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0. Introduction

The braid group of n-strings is the group of homotopy types of movements of n
distinct points in the 2-plane R2. It was introduced by E. Artin [1] in 1926 in order
to study knots in R3. He gave a presentation of the braid group by generators and
relations, which are, nowadays, called the Artin braid relations.

Since then, not only in the study of knots, the braid groups appear in several
contexts in mathematics, since it is the fundamental group of the configuration
space of n-points in the plane. Early in 70’s the braid groups are generalized
to a wider class of groups, the fundamental groups of the regular orbit spaces of
finite reflection groups (Brieskorn [6]), which are called either the generalized braid
group (Deligne [3]) or the Artin group (Brieskorn-Saito [2]). The regular orbit
space turns out to be an Eilenberg-MacLane space (Deligne [3], c.f. Brieskorn-
Saito [2]). Through the study of holonomic systems on the Eilenberg-Maclane
spaces, representations of the generalized braid groups are studied (Kohno,...). Also
through the braid relations, the actions of braid groups on triangulated categories
are studied (Seidel-Thomas,...). Still, we are far from full understanding of their
representations.

As for the study of the Eilenberg-Maclane spaces, it was from the beginning a
question raised by Deligne, Brieskorn, Saito,. . . to find the paths in the Eilenberg-
MacLane spaces which give a generator system of the Artin groups satisfying the
Artin braid relations. In this note (based on [4]), we will give two answers to this
question. We approach the problem by the semi-algebraic geometry of the orbit
space induced from the flat structure on it [7].

1. Artin groups of finite type [2]

Definition. Let Π be a finite index set. A symmetric matrix M = (mij)i,h∈Π is
called a Coxeter matrix if

i) mii = 1 for i ∈ Π,
ii) mij = mji ∈ Z≥2 for i 6= j ∈ Π,
iii) indecomposability: if Π = I

∐
J s.t. mij = 2 for i ∈ I, j ∈ J

⇒ I = ∅ or J = ∅.
To such Coxeter matrix M , we associate two groups presented as follows.

• An Artin group

A(M) := 〈g1, . . . , gl | gigj ...︸ ︷︷ ︸
mij

= gjgi...︸ ︷︷ ︸
mij

for ∀i, j ∈ Π〉
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• A Coxeter group

W (M) := 〈a1, . . . , al | aiaj ...︸ ︷︷ ︸
mij

= ajai...︸ ︷︷ ︸
mij

for ∀i, j ∈ Π,

a2
i = 1 for i ∈ Π〉

By the definition, there is a natural surjective homomorphism:

A(M) ³ W (M).

It is well known that the list of finite Coxeter groups give a complete list of finite
reflection groups. They are classified by the symbols Al (l ≥ 1), Bl (l ≥ 2), Dl (l ≥
4), E6, E7, E8, F4, G2, H3, H4, I2(p) (p ≥ 3) ([5]).

If W (M) is a finite group, A(M) is called of finite type. In this note, we shall
consider only Artin groups of finite type.

We shall denote by AW or by A(W ) the Artin group A(M) for W := W (M).

Example. Let Π = {0, 1, . . . , l} and the Coxeter matrix is given by

mij =





1 i = j
3 |i− j| = 1
2 |i− j| ≥ 2.

Then, one has the most classical examples:

• W (M) = Sl+1= symmetric group of l + 1 elements, where the generator
ai (1 ≤ i ≤ l) corresponds to the transposition of i− 1th and ith elements,

• A(M) = B(l + 1)= braid group of l + 1 strings, where the generator gi

(1 ≤ i ≤ l) corresponds to the “half-braiding” of i − 1th and ith strings
(see figure below).
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2. Topological realization of Artin groups [5], [6]

We realize the Artin groups as the fundamental group of certain complex con-
figuration spaces [6].

First, recall the vector representation of the Coxeter group [5].
Let VW :=

∑
α∈Π Reα be the based real vector space of rank l, is equipped

with a symmetric bilinear form B(eα, eβ) = cos(π/mαβ) for α, β ∈ Π. For each
α ∈ Π, we consider a reflection on VΠ w.r.t. eα defined by: sα(u) = u−2B(u, eα)eα

,

whose reflection hyperplane Hα is given by the (eα)⊥.

Theorem (Tits). The correspondence aα 7→ sα (α ∈ Π) induces an injective ho-
momorphism W (M) → GL(V ). By this embedding, let us regard W := W (M) a
finite subgroup of GL(V ) generated by reflections. Let R(W ) be the set of all reflec-
tions in W (which is a union of conjugacy elements of the generators sα (α ∈ Π)).
Then the action of W on the set of connected components of VW \⋃

s∈R Hs,R (called
chambers) is simple and transitive.

Next, we describe the configuration space as the quotient variety of VW by the
finite reflection group W -action. We give two descriptions of the quotient variety:
one set-theoretic, the other categorical (the latter is also necessary, since we shall
consider it over the field R which is not algebraically closed).

First, we recall the invariant theory for the W -action on the (real) polynomial
function ring S(V ∗

W ) (c.f. [5]). Chevalley Theorem states that the W -invariants
S(V ∗

W )W is generated l := #Π algebraically independent homogeneous elements,
say P1, . . . , Pl, of degree m1 + 1 = 2 < · · · < ml + 1 = h:

S(V ∗
W )W = R[P1, . . . , Pl].

The set of W anti-invariant polynomial (=the polynomial which alter its sign by
the action of a reflection) is a rank 1 free module over S(V ∗

W )W generated by
∏

s∈R(W )

fs =
∂(P1, . . . , Pl)
∂(X1, . . . , Xl)

.

where fs is a linear form defining the reflection hyperplane Hs of a reflection s, and
X1, . . . , Xl is a linear coordinate system of VW (here and in sequel in the present
note, for simplicity, we disregard the positive or non-zero constant factor in such
calculations). The square of the anti-invariant is an invariant:

∆W =


 ∏

s∈R(W )

fα




2

=
(

∂(P1, . . . , Pl)
∂(X1, . . . , Xl)

)2

,

called the discriminant. As an element in S(V ∗
W )W , we develop it in a polynomial

in Pl:
∆W = A0P

l
l + A1P

l−1
l + · · ·+ Al for Ai ∈ R[P1, . . . , Pl−1].

Then, it is a highly non-trivial fact that the leading coefficient A0 is a non-zero
constant ([5],[7]) so that ∆W at the origin has multiplicity l.
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1 A set theoretic description of the quotient variety: since the invariant poly-
nomial Pi (1 ≤ i ≤ l) defines a function on the orbit space VW,C/W for VW,C :=
VW ⊗R C. The polynomial map (P1, . . . , Pl) induces the homeomorphism:

VW,C/W '
(P1,...,Pl)

Cl

∪ ∪
(
⋃

s∈R(W ) Hs,C)/W ' DW,C := {z ∈ Cl | ∆W (z) = 0}
Obviously from the definition of ∆W , the image of the reflection hyperplanes is the
zero loci of ∆W , which is denoted by DW,C and is called the discriminant loci. A
theorem of Steinberg states that a point in VW,C is fixed by a non-trivial element
of W iff it belongs to a reflection hyperplane. This means that the space of regular
(=fixed point free) W -orbits in VW,C is homeomorphic to the complement Cl\DW,C
of the discriminant loci.

2. A schema-theoretic description of the quotient variety: we consider the affine
scheme defined over R and its divisor:

SW := VW //W = Spec R[P1, . . . , Pl]
∪ ∪

DW := {∆W = 0}.
• An advantage of the categorical quotient. Since C is algebraically close, the set of
C-rational points of SW and DW is naturally bijective to the set theoretic quotient
space Cl and DW,C, respectively:

SW,C (= Hom(S(V ∗
W )W ,C)) ' Cl

∪ ∪
DW,C (= Hom(S(V ∗

W )W /(∆W ),C)) ' DW,C

However, the set theoretic quotients VW,R/W and (
⋃

s∈R(W ) Hα,R)/W of real vector
space and real reflection hyperplanes are only a (semi-algebraic) small part of the
R-rational point sets of SW and DW , respectively.

SW,R (= Hom(S(V ∗)W ,R)) ' Rl ⊃6= VW,R/W
∪

DW,R (= Hom(S(V ∗
W )W /(∆W ),R)) ⊃ (

⋃
s∈R(W ) Hα,R)/W (⊃6= if l > 2).

In fact, since W acts simple and transitively on the set of chambers, the set theo-
retical quotient (VW,R \

⋃
s∈R(W ) Hs,R)/W is homeomorphic to a chamber, and is

bijective to a connected component of the complement of the real categorical quo-
tient space SW,R \DW,R, which we shall denote C0

W and call the central component.
The set theoretic quotient of the real reflection hyperplanes (

⋃
s∈R(W ) Hs,R)/W is

the boundary of the central component C0
W .

We illustrate these phenomena by the example of type A2.

Here, LHS of the figure indicates the real vector space VW and its reflection hyper-
planes, and RHS indicates the real categorical quotient variety SW,R together with
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the real discriminant loci DW,R. Then shadowed aria is the central component,
whose closure is the set theoretical quotient space of VW,R.

Let us state two basic theorems on the topology of the complex regular orbit
space SW,C \DW,C, where the first one is due to Brieskorn [6] and the second one
is due to Deligne [3].

Theorem. 1. The fundamental group of SW,C \DW,C is isomorphic to the Artin
group AW (e.g. the fundamental group of SSl+1,C \ DSl+1,C is isomorphic to the
braid group A(Sl+1) = B(l + 1)).

2. The higher homotopy groups vanish: πi(SW,C \ DW,C, ∗) = 0, i = 2, 3, . . . .
(i.e. SW,C \DW,C is an Eilenberg-MacLane space.)

Remark. 1. The above theorems are proven by a use of the monoid of galleries
(sequences of chambers which are adjacent successively) so that the isomorphism
in 1. is not explicitly given by a path in the SW,C \ DW,C. Therefore, Brieskorn,
Deligne and several other people asked the question:
Question. Find a system of paths, say γ1, . . . , γl in SW,C \ DW,C such that their
homotopy classes gives the generator system g1, . . . , gl in the Definition of the Artin
group.
Remark. 2. We note that the concept of a polyhedron K dual to the chamber
decomposition of VW plays a crucial role in Theorems 1 and 2. Here, a dual poly-
hedron is a convex hull in VW of a W -orbit of a point in a chamber C. So, the set
of vertices of K is in one to one correspondence with the chambers in VW , the set
of edges of K is in one to one correspondence with the faces (of chambers) in VW ,
. . . , the open cell K̇ corresponds to the origin of VW .

Let us explain by the example.

A dual polyhedron K for the type A2 is
illustrated as the closed hexagon (with
its interior). Clearly, one has: 6 vertices
of K ↔ 6 chambers, 6 edges of K ↔ 6
faces of chambers, the open hexagon ↔
the origin of VA2 .

Let us explain (indicate) by this picture, relations of K and Theorems.
• Relation with Theorem 1.

There are two W -orbit classes of the edges of K,
which correspond to two generators, say a and b, of
B(3). There is one W -orbit of faces of K (actually,
the hexagon), which corresponds to the braid rela-
tion aba = bab.

• Relation with Theorem 2.
In the proof of the contractibility of (SW,C\DW,C)∼ by Deligne, the contractibility

of K is essentially used.

In this note, We will give two answers to the above question by constructing the
dual polyhedron by a use of certain semi-algebraic geometry on SW,R.
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3. Primitive vector field D and a Ga-action on SW [7]

We introduce a Ga-action on SW which is transversal (in several strong senses,
which we do not explain in the present note) by an integration of a particular vector
field on it. Let DerR(S[V ∗]W ) be the S(V ∗

W )W -module of polynomial coefficients
vector fields on SW . Since S(V ∗

W )W is a graded ring, the module is also graded
(e.g. deg( ∂

∂Pi
) = −deg(Pi) = −(mi + 1)). Then, it is easy to see that the lowest

graded piece of the module is a rank 1 vector space generated by

D =
∂

∂Pl

(where we recall that we have ordered as deg(P1) < · · · < deg(Pl) = h). In fact, D
is, up to a constant factor, independent of a choice of the generator system P1, . . . , Pl

of invariants. We shall call D a primitive vector field. (Proof. Let us take another
system of generators S[V ∗]W = R[Q1, . . . , Ql] with deg Qi = deg Pi = mi +1. Then
the chain rule of the derivatives shows that

∂

∂Pl
=

∑

1≤i≤l

∂Qi

∂Pl

∂

∂Qi
(here,

∂Qi

∂Pl
= 0 for i < l since it is of negative degree)

=
∂Ql

∂Pl

∂

∂Ql
= const.

∂

∂Ql

Formal group action
We, now, introduce a formal group action on SW := VW //W by the integration

of the primitive vector field D. Actually, it is globally defined as a Ga-action (which
we shall call the τ -action) as a translation of the last coordinate Pl:

τ = exp(•D) : Ga × SW → SW

λ × (P1, . . . , Pl) 7→ (P1, . . . , Pl−1, Pl + λ) .

Remark.

Recall that the set theoretic quotient
VR/W is the closure of the central com-
ponent in SW,R. Then, as illustrated in
the figure for the A2-type, the quotient
set is not invariant by the action!

Remark. There is a one to one correspondence between the set of connected com-
ponents of SW,R \DW,R and the set of conjugacy class of involutive elements of W .
E.g. S3: {1}, {σij}
Remark. A Coxeter element of W is, by definition, a product (in any order) of a sys-
tem of reflections whose reflection hyperplanes give a system of walls of a chamber
in VW . The conjugacy class of the Coxeter elements is uniquely defined indepen-
dent of the ambiguities in the above definition. The order of a Coxeter element,
say c, is denoted by h. Then, the primitive hth root of unity is an eigenvalue of c of
multiplicity 1, and the eigenspace belonging the eigenvalue is regular (in the sense
that it is not contained in any reflection hyperplane) (see [5]). More precisely, we
can show that the inverse image in VW,C of the one dimensional τ -orbit τ(Ga) ·O of
the origin in SW decomposes into a union of lines, each of which is the eigenspace
of a Coxeter element for the eigenvalue of hth primitive root of unity.
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4. Main theorems [4, Theorem A, B]

We formulate two theorems on certain semi-algebraic geometry in SW,R and in
VW,R, respectively. In order to formulate the result, let us prepare a notation

C
{±}
W :=

the connected component in SW,R \DW,R containing
the half line τ(±R>0)Ȯ.

Theorem. 1. For λ ∈ R>0, consider the intersection of three components

JW (λ) := C0
W ∩ τ(−λ) · C{+}W ∩ τ(λ) · C{−}W .

Then, JW (λ) is a connected component of the complement of three discriminants:
SW,R \

(
DW,R ∪ τ(λ)DW,R ∪ τ(−λ)DW,R

)
, and is homeomorphic to a parallelotope

[0, λ]l. The origin O is a vertex of JW (λ) and let ao = ao(λ) be the vertex of JW (λ)
anti-podal to the origin. The edges of JW (λ) adjacent to ao(λ) are indexed by Π
and are transversal to the discriminant DW,R.

2. The inverse image K̄W (λ) in VW,R of the parallelotope J̄W (λ) by the quotient
map πW : VW,R → SW,R is a semi-algebraic polyhedron which is dual to the chamber
decomposition of VW .
Remark. The set of vertices of the polyhedron KW (λ) are mapped to the vertex
ao(λ) of JW (λ). The trace of the vertices AO+ := {ao(λ) | λ ∈ R>0} is a half
line, called the half vertex orbit axis (in fact, one has an a priori description of the
vertex orbit axis by a use of Coxeter element [4], playing a crucial role in the whole
theory).

We illustrate the results of Theorem 1. and 2. by the example of type A2. A
more precise figures for the types A2 and B2 are given in Appendix 2 and 3.

The figure in RHS draw the real discriminant DA2,R and its translations to a
positive direction λ and to a negative direction −λ. The shadowed aria is the
2-dimensional parallelotope JA2(λ). The figure in LHS draw the union of the re-
flection hyperplanes ∪Hs,R = π−1

A2
(DA2,R) and the inverse images of the shifted

discriminants. The shadowed aria is the two dimensional dual polyhedron KA2(λ).

The proof of Theorems is based on some more basic result on the semi-algebraic
description of the τ action, and is indicated in 6. To obtain a comprehensive
description and understanding of the polyhedron, we should study not only the
polyhedron K+1

W (λ) := KW (λ) in the real vector space VW,R, but also its twin
polyhedron K−1

W (λ) in the imaginary vector space
√−1VW,R. For the details, one

is referred to [4] and its complete version, which is in preparation.
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5. Applications [4, §4]
(the description of a generator system of π1(SW,C \DW,C, ∗))

As the applications to the Theorems 1. and 2. in previous section, we give two
answers to the question posed at the end of section 2. (and in the introduction).

Theorem. 3. Let J̄W (λ) be the parallelogram in Theorem 1. Let γi (i ∈ Π) be the
edges of J̄W (λ) adjacent to ao. For (i ∈ Π), choose a path γ̃i in the complexification
γi,C of γi (i.e. an open Riemann surface in SW,C containing γi) which is based at
ao and turning around the point DW,R ∩ γi,C once counter-clockwisely (see Fig.).

Then the correspondence gi ∈ A(W ) 7→ γ̃i (i ∈ Π) induces the isomorphism:

AW
∼→ π1(SW,C \DW,C, ao).

gi 7→ γ̃i

The fundamental group of a complement of a divisor has another presentation by so
called Zariski-van Kampen method (see Le and Cheniot [ ]). We give a comparison
of the Zariski-van Kampen type generator system and our generators system.

Theorem. 4 (Zariski-van Kampen type generators) Take any general point ∗ in the
central component C0

W , Then the real orbit τ(R) · ∗ intersects with the discriminant
DW,R at l = #Π points. Let l± = (#τ(±R>0) · ∗)∩DW,R s.t. l = l+ + l−. Consider
the paths δ+

1 , . . . , δ+
l+ (resp. δ−1 , . . . , δ−l−) in the half complexification τ(H) · ∗ (resp.

τ(−H)·∗ based at the point ∗ and turning once around each point at the intersection
τ(R>0) · ∗ ∩DW,R (resp. τ(−R>0) · ∗ ∩DW,R), where H := {λ ∈ C | Im(λ) > 0}.

Since the base points ao and ∗ lie in the same contractible set C0
W , one has a

canonical isomorphism: π1(SW,C\DW,C, ao)'π1(SW,C\DW,C, ∗). Then one has:
1. The isomorphism induces a bijection between the generator systems:

{γ̃i | i ∈ Π} ' {δ̃+
1, . . . , δ̃+

l+ , δ̃−1, . . . , δ̃−l−}.

2. The generators δ+
1 , . . . , δ+

l+ and δ−1 , . . . , δ−l− are mutually commutative among
themselves, respectively.
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6. Proof ([4, Theorem C])

Theorems 3 and 4 are consequences of Theorems 1 and 2 (in a stronger form,
proof is omitted, see [4]). Theorems 1 and 2 are consequences of the linearization
of the real discriminant loci, roughly formulated in a Theorem in this section (to
be exact, the formulation is not sufficient for the application). Interested reader is
referred to [4] for a complete formulation and a proof.

We prepare some notations.

1. The Ga-quotient space TW and the bifurcation divisor BW

Let us introduce an affine scheme over R:

TW := SW //τGa = Spec R[P1, . . . , Pl−1]

and define the quotient map πτ : SW → TW . The restriction πτ |DW is a finite cover
over TW , which is branching along a divisor BW ⊂ TW where BW is defined by the
resultant (discriminant) of the discriminant ∆W = A0P

l
l + A1P

l−1
l + · · ·+ Al as a

polynomial in one variable Pl:

δ

(
∆W ,

∂∆W

∂Pl

)
= ω2

2 · ω3
3 · · · · ∈ R[P1, . . . , Pl−1],

where RHS is the decomposition of
LHS according to the multiplicities: 2,
3,. . . of the factor ω2, ω3, . . . (there is
no reduced factor due to the transver-
sality of the τ -action to the discrimi-
nant).

The divisor BW,p := {ωp = 0} is
called the pth bifurcation loci, and we
define the bifurcation divisor BW :=⋃

p≥3 BW,p. The sub-divisor BW,≥3 :=⋃
p≥3 BW,p is called the caustics.
Recall the vertex orbit half axis AO+, discussed in Remark of section 4. Let us

denote by O+ := πτ (AO+) its projection image in the real form TW,R of TW and
call it the vertex orbit half line. It is a highly non-trivial fact that O+ ⊂ BW,2,R
but O+ ∩BW,≥3,R = ∅. Therefore, we can define

Key concept: The central region:

EW := the connected component of TW,R \BW,≥3,R

containing the vertex orbit half line O+.

We shall see that EW is a simplicial cone of dimension l − 1, whose faces are
indexed by the edges of the Dynkin-Coxeter graph Γ(W ) for the type of the Coxeter
group W (in fact, this is the back ground for the fact that the generator system γ̃i

(i ∈ Π) in Theorem 3 satisfy the Artin-braid relations. In order to formulate the
result, we prepare some more notation.

2. Linear model space
Let us introduce a based vector space, where the basis are indexed by the set Π:

V̂Π := ⊕α∈ΠGa · vα.
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Let us define the diagonal action of Ga on V̂Π by letting λ ∈ Ga acts on t̃ ∈ ṼΠ by
t̃ 7→ t̃ + λ

∑
α∈Π vα. Let us introduce the quotient space:

VΠ := V̂Π/Ga ·
∑

α∈Π

vα.

Let λα (α ∈ Π) be the dual basis of the basis vα so that any element t̃ ∈ V̂Π is
expressed as

∑
α∈Π λα(ṽ)vα (i.e. λα (α ∈ Π) are coordinates for V̂Π). Note that

λαβ := λα − λβ (α 6= β ∈ Π) form a root system of type Al−1 on VΠ.
Solving the algebraic equation ∆W = 0 in the indeterminate Pl, we obtain l

number of (multivalued) algebroid functions on TW,C branching along BW,odd,C.
In fact, by choosing the half vertex orbit line O+, as for the base point of the
multivalued functions, we can naturally index the algebroid functions by the set Π
[4]. That is: we have the “decomposition” of the discriminant polynomial:

∆W = A0P
l
l + A1P

l−1
l + · · ·+ Al

= A0

∏
α∈Π(Pl − ϕα(P1, . . . , Pl−1)︸ ︷︷ ︸

algebraic functions

)

Theorem. Consider the multivalued algebroid maps∗) cW and bW defined by the
correspondences

cW : λα = Pl − ϕα, α ∈ Π
bW : λαβ = ϕβ − ϕα, α, β ∈ Π

which makes the following diagram∗) commutative:

SW
cW //

πτ

²²

ṼΠ.

Ga

P
α∈P i vα

²²
TW

bW // VΠ.

The restriction of the maps to their real forms cW,R : SW,R → V̂Π,R and bW,R :
TW,R → VΠ,R induce the following semi-algebraic isomorphisms of the central com-
ponent and the central region to certain linear simplicial cones:

cW,R : C0
W ' σ · {t̃ ∈ ṼΠ,R : λα < 0 for α ∈ Π1, λα > 0 for α ∈ Π2}

bW,R : EW ' σ · {t ∈ VΠ,R : λαβ > 0 for α ∈ Π1, β ∈ Π2, αβ ∈ Edge(Γ(W ))}
where Πi (i = 1, 2) is a decomposition Π = Π1

∐
Π2

such that each Πi is totally disconnected subset of the
vertices of the Coxeter-Dynkin graph Γ(W ) (see the
figure for the example of type E6), and σ ∈ {±1}.
The sign factor σ can be determined exactly [4]. The
linearization maps cA3 and bA3 are illustrated in Ap-
pendix 1 (taken from [4]).
∗) To be exact, the maps cW and bW should be defined on a suitable covering
spaces of SW and TW , and the branch of the maps in consideration should be
specified. In [4] (and in the forthcoming paper in preparation), we proceed this by
two means either by a use of suitable topological covering spaces with some careful
consideration of base points, or by a use of suitable finite algebraic covering. Both
are technically complicated and we do not go into any details in the present note.
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[4] Saito, K. : Polyhedra Dual to the Weyl Chamber Decompositon: a Précis, Publ. RIMS, Kyoto
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