
1

Initial Algebra Semantics for

Cyclic Sharing Structures

Makoto Hamana

Department of Computer Science,

Gunma University, Japan

August 2009, GoI Workshop, Kyoto

http://www.cs.gunma-u.ac.jp/̃ hamana/

2

This Work

B How to inductively capture cylces and sharing

B Intended to apply it to functional programming

3

Introduction

B Terms are a representation of tree structures

(i) Reasoning: structural induction

(ii) Functional programming:

pattern matching, structural recursion

(iii) Type: inductive type

(iv) Initial algebra property

4

Introduction

B What about tree-like structures?

B How can we represent this data in functional programming?

B Maybe: vertices and edges set, adjacency lists, etc.

B Give up to use pattern matching, structural induction

B Not inductive

5

Introduction

Are really no inductive structures in

tree-like structures?

6

This Work

B Gives an initial algebra characterisation of

cyclic sharing structures

Aim

B To derive the following from ↑ :

[I] A simple term syntax that admits

structural induction / recursion

[II] To give an inductive type that represents

cyclic sharing structures uniquely

in functional languages and proof assistants

7

Variations of Initial Algebra Semantics

B Various computational structures are formulated as

initial algebras by varying the base category

Abstract syntax Set ADJ 1975

S-sorted abstract syntax SetS Robinson 1994

Abstract syntax with binding SetF Fiore,Plotkin,Turi 1999

Recursive path ordring LO R. Hasegawa 2002

S-sorted 2nd-order abs. syn. (SetF↓S)S Fiore 2003

2nd-order rewriting systems PreF Hamana 2005

Explicit substitutions [Set,Set]f Ghani,Uustalu,Hamana 2006

Cyclic sharing structures (SetT
∗
)T Hamana 2009

8

Basic Idea

9

Basic Idea: Graph Algorithmic View

B Traverse a graph in a depth-first search manner:

Depth-First Search tree

B DFS tree consists of 3 kinds of edges:

(i) Tree edge (ii) Back edge

(iii) Right-to-left cross edge

B Characterise pointers for back and cross edges

10

Formulation: Cycles by µ-terms

Idea

B Binders as pointers

B Back edges = bound variables

Cycles

µx.bin(µy1.bin(lf(5), lf(6)), µy2.bin(x, lf(7)))

11

Formulation: Sharing via ?

Idea

B Binders as pointers

B Back edges = bound variables

B Right-to-left Cross edges = ?

Sharing

µx.bin(µy1.bin(lf(5), lf(6)), µy2.bin(, lf(7))).

Can we fill the blank to refer the node 5 by a bound variable?

12

Formulation: Sharing via Pointer

B Cross edges = pointers by a new notation

µx.bin(µy1.bin(lf(5), lf(6)), µy2.bin(↙11↑x , lf(7)))

Pointer ↙11↑x means

B going back to the node x, then

B going down through the left child twice (by position 11)

13

Formulation: Sharing via Pointer

B Cross edges = pointers by a new notation

µx.bin(µy1.bin(lf(5), lf(6)), µy2.bin(↙11↑x , lf(7))).

Pointer ↙11↑x means Need to ensure a correct pointer only!!

B going back to the node x, then

B going down through the left child twice (by position 11)

14

Typed Abstract Syntax

for

Cyclic Sharing Structures

15

Shape Trees

B Skeltons of cyclic sharing trees

Shape trees τ ::= E | P | L | B(τ 1, τ 2)

B Used as types

B Blue nodes represent possible positions for sharing pointers.

16

Syntax and Types

Typing rules

p ∈ Pos(σ)

Γ, x : σ,Γ′ ` ↙p↑x : P

k ∈ Z
Γ ` lf(k) : L

x : B(E,E),Γ ` ` : σ x : B(σ,E),Γ ` r : τ

Γ ` µx.bin(`, r) : B(σ, τ)

B A type declaration x : σ means:

“σ is the shape of a subtree headed by µx”.

B Taking a position p ∈ Pos(σ) safely refers to a position in

the subtree.

17

Example: making bin-node

x:B(E,E) `
µy1.bin(5, 6) : B(L,L)

x:B(B(L,L),E) `
µy2.bin(↙11↑x, 7) : B(P,L)

` µx.bin(µy1.bin(5, 6), µy2.bin(↙11↑x, 7))

: B(B(L,L),B(P,L))

18

Syntax and Types

Typing rules (de Bruijn version)

|Γ| = i− 1 p ∈ Pos(σ)

Γ, σ,Γ′ ` ↙p↑i : P

k ∈ Z
Γ ` lf(k) : L

B(E,E),Γ ` s : σ B(σ,E),Γ ` t : τ

Γ ` bin(s, t) : B(σ, τ)

Thm.

Given rooted, connected and edge-ordered graph,

the term representation in de Bruijn is unique.

19

Cyclic Sharing Data Structures

B Sharing via cross edge

B Term

bin(bin(bin(↑ 3, lf(6)),↙1↑1), lf(9))

20

Initial Algebra Semantics

B Cyclic sharing trees are all well-typed terms:

Tτ(Γ) = {t | Γ ` t : τ}

B Need: sets indexed by

contexts T∗ and shape trees T

Consider algebras in (SetT
∗
)T

21

Initial Algebra Semantics

B Algebra of an endofunctor Σ:

Σ-algebra (A, α : ΣA → A)

B Functor Σ : (SetT
∗
)T - (SetT

∗
)T for

cyclic sharing trees is defined by

(ΣA)E = 0 (ΣA)P = PO (ΣA)L = KZ

(ΣA)B(σ,τ) = δB(E,E)Aσ × δB(σ,E)Aτ

22

Initial Algebra Semantics

B Σ-algebra (A, α : ΣA → A)

B Functor Σ : (SetT
∗
)T - (SetT

∗
)T for

cyclic sharing trees is given by

ptrA : PO → AP lfA : KZ → AL

binσ,τ A : δB(E,E)Aσ × δB(σ,E)Aτ → AB(σ,τ)

Typing rules (de Bruijn version)

|Γ| = i− 1 p ∈ Pos(σ)

Γ, σ,Γ′ ` ↙p↑i : P

k ∈ Z
Γ ` lf(k) : L

B(E,E),Γ ` s : σ B(σ,E),Γ ` t : τ

Γ ` bin(s, t) : B(σ, τ)

23

Initial Algebra

B All cyclic sharing trees

Tτ(Γ) = {t | Γ ` t : τ}

Thm. T forms an initial Σ-algebra.

[Proof]

B Smith-Plotkin construction of an initial algebra

24

Principles

The initial algebra characterisation derives

(i) Structural recursion by the unique homomorphism

(ii) Structural induction by [Hermida,Jacobs I&C’98]

(iii) Inductive type (in Haskell)

25

Structural Recursion Principle

Thm. The unique homomorphism φ : T - A is:

φP(Γ)(↙p↑i) = ptrA(Γ)(↙p↑i)
φL(Γ)(lf(k)) = lfA(Γ)(k)

φB(σ,τ)(Γ)(bin(s, t))

= binA(Γ)(φσ(B(E,E),Γ)(s), φτ(B(σ,E),Γ)(t))

B “fold” in Haskell

26

Structural Induction Principle

Thm. Let P be a predicate on T .

To prove that P Γ
τ (t) holds for all t ∈ Tτ(Γ),

it suffices to show

(i) P Γ
P(↙p↑i) holds for all ↙p↑i ∈ PO(Γ),

(ii) P Γ
L (lf(k)) holds for all k ∈ Z,

(iii) If PB(E,E),Γ
σ (s) & PB(σ,E),Γ

τ (t) holds, then

P Γ
B(σ,τ)(bin(s, t)) holds.

27

Inductive Type for Cyclic Sharing Structures

Constructors of the initial algebra T ∈ (SetT
∗
)T

ptrT (Γ) : PO(Γ) → TP(Γ); ↙p↑i 7→ ↙p↑i.
lfT (Γ) : Z → TL(Γ); k 7→ lf(k).

binσ,τ T (Γ) : Tσ(B(E,E),Γ)×Tτ(B(σ,E),Γ)→ TB(σ,τ)(Γ)

GADT in Haskelldata T :: * -> * -> * where

Ptr :: Ctx n => n -> T n P

Lf :: Ctx n => Int -> T n L

Bin :: (Ctx n, Shape s, Shape t) =>

T (TyCtx (B E E) n) s -> T (TyCtx (B s E) n) t

-> T n (B s t)

B Dependent type def. in Agda is more straightforward

28

Summary

B An initial algebra characterisation

Goals

B To derive the following from ↑ :

[I] A simple term syntax

[II] An inductive type

for cyclic sharing structures

Reference M. Hamana. Initial Algebra Semantics

for Cyclic Sharing Structures, TLCA’09.

29

Connections to Other Works

There are interpretations:

T ! - Equational Term Graphs - S

where S is any of

(i) Coalgebraic

(ii) Domain-theoretic

(iii) Categorical semantics:

Traced sym. monoidal categories [Hasegawa’97]

–

(Equational) term graphs [Barendregt et al.’87][Ariola,Klop’96]

30

Connection to Traced Categorical Semantics

B Interpretations

T ! - Equational Term Graphs ∼= letrec-Exprs - (F : C → M)

B Cartesian-center symmetric traced monoidal category

= identity-on-object functor F : C → M
– Cartesian C
– Symmetric traced monoidal M

31

Cyclic Sharing Data Structures

B Sharing via cross edge

B Term

µx.bin(µy1.bin(µz.bin(↑ x, lf(6)),↙1↑y1), lf(9))

32

µx.bin(µy1.bin(µz.bin(↑ x, lf(6)),↙1↑y1), lf(9))
de Br.
= bin(bin(bin(↑ 3, lf(6)),↙1↑1), lf(9))

7→ binε(bin1(bin11(↑1113, lf112(6)),↙1↑12 1), lf2(9))

7→

{ε | ε = bin(1, 2)
1 = bin(11, 12)
11 = bin(111, 112)
12 = 11
111 = ε
112 = lf(6)
2 = lf(9)}

7→ letrec (ε, 1, 11, 12, 111, 112, 2)

= (bin(1, 2), bin(1, 12), bin(111, 112), 11, ε, lf(6), lf(9)) in ε

Hasegawa7→
F(∆); (id ⊗ Tr(F∆7; ([[ε, 1, . . . ` bin(1, 2)]]⊗

[[ε, 1, . . . ` bin(11, 12)]]⊗
· · ·); F∆)); Fπ1

33

Connection to Traced Categorical Semantics

B How useful?

B Application: Haskell’s “arrows” [Hughes’00][Paterson’01]

– Arrow-type in Haskell (or, Freyd category)

is a cartesian-center premonoidal category

[Heunen, Jacobs, Hasuo’06]

– Arrow with loop

is a cartesian-center traced premonoidal category

[Benton, Hyland’03]

– Cyclic sharing theory is interpreted

in a cartesian-center traced monoidal category

[Hasegawa’97]

B What impact for functional progrmming?

