Functional Programming in
Sublinear Space

Ulrich Schopp

Institute of Advanced Studies
University of Bologna
(on leave from University of Munich)

Joint work with Ugo Dal Lago

Workshop on Geometry of Interaction, Traced Monoidal Categories
and Implicit Complexity, Kyoto, August 2009



Programming with Sublinear Space

Computation with data that does not fit in memory
+ Input can be requested in small chunks from the environment.
- Output is provided piece-by-piece.

Writing sublinear space programs can be quite complicated

- Cannot store intermediate values.

- Recompute small parts of values only when they are needed.



Language/Compiler Support

Can we find a Programming Language that
- hides on-demand recomputation behind useful abstractions;
- delegates some tedious programming tasks to a compiler;

- allows for an easy combination of a sublinear space algorithms
with the rest of the program?



Language/Compiler Support

Existing work for LOGSPACE explores possible abstractions ...

- restricted primitive recursion [Mgeller-Neergaard 2004]

+ subsystem of Bounded Linear Logic [Sch. 2007]

+ (LOGSPACE predicates: [Kristiansen 2005], [Bonfante 2006])
...but s still far away from making programming easier.

Perhaps it is too ambitious for now to aim for a programming
language that completely hides on-demand recomputation?

A more modest goal:

Design a functional programming language that provides support
for working with sublinear space, without trying to hide all
implementation details behind abstractions.



A Functional Language for Sublinear Space

1. Computation with external data
How should we represent data that does not fit into memory in a
functional programming language?

2. Deriving the functional language IntML

3. LOGSPACE programming in IntML



Sublinear Space Complexity

Modify the machine model to account for computation with
external data:

Turing Machines == Offline Turing Machines

Offline Turing Machines
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Input and output tape belong to environment.
Only the space on the work tape(s) counts.



Offline Turing Machines

Composition is implemented without storing intermediate result.
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Offline Turing Machines

Offline Turing Machines can be seen as a convenient abbreviation
for normal Turing Machines that

- obtains its input not in one piece but that may request it
character-by-character from the environment;

- gives its output as a stream of characters.

Formally, we may describe this as a computable function of type

Request for output character
lr l—Output character

N + (State x 3) — X + (State x N) .

I T~ Request for input character
Answer for input request



Space Complexity in Functional Programs

What relates to Offline Turing Machines in the same way that
functional programming languages relate to Turing Machines?

. . Functional Languages
Turing Machines (OCaml, Haskell, ..)

Offline ?
Turing Machines




Int Construction

Understand the transition from Turing Machines to Offline Turing
Machines in terms of the Int construction
[Joyal, Street & Verity 1996].

1. Apply the Int construction directly to a functional language.

Functional Languages

Turing Machines (OCaml, Haskell, ...)
Offline .

Turing Machines

2. Derive a functional language from the semantic structure.
3. Identify programs with sublinear space usage.



Traced Monoidal Category

- Category B

- Monoidal structure (+,0)

ffA+B—C+D

- Trace

f:A+B—C+B

(e.g. sets and partial functions)

(e.g. disjoint union)

A C

Tr(f): A—C

B D

(e.g. while loop)

A C

(T




Category Int(B)

+ Objects are pairs of B-objects
X=(X",X")
« Morphism f: X — YisaB-map

fiXt+Y — X 4+Y* f
X+ X~

+ Composition




Structure in Int(B)

B embeds into Int(B)

« Amap from A — B in B corresponds to a map
(0,A) — (0, B) in Int(B).

0 B

A 0

This gives a full and faithful embedding.
- We shall use [A] = (1, A), where 1 is a singleton.

1 B

A 1



Structure in Int(B)

Int(B) has a monoidal structure ®
(A®B)" =A" 4+ B~ I=(0,0)
(A B)t = A* 4+ B*
Int(B) is compact closed
(X7, X)) = (X", X7)

Unitn: I — X* ® X and counite: X ® X* — I:

X~ Xt X+ X~

X+ X~ X~ Xt

Bis monoidalclosed X Y =X*Q®Y



Structure in Int(B)

Int(B) has B-object indexed tensors

(@ X)i = Ax X~
A
+
(@ X) = Ax X+
A
(given suitable structure in B, e.g. products)

Example
B sets with partial functions, (4, 0) coproduct, A finite

®X X® ®X

|A| times



Indexed Tensor

Consider the Int-construction on categories B with
- finite products (x, 1);
- distributive finite coproducts (+, 0);
- uniform trace with respect to (+, 0).

Define B[X] by freely adjoining to B an indeterminate element of X.

One obtains indexed categories:

B[—]: B°® — Cat
Int(B[—]): B°® — Cat

The indexed tensor is a strong monoidal functor

@A: Int(B[X x A]) — Int(B[X)]).



Indexed Tensor

®A; Int(B[Z x A]) — Int(B[X)])
- Forany f: ¥ — A a strong monoidal natural transformation:
T ®AX — (5, f)*X  inInt(B[X])
- Natural isomorphisms that are compatible with 7.
®1 X ~p'X
R X= (@A(z X inI)*X) ® (@B(z X inr)*X)
&5 X = &, Q07X



Indexed Tensor

The projections
T ®AX — ("X inInt(B[X])

internalise to a certain extent:

S5 1A 2 @,4[B]

\ iﬂ in Int(B[X])
Tf

[B]



Int Construction and Space Complexity

The functions that represent Offline Turing Machines
(State x ¥) + N — (State x N) + X

appear in Int(Pfn) as morphisms of type

®State (N - E) — (N - E)’

where we write just N for (0, N) and X for (0, ).



Int Construction and Space Complexity

The functions that represent Offline Turing Machines
(State x ¥) + N — (State x N) + X

appear in Int(Pfn) as morphisms of type
®State (N - E) — (N - E)’
where we write just N for (0, N) and X for (0, ).

The structure of Int(Pfn) is useful for working with OTM:s.
- Composition:

®S®S,(N—OZ)M®S(N—OE)L(N—OZ)

« Input lookup is just (linear) function application.



A Functional Language for Sublinear Space

1. Computation with external data

2. Deriving the functional language IntML

1. Start with a standard functional programming language.
2. Apply the Int construction to a term model B of this language.

3. Derive a functional language from the structure of Int(B). It
can be seen as a definitional extension of the initial language.

4. ldentify programs with sublinear space usage.

3. LOGSPACE programming in IntML



A Simple First Order Language

Finite Types
A B:=a|A+B|1|AxB

Ordering on all types

miny | succa(f) | eqa(f, f)

Explicit trace (with respect to +)
trace(c.f)(g)
(sufficient for now, could use tail recursion)
Standard call-by-value evaluation, constants unfolded on demand

Chosen for simplicity and to make analysis easy.
Richer languages are possible.



Examples
Example: Addition

X:a,y: abadd(x,y): «
With syntactic sugar for tail recursion:

add(x, y) =
if y = min then x else add(succ x, pred y)

With explicit trace:

add(x, y) =
(trace p. case p of
inl(z) -> inr(z)
| inr(z) -> let z be <x, y> in
if y = min then inl(x) else inr(<succ x, pred y>)
) <x,y>



The Functional Language IntML

IntML extends the simple first order language with syntax for Int(B),
where B is the term model of the simple first order language.

IntML has two classes of terms and types:
- Working Class (for B)

AB:=«a|A+B|1|AxB

Terms from the simple first order language + unbox
« Upper Class (for Int(B))

XY :=[A | X®YV |A-X =Y

All computation is being done by working class terms. Upper class
terms correspond to morphisms in Int(B), which are implemented
by working class terms.



IntML Type System — Working Class

Usual typing rules, e.g.

YEf A YFg:B
YH{(f,9): AxB

There is one additional rule for using upper class results in the
working class:

Y| Ft:[4]
Y unboxt: A




IntML Type System — Upper Class

The upper class type system identifies a useful part of Int(B).
Types
XY =4 | XY |A- X —Y
In the syntax we write A - X for Q) 4, X.
Typing Sequents
Ylxpr A - Xy, oo A - Xp B EY

denotes morphism

®A1 X1® - ® ®A X, —Y inint(B[X)).

The restrictions on the appearance of () , are motivated by
Dual Light Affine Logic [Baillot & Terui 2003].



Upper Class Typing Rules

Ve ST, 2 A X Fa: X

Y|T,z: A-XFs: Y
Y|T,z: (BxA)-XFs:Y

(LocWeak)

YMze:A-XFs: X
S|T,2:B-XFs: X

(Conagr) A2 BeglxA=A

Y|Tz: A-XFs: Y
SITFA.s:A-X oV

(—o-1)

Y|ITkFEs:A- X Y YAt X
ST, A AFst: Y

(—o

(straightforward rules for ®)



Upper Class Typing Rules

Y| Tks: X YAz A-X,y: B-XF¢t: Y

Cont
(Contr) Y|A (A+B) - T'kcopysaszx,yint: Y

YXFfiA+B Y,c:A|TFs: X Y, d:B|I'Ft: X

(Case) Y |T'F case fofinl(c) = s|inr(d) = t: X

SFfA

ARSI TR

Y |TFs:[4] Y, c: A|AFt: [B]
YT, A-AbFletsbelc]int: [B]

([]-E)



Upper Class Typing — Examples

Az. let z be [c] in [{c, c)]
ta-[a] — [ax a]

Af. Az let z be [c]in f [c] [c]
- (o] — [a] — [6]) — [a] — (4]

AY.copy y as yi, Y2 in
(let y1 be [c] in [m1 c], let ya be [c] in [m2 c])
t(v+0) - [ax Bl — [o] @ [B]

Terms do not contain type annotations.
Conjecture: Inference of most general types is possible.

(have an implementation for the type system without rule (Cong);
unification up to congruence is decidable).



Hacking

Have we captured all the structure of Int(B)?



Hacking

Have we captured all the structure of Int(B)?
No! Int(B) has a lot more structure!

Can we ever capture all the useful structure?



Hacking

Have we captured all the structure of Int(B)?
No! Int(B) has a lot more structure!

Can we ever capture all the useful structure?
Let the programmer define the structure he needs himself!

Y,rx: X Fa: Xt

(Hack) 5T hack z.a: X
[A]” =1 (A=A
(XQY) =X +Y~ (XeY)T=X"4+Yvy*

(A-X oY) =AxXT+Y" (A-X oY) =AxX +Y*

Complexity results remain true in presence of (Hack).



Hacking

Example: Loop
Loop: a- (f-[a] — [a+a]) —o [a] — [a]

loop f [y] if fxqis[inl(y)]

loop fxg = ) o
[2] if f o is [inr(2)]
loop = hack x. case x of
| inl(y) -> let y be <store, stepq> in
case stepq of
| inl(argq) -> let argq be <argstore, unit> in
inl(<store, inl(<argstore, store>)>)
| inr(contOrStop) -> case contOrStop of
| inl(cont) -> inl(<cont, inr(<>)>)
| inr(stop) -> inr(inr(stop))
| inr(z) -> case z of
| inl(basea) -> let basea be <junk, basea> in
inl(<basea, inr(<>)>)
| inr(initialq) -> inr(inl(<<>, <>>))



Hacking

Example: loop

Loop: a- (8- [a] —o a +a]) — [a] — o]

loop fxg = {
z

ax (a+ a)
axfx1

if f xqis [inl(y)]
if f xqis [inr(2)]

a X1

axXfxa



A Functional Language for Sublinear Space

1. Computation with external data
2. Deriving the functional language IntML

3. LOGSPACE programming in IntML
IntML is sound and complete for LOGSPACE.



LOGSPACE Soundness

Size bounds on working class terms follow easily from the types.
- Types bound the maximal size of closed values.

- We can read off directly from a well-typed term how big its
reducts under closed reductions can get, e.g.

llc|| = |A| if cis variable of type A
Il =1L+ Nlglh+1
Isucca(F)Il = 12[A[ + [ ]

Type variables as parameters influence the space usage linearly
Letz: A+ f: B,where A and B may contain the type variable a.
Then there exist m and n such that for any closed type C' and any
closed value v of type A[C'/q]

f[C/allv/a] —* g implies |g| <m - |C]|+n.



LOGSPACE Soundness
An upper class term
to (5 o] —o [3]) — (O [P(e)] — [3])
represents a LOGSPACE function on binary words.

If we consider « as a natural number then ¢ induces a function

pa {0.1}5° — {0,111

as follows:
- Aword w € {0,1}=% can be represented as a function in
(w): 7 [a] — [3] by a big case distinction.

+ Then ¢, (w) is the word that (¢ (w)) represents.

The working-class term for t gives a LOGSPACE algorithm for the

function
w — cp|w|(w) : {0,1}" — {0, 1}



LOGSPACE Soundness

The compilation of ¢ is a working-class term ¢ of type

(7 14+3)+(C Pla)+1)

—

(Fra+1)4+ (0 1+3).
It can be understood as an Offline Turing Machine.

Given aninputword w, let N =2 x 2 x -+ x 2.
—_——
[log(lwl)]

Evaluation of s[N' /a] v needs space linear in | V| = [log(|w|)].

= Can evaluate the output of the Offline Turing Machine
represented by ¢’ in logarithmic space.



LOGSPACE Completeness

State of a LOGSPACE Turing Machine can be represented as a
working class value of type S(«).

Step function
input: [a] —o [3] F step: [S(a)] — [S() + S(«)]
step = A\z. letz be([s]in

let input [inputpos(s)] be [i] in
[...working class term for transition function ...]

Turing Machine
M: (1 [a] = [3]) — (¢ [P(a)] — [3])

M = Xinput. houtchar. 1oop step init



A Functional Language for Sublinear Space

1. Computation with external data
2. Deriving the functional language IntML

3. LOGSPACE programming in IntML
Encoding of Turing Machines is a sanity check at best.

Can the language express LOGSPACE algorithms in a natural way?

- How hard is it to actually write programs?
+ Do the types get in the way?

+ Can we combine the special sublinear space programming
patterns with the standard ones in a useful way?



Case Studies

Assess the suitability of IntML for LOGSPACE programming by
implementing typical algorithms:

+ LOGSPACE evaluation of the function algebra BC_
- Graph algorithms: deciding acyclicity in undirected graphs



Function algebra BC_ [Mgller-Neergaard 2004]

Restricted form of primitive recursion on binary words that captures
the functions in LOGSPACE.

- Example basic functions:

succo(: y) = y0
succi(:y) =yl
casec 1)~ |

t ifyendswith1
f otherwise

+ Closed under composition

« Closed course-of-value recursion on notation:
f =rec(g, ho, h1,do,dy) satisfies
f(Z,e:9) =g(T:9)



LOGSPACE evaluation of BC~

Mgller-Neergaard proves LOGSPACE soundness by implementing
BCZ in SML/NJ:

+ Binary words are modelled as functions of type (N — 3).
- Function f(&; 9) is implemented as SML-function of type

(N—-3) -+ —>(N—=3)—-(N=3).

Example:
type bit = int option
type input = int -> bit

fun succl (y1 : input) (bt : int) =
if bt = 0 then SOME 1 else yl1 (bt - 1))
+ Recursion on notation by computational amnesia
[Ong, Mairson, Mgller-Neergaard]



Implementing Recursion by Computational Amnesia

g +(N=3)
ho :(N—3)— (N—3)
hi :(N—3)— (N—3)

f = saferec(hg, h1,g): (N — 3)

f(01011) = hy(h1(ho(h1(ho(g)))))

« Whenever h; applies its argument, forget the call stack and just
continue.

« When some h; or g returns a value, we may not know what to
do with it — we have forgotten the call stack.

= Remember the returned value (one bit) and its depth and
restart the computation.



[Mgller-Neergaard 2004] Vo1 YORESULT = [ depth = 1, res = NONE, be1 )

fun saferec (g : program-(m — 1)-n)
(00 : program-m-1) (40 : program-m-0)
(hi : program-m-1) (d1 : program-m-0)
(x1 : input) ... (xm : input)
(y1 : imput) ... (yn : input) (bt : int) =
let val result = ref NORESULT
val goal = ref ({ bt=bt, depth=0 })
fun loopl body = if body () then () else loopl body
fun loop2 body = if body () then () else loop2 body
fun findLength (z : input) =
let fun search i = if z i <> NONE then search (i + 1) else i
in
search 0
end
fun x’ (bt : int) = x1 (1 + bt + #depth (!goal))
fun recursiveCall (d : program-m-0) (bt : int) =
let val delta = 1 + findLength (d x’ x2 ... xm)
in
if #depth (!goal) + delta = #depth (!result)
andalso #bt (!result) = bt
then #res (!result)
else
goal := { bt=bt, depth = #depth (!goal) + delta };
raise Restartn
end

in
( loopl (fn () => (* Loops until we have the bit at depth 0 %)
( goal := { bt=bt, depth=0 };
loop2 (fn () => (* Loops while the computation is restarted *)
let val res =
case x1 (#depth (!goal)) of
NONE => g x2 ... xm y1 ... yn (#bt (lgoal))

| SOME b =>
let val (h, d) = if b=0 then (h0,d0) else (h1,d1)
in
hx’ x2 ... xm (recursiveCall d) (#bt (!goal))
end
in ( result := { depth = #depth (!goal),
res = res,
bt = #bt (!goal) };
true )

end handle Restartn => false
0 = #depth (!result) ));
#res (!result))
end



Control Flow

callcc: (v ([a] — B) — [a]) — [@]

Implemented using hack:

1

«

Y X BT
Y X O ——

A

v x Bt
v x1



String Diagram for parity

(0,

HO-0-0-0-0-00,
PR Y
R0 00O

.\
0 D002 12020502020}

ST TIT

SOFO-OA-O 0000
0ROL0S MG,

0, 00000

Sl %%




Working Class Term for parity

let (trace x9472. case x9472 of inl(x0) -> let x0 be <x5, x4> in inr(inr(inr(inr(inr(

inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (inr (inr
inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (Ginr (inr
inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (Ginr (Ginr (inr (inr (inr (inr (inr (Ginr (inr
inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (Ginr (Ginr (inr (inr (inr (inr (inr (inr (inr
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr(
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr(
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr(
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr(

inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr(
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr
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inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (Ginr (inr (inr (inr (inr (inr (inr (inr
inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inr (inl (<x5, inr(x4)>)))))))))))))))
3333333333333333333333333333333333333333333)3333))33)))33)))33)))33))))1II)IIIINIINNIID
333333333333333333333333333333333333333333333333))333))33)))33)))33))))1I))IIIINIINNNIID
2333333333)333333333333333333333333333333333333333333333)3))1))3))1))1))1))IIIINIINNIII)D

...5 Megabyte more
(about 150 Kb if injections were represented efficiently)



Implementing Parity

The term parity is just an example to test saferec.

The standard algorithm for parity can be implemented easily:

parity =U fun x : ['a] --o [1+(1+1)] ->

let
loop (fun pos_parityU : ['a * (1+1)]->
let pos_parityU be [pos_parity] in
let x [pil pos_parity] be [x_pos] in
case x_pos of
inl(mblank) -> [inr(pos_parity)]
| inr(char) ->
if (pil pos_parity) = max then
[inr(<max, xor char (pi2 pos_parity)>)]
else
[inl(<succ (pil pos_parity), xor char (pi2 pos_parity)>)]
) [<min, false>]
be [pos_parity] in [pi2 pos_parityl;



Further Work — Better Formulation of Control

Y[TkFs:1L]|O,a:A Y|Tks:[41]106,a: A
Y|k pa.s: [A]|© Y|k throwas: L]0, a: A
Example
callcc = \y. pov. throw o (y (Az. pf. throw a x))
Equations

throw 3 (ua.s) = s[B/a]: L
pev. (throwacs) = s: [A] if o ¢ FV(s)
throwas =s: L

let (u3. throw «v s) be [c] in t = py. throw a s if 6 # «



Case Study — Graph Algorithms

Adapt the representation of strings by

to

for graphs.

Standard pointer program for checking acyclicity in undirected
graphs can be implemented without the need for special tricks.

Can implement edge/vertex iterators as higher-order functions.



Conclusion

Space bounded computation has interesting structure,
that we have only just begun to explore.

The Int construction seems to be a good first step
for capturing that structure precisely.

Further Work
- Stronger working class calculi: Allowing (certain) function
spaces in the working class may lead to polylogarithmic space?

- Completeness: Can we get completeness by something less
trivial than hack?






