Initial Algebra Semantics for
Cyclic Sharing Structures

Makoto Hamana

Department of Computer Science,
Gunma University, Japan

August 2009, Gol Workshop, Kyoto
http://www.cs.gunma-u.ac.jp/"hamana/

T his Work

> How to inductively capture cylces and sharing

> Intended to apply it to functional programming

Introduction

> Terms are a representation of tree structures

bin(bin(5,6),bin(7,8))

S} 6 7 8

(i) Reasoning: structural induction

(ii) Functional programming:
pattern matching, structural recursion

(iii) Type: inductive type
(iv) Initial algebra property

Introduction

> What about tree-like structures?

> How can we represent this data in functional programming?
> Maybe: vertices and edges set, adjacency lists, etc.
> Give up to use pattern matching, structural induction

> Not inductive

Introduction

Are really no inductive structures in
tree-like structures?

T his Work

> Gives an initial algebra characterisation of
cyclic sharing structures

Alm
> To derive the following from 7T

[I] A simple term syntax that admits
structural induction / recursion

II] To give an inductive type that represents
cyclic sharing structures uniquely
INn functional languages and proof assistants

Variations of Initial Algebra Semantics

> Various computational structures are formulated as
initial algebras by varying the base category

Abstract syntax Set ADJ 1975
S-sorted abstract syntax Set® Robinson 1994
Abstract syntax with binding Set” Fiore,Plotkin, Turi 1999
Recursive path ordring LO R. Hasegawa 2002
S-sorted 2nd-order abs. syn. (Set™?)S Fiore 2003
2nd-order rewriting systems Pre’ Hamana 2005
Explicit substitutions [Set, Set|; Ghani,Uustalu,Hamana 2006

Cyclic sharing structures (Set™)T Hamana 2009

Basic Idea

Basic Idea: Graph Algorithmic View

> Traverse a graph in a depth-first search manner:

Depth-First Search tree

> DFS tree consists of 3 kinds of edges:
(i) Tree edge (ii) Back edge
(iii) Right-to-left cross edge

> Characterise pointers for back and cross edges

10
Formulation: Cycles by p-terms

Idea
> Binders as pointers

> Back edges — bound variables

Cycles

px.bin(py,.bin(If(5),1F(6)), pyz.bin(x, If(7)))

11
Formulation: Sharing via ?

Idea

> Binders as pointers

> Back edges = bound variables
> Right-to-left Cross edges = 7

Sharing

pz.bin(py:.bin(IF(5), IF(6)), py2.bin(AF(7))).

Can we fill the blank to refer the node 5 by a bound variable?

12
Formulation: Sharing via Pointer

> Cross edges — pointers by a new notation

px.bin(puy:.bin(If(5),1F(6)), py2.bin(|11Tx [, If(7))

Pointer .~11Tax means
> going back to the node x, then
> going down through the left child twice (by position 11)

13
Formulation: Sharing via Pointer

> Cross edges — pointers by a new notation

pz.bin(py:.bin(IF(5), I1F(6)), py2.bin(| 11Tz |, IF(7))

Pointer .~11Tx means Need to ensure a correct pointer only!!
> going back to the node x, then
> going down through the left child twice (by position 11)

Typed Abstract Syntax

for

Cyclic Sharing Structures

14

15

Shape Trees

> Skeltons of cyclic sharing trees

Shapetrees == E | P | L | B(r1,7T2)

> Used as types

> Blue nodes represent possible positions for sharing pointers.

16

Syntax and Types

Typing rules

p € Pos(o) k E€Z
'z :o0, IV - _plx:P ' -If(k) : L

z:BE,E),THF:0 ax:B(c,E),I' m7r:T
I' - px.bin(é,r) : B(o, 7)

> A type declaration o : o means:
“o Is the shape of a subtree headed by px’.

> Taking a position p € Pos(o) safely refers to a position in
the subtree.

17
Example: making bin-node

X Context

/shape tree &/ \
! Shape tree

 B(LL) >

B(B(L,L),E) /
[N
5) © () r
z:B(E,E) + z:B(B(L,L),E) F
pny1.bin(5,6) : B(L, L) py=.bin(-11Tx, 7) : B(P, L)

F pax.bin(py,.bin(5, 6), py..bin(11Tx, 7))
. B(B(L, L), B(P, L))

18

Syntax and Types

Typing rules (de Bruijn version)

'l =1 —1 p &€ Pos(o) k €Z
I'o, IV + _pTe: P ' HIf(k) : L

B(E,E),' ms: o0 B(c,E),I' mt:r
I' - bin(s,t) : B(o, 7)

T hm.
Given rooted, connected and edge-ordered graph,
the term representation in de Bruijn is unique.

Cyclic Sharing Data Structures

> Sharing via cross edge

> Term

bin(bin(bin(T 3, If(6)), .~ 1T1), If(9))

19

Initial Algebra Semantics

> Cyclic sharing trees are all well-typed terms:
T.(')={t | T +t: 7}

> Need: sets indexed by
contexts T* and shape trees T

Consider algebras in (Set™)”

20

Initial Algebra Semantics

> Algebra of an endofunctor X:
3-algebra (A, o : XA — A)

> Functor X : (Set™)T —— (Set™)T for

cyclic sharing trees is defined by

(X2A)B(o,r) = OBE,E)As X O0B(s,E)A~

21

Initial Algebra Semantics

> 3-algebra (A, aa: XA — A)

> Functor = : (Set™)T — (Set™)7 for
cyclic sharing trees is given by

ptr* : PO — Ap If*: K, — Ay

bin”" % : dpm,E)Ac X OB(o,E)Ar — Ap(s,7)

22

Typing rules (de Bruijn version)

'l =2—1 p € Pos(o) keZ
I',o,IV + _pTi: P ' mIf(k) : L

B(E,E),T ws:0 B(o,E), Il Ht:r
I' + bin(s,t) : B(o, 7)

Initial Algebra
> All cyclic sharing trees

T.(')={t | T +t: 7}

Thm. T forms an initial X-algebra.

[Proof]

> Smith-Plotkin construction of an initial algebra

23

24
Principles

The initial algebra characterisation derives
(i) Structural recursion by the unigue homomorphism

ii) Structural induction by [Hermida,Jacobs 1& C’'98]

ii) Inductive type (in Haskell)

Structural Recursion Principle

Thm. The unigue homomorphism ¢ : T'— A is:

¢p(T) (- PTi) = ptro(T) (. pTi)
¢ (L) (If (k) = IF4(T) (k)
Pp(o,) (') (PIN(s, t))
= bin*(T)(¢,(B(E, E),T)(s), ¢,(B(c,E),T)(t))

> ‘“fold” in Haskell

25

Structural Induction Principle

Thm. Let P be a predicate on T'.
To prove that P! (t) holds for all t € T, (T),
it suffices to show

(i) Pp(pTi) holds for all .pTi € PO(T),

i) P} (If(k)) holds for all k € Z,

i) If PPEENT(5) & PB@E)T (1) holds, then
Pg(, . (bin(s,t)) holds.

26

27

Inductive Type for Cyclic Sharing Structures

Constructors of the initial algebra T € (Set™)"
ptr’ (") : PO(I') — Tp(T); . pli+— . pli.
If' (") : Z — T (); k — If (k).
bin””*(T") : T,(B(E,E), ') XT,(B(c,E), I')— Ts(c,)(T)

data T :: *x =-> % => % where GADT in Haskell
Ptr :: Ctxn=>n->TnpP
Lf :: Ctxn => Int -=> Tn L

Bin :: (Ctx n, Shape s, Shape t) =>
T (TyCtx (B EE) n) s > T (TyCtx (B s E) n) t
->Tn (B s t)

> Dependent type def. in Agda is more straightforward

28
Summary

> An Initial algebra characterisation

Goals

> To derive the following from T

[I] A simple term syntax

II] An inductive type

for cyclic sharing structures

Reference M. Hamana. Initial Algebra Semantics
for Cyclic Sharing Structures, TLCA’09.

29
Connections to Other Works

T here are interpretations:

!

T

Equational Term Graphs —— &

where & is any of
(i) Coalgebraic
(ii) Domain-theoretic

iii) Categorical semantics:
Traced sym. monoidal categories [Hasegawa'97]

(Equational) term graphs [Barendregt et al.’87][Ariola,Klop'96]

30
Connection to Traced Categorical Semantics

> Interpretations

!

T —— Equational Term Graphs & letrec-Exprs —— (F : C — M)

> Cartesian-center symmetric traced monoidal category
— identity-on-object functor F : C — M

— Cartesian C

— Symmetric traced monoidal M

Cyclic Sharing Data Structures

> Sharing via cross edge

> Term

px.bin(py.bin(pz.bin(T x,I1f(6)), . 1Ty1), 1f(9))

31

32
px.bin(py:.bin(pz.bin(T x,I1f(6)), . 1Ty1),1f(9))

92" bin(bin(bin(T 3,1f(6)), .~ 111), If(9))
— bine(binl(binll(THlS, |f112(6)), ,/]_le 1), |f2(9))
{e | € = bin(1, 2)
1 — bin(11, 12) PR
11 — bin(111, 112) ' >
— 12 = 11
111 = € g
112 = If(6) .
2 — |f(9)}) -
— letrec (e, 1,11,12,111, 112, 2)
— (bin(1, 2), bin(1, 12), bin(111, 112), 11, ¢, If(6), If(9)) in e
FA);(dQ Tr(FA7; ([e,1,... F bin(1,2)]®
Hasegawa

— [e,1,... F bin(11,12)]®
o0)s FA)); Fma

33
Connection to Traced Categorical Semantics

> How useful?

> Application: Haskell's “arrows” [Hughes'0O0][Paterson’'01]

— Arrow-type in Haskell (or, Freyd category)
IS a cartesian-center premonoidal category
[Heunen, Jacobs, Hasuo'06]

— Arrow with loop

IS @ cartesian-center traced premonoidal category
[Benton, Hyland'03]

— Cyclic sharing theory is interpreted
In a cartesian-center traced monoidal category
[Hasegawa'97]

> What impact for functional progrmming?

