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Abstract. For any tree Γ, we introduce Γ-cones and solve a prob-
lem of enumeration of chambers contained in two particular, called
the principal, Γ-cones. The problem can be reformulated combina-
torially: the enumeration of linear extensions of the two bipartite
(called principal) orderings on Γ. We characterize the principal
Γ-cones by the strict maximality of the number of their chambers,
and give a formula for this maximal number by a finite sum of hook
length formulae. We explain the formula through the block decom-
position of the principal Γ-cones. The results have their origin and
applications in the study of topology related to Coxeter groups.

Let VΠ :=⊕α∈ΠRvα/R
∑

α∈Πvα be the space of all configurations in R
labeled by a finite set Π (see §1), on which the permutation group S(Π)
acts irreducibly as a reflection group. The space VΠ decomposes into
chambers cut by the system of all hyperplanes fixed by reflections on VΠ

associated to the transpositions in S(Π). Given a graph Γ, having Π
as its vertex set, the system of reflection hyperplanes associated to the
transpositions of vertices on the edges of Γ cuts VΠ into components.
Each component, which we call a Γ-cone, is subdivided into chambers.
If Γ is a tree, through a use of the principal decomposition of Γ (§3), we
choose two particular Γ-cones, called the principal Γ-cones. The main
results of this article are i) a characterization of the principal cones by
the strict maximality of the number of their chambers (Theorem 3.2),
ii) an enumeration formula of the chambers in the principal cones in
terms of Γ (Theorem 4.1) and iii) an explanation of the formula by the
block decomposition of the principal cone (Cororally to Theorem 5.1).

When Γ is a Coxeter diagram Γ(W ) of a finite Coxeter group W ,
the principal Γ(W )-cone was introduced in [S1] in the study of the real
bifurcation set, where the origin and the applications (e.g. homotopy
groups of complex configuration spaces, topological types of Morsifica-
tion, see §6 and [S1,3] for more details) for the present study lie.

The principal Γ-cone for an arbitrary tree Γ, introduced in the present
article, is its generalization. As we shall see, the three main results can
be formulated and proven purely in terms of the tree Γ and not of
the group W (e.g. §5 Example). Therefore, in the present article, we
develop the general framework for the principal Γ-cone and their cham-
bers in a purely combinatorial manner separated from [S1].
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The contents of the present paper are as follows. In §1, we fix the
basic notation related to Γ-cones for any graph Γ. In §2, we prepare
two assertions to count the number of chambers in a Γ-cone. After §3,
we assume that Γ is a tree. In §3, we introduce the two principal ori-
entations on Γ and the associated two principal Γ-cones EΓ, and prove
the first main Theorem of the present paper: the principal Γ-cones
are the Γ-cones which contain strictly maximal number of chambers.
In §4, as the second main Theorem, we give the formula enumerating
chambers in each of the principal Γ-cone in terms of Γ. The formula
is a sum of a finite number of terms where each term is a hook length
formula for a rooted tree. We give an alternative proof of the formula
in §5, where this finite sum formula is geometrically explained by the
finite block decomposition of the principal Γ-cone. In §6, we explain a
relation of the principal Γ(W )-cone with the real bifurcation set of a
Coxeter group W [S1], which motivated the present study. At the end
of §6, we compare Γ-cones with a somewhat similar concept: Springer
cones [Ar1][Sp], and clarify the relationship between the two.

The author is grateful to Timothy Logvinenko for useful suggestions
and to Victor Reiner for reminding some terminologies and references
in combinatorics and, in particular, the hook length formula [K1-2].

1. The Γ-cones and their chamber decomposition

For a finite graph Γ, we fix notation and terminology of Γ-cones
and their chamber decomposition. They naturally correspond to some
combinatorial structures on the graph Γ (e.g. [G-Z], [St1]).

Let Π be a finite set with #Π= l≥ 1. A configuration in R labeled
by Π is a map v : Π → R up to the equivalence by the translation
automorphism of R. The set of all configurations labeled by Π is given
by the vector space of rank l−1:

(1) VΠ := ⊕α∈ΠRvα/R · vΠ

where vα (α∈Π) is the delta function on Π at α (i.e. vα(β)=δαβ ∀α, β)
and vΠ :=

∑
α∈Π vα is the unit function on Π (i.e. vΠ(α) = 1 ∀α). The

permutation group S(Π) acts on {vα}α∈Π fixing vΠ, and, hence, the
action extends linearly to VΠ. Let {λα}α∈Π be the dual basis of {vα}α∈Π,
so that the differences λαβ :=λα−λβ for α, β∈Π are well-defined linear
forms on VΠ (forming the root system of type Al−1). The zero locus
Hαβ of λαβ (α 6=β) in VΠ is the reflection hyperplane of the reflection
action induced by the transposition (α, β). The complement of the
union ∪α,β∈Π,α6=βHαβ in VΠ decomposes into l! connected components,
called chambers (in fact, Weyl chambers of type Al−1, see Remark 1.
below). The set of all chambers is naturally bijective to the set
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Ord(Π):={all linear orderings on the set Π} by the correspondence:

c := {α1 <c . . .<c αl} ∈ Ord(Π) ↔ Cc := ∩l−1
i=1{v ∈ VΠ | λαiαi+1

(v)<0}.
Here, the order-relation with respect to c ∈ Ord(Π) is denoted by <c,
and the corresponding chamber is denoted by Cc. If we denote by −c
the reversed ordering of c, then one has C−c = −Cc.

A graph Γ on Π is a one-dimensional simplicial complex whose set
of vertices is Π. An edge connecting vertices α and β (if it exists) is
denoted by αβ = βα. The set of all edges of Γ is denoted by Edge(Γ).
By an abuse of notation, we shall sometimes denote the set of vertices
by |Γ|, and write “a vertex α ∈ Γ” instead of “a vertex α ∈ Π”.

Definition. A Γ-cone is a connected component of VΠ\∪αβ∈Edge(Γ)Hαβ.
By definition, each Γ-cone is subdivided into chambers.

Remark 1. One should not confuse the chambers in the present paper,
which are of type Al−1 living in the (l−1)-dimensional space VΠ, with
the chambers of the Weyl group W (Γ) of the graph Γ ([B, VI,1.5]),
which live in the l-dimensional space ⊕RΠ (see also §6 Note 2).

The Γ-cones and the chambers contained in a Γ-cone are described
using acyclic orientations on Γ defined as follows: a collection o of
orientations α <o β for all edges αβ ∈Edge(Γ) is called acyclic if the
oriented graph (Γ, o) does not contain an oriented cycle (see [St2]). In
the present paper, we shall consider only acyclic orientations.

An acyclic orientation o on Γ defines, by transitive closure, a partial
ordering on Π, which, for an abuse of notation, we shall denote by ≤o.
(however, α<o β, i.e. α≤ oβ and α 6=β, may not imply the existence of
an edge αβ). We shall denote o1≤o2 if α<o1 β implies α<o2 β. Put

(2) Or(Γ) := {all acyclic orientations on Γ}.
The followings are immediate consequences of the definition and are

well-known [G-Z]. For a convenience of the reader, we sketch the proofs.

Assertion 1.1. 1. For an orientation o ∈ Or(Γ), define a cone:

(3) Eo := ∩αβ∈Edge(Γ) oriented as α<oβ{v ∈ VΠ | λαβ(v)<0}.
Then Eo is a Γ-cone. The correspondence o 7→ Eo induces a bijection

(4) Or(Γ) ' {Γ-cones}.
2. A chamber Cc for c ∈ Ord(Π) is contained in the Γ-cone Eo for

o ∈ Or(Γ) if and only if c is a linear extension of o, i.e. o = c|Edge(Γ).

3. The reflection hyperplane Hαβ for α, β ∈ Π intersects with the
cone Eo if and only if α and β are disconnected in Γ and the orientation
o on Γ induces an acyclic orientation on the quotient graph Γ/∼, where
Γ/∼ is obtained from Γ by the identification of α and β.
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Proof. 1. For any o ∈ Or(Γ), let us show that Eo 6= ∅, that is: there
exists a map v : Π→R such that v(α)<v(β) if α<o β. We prove this by
an induction on l. Acyclicity of (Γ, o) implies an existence of a minimal
vertex α ∈Π: for any edge αβ ∈Edge(Γ), one has α <o β. Put Π′ :=
Π\{α}. Then clearly o′ :=o|Π′ is an orientation on the graph Γ′ :=Γ|Π′ .
By the induction hypothesis, there exists a map v′ :Π′→R preserving
the sub-orientation o′. Then, v is an extension of v′ by choosing the
value v(α) from the non-empty set R \∪β∈Π′,αβ∈Edge(Γ)[v

′(β),∞).

Conversely, for a given Γ-cone E, define the edge αβ ∈ Edge(Γ)
to have the orientation α <E β if λαβ|E < 0. This defines an acyclic
orientation oE on Γ. These establish the bijection (4).

2. The inclusion Cc⊂Eo is equivalent to the inclusions Cc⊂{λαβ <

0} ⇔ α<c β for any oriented edge αβ with α<o β.
3. That Hαβ∩Eo 6= ∅ is equivalent that there exists a map v : Π→

R satisfying v(α) = v(β) and the inequalities (3). Apply again the
argument in 1. to this setting. ¤

According to the previous assertion, we put

(5) Σ(o) := { c ∈ Ord(Π) | o = c|Edge(Γ) },
and identify Σ(o) with the set of chambers contained in Eo. Let us
introduce a numerical invariant for the orientation o ∈ Or(Γ):

(6) σ(Eo) := σ(o) := #Σ(o) = #{chambers contained in Eo}.
If we denote by −o the reversed orientation of o, one has E−o = −Eo

and, therefore, Σ(−o) = −Σ(o) and σ(−o) = σ(o).

In order to obtain the smallest oriented graph, which gives the same
cone, we introduce the reduced oriented graph ored, or the Hasse dia-
gram: an oriented edge α<o β of the oriented graph o is called reducible
if there is a sequence α0 =α, α1, · · · , αk−1, αk =β ∈ Π for some k∈Z>1

such that αi−1<oαi for i = 1,· · ·, k. Then the reduction ored of o, also
called the Hasse diagram of o, is uniquely defined from o by

ored := the oriented graph obtained from o by deleting
all reducible edges.

One easily observes that i) the associated cones coincide: Eo =Eored
,

ii) there is a bijection between the edges of ored and the (l−2)-dimensional
faces of Eo =Eored

. Consequently, one has: iii) Eo = Eo′ for oriented
graphs o and o′ on Π, if and only if ored =o′red.

Remark 2. As described above, the geometry of the Γ-cones in VΠ has
a natural relation with the combinatorics (partially ordered structures)
on the set Π. The enumeration of σ(o) is the basic problem of enumer-
ation of linear extension of a partially ordered set (e.g., see [St1]).



PRINCIPAL Γ-CONE 5

On the other hand, a Γ-cone with the subdivision into chambers
appears naturally in the study of finite Coxeter group W as follows,
where Π stands for a simple generator system of W . Then, a linear
ordering α1<cα2<c· · ·<cαl of Π defines a Coxeter element α1 · · ·αl∈W .
Two Coxeter elements coincide if the corresponding chambers belong
to the same Γ(W )-cone for the Coxeter-Dynkin diagram Γ(W ) on Π.
The principal Γ(W )-cone EΓ(W ), which we shall introduce in §3, has
the particular geometric significance, for which we refer to [S1] (see §7).

It may be worthwhile to mention that a choice of the orientations on
the Coxeter-Dynkin diagram Γ(W ) plays often an important role in the
studies related to root systems (recent examples: a stability condition
on a triangulated category [K-S-T], the quantized Toda equations [E]).

2. A decomposition formula

We prepare two Assertions which are to help calculating σ(o). They
are used in the proof of the Theorems in §3,4 and 5. The reader may
skip this section at first reading.

For any o ∈ Or(Γ), α ∈ Π and r ∈ Z≥0, we put

Σ(o, α, r) := {c ∈ Σ(o) | #{β ∈ Π | α <c β} = r},(7)

σ(o, α, r) := #Σ(o, α, r).(8)

Obviously, one has the disjoint decomposition Σ(o) =
∐l−1

r=0 Σ(o, α, r)

for any α ∈ Π so that σ(o) =
∑l−1

r=0 σ(o, α, r).
1. Let Γ1, · · · , Γk (k ∈ Z>0) be graphs, which contain the unique

common vertex α. Let us denote by

(9) Γ1

∐
α · · ·

∐
α Γk,

the graph obtained by the disjoint union of the graphs Γi (i=1, · · · , k)
up to an identification of the common vertex α.

Assertion 2.1. Let Γ be a graph decomposing as (9). For an orienta-
tion o∈Or(Γ), put oi := o|Γi

∈Or(Γi) (1≤i≤k) and li :=#Γi (1≤i≤k)
so that l=

∑
i li−k+1. Then, for any r∈Z≥0, one has the following:

(10)

σ(o, α, r) =
∑

r1,··· ,rk∈Z≥0
r1+···+rk=r

σ(o1, α, r1) · · ·σ(ok, α, rk)(
r1+···+rk
r1,··· ,rk

)( l−1−r1−···−rk
l1−r1−1,··· ,lk−rk−1),

where (r1+···+rk
r1,··· ,rk

) :=(r1+· · ·+rk)!/r1! · · · rk! is the multinomial coefficient.
By summing the formula (10) for all r ∈ Z≥0, one obtains the following:
(11)

σ(o) =
∑

r1,··· ,rk∈Z≥0

σ(o1, α, r1) · · ·σ(ok, α, rk)(
r1+···+rk
r1,··· ,rk

)( l−1−r1−···−rk
l1−r1−1,··· ,lk−rk−1).
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Proof. It is sufficient to prove only (10).
Consider the projection Σ(o) → Σ(o1)×· · ·×Σ(ok), c 7→ (c|Γi

)i=1,··· ,k.
The projection decomposes into projections

(12) Σ(o, α, r) →
∐

r1,··· ,rk∈Z≥0
r1+···+rk=r

Σ(o1, α, r1)× · · · × Σ(ok, α, rk)

for r ∈ Z≥0. Let us see that the cardinality of the inverse image of
a point (c1, · · · , ck) ∈ Σ(o1, α, r1) × · · · × Σ(ok, α, rk) is equal to the

product of two combination number: (r1+···+rk
r1,··· ,rk

)( l−1−r1−···−rk
l1−r1−1,··· ,lk−rk−1).

Put Γ+
i := {β ∈ |Γi| | α <ci

β} and Γ−i := {β ∈ |Γi| | β <ci
α}. Then,

an ordering c ∈ Σ(o, α, r) is in the inverse image, if the r=r1+· · ·+rk

elements qk
i=1Γ

+
i lie in the right hand side of α and the l− r−1 =

(l1−r1− 1)+· · ·+(lk−rk−1) elements qk
i=1Γ

−
i lie in left hand side of

α with respect to c, and the restrictions c|Γ±i are equal to the pre-fixed

linear orderings c±i := ci|Γ±i for i = 1, · · · , k. Thus the set of c in the

inverse image is bijective to Σ(qk
i=1c

+
i ) × Σ(qk

i=1c
−
i ), where qk

i=1c
±
i is

the partial ordering structure on Γ± := qk
i=1Γ

±
i . Since Σ(qk

i=1c
+
i ) is

just the set of shuffles of k sets of cardinalities r1,. . . ,rk, its cardinality
is given by the combination number, i.e. σ(qk

i=1c
+
i )= (r1+···+rk

r1,··· ,rk
).

Similarly, one has σ(qk
i=1c

−
i )=( l−1−r1−···−rk

l1−r1−1,··· ,lk−rk−1). ¤

2. A vertex α ∈ Π is called maximal (resp. minimal) with respect
to o ∈ Or(Γ), if β<o α (resp. α<o β) for any edge αβ ∈ Edge(Γ) at α.

Assertion 2.2. If α is maximal with respect to o, then one has
σ(o, α, 0) ≥ σ(o, α, 1) ≥ · · · ≥ σ(o, α, l−2) ≥ σ(o, α, l−1).

If α is minimal with respect to o, then one has
σ(o, α, 0) ≤ σ(o, α, 1) ≤ · · · ≤ σ(o, α, l−2) ≤ σ(o, α, l−1).

If α is non-isolated in Γ, the smallest terms in the sequences are zero.

Proof. We show only the first case. The latter case is shown similarly.
It is sufficient to show that there is an injection map Σ(o, α, r) →

Σ(o, α, r−1) for r > 0. In fact the map is constructed as follows: let
c = {A <c α <c β <c B} ∈ Σ(o, α, r) where β ∈ Π and A and B are
such linear sequence of inequalities of elements of Π that the length
of B is equal to r − 1 (this is possible since r ≥ 1). Then we set
c′ := {A <c β <c α <c B} ∈ Σ(o, α, r−1) where c′ is well defined since
α is maximal. The correspondence c 7→ c′ is clearly injective.

If α is non-isolated, then the set Σ(o, α, l−1) is empty, since there
exists a vertex β ∈ Π such that βα ∈ Edge(Γ) and β <o α and hence
for any c ∈ Σ(o) one has β <c α and c 6∈ Σ(o, α, l − 1). ¤
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3. Principal Γ-cones

A graph Γ is called a tree if it is connected and has no cycle. For a tree
Γ, we introduce two particular Γ-cones, called the principal Γ-cones.
The first main result of the present paper, formulated in Theorem (3.2),
is to characterize the principal Γ-cones.

The following is a characterization of trees in terms of Γ-cones.

Assertion 3.1. Let Γ be a graph on Π. Then, {Hαβ}αβ∈Edge(Γ) forms
a system of coordinate hyperplanes of VΠ if and only if Γ is a tree.

Proof. For each edge αβ of Γ, we choose one of λαβ or λβα. Then, it is
immediate that i) {λαβ}αβ∈Edge(Γ) is linearly independent if and only if

Γ does not contain a cycle, and ii) {λαβ}αβ∈Edge(Γ) spans the dual space
of VΠ if and only if Γ is connected. ¤

Consequently, a Γ-cone Eo is simplicial (i.e. the cone over a simplex)
if and only if ored is a tree. From now on in the present paper, we
shall assume that Γ is a tree on Π. Then the system of coordinate
hyperplanes {Hαβ}αβ∈Edge(Γ) cuts the vector space VΠ into 2l−1-number
of orthants, each of which is simplicial. A question is a characterization
of the Γ-vector: (σ(o))o∈Or(Γ) of size 2l−1. One distinguished property
of the Γ-vector is that it contains a unique (up to change the sign of
orientations, see Note. below) maximal entry, which we explain now.

Definition. Let Γ be a tree (or more generally, a connected graph).
1. A principal decomposition of Γ is the ordered pair {Π1, Π2} of

subsets of Π such that i) one has the disjoint decomposition:

(13) Π = Π1 q Π2,

ii) each Πi is totally disconnected (discrete) in Γ.
2. A principal orientation on Γ is an element in Or(Γ) attached to

a principal decomposition {Π1, Π2} as follows:

(14) oΠ1,Π2 :={ α <oΠ1,Π2
β for αβ∈Edge(Γ) with α∈Π1, β∈Π2}.

3. A principal Γ-cone is the Γ-cone attached to a principal orientation
oΠ1,Π2 . That is:

(15)
EΠ1,Π2 := EoΠ1,Π2

= {v ∈ VΠ | λαβ(v)< 0 for αβ∈Edge(Γ) with α∈Π1, β∈Π2}.
It is easy to see that there exist exactly two principal decompositions

for any tree Γ 6=∅, and that if one is given by {Π1, Π2} then the other
one is given by {Π2, Π1}. For simplicity, we shall confuse the expression
(13) with the principal decomposition {Π1, Π2}.
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4. Since oΠ2,Π1 =−oΠ1,Π2 and EΠ2,Π1 =−EΠ1,Π2 , two principal Γ-cones
(see Note. below) are isomorphic to each other as abstract cones by
the multiplication of −1. The isomorphism preserves the subdivisions
into chambers. The isomorphism class of the pair of the cones and its
subdivision into chambers is called the principal Γ-cone. For an abuse
of notation, it is denoted by

(16) EΓ := EΠ1,Π2 ' EΠ2,Π1 .

Note. If Γ is Γ(A1)= one point graph, then Γ has only one orientation,
say oA1 . Therefore, the two principal orientations oΠ1,Π2 and oΠ2,Π1

coincide with oA1 , i.e. oΠ1,Π2 = oΠ2,Π1 = øA1 . The VΠ is the zero vector
space {0}, which is equal to the only principal cone EΓ(A1) = {0}.
The cone consists of single chamber C := {0}, i.e. Σ(oA1) = {C} and
σ(oA1)=1. Except for this case, there are always two principal Γ-cones,
which are in the opposite position with respect to the origin in VΠ.

The following is the first main theorem of the present paper, which
characterizes the principal Γ-cone and justifies its naming “principal”.

Theorem 3.2. Let Γ be a tree on Π. The principal Γ-cone EΓ is the
Γ-cone which contains the strictly maximal number of chambers. That
is: a Γ-cone Eo for o ∈ Or(Γ) is principal, i.e. o is one of the two
orientations oΠ1,Π2 or oΠ2,Π1, if and only if σ(o)=σ(Γ), where

(17) σ(Γ) := max{σ(p) | p ∈ Or(Γ)}.
Proof. With the results established in §2, the proof is straightforward:
suppose o ∈ Or(Γ) is not principal, that is: there exist α, β, γ ∈ Π
with γ <o α <o β. Actually, Γ decomposes as Γ = Γ+

∐
α Γ−, where

Γ+ (resp. Γ−) is a full subgraph of Γ containing α and any connected
component of Γ \ {α} which contains a vertex β s.t. α <o β (resp.
α >o β). By the assumption on o, one has Γ± 6= ∅.

Put o+ := o|Γ+ ∈ Or(Γ+) and o− := o|Γ− ∈ Or(Γ−).

Assertion 3.3. Define a new orientation õ ∈ Or(Γ) by the following
rule: õ agrees with o+ on Γ+ and with −o− on Γ−. Then σ(õ) > σ(o).

Proof. For a proof of the Assertion, we apply the formula (11) in As-
sertion 2.1 to the decomposition Γ = Γ+

∐
α Γ−and to o, õ ∈ Or(Γ):

σ(o) =

l+∑
r+=0

l−∑
r−=0

σ(o+, α, r+)σ(o−, α, r−)Cr+, r−Cl+−r+, l−−r− ,

σ(õ) =

l+∑
r+=0

l−∑
r−=0

σ(o+, α, r+)σ(o−, α, r−)Cr+, l−−r−Cl+−r+, r− ,
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where l+ := #Γ+−1 > 0, l− := #Γ−−1 > 0 such that l = l+ + l− + 1,

and the notation Cr+, r− means the binomial coefficients (r++r−)!
r+! r−!

.

We want to calculate the difference σ(õ) − σ(o) term-by-term. Ob-
serve that the terms for r+ = l+/2 (if l+ is even) and the terms for
r− = l−/2 (if l− is even) in the two formulae give the same value and
so cancel each other in the difference. Therefore, we decompose the
region [0, l+] × [0, l−] of the summation index (r+, r−) into 4 regions
according to whether r+ is larger or less than l+/2 and r− is larger or
less than l−/2.

For an index (r+, r−) in the region [0, l+/2) × [0, l−/2), we consider
4 indices (r+, r−), (r+, r∗−), (r∗+, r−) and (r∗+, r∗−) in the 4 regions simul-
taneously, where r∗+ := l+ − r+ and r∗− := l− − r−. Let us explicitly
write down the difference between these 4 terms in σ(õ) and in σ(o):

σ(r+)σ(r−)Cr+,r∗−Cr∗+,r− + σ(r+)σ(r∗−)Cr+,r−Cr∗+,r∗−
+ σ(r∗+)σ(r−)Cr∗+,r∗−Cr+,r− + σ(r∗+)σ(r∗−)Cr∗+,r−Cr+,r∗−
− σ(r+)σ(r−)Cr+,r−Cr∗+,r∗− − σ(r+)σ(r∗−)Cr+,r∗−Cr∗+,r−
− σ(r∗+)σ(r−)Cr∗+,r−Cr+,r∗− − σ(r∗+)σ(r∗−)Cr∗+,r∗−Cr+,r− ,

where we used the simplified notation σ(r+) := σ(o+, α, r+), σ(r∗+) :=
σ(o+, α, r∗+), σ(r−) := σ(o−, α, r−) and σ(r∗−) := σ(o−, α, r∗−).

One can factorize this difference as follows:

(σ(r+)− σ(r∗+))(σ(r∗−)− σ(r−))(Cr+,r−Cr∗+,r∗− − Cr+,r∗−Cr∗+,r−).

Let us examine the sign of the factors and demonstrate that the
product turns out to be non-negative. First, recall that the vertex α
is minimal in Γ+ and maximal in Γ− by definition. Note also that
r+ < l+/2 < r∗+ and r− < l−/2 < r∗−. Therefore, applying §2 Assertion
2.2, we observe that (σ(r∗+)− σ(r+))(σ(r−)− σ(r∗−)) ≥ 0. Next, let us
examine the last factor. For this purpose, we use the proportion of the
two terms in the last factor:

Cr+,r−Cr∗+,r∗−

Cr+,r∗−Cr∗+,r−
=

(r∗+ + r∗−)!

(r+ + r∗−)!
· (r+ + r−)!

(r∗+ + r−)!
.

Using the fact that r+ < r∗+, one has r∗+ + r∗− > r+ + r∗− and r+ + r− <

r∗+ + r−. Hence, the expression can be reduced to
∏r∗+

k=r++1

r∗−+k

r−+k
, where

each factor is larger than 1 since r−+k < r∗−+k and the number of the
factors is r∗+ − r+ > 0 so that the result is always larger than 1. These
together imply that the difference of the 4 terms is non-negative.

By summing up terms for all indices (r+, r−) in the region [0, l+/2)×
[0, l−/2), we see that the difference σ(õ)−σ(o) is non-negative. To show
that it is strictly positive, let us calculate the term for (r+, r−) = (0, 0).
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Then, §2, Assertion 2.2 again, one has σ(r+)=σ(r∗−)=0. Since l+, l− >
0 (non-principality of σ), one obtains a rather big number:

σ(o+, α, l+)σ(o−, α, 0)(Cl+,l−− 1) 6=0.
This completes the proof of the Assertion. ¤
The Assertion says that if an orientation o on Γ is not principal, it

can not attain the maximal value σ(Γ) of σ(o) for o∈Or(Γ). In fact,
starting from any orientation o∈Or(Γ), and by a successive application
of the construction in the Assertion, one arrives at one of the principal
orientations. Since EΠ1,Π2 ' EΠ1,Π2 , one has σ(oΠ1,Π2) = σ(oΠ1,Π2).
This number gives the maximal value σ(Γ).

This completes the proof of the Theorem. ¤
We shall call σ(Γ) the principal number of Γ.

Remark 3. Some particular cases of Theorem 3.2 were known already.
If Γ is a linear graph of type Al, then the (principal) Γ-cones coincide

with the (principal) Springer cone of type Al−1 (see [Ar],[Sp] and the
latter half of §7 of the present paper). In that case, the result is shown
in [Sp, Prop.3], [S-Y-Z, Theo.1.2., (2)], [N],[Br].

Remark 4. Let Γ=qk
i=1Γi be the decomposition of a forest into trees.

For an orientation o on Γ, put oi :=o|Γi
. Since σ(o)=Πiσ(oi)(

P
#Γi

#Γ1,··· ,#Γk
),

the maximal number of chambers in a Γ-cone is attained by the orien-
tations o such that each oi is a principal orientation on Γi.

Example. The principal cone EΓ(D4) consists of 6 chambers forming a
hexagon. The Γ(D4)-vector is (σ(o))o∈Or(Γ(D4)) = 2(6, 2, 2, 2).

The principal cone EΓ(A4) consists of 5 chambers forming a spoon
graph. The Γ(A4)-vector is (σ(o))o∈Or(Γ(A4)) = 2(5, 3, 3, 1).

Let Γ be a cyclic graph of 4 vertices. Even though Γ is not a tree, the
Γ-vector contains the maximal entry: (σ(o))o∈Or(Γ) = 2(4, 2, 2, 1, 1, 1, 1),
where (∗) the maximal number is attained by the Γ-cones corresponding
to principal decompositions (13). Actually, a principal decomposition
for an arbitrary Γ may not exist. However, conjecturally, (∗) holds for
any connected graph Γ which admits a principal decomposition.

Remark 5. ([S2]) Assume that a connected graph Γ admits a principal
decomposition. Consider the lattice LΓ spanned by Π with the sym-
metric bilinear form as in the usual convention in the theory of root
systems. Then the “Coxeter element”defined as the product of reflec-
tions attached to the vertex in the order of a principal order (recall
Remark 1) is i) semi-simple of finite order, or ii) quasi-unipotent if and
only if i) Γ is one of the Coxeter-Dynkin diagram for a finite Coxeter
group or ii) Γ is one of the affine Coxeter-Dynkin diagram, respectively.
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4. Enumeration of chambers in the principal Γ cone

As the second main result of the present paper, we give an enumera-
tion formula (19) for the principal number σ(Γ). The formula depends
on a choice of a principal decomposition (13). It is formulated as i)
a sum whose summation index runs over certain equivalence classes

Õrd(Π1) of all linear orderings on Π1 and ii) each summand is the
quotient of (#Γ)! by a product of cardinalities of certain subgraphs.

We will present two proofs of the formula (19). In the present section,
we give a direct proof based on the principal Γ-ordering on Π. The proof
in §5 is based on a decomposition of the principal Γ-cone into blocks
attached to newly introduced rooted tree structures on Π and applying
the hook length formula of Knuth [K2,p70].

We start with the definition of the equivalence ∼ on the set Ord(Π1).

Let d ∈ Ord(Π1) be an ordering on Π1. For v ∈ Π1, put

(18)
Γd,v := the connected component of Γ\{w∈Π1 | w<d v}

containing v.

In particular, one has Γd,v = Γ for the smallest element v of Π1.

Definition. Two orderings d, d′ ∈ Ord(Π1) are called equivalent if

Γd,v = Γd′,v for all v ∈ Π1. The equivalence class of d is denoted by d̃

and the set of all equivalence classes is denoted by Õrd(Π1).

Theorem 4.1. Let Γ be a tree on Π. Choose a principal decomposition
(13). Then the principal number σ(Γ) defined in (17) is given by

(19) σ(Γ) = (#Γ)!
∑

d̃∈gOrd(Π1)

1∏
v∈Π1

#Γd,v

,

where the terms in RHS are well-defined since Γd,v depends only on the

equivalence class d̃ of d ∈ Ord(Π1) and on v ∈ Π1.

Proof. Before we start with the proof of the formula, we reformulate
the equivalence ∼ in terms of the partial orderings on the set Π1.

Assertion 4.2. Let a linear ordering d ∈ Ord(Π1) on Π1 be given. For
any two vertices v, v′ ∈ Π1, one has the following:

i) There are only three cases:

Γd,v ∩ Γd,v′ =





∅
Γd,v

Γd,v′ .

ii) If Γd,v ∩ Γd,v′ = Γd,v, then one has v′ ≤d v.
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iii) The next three conditions are equivalent:
a) Γd,v ∩ Γd,v′ = Γd,v, b) Γd,v ⊂ Γd,v′, c) v ∈ Γd,v′.

Proof. i) Since d is a linear ordering, we may assume v′ <d v. The fact
that Γ\{w ∈ Π1 | w <d v} ⊂ Γ\{w ∈ Π1 | w <d v′} implies that the
component Γd,v is either contained in the component Γd,v′ or they are
disjoint. Accordingly, the intersection is either Γd,v or an empty set.

ii) Suppose the contrary v′ 6≤d v. Then the fact that d is totally
ordered implies v′ >d v. Then, by the construction, Γd,v′ cannot contain
v. This contradicts the assumption Γd,v ∩ Γd,v′ = Γd,v.

iii) The implications: a) ⇒ b) ⇒ c) are trivial. Assume c). This
implies Γd,v ∩ Γd,v′ 6= ∅. Suppose, further, Γd,v ∩ Γd,v′ 6= Γd,v. Then
i) implies Γd,v ∩ Γd,v′ = Γd,v′ 6= Γd,v, and, hence, Γd,v′ ⊂6= Γd,v. This
means that Γd,v′ is a connected component obtained by deleting strictly
more vertices than those for Γd,v. This is possible only when v <d v′.
Then, v 6∈ Γd,v′ . A contradiction to the assumption c) ! ¤

Definition. To the equivalence class d̃ in Õrd(Π1) of d ∈ Ord(Π1), we
attach a partial ordering on Π1: for v, v′ ∈ Π1, put

(20)
v′ ≤d̃ v

def⇔ the conditions a), b) and c) in Assertion 4.2 iii) hold.

In other words, there is no order relation ≤d̃ between v, v′∈Π1 if Γd,v∩
Γd,v′ =∅, otherwise the order relation ≤d̃ agrees with ≤d.

Assertion 4.3. Let d̃∈ Õrd(Π1) be given. For any v ∈Π1, the set of
predecessors {w∈Π1 | w<d̃ v} is totally ordered by ≤d̃.

Proof. Suppose wi <d̃ v (i = 1, 2). This means v ∈ Γd,wi
(Assertion 4.2

iii) c)), and hence Γd,w1 ∩Γd,w2 6= ∅. Then, Assertion 4.2 i) implies that
either w1≤d̃ w2 or w1≥d̃ w2. ¤

We obtain the following characterization of the partial ordering <d̃.

Assertion 4.4. For two orderings d, d′ ∈ Ord(Π1), the following two
conditions are equivalent.

a) One has the equality Γd,v = Γd′,v for all v ∈ Π1, i.e. d̃ = d̃′.
b) The partial orderings ≤d̃ and ≤d̃′ on the set Π1 coincide.

Proof. We have only to show that the partial ordering <d̃ determines
the set Γd,v for v∈Π1. First, we note that the set Γd,v is given by

Γd,v =
(
Γd,v ∩ Π1

) ∪
⋃

w∈Γd,v∩Π1

Nbd(w),
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where a neighborhood of a point w ∈ Γ is defined by

(21) Nbd(w) := {u∈Π |∃ wu ∈ Edge(Γ)}.
(Proof. The inclusion ⊂ follows from the connectivity of Γd,v. The

opposite inclusion Γd,v⊃Nbd(w) for w∈Γd,v∩Π1 follows also from the
connectivity of Γd,v.¤). Here, we note that the RHS is determined only
from the tree Γ and the set Γd,v ∩ Π1, but no ordering is involved. On
the other hand, due to Assertion 4.2 iii) c), one has

Γd,v ∩ Π1 := {w ∈ Π1 | v ≤d̃ w}.
Thus, Γd,v, as a set, is determined by the partial ordering ≤d̃. ¤

Due to Assertion 4.4, from now on, we shall identify the equivalent

class d̃ with the partial ordering ≤d̃ on Π1. Thus, the set Õrd(Π1) is
regarded as the set of certain partial orderings on Π1 (see Remark 6).
Finally, we give an explicit description of the graph Γd,v from ≤d̃.

Assertion 4.5. Let a linear ordering for d ∈ Ord(Π1) be given. One
has the equality Γd,v = Γd̃,v for any v ∈ Π1, where

(22)
Γd̃,v := the connected component of Γ \ {w∈Π1 | w<d̃ v}

containing v.

Proof. Since the total ordering d is a refinement of d̃, one has the
inclusion Γd,v ⊂ Γd̃,v. To show the opposite inclusion, it is sufficient to
show that if v 6≤d̃ w, then w does not belong to Γd̃,v.

We may assume w 6≤d̃ v, otherwise w 6∈ Γd̃,v is trivial. Consider the
totally ordered set {u ∈ Π1 | u <d̃ w, u <d̃ v} (c.f. Fact iv)). Since it
contains at least the minimum element of d and non-empty, it contains
the unique maximal element, say u0. By definition, v and w belong
to the connected component Γd,u0 ⊂ Γd̃,u0

. However, since they belong
to different components of Γd,u0 \ {u0}, they also belong to different
components of Γd̃,u0

\ {u0} (since Γd̃,u0
is a tree). ¤

Let us return to the proof of the Theorem. The formula (19) is shown
by induction on l = #Γ. We first prepare an induction formula.

Let Γ be a tree. For a given principal decomposition {Π1, Π2} and an
attached principal orientation oΠ1,Π2 , we enumerate the set Σ(oΠ1,Π2).

By definition, for any total ordering d ∈ Σ(oΠ1,Π2), the smallest
element belongs to Π1. Therefore, we have a decomposition:

Σ(oΠ1,Π2) =
∐
v∈Π1

Σ(oΠ1,Π2 , v <)
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where Σ(oΠ1,Π2 , v <) := {d ∈ Σ(oΠ1,Π2) | v is the smallest element in d.}.
Put σ(oΠ1,Π2 , v <) := #Σ(oΠ1,Π2 , v <) so that one has

σ(Γ) = σ(oΠ1,Π2) =
∑
v∈Π1

σ(oΠ1,Π2 , v <).

For w ∈ Nbd(v), let us denote by Γvw the connected component of Γ \
{v} containing w. One has the decomposition Γ\{v} =

∐
w∈Nbd(v) Γvw.

Applying (10) in Assertion 2.1 for α=v and r= l−1=
∑

w∈Nbd(v)rw,

rw := #Γvw, we obtain: σ(oΠ1,Π2, v <) = (l − 1)!
∏

w∈Nbd(v)
σ(Γvw)
(#Γvw)!

.

Summing over all vertices v∈Π1, we obtain the induction formula:

(23)
σ(Γ)

(#Γ)!
=

1

l

∑
v∈Π1

∏

w∈Nbd(v)

σ(Γvw)

(#Γvw)!
.

By the induction hypothesis, for any v ∈ Π1 and w ∈ Nbd(v), we
have already the formula for Γvw:

∗) σ(Γvw)

(#Γvw)!
=

∑

d̃w∈gOrd(Γvw∩Π1)

1∏
u∈Γvw∩Π1

#(Γvw)d̃w,u

.

The substitution of ∗) into RHS of (23) gives a formula summing the
terms: 1

l

∏
w∈Nbd(v)

1Q
u∈Γvw∩Π1

#(Γvw)d̃w,u
, where the summation index v×

{d̃w}w∈Nbd(v) runs over the set
⋃

v∈Π1

(
v ×∏

w∈Nbd(v)(Õrd(Γvw ∩Π1))
)
.

To the index v × {d̃w}w∈Nbd(v), we attach the partial ordering d̃ of

the set Π1 defined by the rule a) v is the smallest element, b) d̃ agrees

with d̃w on the set Γvw ∩ Π1 for w ∈ Nbd(v), and c) there is no order
relation between Γvw ∩ Π1 and Γvw′ ∩ Π1 for different w, w′∈Nbd(v).

The correspondence v × {d̃w}w∈Nbd(v) 7→ d̃ gives a bijection:
⋃

v∈Π1

(
v ×

∏

w∈Nbd(v)

(Õrd(Γvw ∩ Π1))
) ' Õrd(Π1),

where the opposite correspondence is given by the restriction map.
On the other hand, the term 1

l

∏
w∈Nbd(v)

1Q
u∈Γvw∩Π1

#(Γvw)d̃w,u
for the

index v×{d̃w}w∈Nbd(v) coincides with the term 1Q
u∈Π1

#Γd̃,u
in (19) given

by the corresponding partial ordering d̃. This means that the substi-
tution of ∗) into RHS of (23) gives RHS of the formula (19).

This completes the proof of the Theorem 4.1. ¤

Remark 6. In the next §5, the set Õrd(Π1) plays again quite an im-

portant role, where we regard Õrd(Π1) as the set of reduced oriented
graphs (see Theorem 5.1 and its corollaries).
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5. Block decomposition of the principal Γ-cone

As the third main result of the present paper, we decompose a prin-
cipal Γ-cone EoΠ1,Π2

into blocks, where each block is a simplicial cone
associated to a rooted tree and is characterized combinatorially. The
number of chambers in a block is given by the hook length formula.
Thus, we obtain an alternative but intrinsic proof of the formula (19).

Definition. A reduced oriented graph (Γ, o) is called a rooted tree if
i) There exists a unique minimal vertex vo ∈ Γ with respect to o.
ii) Any vertex ( 6= vo) of Γ has a unique immediate predecessor.

The smallest vertex vo is called the root of (Γ, o). The definition implies
that Γ is a tree. Conversely, a pair of a tree Γ and a vertex vo of Γ
determines a unique rooted tree structure having vo as its root.

We return to the setting of §4: Γ is a tree on Π, Π = Π1 q Π2

is a principal decomposition (13), and Õrd(Π1) is the set of certain
partial orderings on Π1 (recall §4 Definition (20), the equivalence of a)
and b) in Assertion 4.4 and the paragraph following to Assertion 4.4).

We, further, identify the partial ordering d̃∈Õrd(Π1) with its reduced

oriented graph d̃ = d̃red on the set Π1 (= the Hasse diagram, see the

paragraph before Remark 1. in §1). That is: Õrd(Π1) is regarded as a
set of certain reduced oriented graph structures on Π1. The followings
are reformulations of what we have shown in §4.

Fact. a) Any element d̃∈Õrd(Π1) is a rooted tree structure on Π1.

b) For any total ordering d ∈ Ord(Π1), there exists a unique d̃ ∈
Õrd(Π1) such that d is a linear extension of d̃.
c) The system {Ed̃}d̃∈gOrd(Π1) is a simplicial cone decomposition of VΠ1.

Proof. a) Let d̃ be the equivalence class of d∈Ord(Π1). The smallest

element, say vd, of d is also the smallest with respect to d̃, since Γvd
=Γ

contains all Π1 (c.f. Assertion 4.2, ii) c)). Then, the uniqueness of the
predecessor for an element v 6= vd follows from Assertion 4.3.

b) This follows from the definition in §4 of Õrd(Π1), where any total

ordering d belongs to the unique equivalence class d̃.
c) This follows from a), b) and Assertion 3.1. ¤

In the following Theorem 5.1 and its corollary, we lift (in a suitable
sense) the above Facts to the principal Γ-cone EΠ1,Π2 .

First, let us define the lifting õd of d̃ ∈ Õrd(Π1) by

(24) d̃ 7→ õd := (oΠ1,Π2 ∪ d̃)red,
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where (oΠ1,Π2 ∪ d̃)red is the reduction, i.e. Hasse diagram (recall §1), of

the oriented graphs oΠ1,Π2∪d̃ obtained by the union of oriented edges

of oΠ1,Π2 and d̃ (here, the union is acyclic, since i) any element of Π2

cannot be a part of an oriented cycle since it is maximal with respect
to oΠ1,Π2 ∪ d̃, and ii) the part d̃ on Π1 is a tree without a cycle, Fat a)).

The following theorem gives a characterization of the elements d̃ ∈
Õrd(Π1) and their liftings õd. Then the corollary shows that the cones
Eõd for the liftings give arise a simplicial decomposition of the principal
cone EΠ1,Π2 , which we shall call the block decomposition of EΠ1Π2 .

Theorem 5.1. Let Γ be a tree on Π, and let Π = Π1 qΠ2 (13) be one
of its principal decompositions.

1. The set Õrd(Π1) of rooted trees on Π1 is characterized as follows:

Õrd(Π1) = { d̃ | i) d̃ is a rooted tree structure on Π1,

ii) d̃|Nbd(β) is totally ordered for any β ∈ Π2,

iii) d̃ is minimal with respect to i) and ii),

i.e. if f̃ satisfies i), ii) and f̃≤ d̃ then f̃ = d̃.}
Here, we recall (21) for a definition of a neighborhood Nbd(β) of β.

2. Let us introduce a set of rooted tree structures on Π:

ÕrdΠ1,Π2(Π) := { ẽ | i) ẽ is a rooted tree structure on Π,
ii) oΠ1,Π2 ≤ ẽ, i.e. if x<oΠ1,Π2

y then x<ẽ y,
iii) the set Π2 is totally disordered with repect to ẽ,
iv) ẽ is minimal with respect to i), ii) and iii),

i.e. if f̃ satisfies i), ii), iii) and f̃≤ ẽ then f̃ = ẽ.}
Then, the lifting d̃ 7→ õd (24) induces the bijection

(25) Õrd(Π1) ' ÕrdΠ1,Π2(Π).

3. The set Σ(oΠ1,Π2) of chambers in EΠ1,Π2 decomposes into a union:

(26) Σ(oΠ1,Π2) = qẽ∈gOrdΠ1,Π2
(Π)Σ(ẽ).

Definition. We call the simplicial cone Eẽ associated to a rooted tree

ẽ ∈ ÕrdΠ1,Π2(Π) a block.

The decomposition (26) can be paraphrased in terms of the block
decomposition of the principal Γ-cone as follows.

Corollary. (Block decomposition of the principal cone)
The principal cone EΠ1,Π2 decomposes into a union of the blocks:

(27) EΠ1,Π2 =
∐

ẽ∈gOrdΠ1,Π2
(Π)

E ẽ .
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Proof. We prove only 2, and then 1. is its byproduct. The proof is
slightly involved and is divided into steps a.i)-ii),b.i)-ii),c),d) and e).

a.i) The lifting õd for d̃∈Õrd(Π1) satisfies i), ii) and iii) of 2.

a.ii) ∗) For any β∈Π2 and for any d̃∈Õrd(Π1), the set Nbd(β) ⊂ Π1

is totally ordered with respect to the partial ordering d̃.
∗∗) The restriction õd|Π1 of the oriented graph õd to Π1 is equal to

d̃. In particular, this implies that the correspondence (24) is injective.

Proof. a.i) Those ii) and iii) for õd follow immediately from the defini-

tion. The i) for õd is a consequence of a.ii) and b.ii).
a.ii)∗) For β ∈ Π2, consider α1, α2 ∈ Nbd(β) ⊂ Π1 with α1 6= α2.

Since Γd̃,αi
(recall (22)) contains Nbd(αi), one has β∈Γd̃,αi

for i=1, 2.
That is Γd̃,α1

∩Γd̃,α2
6= ∅. Then, due to Assertion 4.2, i) and ii), either

Γd̃,α1
⊃Γd̃,α2

or Γd̃,α1
⊂Γd̃,α2

occurs, and, hence by the definition (20),
one has either α1 <d̃ α2 or α1 >d̃ α2. Thus, ∗) is shown.

a.ii)∗∗) By definition, õd|Π1 ≤ d̃. If an edge αα′ with α<d̃ α′ in d̃ is

removable in õd, there exists a path α0=α<õd α1<õd · · ·<õd αn=α′ in

õd for n≥ 2. Since d̃ is reduced, there exits 1≤i<n such that αi∈Π2.
By taking largest such i, we find an edge αi<õd αi+1 with αi∈Π2 and

αi+1∈Π1. This is impossible since õd≤(oΠ1Π2∪d̃). Thus, ∗∗) is shown. ¤
b.i) Let ẽ be an oriented graph on Π satisfying ii) and iii) of 2. Then,

there does not exists a pair α∈Π1 and β∈Π2 such that β<ẽ α.
b.ii) Under the same assumption, ẽ is a rooted tree (i.e. ẽ satisfies

i)), if and only if one has ∗) ẽ|Nbd(β) is totally ordered for all β ∈ Π2

and ∗∗) the restriction ẽ|Π1 of the oriented graph ẽ is a rooted tree on
Π1. In this case, the restriction to Π1 of the ordering ≤ẽ on Π coincides
with the ordering on Π1 generated by the oriented graph ẽ|Π1 on Π1.

Proof. b.i) For any α ∈ Π1, there exists at least one γ ∈Π2 such that
α<oΠ1,Π2

γ. If the contrary β <ẽ α holds, using ii) and the transitive
closure, one obtains β<ẽγ, which contradicts to iii).

b.ii)∗) If there were no order relation among α1, α2∈Nbd(β), there
exists some γ ∈ Π such that α1, α2 <ẽ γ ≤ẽ β and γ has at least two
immediate predecessor. A contradiction! ∗∗) By b.i), the set of prede-
cessors for any α ∈Π1 in Π is equal to that in Π1. In particular, the
imediate predecessor α′ is in Π1 so that the edge α′α belongs to ẽ|Π1 .

Conversely, if Nbd(β) is totally ordered, then β ∈ Π2 is connected
with only the maximal element of Nbd(β)⊂Π1. This, together with
∗∗), implies that ẽ is a rooted tree. ¤

c) The lifting õd for d̃∈Õrd(Π1) satisfies iv) of Theorem 5.2.

Proof. Assume the contrary: ∃f̃≤ õd and f̃ 6= õd.
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We, first, show that there exists a pair α, β ∈Π1 such that α <õd β
and α 6<f̃ β, α 6>f̃ β. (Proof. By the assumption, there exist at least

a pair α, β ∈Π with α <õd β and α 6<f̃ β. Due to iii) and b.i) for õd,

one has α 6∈Π2. If α∈Π1 and β ∈Π2 then by construction of õd there
exists γ∈Π1 such that α<d̃ γ and γ<oΠ1,Π2

β. Then, one necessary has

α 6<f̃ γ, since otherwise one has α <f̃ γ <oΠ1,Π2
β, and by ii) on f̃ , one

has the contradiction α<f̃ β. Then, replace β by γ.)
We may assume that α is the immediate predecessor of β with re-

spect to d̃, since one of the edges of the path from α to β satisfies the
condition. We may assume further that the pair α, β ∈Π1 is maximal
in the sense that for any β′∈Γd̃,β ∩ Π1 (i.e. β≤d̃ β′) one has β≤f̃ β′.

Since α is the immediate predecessor of β with respect to d̃, α is
connected with a single point, say γ ∈ Π2, of Γd̃,β. Since Γd̃,β is a
connected tree containing β, there exists a path in Γd̃,β connecting γ
and β. Let β′ ∈ Π1 be the element next to γ. Since β′ ∈ Γd̃,β ∩ Π1, by
the assumption of the maximality of the pair α, β, we have β ≤f̃ β′.

On the other hand, due to ii) for f̃ , we have also α ≤f̃ γ and β′ ≤f̃ γ.
Thus we obtain two monotonically increasing pathes attached to the
two sequences vf̃ ≤f̃ α ≤f̃ γ and vf̃ ≤f̃ β ≤f̃ β′ ≤f̃ γ. They are
different, since there is no order relations between α and β with respect
to f̃ . A contradiction to that f̃ is a tree! Thus, iv) for õd is shown. ¤

d) Any element ẽ ∈ ÕrdΠ1,Π2(Π) is a lifting õd for some d̃∈Õrd(Π1).

Proof. Consider any linear extension d∈Ord(Π1) of ẽ|Π1 (i.e. e|Π1≤d)

and its equivalence class d̃∈Õrd(Π1) (§4 Definition). If we have shown

d̃≤ ẽ|Π1 (shown in the following e)), then we have done the proof since

we have õd=(oΠ1,Π2∪d̃)red≤(oΠ1,Π2∪ẽ|Π1)red≤ ẽ and the minimality iv)

for ẽ implies õd= ẽ. Thus, the surjectivity of (25) is shown. ¤
e) For any d ∈ Ord(Π1) with ẽ|Π1 ≤ d, one has d̃≤ ẽ|Π1.

Proof. For any edge αβ in d̃ on Π1 with α <d̃ β, we have to show the
order relation α<ẽ β. We show this by the “inverse induction” in the
sense that we prove it by assuming the innequality α′ <ẽ β′ for all
edges α′β′ in d̃ with the inequality: β ≤d̃ α′ <d̃ β′.

Suppose the contrally α 6<ẽ β. Since α >ẽ β is not possible (else, we
have α >d β, contradicting to α <d̃ β), there should be no order relation
between α and β with respect to ẽ. The fact α <d̃ β implies that
β ∈ Γd,α (recall (20)). The fact that α is the immediate predecessor of
β means, precisely, that there exist elements β′ ∈ Γd,β ∩Π1 and γ ∈ Π2

such that α, β′ <oΠ1,Π2
γ. By assumption ii) on ẽ, we have α, β′ <ẽ γ.
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On the other hand, by definition β′ ∈ Γd,β and hence β ≤d̃ β′. Then,
by the inverse induction hypothesis, one obtains β ≤ẽ β′. Thus, we
obtain two monotonically increasing pathes in ẽ connecting the bottom
element vẽ and γ as follows: vẽ ≤ẽ α ≤ẽ γ and vẽ ≤ẽ β ≤ẽ β′ ≤ẽ γ.
Since, by the contraly assumption, there is no order relation between
α and β with respect to ẽ, whereas each path passes through either α
or β, the two pathes are different. This is a contradiction to the fact
that ẽ is a tree. This proves α <ẽ β and, hence, e) is proven. ¤

3. For ẽ∈ ÕrdΠ1,Π2(Π), ii) implies Σ(oΠ1,Π2)⊃Σ(ẽ). The decompo-
sition (26) follows, since for any d ∈ Σ(oΠ1,Π2), there exists a unique

d̃∈Õrd(Π1) such that (oΠ1,Π2∪ d̃) ≤ d (Factb) and c)).
Corollary is a rewriting of (26) (c.f. 2. of Assertion 1.1).
These complete the proof of Theorem 5.1 and its Corollaries. ¤

Remark 7. The block decomposition (27) of the principal Γ-cone EΓ

depends on a choice of the principal orientation oΠ1,Π2 (see Example).

As an application of the block decomposition (26) ((27)) of the prin-
cipal cone, let us give an alternative proof of the formula (19). This is
achieved by two steps. The first step is to recall the well known hook
length formula of Knuth enumerating the chambers in a Γ-cone for a
rooted tree (it is also an immediate consequence of the decomposition
formula (10) with r=#Γ−1 and α= the root of the tree).

Lemma 5.2. (Knuth [K2,p70]) Let (Γ, o) be a rooted tree. Then

(28) σ(o) =
(#Γ)!∏

v∈Π #Γo,vwhere

(29)
Γo,v := the connected component of Γo \ {w ∈ Π | w <o v}

containing v.

Note. The underlying oriented graph structure in Γd̃,v (22) is the prin-
cipal orientation oΠ1,Π2 and that for Γo,v (29) is the rooted tree o. They
are, in a sense, the most contrasting orientations. However, we show
in the following a “numerical coincidence” of them.

The second step of the alternative proof of (19) is as follows. Apply

(28) to σ(õd) to count the number of chambers in Eõd. Comparing (19)
and (25), let us show the equality:

(30)
(#Γ)!∏

v∈Π #Γõd,v

=
(#Γ)!∏

v∈Π1
#Γd̃,v

for d̃ ∈ Õrd(Π1). We note that the region of the running index v in
LHS of (30) can be shrunken from Π to Π1 = Π\Π2, since for v ∈ Π2
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one has #Γõd,v =1 because of the fact that v is maximal with respect

to oΠ1,Π2∪d̃. Therefore, we have only to show the formula

(31) #Γd̃,v = #Γõd,v

for v ∈ Π1. We show that the vertex sets |Γd̃,v| and |Γõd,v| coincide
(even though the graph structures are quite different, see Example).

Note the inclusion relation: oΠ1,Π2⊂(oΠ1,Π2∪ d̃)⊃ õd among oriented
graphs and the equality among the vertex sets: A := {w ∈ Π1 | w <d̃

v} = {w ∈ Π | w <oΠ1,Π2
∪d̃ v}= {w ∈ Π | w <õd v}. Thus, one has the

relation: Γd̃,v⊂ΓoΠ1,Π2
∪d̃,v⊃Γõd,v among the connected components of

the complements of A containing v. The sets |Γd̃,v| and |ΓoΠ1,Π2
∪d̃,v|

coincide, since, if v<d̃ w for w∈Π1 then w∈Γd̃,v. The sets |ΓoΠ1,Π2
∪d̃,v|

and |Γõd,v| coincide, since, if an element w∈Π2 is connected with v in

ΓoΠ1,Π2
∪d̃,v then w is connected with v by õd.

This completes the proof of the equality (31), and hence the alter-
native proof for (19) is completed.

Example. We illustrate the two block decompositions of type A7 and
the formula (19) for the two principal orientations on Γ(A7).

I. Let the principal decomposition (13) of Γ(A7) and the associated
principal orientation oA7 := oΠ1,Π2 be given by

Π2 : ◦ ◦ ◦ ◦
oA7 : ↖ ↗ ↖ ↗ ↖ ↗

Π1 : ◦ ◦ ◦ .

There are 5 partial orderings d̃ ∈ Õrd(Π1) and, accordingly, 5 asso-

ciated rooted trees õd. Three of them are illustrated as follows. Here,
the black colored vertex is the root of the tree:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
oA7∪ d̃1 : ↖ ↗ ↖ ↗ ↖ ↗ red−→ ˜od1 : ↖ ↖ ↖ ↗• −→ ◦ −→ ◦ •−→ ◦−→ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
oA7∪ d̃2 : ↖ ↗ ↖ ↗ ↖ ↗ red−→ ˜od2 : ↖ ↖ ↗ ↗• ◦ ←− ◦ • ◦ ←−◦−→−→−→−→ −→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
oA7∪ d̃3 : ↖ ↗ ↖ ↗ ↖ ↗ red−→ ˜od3 : ↖ ↗ ↖ ↗◦ ←− • −→ ◦ ◦ ←− •−→ ◦
Two more rooted trees are obtained from ˜od1 and ˜od2 by the action of
the left-right involutive diagram automorphism of Γ(A7). Therefore,
the formula (19) of the principal number of type A7 turns out to be

σ(A7) = 2σ( ˜od1) + 2σ( ˜od2) + σ( ˜od3) = 2 7!
7·5·3 + 2 7!

7·5·3 + 7!
7·3·3 = 272.
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II. The principal decomposition of Γ(A7) opposite to (13) and the
opposite principal orientation −oA7 := oΠ2,Π1 are given by

Π1 : ◦ ◦ ◦−oA7 : ↗ ↖ ↗ ↖ ↗ ↖
Π2 : ◦ ◦ ◦ ◦.

There are 14 partial orderings d̃ ∈ Õrd(Π2) and, accordingly, 14 asso-

ciated rooted trees õd. Seven of them are illustrated as follows:

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃1 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd1 : ↖ ↖ ↖• −→ ◦ −→ ◦ −→ ◦ •−→ ◦−→ ◦−→ ◦

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃2 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd2 : ↖ ↖ ↗• −→ ◦ ◦ ←− ◦ •−→ ◦ ◦ ←− ◦−→−→−→−→ −→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃3 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd3 : ↖ ↗ ↖• ◦ ←− ◦ −→ ◦ • ◦ ←− ◦−→ ◦−→−→−→−→ −→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃4 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd4 : ↖ ↖ ↗• ◦ −→ ◦ ◦ • ◦ −→ ◦ ◦←−←−←−←− ←−←−←−←−−→−→−→−→−→−→−→ −→−→−→−→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃5 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd5 : ↖ ↗ ↗• ◦ ←− ◦ ←− ◦ • ◦ ←− ◦ ←− ◦−→−→−→−→−→−→−→ −→−→−→−→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃6 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd6 : ↗ ↖ ↖◦ ←− • −→ ◦ −→ ◦ ◦ ←−•−→ ◦−→ ◦

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃7 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd7 : ↗ ↖ ↗◦ ←− • ◦ ←− ◦ ◦ ←−• ◦ ←−◦−→−→−→−→ −→−→−→−→

The remaining seven rooted trees are obtained from the above seven
trees by the action of the left-right involutive diagram automorphism
of Γ(A7). Therefore, the formula (19) of the principal number of type
A7 turns out to be

σ(A7) = 2
(
σ( ˜od1)+σ( ˜od2)+σ( ˜od3)+σ( ˜od4)+σ( ˜od5)+σ( ˜od6)+σ( ˜od7)

)

= 2
(

7!
7·6·4·2 + 7!

7·6·4·3 + 7!
7·6·3·2 + 7!

7·6·5·3 + 7!
7·6·5·3 + 7!

7·4·2·2 + 7!
7·4·3·2

)

= 272.

Note. Even though the starting diagram Γ(A7) is linear the blocks
correspond to non-linear diagrams.
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6. Geometric background

We recall briefly a theorem [S1§3], which combines the principal Γ-
cones with some geometry of real bifurcation set in case of Γ being a
Coxeter graph of finite type. For details, one is refereed to [S1].

Let W be a finite reflection group acting irreducibly on an R-vector
space V of rank l. Due to Chevalley Theorem [B,ch.v,5.3], the invariants
S(V ∗)W is freely generated by some homogeneous elements P1,· · ·,Pl.
Thus, the quotient variety SW :=V//W=Spec(S(V ∗)W ) is a smooth affine
scheme over R of coordinates P1,· · ·, Pl. It contains the discriminant
divisor DW defined by a polynomial ∆W ∈S(V ∗)W , which is the square
of a basic anti-invariant [B,ch.v, 5.4]. The ∆W is a monic polynomial
of degree l with respect to the coordinate Pl of SW of the largest degree.
The integration exp(D)of the lowest degree vector field D := ∂

∂Pl
on SW

(unique up to a constant factor and is called the primitive vector field)
defines a unique (up to a scaling factor) additive group Ga-action on
SW . The quotient TW :=SW //Ga is an (l−1)-dimensional affine variety
(forgetting the coordinate Pl). The restriction to DW of the projection
map SW →TW is an l-fold flat covering, whose ramification divisor in
TW is denoted by BW and calledthe bifurcation divisor. TheBW decom-
poses into the ordinary part BW,2 andthehigherpartBW,≥3 according as
the ramification index of the covering is equal or larger than 2.

Depending on ε∈{±1}, there are real forms T ε
W,R,Bε

W,2,R and Bε
W,≥3,R

of these schemes. On the other hand, arising from a study of eigenspaces
of Coxeter elements, there is a distinguished real half axis AOε'R>0

embedded in T ε
W,R\Bε

W,≥3,R (see [S1] for details). The connected com-
ponent of T ε

W,R\Bε
W,≥3,R containing AOε, denoted by Eε

W , is called the
central region, which we determine in the following theorem.

Using Pl, consider the l-valued algebroid function TW←DW

Pl|DW→ A
(=affine line), defined by the polynomial equation ∆W = 0 in Pl. It
is ramifying along BW,≥3, but regular along BW,2. We can indexify l
branches of the function on T ε

W,R at the base point AOε by the set Π of
a simple generator system of W , and denote them by {ϕα,ε}α∈Π [S1].

Theorem 6.1. Let Γ(W ) be the Coxeter graph on Π, and EΓ(W ) be its
principal cone. Then the algebraic correspondence bW,ε:=

∑
α∈Π ϕα,ε ·vα

from T ε
W,R to VΠ induces a semi-algebraic homeomorphism:

(32) bW,ε : E
ε

W ' EΓ(W )

from the closure of the central region of W to the closure of the principal
cone for the Coxeter graph Γ(W ) of Won Π, and a homeomorphism:

(33) bW,ε : Eε
W ∩Bε

W,2,R ' EΓ(W ) ∩
( ∪αβ∈Π Hαβ

)
.
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That is: the central region Eε
W is a simplicial cone homeomorphic to

the principal Γ(W )-cone EΓ(W ). Connected components of Eε
W \Bε

W,2,R
are in one to one correspondence with the set of chambers contained in
the principal Γ(W )-cone EΓ(W ). In particular, the number of connected
components of Eε

W \Bε
W,2,R is given by the principal number σ(Γ(W )).

The theorem (in a detailed form) has several important implications
in the study of the topology of the configuration space SW ([S1,3]).

Note. 1. The correspondence bW is independent of the choice of Pl (up
to the scaling constant on the primitive vector field D).

Proof. Since the largest exponent of W is unique, any other largest
degree coordinate P̃l of SW with DP̃l = 1 is of the form Pl + Q for a
polynomial Q of lower degree coordinates. Then, ϕ̃α =ϕα+Q (α∈Π),
whose second term is independent of α. So, the ambiguity of translation
by Q is absorbed in the equivalence in the definition (1) of labeled

configuration space VΠ. That is: one has b̃W =bW +QvΠ≡bW in VΠ. ¤
2. The principal Γ(W )-cone in RHS of (31) depends only on the

underlying graph structure of the diagram Γ(W ) and not on the labels
on the edges. The graphs Γ(W ) (forgetting the labels) of types Al, Bl,
Cl, F4, G2, H3, H4 and I2(p) are linear. Hence, the central regions EW

for them are homeomorphic to the principal cones of type Al.

Finally in the present paper, we compare the concept of Γ-cones with a
somewhat similar concept, the Springer cones, which we explain below.
Definition ([Ar1]). Let VW be a real vector space with an irreducible
action of a finite reflection group W . The reflection hyperplanes of
W divide VW into chambers. Let {Hα}α∈Π be the system of the walls
of a chamber. A connected component of VW\∪α∈ΠHα is called a
Springer cone. A Springer cone containing the maximal number of
chambers (unique up to sign [Sp1]) is called a principal Springer cone.
This maximal number is called the Springer number. The Springer
number has been calculated by the authors Solomon, Springer and
Arnold ([So],[Sp1], [Ar1]).

There are some formal similarities between the (principal) Springer
cones in VW and the (principal) Γ-cones in VΠ (see Table below). A
result similar to Theorem 3.2 is proven for Springer cones [Sp1, Prop.3].

Springer cone Γ-cone
The ambient VW with W -chambers VΠ with Al−1-chambers
vector space (depending on the group W ) (depending on the set Π)
The cutting {Hα}α∈Π (indexed by {Hαβ}αβ∈Edge(Γ) (indexed by

hyperplanes the vertices of Γ(W )) the edges of the tree Γ )
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Roughly speaking, the principal Springer cones deal with the gener-
ators of the Artin groups, whereas the principal Γ-cones deal with the
(non-commutative) braid relations of the Artin groups.

The only cases when a Γ-cone decomposition is simultaneously a
Springer cone decomposition are listed by the following assertion.

Assertion 6.2. For a forest Γ, the following i)–iii) are equivalent.
i) There exists a finite Coxeter group W and a linear isomorphism:

VΠ ' VW which maps chambers to chambers and the Γ-cones to the
Springer-cones.

ii) The smallest number of chambers contained in a Γ-cone is equal
to 1, i.e. inf{σ(o) | o ∈ Or(Γ)} = 1.

iii) Γ is a linear graph of type Al, and W =W (Al−1) for l>1.

Proof. i) ⇒ ii): This follows from the definition of the Springer cone.
ii) ⇒ iii): if a Γ-cone consists of a single chamber C :={λα1 ≤· · ·≤

λαl
}, then Γ is a linear graph α1-α2-· · · -αl (of type Al) on Π.
iii) ⇒ i): If Γ is a linear graph α1-α2-· · · -αl, then the orientation

α1 < α2 <· · ·< αl on Γ corresponds to the Γ-cone consisting only of a
single chamber C :={λα1≤· · ·≤λαl

} of type Al−1 in VΠ = VAl−1
. ¤

Remark 8. Assertion 6.2 is not true if Γ is not a forest (see §3 Example),
since the argument ii) ⇒ iii) fails in general.

Since Assertion 6.2, σ(Al) :=σ(Γ(Al)) is equal to the Springer num-
ber al−1 of type Al−1. Since the Springer number an of type An is given
by the generating function: 1+

∑∞
n=1

an

n!
xn = 1

1−sin(x)
([Sp1,3.]), one has

(34) 1 +
∞∑

n=1

σ(An)

n!
xn = 1 +

∫ x

0

1

1− sin(x)
dx = tan(

x

2
+

π

4
).

This formula was found by several authors repeatedly (e.g. [St, Exercise
43(c)]). Including this case, Y. Sano [Sa] gave the following explicit
formula of the principal numbers for the three infinite series of Coxeter
graphs of types An, Dn and En:

∑∞
n=1

σ(An)
n!

xn = tan(x
2

+ π
4
)− 1,∑∞

n=3
σ(Dn)

n!
xn = (2x− 1)tan(x

2
+ π

4
) + 2− 2x2,∑∞

n=4
σ(En)

n!
xn = (1

2
x2 − 2x + 3)tan(x

2
+ π

4
)− 3x2 − x− 3.

Question. By an analogy to §3 Theorem, consider any system of l-
reflection hyperplanes in VW forming coordinate hyperplanes and ask
a question: is there a unique (up to a sign) orthant of VW , cut out by
the hyperplanes, which contains the maximal number of chambers. The
answer is apparently positive for the type Al and I2(p) for odd p ∈ 2Z>0,
and negative for the types Bl, Cl and I2(p) for even p ∈ 2Z>0.
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