V II ,

where εV II , χV II and εV II · χ−1V II are the non-trivial characters on the Galois groups
(Z/8Z)×/ < σ3 >, (Z/8Z)

×/ < σ5 >= (Z/4Z)× and (Z/8Z)×/ < σ7 > corresponding to
the quadratic fields Q(

√
−2), Q(

√
−1) and Q(

√
2), respectively.

VIII. Type E
(1,1)
8

i) characteristic functions

ϕV III(λ) = ϕ
E

(1,1)
8

(λ) = (λ6 − 1)(λ3 − 1)(λ2 − 1)(λ− 1)−1

ϕ̂V III(λ) = ϕ̂
E

(1,1)
8

(λ) = (λ− 1)(λ2 − 1)(λ3 − 1)(λ6 − 1)−1

ii) elliptic eta-products

ηV III(τ) :=η(72τ)η(36τ)η(24τ)η(12τ)
−1 = η

E
(1,1)
8

(12τ)

= q5 + q17 + q29 + q41 + q53 + 2q65 + q89 + q101 + q113 + 2q125 + q137 + q149 · · · .

η̂V III(τ) :=η(τ)η(2τ)η(3τ)η(6τ)
−1 = η̂

E
(1,1)
8

(τ)

= 1−
(

q + 2q2 − q4 − 3q5 + 2q8 + 4q9 − 2q10 + 2q13 − q16 − 4q17 − 4q18 + 4q20 · · ·
)

.

iii) Level N , mred, m∗ and character

NV III = 72, mred
V III = 12, m∗V III = 1, εV III(d) = ε∗V III(d) =

(−1
d

)

.

εV III(1) = εV III(5) = 1, εV III(7) = εV III(11) = −1.

iv) Dirichlet series

LV III(s) =
1

4

(

L(s, 1)L(s, εV III)− L(s, χ)L(s, εχ−1)
)

,

L̂V III(s) =
1

2

1− 21−s

1− 2−s
1− 32−2s

1− 3−2s
L(s, 1)L(s, ε)

− 3

2

1 + 21−s

1 + 2−s
L(s, χ)L(s, εχ−1),
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where we put L(s, 1) = L++(s), L(s, εV III) = L−+(s), L(s, χV III) = L+−(s) and
L(s, εV IIIχ

−1
V II) = L−−(s), and for ε, χ ∈ {±1}

Lεχ(s) =
∏

p≡1(12)

1

1− p−s

∏

p≡5(12)

1

1− χp−s

∏

p≡7(12)

1

1− εp−s

∏

p≡11(12)

1

1− εχp−s
.

v) Kummer extension and Galois group

EV III = Eab
V III := Q(

√
−1,

√
−3) = Q(ζ12), where ζ12 = (

√
3 +

√
−1)/2.

Gal(EV III/Q) =< σ5, σ7, σ11 | σ2i = (σiσj)
2 = σ5σ7σ11 = 1 >= (Z/12Z)×

vi) Representations

ρ(+) = 1⊕ εV III , ρ(−) = χV III ⊕ εV III · χ−1V III ,

where εV III , χV III and εV III · χ−1V III are the non-trivial characters on the Galois groups
(Z/12Z)×/ < σ5 >= (Z/4Z)×, (Z/12Z)×/ < σ7 >= (Z/3Z)× and (Z/12Z)×/ < σ11 >
corresponding to the quadratic fields Q(

√
−1), Q(

√
−3) and Q(

√
3), respectively.

§4. Fourier Dirichlet coefficients for an elliptic root system of codimension 1

We give the final step of the proof of the goal theorem stated at Abstract. That
is: we prove that the Fourier coefficients of the non-cuspidal elliptic eta-product are non-
negative. At the end of this §, we give Table 4 of explicit formulae for the Fourier-Dirichlet
coefficients of 1-codimensional elliptic eta-products.

(4.1) Due to the results (2.9) Lemmas 4 and 5 and their Cororally, the marked elliptic
root systems (R,G), whose associated eta-product is non-cuspidal, are characterized by

ν(R,G) = 0 and are classified into types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 or E

(1,1)
8 . Due to (3.2) main

Theorem, the Dirichlet series L(R,G)(s) for such root system (R,G) is either of the forms:

1) L(s, 1(R,G))L(s, ε(R,G)) for D
(1,1)
4 and E

(1,1)
6 ,

2) 1
4

(

L(s, 1(R,G))L(s, ε(R,G))− L(s, χ(R,G))L(s, χ
−1
(R,G)ε(R,G))

)

for E
(1,1)
7 and E

(1,1)
8 ,

where 1(R,G), ε(R,G), χ(R,G) and χ
−1
(R,G)ε(R,G) are characters onGal(E(R,G),Q) ' (Z/mred

(R,G)Z)
×

taking values in {±1}, and the L(s, 1(R,G)), L(s, ε(R,G)), · · · etc are the Dirichlet L-
functions attached to the characters 1(R,G), ε(R,G), · · · etc with the trivial Euler factors

for the primes p in {p | prime with p|mred
(R,G)} = {p | prime with p|N(R,G)} ⊂ {2, 3} (recall

(2.7.4) and Fact 2. ii) after Table 2).
Let a marked elliptic root system (R,G) with ν(R,G) = 0 be given. We divide the set

of all rational prime numbers with p 6 | mred
(R,G) into 4 groups according to the values of

characters ε(R,G) and χR,G) (here, we interpret χ(R,G) ≡ 1 in case 1)):

34



P1 := {p ∈ Z>0 | prime s.t. p 6 |mred and ε(R,G)(p) = χ(R,G)(p) = 1}
Pε := {p ∈ Z>0 | prime s.t. p 6 |mred and ε(R,G)(p) = −1, χ(R,G)(p) = 1}
Pχ := {p ∈ Z>0 | prime s.t. p 6 |mred and ε(R,G)(p) = 1, χ(R,G)(p) = −1}
Pεχ := {p ∈ Z>0 | prime s.t. p 6 |mred and ε(R,G)(p) = −1, χ(R,G)(p) = −1}
In the case 1), one has

(4.1.1)

L(R,G)(s) = L(s, 1(R,G))L(s, ε(R,G))

=

(

∏

p∈P1

1

1− p−s

∏

p∈Pε

1

1− p−s

)(

∏

p∈P1

1

1− p−s

∏

p∈Pε

1

1 + p−s

)

=
∏

p∈P1

1

(1− p−s)2

∏

p∈Pε

1

1− p−2s
.

The Dirichlet coefficients of each of the Euler factor in the last expression are non-negative
due to the expansions: 1/(1− t)2 =

∑∞
n=1 nt

n−1 and 1/(1− t2) =
∑∞

n=0 t
2n.

In the case 2), one has

(4.1.2)

L(R,G)(s) =
1

4

{

L(s, 1(R,G))L(s, ε(R,G))− L(s, χ(R,G))L(s, χ
−1
(R,G)ε(R,G))

}

=
1

4

{

(

∏

p∈P1

1

1− p−s

∏

p∈Pε

1

1− p−s

∏

p∈Pχ

1

1− p−s

∏

p∈Pεχ

1

1− p−s

)

(

∏

p∈P1

1

1− p−s

∏

p∈Pε

1

1 + p−s

∏

p∈Pχ

1

1− p−s

∏

p∈Pεχ

1

1 + p−s

)

−
(

∏

p∈P1

1

1− p−s

∏

p∈Pε

1

1− p−s

∏

p∈Pχ

1

1 + p−s

∏

p∈Pεχ

1

1 + p−s

)

(

∏

p∈P1

1

1− p−s

∏

p∈Pε

1

1 + p−s

∏

p∈Pχ

1

1 + p−s

∏

p∈Pεχ

1

1− p−s

)

}

=
1

4

∏

p∈P1

1

(1− p−s)2

∏

p∈Pε

1

1− p−2s

∏

p∈Pεχ

1

1− p−2s

{

∏

p∈Pχ

1

(1− p−s)2
−
∏

p∈Pχ

1

(1 + p−s)2

}

.

As in the case 1), the Dirichlet coefficients of each of the Euler factor
∏

p∈P1

1
(1−p−s)2 ,

∏

p∈Pε
1

1−p−2s and
∏

p∈Pεχ
1

1−p−2s in the last expression are non-negative. The Dirich-

let coefficients of the term
∏

i p
−s(ki−1)
i for a finite set of primes pi ∈ Pχ and positive

integers ki ∈ Z>0 in the Euler factors
∏

p∈Pχ
1

(1−p−s)2 and
∏

p∈Pχ
1

(1+p−s)2 are
∏

i ki and

(−1)
∑

i
ki+1

∏

i ki, respectively. So, the difference (1−(−1)
∑

i
ki+1)

∏

i ki, is non-negative.
This completes the proof of the non-negativity of the coefficients of L(R,G)(s). Q.E.D.

Thus, the proof of the goal theorem stated in the abstract is completed.
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(4.2) The above proof uses the fact that an Euler factor for the bad prime p | Nϕ is trivial.
We give 3 examples (from Conway group [Ko]) of holomorphic non-cuspidal eta-products
whose Fourier coefficients at ∞ contain negative integers because of bad Euler factors.
Put ϕ1 := (λ6 − 1)6(λ− 1)/(λ3 − 1)3(λ2 − 1)2,

ϕ2 := (λ2 − 1)(λ3 − 1)3(λ12 − 1)3/(λ− 1)(λ4 − 1)(λ6 − 1)3 ,
ϕ3 := (λ2 − 1)3(λ6 − 1)(λ12 − 1)2/(λ− 1)(λ3 − 1)(λ4 − 1)2.

Then µϕi = 24, νϕi = 0 and hence mϕi = m∗ϕi = 1 for i = 1, 2, 3. The eta-products:
ηϕ1(τ) = q − q2 + q3 + q4 − q6 + 2q7 − q8 + q9 + q12 + 2q13 − · · ·,
ηϕ2(τ) = q + q2 + q3 − q4 + q6 + 2q7 + q8 + q9 − q12 + 2q14 − · · ·
ηϕ3(τ) = q + q2 − q3 + q4 + 2q5 − q6 + q8 + q9 + 2q10 − q12 + 2q13 − · · ·

are holomorphic ((2.8) Lemma 2) but non-cuspidal (for νϕi = 0) forms of weight 1 and levels
N=6,12,12, respectively. The attached Dirichlet series have the Euler product expansions:

Lϕ1(s) =
1

1 + 2−s
1

1− 3−s

∏

p≡1 mod (6)

1

(1− p−s)2

∏

p≡5 mod (6)

1

1− p−2s
,

Lϕ2(s) =
1 + 2 · 2−s
1 + 2−s

1

1− 3−s

∏

p≡1 mod (6)

1

(1− p−s)2

∏

p≡5 mod (6)

1

1− p−2s
,

Lϕ3(s) =
1

1− 2−s
1

1 + 3−s

∏

p≡1, 5 mod (12)

1

(1− p−s)2

∏

p≡7, 11 mod (12)

1

1− p−2s
,

whose Euler factors for the bad primes 2 or 3 create negative Dirichlet coefficients.

Table 4. Fourier Dirichlet coefficients for 1-codimensional elliptic root systems

As a consequence of Table 3, we give a table of explicit formulae of the Fourier coeffi-
cients c(n) for 1-codimensional elliptic eta-product η(R,G)(mτ) =

∑

n c(n)q
n. The table is

divided into 8 groups according to Table 3. For each group, we recall the type of elliptic
root systems, elliptic eta-product and mred := 24/gcd(24, µred(R,G)) ∈ Z>0 (2.7), and then,

we give the formula for the coefficients c(n) for n ∈ Z>0 using following notation.

Notation for Table 4. Let mred ∈ Z>0 be given as above.
i) Put Pi := {p ∈ Z | a prime number with p ≡ i mod mred} for i ∈ Z with 1 ≤ i < mred

and (mred, i) = 1. We denote by pi an index which runs through the set Pi.
For a subset A of Pi, we denote by pi,A an index running through the set A.

ii) By
∑

i (resp.
∏

i) and by
∑

i,A (resp.
∏

i,A), we mean the summation
∑

pi∈Pi
(resp. the product

∏

pi∈Pi) and also
∑

pi,A∈A (resp.
∏

pi,A∈A).

iii) By
∏

i p
ki
i , we mean a finite product (i.e. almost all ki are equal to 1) of the form

∏l
j=1 p

ki,j
i,j where pi,j (1 ≤ j ≤ l) are mutually different prime numbers in Pi. Therefore,

any positive integer n ∈ Z>0 has the unique prime decomposition:

(T4.1) n =
∏

1≤i<mred,(mred,i)=1

(

∏

i

pkii

)

.
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Let us call the expression (T4.1) the prime decomposition of n relative to mred.
iv) For l ∈ Z,

(

l
2

)

and
(

l
3

)

are the Legendre symbols modulo 2 and 3, respectively:

(

l
2

)

:=

{

1 if l ≡ 1 mod 2,
0 if l ≡ 0 mod 2,

and
(

l
3

)

:=







1 if l ≡ 1 mod 3,
0 if l ≡ 0 mod 3,
−1 if l ≡ −1 mod 3.

I. Types: B
(2,1)
2 , C

(1,2)
2 , BC

(2,2)
2 (1), G

(1,1)
2 , G

(3,3)
2 , F

(1,1)
4 , F

(2,2)
4

ηI(τ) := η(12τ)2 =
∑

n cI(n)q
n, mred

I = 12.

Let n =
∏

1,A p
k1,A

1,A

∏

1,B p
k1,B

1,B

∏

5 p
k5
5

∏

7 p
k7
7

∏

11 p
k11
11 (ki ∈ Z≥0) be a prime decom-

position of n ∈ Z>0 relative to mred
I = 12 (T4.1), where A := {p ∈ Z>0 | prime numbers,

p ≡ 1(12) and ∃x4 ≡ 12(p)}, and B := {p ∈ Z>0 | prime numbers, p ≡ 1(12) and
∀x4 6≡ 12(p)}. Then one has

cI(n) =
∏

1,A

(k1,A + 1)
∏

1,B

(

(k1,B + 1)(−1)k1,B
)

×
∏

5,7,11

((

k5 + 1

2

)(

k7 + 1

2

)(

k11 + 1

2

)

(−1)
k5
2

)

,

II. Types A
(1,1)∗
1 , BC

(2,1)
1 , BC

(2,4)
1 , F

(1,2)
4 , F

(2,1)
4

ηII(τ) := η(16τ)η(8τ) =
∑

n cII(n)q
n, mred

II = 8.

Let n =
∏

1,A p
k1,A

1,A

∏

1,B p
k1,B

1,B

∏

3 p
k3
3

∏

5 p
k5
5

∏

7 p
k7
7 (ki ∈ Z≥0) be a prime decom-

position of n ∈ Z>0 relative to mred
II = 8 (T4.1), where A := {p ∈ Z>0 | prime num-

bers, p ≡ 1(8) and ∃x8 ≡ −4(p)}, and B := {p ∈ Z>0 | prime numbers, p ≡ 1(8) and
∀x8 6≡ −4(p)}. Then one has

cII(n) =
∏

1,A

(k1,A + 1)
∏

1,B

(

(k1,B + 1)(−1)k1,B
)

×
∏

3,5,7

((

k3 + 1

2

)(

k5 + 1

2

)(

k7 + 1

2

)

(−1)
k3
2

)

.

III. Types B
(1,1)
3 , C

(2,2)
3

ηIII(τ) := η(48τ)3η(24τ)−1 =
∑

n cIII(n)q
n, mred

III = 24.

Let n =
∏

1,A p
k1,A

1,A

∏

1,B p
k1,B

1,B

∏

5,U p
k5,U

5,U

∏

5,V p
k5,V

5,V

∏

7 p
k7
7

∏

11 p
k11
11

∏

13 p
k13
13

∏

17 p
k17
17

∏

19 p
k19
19

∏

23 p
k23
23 (ki ∈ Z≥0) be a prime decomposition of n ∈ Z>0 relative to mred

III = 24
(T4.1), where A := {p ∈ Z>0 | prime number, p ≡ 1(24) and ∃x4 ≡ (p)}, B := {p ∈ Z>0 |
prime number, p ≡ 1(24) and ∀x4 6≡ (p)}, U := {p ∈ Z>0 | prime number, p ≡ 5(24)} and
V := {p ∈ Z>0 | prime number, p ≡ 5(24)}. Then one has

cIII(n) =

√
−1
4

(

c(+)(n)− c(−)(n)
)
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where

c(χ)(n) =
∏

1,A

(k1,A + 1)
∏

1,B

(

(k1,B + 1)(−1)k1,B
)

∏

5

(k5 + 1)
(√
−1
)χ(
∑

k5,U−
∑

k5,V )

×
∏

7,13,23

(

k7 + 1

2

)(

k13 + 1

2

)(

k23 + 1

2

)

×
∏

11,17,19

((

k11 + 1

2

)(

k17 + 1

2

)(

k19 + 1

2

)

(−1)
k11
2 +

k17
2 +

k19
2

)

for χ ∈ {±}. Note that c(n) = 0 if
∑

5 k5 is even. In particular, c(n2) = 0 for all n ∈ Z>0.

IV. Type D
(1,1)
4

ηIV (τ) := η(2τ)4η(τ)−2 =
∑

n cIV (n)q
n, mred

IV = 4.

Let n =
∏

1 p
k1
1

∏

3 p
k3
3 (ki ∈ Z≥0) be a prime decomposition of n ∈ Z>0 relative to

mred
IV = 4 (T4.1). Then one has

cIV (n) =
∏

1

(k1 + 1)
∏

3

(

k3 + 1

2

)

,

V. Types G
(1,3)
2 , G

(3,1)
2

ηV (τ) := η(18τ)η(6τ) =
∑

n cV (n)q
n, mred

V = 6.

Let n =
∏

1,A p
k1,A

1,A

∏

1,B p
k1,B

1,B

∏

5 p
k5
5 (ki ∈ Z≥0) be a prime decomposition of n ∈ Z>0

relative to mred
V = 6 (T4.1), where A := {p ∈ Z>0 | prime numbers, p ≡ 1(6) and

∃x3 ≡ 2(p)}, and B := {p ∈ Z>0 | prime numbers, p ≡ 1(6) and ∀x3 6≡ 2(p)}. Then one
has

cV (n) =
∏

1,A

(k1,A + 1)
∏

1,B

(

k1,B + 1

3

)

∏

5

(

k5 + 1

2

)

,

VI. Type E
(1,1)
6

ηV I(τ) := η(9τ)3η(3τ) =
∑

n cV I(n)q
n, mred

V I = 3.

Let n =
∏

1 p
k1
1

∏

2 p
k2
2 (ki ∈ Z≥0) be a prime decomposition of n ∈ Z>0 relative to

mred
V I = 3 (T4.1). Then one has

cV I(n) =
∏

1

(k1 + 1)
∏

2

(

k2 + 1

2

)

,

VII. Type E
(1,1)
7

ηV II(τ) := η(32τ)2η(16τ)η(8τ)−1 =
∑

n cV II(n)q
n, mred

V II = 8
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Let n =
∏

1 p
k1
1

∏

3 p
k3
3

∏

5 p
k5
5

∏

7 p
k7
7 (ki ∈ Z≥0) be a prime decomposition of n ∈ Z>0

relative to mred
V II = 8 (T4.1). Then one has

cV II(n) =
1

4

(

c(+)(n)− c(−)(n)
)

where

c(χ)(n) =
∏

1

(k1 + 1)
∏

3

(

(k3 + 1)χk3
)

∏

5,7

(

k5 + 1

2

)(

k7 + 1

2

)

,

for χ ∈ {±}. Note that c(n) = 0 if
∑

3 k3 is even. In particular c(n2) = 0 for all n ∈ Z>0.

VIII. Type E
(1,1)
8

ηV III(τ) := η(72τ)η(36τ)η(24τ)η(12τ)−1 =
∑

n cV III(n)q
n, mred

V III = 12.

Let n =
∏

1 p
k1
1

∏

5 p
k5
5

∏

7 p
k7
7

∏

11 p
k11
11 (ki ∈ Z≥0) be a prime decomposition of n ∈

Z>0 relative to mred
V III = 12 (T4.1). Then one has

cV III(n) =
1

4

(

c(+)(n)− c(−)(n)
)

where

c(χ)(n) =
∏

1

(k1 + 1)
∏

5

(

(k5 + 1)χk5
)

∏

7,11

(

k7 + 1

2

)(

k11 + 1

2

)

,

for χ ∈ {±}. Note that c(n) = 0 if
∑

5 k5 is even. In particular c(n2) = 0 for all n ∈ Z>0.
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