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Abstract

In this paper we propose a new categorical formulation of attribute grammars
in traced symmetric monoidal categories. The new formulation, called monoidal
attribute grammars, concisely captures the essence of the classical attribute gram-
mars. We study monoidal attribute grammars in two categories: Rel+ and ωCPPO.
It turns out that in Rel+ monoidal attribute grammars correspond to the graph-
theoretic representation of attribute dependencies, while in ωCPPO monoidal at-
tribute grammars are equivalent to Chirica and Martin’s K-systems. We also show
that in traced symmetric monoidal closed categories every monoidal attribute gram-
mar is equivalent to the one which does not use inherited attributes.

1 Introduction

Attribute grammars [25, 26] are a mechanism to assign bidirectional computation to
derivation trees of context free grammars (CFG for short). There are two types of in-

Figure 1: Attribute Grammar

formation flowing along derivation trees: inherited attributes that are propagated from
the top to the bottom of trees, and synthesized attributes that are built-up toward the
top from the bottom of trees. This feature brought great flexibility to attribute gram-
mars, and lead them to a big success in applications, such as compiler constructions
[13, 14, 11, 5, 29] and program transformations [7, 8, 30, 28].
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The main purpose of this paper is to give a categorical formulation of attribute
grammars. In general, attribute grammars may assign cyclic computation of attributes
to derivation trees, like Figure 2, and handling such situation is an unavoidable issue in

Figure 2: Cyclic Computation of Attributes

formulating attribute grammars. We tackle this issue by employing traced symmetric
monoidal categories [22] as underlying semantic categories so that cyclic computation
of attributes is naturally absorbed by trace operators.

The actual formulation of attribute grammars is carried out in the categories ob-
tained by Joyal, Street and Verity’s Int construction [22] (equivalently Abramsky’s G
construction [1]). The basic idea of this formulation is that the category obtained by Int
construction from a traced symmetric monoidal category provides an ideal platform for
modeling bidirectional computation, which we exactly need to model attribute gram-
mars.

The new formulation of attribute grammars is called monoidal attribute grammars.
They are a monoidal version of the classical attribute grammars, and have the following
advantages: i) we no longer need to stick to set-theoretic representation of attribute
domains and semantic rules, and ii) any attribute grammars, including those which
assign cyclic computation of attributes, are modeled at a highly abstract level.

After monoidal attribute grammars are introduced in Section 5, we devote the rest
of the paper to the verification of the formulation.

• In Section 6 we point out a connection between local dependency graphs of
the classical attribute grammars and monoidal attribute grammars in Rel+. This
connection shed light on Knuth’s algorithm [26] for detecting well-formedness
from a different angle.

• In Section 7 we show that Chirica and Martin’s K-systems [6], which are a
domain-theoretic formulation of attribute grammars, are equivalent to monoidal
attribute grammars inωCPPO. This is done by establishing semantics-preserving
translations between these two formulations.

• In Section 8 we show that every monoidal attribute grammar in a traced sym-
metric monoidal closed category is equivalent to the one which does not use
inherited attributes. This equivalence is a generalization of Chirica and Martin’s
observation on attribute grammars as initial algebra homomorphisms [6].
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2 Preliminaries

A many-sorted signature Σ is a pair (S ,O) of the set S of sorts and S +-indexed family
O of sets of operators. For a signature Σ = (S ,O), by s ∈ Σ and o ∈ Σs1···sn→s we mean
s ∈ S and o ∈ Os1···sns, respectively.

In this paper we represent derivation trees of a CFG as closed terms of the many
sorted signature associated to the CFG. Let G = (T,N, P, S ) be a CFG. We associate to

it a many-sorted signature ΣG = (N, P) where P
X1···XnX

is the collection of production
rules of the form

X → a0X1a1 · · ·Xnan

with some terminal strings a0, · · · , an ∈ T ∗.
We use the following CFG throughout this paper:

GB = ({0, 1}, {B, L,N},

{p1 : B→ 0, p2 : B→ 1,

p3 : L → B, p4 : L → LB,

p5 : N → L, p6 : N → L.L}, L).

The language of this CFG is binary representations of rational numbers, like 110.01.
The many-sorted signature ΣGB associated to GB is:

ΣGB = ({B, L,N}, {pB
1 , p

B
2 , p

B→L
3 , pL,B→L

4 , pL→N
5 , pL,L→N

6 }).

The derivation trees of GB whose root is a nonterminal symbol X ∈ N will be repre-
sented by closed ΣGB -terms of sort X. For instance, the following derivation tree of
GB:

is represented by the following closed ΣGB -term of N ∈ ΣGB :

p6(p4(p4(p3(p2), p2), p1), p4(p3(p1), p2)).

Classical Attribute Grammars

In the seminal paper [25] published in 1968, Knuth proposed attribute grammars as
a framework for the semantics of CFGs. Attribute grammars assign computation of
values called attributes to derivation trees. There are two types of attributes that flow
along derivation trees in different directions; inherited attributes that are propagated
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from the top to the bottom of derivation trees, and synthesized attributes that are built-
up from the bottom to the top of trees. We recall the classical definition of attribute
grammars [25, 10].

Definition 2.1 A (classical) attribute grammar for a CFG G = (T,N, P, S ) is a tuple
(Inh, Syn,V, f ) such that

• Inh, Syn are N-indexed families of finite sets of inherited and synthesized at-
tribute names, respectively. We assume that Inh X and Syn X are disjoint.

• V is a family {VX.a} of sets called attribute domain, where X ∈ N and a ∈ Inh X∪
Syn X. For each nonterminal symbol X ∈ N, we define

VInh X =

∏

a∈Inh X

VX.a, VSyn X =

∏

a∈Syn X

VX.a,

VX = VInh X × VSyn X.

• f is a P-indexed family of functions called semantic rules, such that for each
production rule p : X → a0X1a1 · · ·Xnp anp ∈ P the type of fp is

fp :















np
∏

k=1

VSyn Xk















× VInh X → VSyn X ×

np
∏

k=1

VInh Xk . (1)

It represents the relationship between incoming and outgoing attributes at the
node corresponding to production rule p.

Following [25, 10], we assume that terminal symbols do not contribute to computation
of attributes. On the other hand, in this paper we do not explicitly assume Inh S = ∅,
which is a typical assumption in the classical attribute grammars, as it does not have
any substantial effect to the categorical formulation of attribute grammars.

We aim to categorically formulate attribute grammars of Definition 2.1. In some
literatures semantic rules are relaxed to functions of the following type:

fp : VX ×

np
∏

k=1

VXk → VSyn X ×

np
∏

k=1

VInh(Xk). (2)

We call such attribute grammars full. We do not study full attribute grammars directly;
instead, in Section 7 we discuss that full attribute grammars can be reduced to normal
ones by applying fixpoint operators to semantic rules.

The following is an example of the classical attribute grammar UB for GB in [25].

• Attribute names:

Inh B = {s} Syn B = {v}

Inh L = {s} Syn L = {v, l}

Inh N = ∅ Syn N = {v}
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• Attribute domains:
VB.s = Z,VB.v = Q

VL.v = Q,VL.l = Z,VL.s = Z

VN.v = Q

• Semantic rules:

fp0 (n) = 0

fp1 (n) = 2n

fp2 (x, y) = (y, 1, x)

fp3 (x, y, z,w) = (y + w, z + 1, x + 1, x)

fp4 (x, y) = (x, 0)

fp5 (x, y, z,w) = (x + z, 0,−w)

This attribute grammar converts sentences of LB (which are binary representations of
rational numbers) to rational numbers.

3 Categorical Semantics of Parse Trees

We first consider assigning one-way computation of values to derivation trees of CFGs.
Such computation may be modeled by various mathematical structures, such as func-
tions over sets, continuous functions over domains, relations over sets, etc. In this pa-
per, instead of committing into a particular mathematical structure, we employ monoidal
categories [27] for an abstract and categorical representation of computation.

A monoidal category consists of a categoryC, an object I in C called unit, a bifunc-
tor ⊗ : C × C→ C called tensor and natural isomorphisms

lA : I ⊗ A→ A, rA : A ⊗ I→ A

aA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

subject to certain coherence axioms; see [27] for detail. A monoidal category is called
strict if the natural isomorphisms l, r, a are all identity morphisms. So in strict monoidal
categories we have (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), I ⊗ A = A ⊗ I = A. Every monoidal
category is equivalent to a strict one (coherence theorem [27]), so we mainly talk about
strict monoidal categories for legibility.

We introduce a geometric representation of morphisms in C. The principle of the
representation is that we depict a morphism f : A1 ⊗ · · · ⊗ An → B1 ⊗ · · · ⊗ Bm as a
circuit which has n-inputs on the left and m-outputs on the right:
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We depict the composition g ◦ f of f : A→ B and g : B→ C by connecting f ’s output
to g’s input:

while the tensor f ⊗ g of f : A→ B and g : C → D by stacking f on the top of g:

A morphism f : I→ A from the unit is depicted as a circuit with no input:

Such morphisms can be regarded as an element or a constant in A, so we call a mor-
phism f : I → A global element of A. A mathematical justification of the above
geometric representation is given in [21].

Definition 3.1 Let Σ = (S ,O) be a signature and C be a monoidal category.

1. A Σ-algebra in C is a pair (A, α) such that A is an S -indexed family of C-objects
and α is an operator-indexed family of C-morphisms such that for each operator
o ∈ Σs1...sn→s, the type of αo is

αo : As1 ⊗ . . . ⊗ Asn → As.

2. Let A = (A, α) and B = (B, β) be Σ-algebras in C. A Σ-homomorphism fromA
to B is a S -indexed family h of C-morphisms such that for each sort s ∈ Σ, hs is
a morphism from As to Bs, and h satisfies

βo ◦ (hs1 ⊗ . . . ⊗ hsn) = hs ◦ α

for each o ∈ Σs1...sn→s.

3. We write Alg
Σ
(C) for the category of Σ-algebras and Σ-algebra homomorphisms

in C.

We note that set-theoretic Σ-algebras are precisely captured by Alg
Σ
(Set). We write

TΣ = (TΣ, ι) for the initial object in Alg
Σ
(Set).

Definition 3.2 Let C be a monoidal category C and A = (A, α) be a Σ-algebra in C.
The interpretation of a Σ-term t of sort s ∈ Σ byA is the global elementA[[t]] : I → As
defined by induction on the structure of t:

A[[t1]] : I → As1 · · · A[[tn]] : I→ Asn o ∈ Σs1···sn→s

A[[o(t1, · · · , tn)]] = αp ◦ (A[[t1]] ⊗ · · · ⊗ A[[tn]]) : I→ As

At geometric presentation level, this interpretation assigns a one-way computation of
values to a derivation tree of a CFG. For instance, the interpretation of a ΣB-term t =
p4(p4(p3(p2), p2), p1) of sort L by a ΣB-algebra (A, α) is the C-morphism depicted as
follows:
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An abstract aspect of Alg
Σ

is that it determines a 2-functor. We first introduce the
2-category of monoidal categories, monoidal functors and monoidal natural transfor-
mations.

Definition 3.3 1. Let C,D be monoidal categories. A monoidal functor from C to
D consists of a functor F : C→ D, a morphism m : ID → FIC in D and a natural
transformation nA,B : FA ⊗D FB → F(A ⊗C B) subject to certain coherence
axioms; see [27] for detail. A monoidal functor (F,m, n) is called strong if m, n
are (natural) isomorphisms. We often refer to a monoidal functor (F,m, n) by the
name of its functor part.

2. Let (F,mF, nF), (G,mG, nG) be monoidal functors from C to D. A monoidal nat-
ural transformation from F to G is a natural transformation φ from F to G such
that φ respects the monoidal structure; see [27] for detail.

3. Small monoidal categories, monoidal functors and monoidal natural transforma-
tions form a 2-category, which we call by Mon.

Proposition 3.4 The mapping C 7→ Alg
Σ
(C) extends to a 2-functor from Mon to Cat.

P For a monoidal functor (F,m, n) : C → D, we define a functor Alg
Σ
(F) :

Alg
Σ
(C)→ Alg

Σ
(D) by

Alg
Σ
(F)(A, α) = (FA, ᾱ)

where ᾱ is the operator-indexed family ofD-morphisms such that for each o ∈ Σs1...sl→s,
ᾱo is the following composition:

ᾱo : FAs1 ⊗
D . . . ⊗D FAsl

nl
// F(As1 ⊗

C . . . ⊗C Asl)
Fαo // FAs

where nl is an extension of n to the tensor of multiple objects.
For a monoidal natural transformation α : (F,mF, nF) → (G,mG, nG), we define a

natural transformation Alg
Σ
(α) : Alg

Σ
(F)→ Alg

Σ
(G) by

(Alg
Σ
(α)(A,α))s = αAs.

It is routine to check that the above data determines a 2-functor from Mon to Cat.

We can capture the inductive definition of the interpretation (Definition 3.2) in
terms of initial algebra semantics in Alg

Σ
(Set). For this, we first introduce the global

element functor.

Definition 3.5 1. Let C be a monoidal category. We define the global element
monoidal functor GC : C → Set by

GC = C(I,−) : C→ Set.
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2. Let C,D be monoidal categories and (F,mF, nF) : C→ D be a monoidal functor.
We define a monoidal natural transformation GF : GC → GD ◦ F by

(GF)C( f ) = F f ◦ mF .

Proposition 3.6 The interpretationA ~−� coincides with the unique Σ-algebra homo-
morphism

A~−� : TΣ // Alg
Σ
(GC)(A) in Alg

Σ
(Set).

Different Σ-algebras in different categories may give rise to isomorphic Σ-algebras
in Alg

Σ
(Set) via G. In this case we call these algebras equivalent.

Definition 3.7 We say that two Σ-algebrasA inC andB inD are equivalent if Alg
Σ
(GC)(A)

and Alg
Σ
(GD)(B) are isomorphic in Alg

Σ
(Set).

4 Traced Symmetric Monoidal Categories and Int Con-
struction

Attribute grammars assign computation of attributes that flow along derivation trees in
two directions (Figure 1). At first sight the algebraic framework in the previous section
seems not adequate for modeling attribute grammars. However, if we employ monoidal
categories in which each morphism intrinsically model bidirectional computation, like
Figure 3, then by instantiating the algebraic framework with such categories we obtain

Figure 3:

categorical models of attribute grammars.
The categories that match with our purpose can be obtained by Joyal, Street and

Verity’s Int construction [22], or equivalently Abramsky’sG construction [1] on traced
symmetric monoidal categories. In this section we review traced symmetric monoidal
categories and Int construction; for detailed exposition see [22, 1, 20].

4.1 Traced Symmetric Monoidal Categories

A symmetry on a monoidal category C is a natural isomorphism cA,B : A ⊗ B→ B ⊗ A
subject to certain coherence axioms; see [27] for detail. A pair of a monoidal category
and a symmetry on it is called symmetric monoidal category (SMC for short). We
note that every (co-)Cartesian category is a SMC by fixing a (initial) terminal object
and binary (co-)products. The geometric representation of symmetry is the crossing of
wires.
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Let C,D be SMCs. A (strong) monoidal functor (F,m, n) : C → D is symmetric if F
respects the symmetry in C in the obvious way (see [27] for detail).

Proposition 4.1 For any SMC C, the global element functor GC : C → Set is symmet-
ric.

Trace operators are introduced and studied in the seminal paper [22] by Joyal,
Street and Verity 1. Intuitively a trace operator Tr forms the feed-back loop at terminals
X of f : A ⊗ X → B ⊗ X:

Definition 4.2 ([22]) A trace operator on a SMC C is a family of mappings TrX
A,B :

C(A ⊗ X, B ⊗ X)→ C(A, B) that satisfies the following axioms:

Vanishing(Unit) For any f : A ⊗ I → B ⊗ I,

TrI
A,B( f ) = f .

Vanishing(Tensor) For any f : A ⊗ (X ⊗ Y)→ B ⊗ (X ⊗ Y),

TrX⊗Y
A,B ( f ) = TrX

A,B(TrY
A⊗X,B⊗X( f )).

Superposing For any f : A ⊗ X → B ⊗ X,

TrX
C⊗A,C⊗B(C ⊗ f ) = C ⊗ TrX

A,B( f ).

Yanking
TrX

X,X(cX,X) = idX .

Left Tightening For any f : A′ ⊗ X → B ⊗ X and g : A→ A′,

TrX
A,B( f ◦ (g ⊗ X)) = TrX

A′ ,B( f ) ◦ g.

Right Tightening For any f : A ⊗ X → B ⊗ X and g : B→ B′,

TrX
A,B′((g ⊗ X) ◦ f ) = g ◦ TrX

A,B( f ).

Sliding For any f : A ⊗ X → B ⊗ X and g : Y → X,

TrX
A,B((B ⊗ g) ◦ f ) = TrY

A,B( f ◦ (B ⊗ g)).

A traced symmetric monoidal category (TSMC for short) is a pair of a SMC with a
trace operator on it. Similarly a traced Cartesian category (TCC for short) is a pair of
a Cartesian category with a trace operator with respect to Cartesian products.

1Actually, trace operators are introduced to balanced monoidal categories, which are a generalization of
SMCs.
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The geometric representation of these axioms can be found in [22, 20, 2].

Definition 4.3 ([22]) Let C,D be TSMCs. A traced symmetric monoidal functor is a
symmetric strong monoidal functor (F,m, n) : C → D that preserves the trace operator
in the following sense:

TrFX
FA,FB(m−1

A,B ◦ F f ◦ mA,B) = F(TrX
A,B( f )) ( f : A ⊗ X → B ⊗ X)

Below we present some examples of TSMCs [22, 2].

Example 4.4 ([22]) The category Rel of sets and binary relations is Cartesian; a termi-
nal object is given by the empty set, and binary products are given by disjoint unions.
Hence Rel is a SMC.

We define a trace operator on this symmetric monoidal structure. Let f : A + X p→
B + X be a binary relation. We decompose f into four relations

fAB : A p→ B, fAX : A p→ X, fXB : X p→ B, fXX : X p→ X

where fPQ (P = A/X,Q = B/X) is the subrelation of f such that fPQ relates elements
injected from P and Q. We then define a relation Tr( f ) by

Tr( f ) = fAB ∪ ( fXB ◦ f ∗XX ◦ fAX)

(here f ∗XX denotes the transitive reflexive closure of fXX). This relation satisfies the
axioms of trace operators in Definition 4.2. Hence the above data form a TCC, which
we write by Rel+.

Example 4.5 ([1]) We write ωCPPO for the category of ω-complete pointed partial
orders and continuous functions between them. This category is Cartesian, hence is a
SMC.

Let f : [A × X → B × X] be a continuous function. The following continuous
function Tr( f ) ∈ [A→ B]:

Tr( f )(a) = π1( f (a, fix(λx . π2( f (a, x))))),

where fix is the least fixpoint operator, satisfies the axioms of trace operators in Defi-
nition 4.2. Hence the above data form a TCC, which we write by ωCPPO.

The above construction is a part of the bijective correspondence between parame-
terized fixpoint operators and trace operators in TCCs. This is independently observed
by Hasegawa and Hyland.

Theorem 4.6 ([20]) In a Cartesian category C, there is a bijective correspondence
between trace operators and parameterized fixpoint operators fixX

A : C(A × X, X) →
C(A, X); see [20] for the axioms of fix.

4.2 Int construction

Joyal, Street and Verity’s Int construction [22] yields a category in which every mor-
phism represents bidirectional computation. An isomorphic construction, called G
construction, is also considered by Abramsky for the analysis of Girard’s geometry-
of-interaction [1, 3]. Their geometric representation is slightly different, and we adopt
Int construction as it is suited to our purpose.
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Definition 4.7 ([22]) Let C be a TSMC. We define a category Int(C) by the following
data:

• An object is a pair (A−, A+) of C-objects.

• A morphism f : (A−, A+)→ (B−, B+) is a C-morphism f : A+ ⊗ B− → B+ ⊗ A−.
The composition of f with g : (B−, B+)→ (C−,C+) is defined as follows:

TrB−
A+⊗C− ,C+⊗A−((C

+ ⊗ c) ◦ (g ⊗ A−) ◦ (B+ ⊗ c) ◦ ( f ⊗ C−) ◦ (A+ ⊗ c)).

Category Int(C) is an ideal platform for representing bidirectional computation. An
Int(C)-morphism f : (A−, A+) → (B−, B+) stands for the bidirectional computation in
Figure 3, and is “implemented” by a C-morphism depicted as follows:

The composition of f with g : (B−, B+) → (C−,C+) is done by juxtaposition in the
level of bidirectional computation:

while the above computation is realized in C as follows (the composition in Definition
4.7):

To understand a category-theoretic nature of Int construction, we introduce com-
pact closed categories.

Definition 4.8 ([24]) A compact closed category is a symmetric monoidal category C
such that each object A has a left dual object A∨ together with counit εA : A∨ ⊗ A → I
and unit ηA : I→ A ⊗ A∨ subject to certain axioms; see [24] for detail.

In fact Int(C) is a compact closed category. Here we only present object parts of the
unit, tensor and left dual object in Int(C).

IInt(C) = (IC, IC)

(A−, A+) ⊗Int(C) (B−, B+) = (A− ⊗C B−, A+ ⊗C B+)

(A−, A+)∨ = (A+, A−).

Definition 4.9 1. Small TSMCs, traced symmetric monoidal functors and monoidal
natural transformations form a 2-category, which we write by TSMC.
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2. Small compact closed categories, symmetric strong monoidal functors and monoidal
natural transformations form a 2-category, which we write by CCL.

Proposition 4.10 ([22]) Every compact closed category has a unique trace operator;
hence CCL is a 2-subcategory of TSMC.

Theorem 4.11 ([22]) The mapping C 7→ Int(C) extends to a 2-functor from TSMC to
CCL. Furthermore, it is a left biadjoint to the forgetful 2-functorU : CCL→ TSMC.
An explicit description of the unitNC : C → Int(C) of this biadjunction is

NC(A) = (I, A)

NC( f ) = f ,

andNC is full faithful and symmetric strong monoidal 2.

5 Monoidal Attribute Grammars

The SMC Int(C) arising from a TSMC C intrinsically models bidirectional computa-
tion. This is an ideal setting for formulating the concept of attribute grammars. In
Int(C) an attribute grammar is concisely modeled as an algebra of the signature corre-
sponding to a CFG.

We fix a CFG G = (T,N, P, S ).

Definition 5.1 A monoidal attribute grammar for G in a TSMC C is a ΣG-algebra
A = (A, α) in Int(C).

This short definition accurately captures the essence of attribute grammars. First, the
set of sorts of ΣG is N; so A is nothing but an assignment of an Int(C)-object to each
nonterminal symbol. An object in Int(C) is a pair of C-objects that correspond to the
types of information flowing in two directions. We regard them as the types of inherited
and synthesized attributes, respectively. Therefore A assigns the type of inherited and
synthesized attribute to each nonterminal symbol. Below we write A−X, A+X for the
first (=inherited attribute) and second (=synthesized attribute) component of AX. We
also identify “sort” and “nonterminal symbol”.

We may also require A−S = IC, if we think that each derivation tree (i.e. a ΣG-
term of sort S ) should determine a global element of the synthesized attribute of S .
However, we leave this requirement optional in this paper.

Let p ∈ Σ
X1···Xnp→X

G be an operator. This operator corresponds to a production rule
p : X → a0X1a1 · · ·anp−1Xnp anp ∈ P, so α assigns to p an Int(C)-morphism

αp : AX1 ⊗ · · · ⊗ AXnp → AX,

which is, by definition, the following C-morphism:

αp :















np
⊗

k=1

A+Xk















⊗ A−X → A+X ⊗
np

⊗

k=1

A−Xk.

2This theorem is a specialization of Proposition 4.1 and Proposition 5.2 in [22].
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We notice that the type of αp is very similar to the semantic rule assigned to p in the
classical attribute grammars; here tensor products are used instead of binary products
(this is the reason of the name “monoidal” attribute grammar).

Computation of attributes of a derivation tree of G beginning with a nonterminal
symbol X ∈ N is then captured as the interpretation of the ΣG-term t (of sort X) corre-
sponding to the derivation tree byA. This interpretation yields a global element

A[[t]] : (I, I)→ (A−X, A+X)

in Int(C), which is isomorphic to a C-morphism from A−X to A+X.
The classical attribute grammars specify computation of attributes at each produc-

tion rule, but the problem is that there is no safe way to compose them so that we
can compute attributes of any derivation trees. Therefore in the classical definition we
tend to concentrate on the attribute grammars that do not assign cyclic computation of
attributes. Such attribute grammars are called well-formed [25]; see the next section.
On the other hand The above problem does not occur in monoidal attribute grammars
because we can always safely compose semantic rules by the composition operation in
Int(C), and even when cyclic computation occurs it is naturally captured by the trace
operator in C.

The rest of the paper is devoted for verifying the generality and flexibility of monoidal
attribute grammars.

6 Monoidal Attribute Grammars in Int(Rel+)

We first consider monoidal attribute grammars in Int(Rel+). It turns out that they
precisely capture local dependency graphs of attribute grammars, which are a common
tool in the analysis of the classical attribute grammars.

6.1 Category Int(Rel+)

We first recall an explicit description of Int(Rel+) from [22]. A morphism f : (A, B)→
(C,D) in Int(Rel+) is a binary relation f : B + C p→ D + A. This can be decomposed
into four components (presented in matrix form):

(

fBD fBA

fCD fCA

)

where each component fXY (X = C/B, Y = A/D) is the subrelation of f such that fXY

relates elements injected from X and Y. The composition of f with another morphism
g : (C,D)→ (E, F) yields the morphism g◦ f : (A, B)→ (E, F) given by the following
binary relation of type B+ E p→ F + A (we let h = gDC ◦ fCD and i = fCD ◦ gDC below):

(

gDF ◦ i∗ ◦ fBD ( fCA ◦ gDC ◦ i∗ ◦ fBD) ∪ fBA

(gDF ◦ fCD ◦ h∗ ◦ gEC) ∪ gEF fCA ◦ h∗ ◦ gEC

)

,

where h∗, i∗ means the transitive reflexive closure of h, i, respectively. We say that the
composition of g and f contains cycle if h∗ in the above matrix contains (d, d) for some
d ∈ D (equivalently (c, c) ∈ i∗ for some c ∈ C).
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The monoidal structure over Int(Rel+) is given as follows. The unit object is the
pair (∅, ∅). The tensor product of two morphisms f : (A, B)→ (C,D) and g : (E, F)→
(G,H) is f ⊗ g : (A+ E, B+ F)→ (C +G,D+H) that is given by the following binary
relation of type B + F + C +G p→ D + H + A + E:





























fBD ∅ fBA ∅

∅ gFH ∅ gFE

fCD ∅ fCA ∅

∅ gGH ∅ gGE





























.

In Int(Rel+) a global element f : (∅, ∅) → (A, B) is isomorphic to the binary relation
fAB : A p→ B because the other three components fA∅, f∅B, f∅∅ in the matrix representa-
tion of f are the empty relations (recall that ∅ is initial and terminal in Rel+). Therefore
we identify a binary relation A p→ B and a global element of type (A, B).

6.2 Local Dependency Graphs and Monoidal Attribute Grammars

In the classical attribute grammars, detecting cycles in the computation of attributes is
an important issue. In [25, 26] Knuth proposed an algorithm to detect the possibility
of cyclic attribute computation from a local dependency graph of an attribute grammar.
In this section we give a different presentation of the algorithm via the correspondence
between local dependency graphs and monoidal attribute grammars in Int(Rel+).

We fix a CFG G = (T,N, P, S ).

Definition 6.1 ([25, 10]) A local dependency graph D of a classical attribute grammar
(Inh, Syn,V, f ) for G assigns to each production rule p : X → a0X1a1 . . .Xnp anp ∈ P a
directed di-graph Dp in which arcs go from an element in

Syn X1 + . . . + Syn Xnp + Inh X

to an element in
Syn X + Inh X1 + . . . + Inh Xnp .

We write ιi and ι′i (0 ≤ i ≤ np) for the injection function to each disjoint union, respec-
tively.

A local dependency graph of an attribute grammar is usually provided by hand so
that it represents an intended dependency relation between inputs and outputs of each
semantic rule. In principle we can not extract it from the classical attribute grammars
because semantic rules, which are mere mathematical functions over some sets, do not
carry such information. To resolve this problem, we may need to introduce the concept
of “syntax” and “semantics” of attribute grammars. However, we do not study this
issue in this paper.

Typically, we depict the di-graph Dp with Inh X, Syn X on the top and Inh Xi, Syn Xi

on the bottom.

Example 6.2 ([25]) The set of di-graphs in Figure 4 gives a local dependency graph
DB of the classical attribute grammar UB in Section 2.
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Figure 4: Local Dependency Graph DB of UB
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The compound dependency graph [10] of a ΣG-term t of a sort X ∈ N under a local
dependency graph D is the graph constructed as follows: we first paste Dp at every
node of t corresponding to the production rule p, then remove the injection symbols in
the top of the graph, and replace the other vertices with the bullet symbol (•).

Example 6.3 ([25]) (Continued from Example 6.2) We consider a ΣGB -term t = p4(p4(p3(p2), p2), p1)
of sort L. Its tree representation is

and its compound dependency graph under DB in Example 6.2 is the following:
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Let D be a local dependency graph of a classical attribute grammar (Inh, Syn,V, f ) for
G. We say that the attribute grammar is well-formed (under D) if for any ΣG-term t of
any sort, the compound dependency graph of t under D contains no cycle.

6.3 Local Dependency Graphs and Monoidal Attribute Grammars

We identify a local dependency graph D with the following family of binary relations:

Dp :















np
∑

k=1

Syn Xk















+ Inh X p→ Syn X +
np
∑

k=1

Inh Xk.

From the type of Dp, it is easy to see that a local dependency graph specifies a monoidal
attribute grammar RD = (Attr,D) in Int(Rel+), where

1. Attr is an N-indexed family of Int(Rel+)-objects such that

Attr X = (Inh X, Syn X),

and
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2. D is the local dependency graph itself. Note that Dp exactly gives an Int(Rel+)-
morphism of type

Dp : Attr X1 ⊗ . . . ⊗ Attr Xnp → Attr X.

This change of view makes it possible to understand Knuth’s algorithm as computations
on morphisms in Int(Rel+). The following operation on binary relations, which plays
a central role in Knuth’s dependency checking algorithm [26], can be captured as a
composition in Int(Rel+). Let p : X → a0X1a1 · · · anp−1Xnp anp ∈ P be a production
rule and gi : Inh(Xi) p→ Syn(Xi) (1 ≤ i ≤ np) be a family of binary relations. We define
a binary relation φ(Dp, g1, · · · , gnp) : Inh X p→ Syn X by

(x, y) ∈ φ(Dp, g1, · · · , gnp )

⇐⇒ there is a path from ιnp(x) to ι′0(y) in Dp[g1, · · · , gnp ]

where Dp[g1, · · · , gnp] is the graph obtained by adding to Dp an arc from ι′i(x) to ιi−1(y)
for every 1 ≤ i ≤ np and (x, y) ∈ gi; see p.136, [25]. In fact, we have

φ(Dp, g1, · · · , gnp ) = Dp ◦ (g1 ⊗ · · · ⊗ gnp) (3)

Furthermore, the composition on the right hand side contains a cycle if and only if
Dp[g1, · · · , gnp] contains a cycle.

Equation (3) suggests that for any ΣG-term t of a sort X ∈ N, the binary relation
RD[[t]] : Inh X p→ Syn X represents the total dependency of synthesized attributes of X
on inherited attributes of X in the compound dependency graph of t.

Example 6.4 (Continued from Example 6.3) Let RDB be the monoidal attribute gram-
mar generated from DB. Then RDB [[t]] is the binary relation depicted as follows:

s // v l

This relation is also obtained by collecting all the paths from Inh(L) = {s} to Syn(L) =
{v, l} in the top of the compound dependency graph in Example 6.3.

Knuth’s Algorithm for Detecting Circularlity

The monoidal attribute grammar RD generated from a local dependency graph D gives
the following set-theoretic ΣG-algebra AD via the global element monoidal functor
(Definition 3.5):

AD = (AD, αD) = Alg
ΣG

(GInt(Rel+))(RD).

The explicit description ofAD is the following:

ADX = Int(Rel+)((∅, ∅), (Inh X, Syn X))

� P(Inh X × Syn X)

(αD)p(g1, · · · , gnp) = Dp ◦ (g1 ⊗ · · · ⊗ gnp )

= φ(Dp, g1, · · · , gnp ) (from (3))
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Each carrier set of AD is finite since the Inh X, Syn X are both finite. This means
that we can calculate the reachable part ofAD by iterating a monotonic operation over
the subsets of carrier sets for a finite number of times. We define N-indexed families
{QnX}X∈N of subsets of AD by induction on n ∈ N as follows:

Q0X = ∅

Qn+1X = QnX ∪

{(αD)p(g1, · · · , gnp) | p ∈ Σ
X1···Xnp→X

G , gi ∈ QnXi}

This increasing sequence of N-indexed families of sets will reach a fixpoint at a suf-
ficiently large n ∈ N due to the finiteness of AD. We write Q∞ for the fixpoint of the
above sequence. This fixpoint collects the reachable elements ofAD.

Proposition 6.5 For any sort X ∈ N, we have

Q∞X = {AD[[t]] | t ∈ TΣG X}.

Theorem 6.6 [26] Let D be a local dependency graph of an attribute grammar (Inh, Syn,V, f )
of a CFG G = (T,N, P, S ). Then the attribute grammar is well-formed with respect to
D if and only if for each production rule p : X → a0X1a1 · · · anp−1Xnp anp ∈ P and
gi ∈ Q∞Xi (1 ≤ i ≤ np) the composition of Dp and g1 ⊗ · · · ⊗ gnp contains no cycle.

7 Monoidal Attribute Grammars in ωCPPO

In [6] Chirica and Martin proposed a domain-theoretic formulation of attribute gram-
mars. The basic idea of the formulation is that we construct simultanious recursive
equations on attributes at every node of a given derivation tree, then solve the equa-
tions by the least fixpoint operator at once. In this approach we can calculate attributes
of arbitrary attribute grammars, because circular computation of attributes is accept-
able in domain theory. This is in contrast to the classical attribute grammars where we
have to assure that the computation of attributes have no cycles.

We fix a CFG G = (T,N, P, S ).

Definition 7.1 ([6]) A K-system for G is a tupleD = (D−,D+, f ) such that

• D−,D+ are N-indexed families of ω-CPPOs called inherited and synthesized at-
tribute domains, respectively. We write DX for the product D−X × D+X.

• f is a P-indexed family of continuous functions called semantic function such
that fp has the following type for each production rule p : X → a0X1a1 . . .Xnp anp ∈

P:

fp :















DX ×















np
∏

k=1

DXk















→ D+X ×
np
∏

k=1

D−Xk















.

The synthesized attribute of a ΣG-term t of a sort X ∈ N is calculated from an
inherited attribute i ∈ D−X as follows. We first construct the following product domain
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by induction on the structure of t:

Dp(t1,...,tnp )
= D+X ×















np
∏

k=1

D−Xk















×















np
∏

k=1

Dtk















(p ∈ Σ
X1 ...Xnp→X

G ).

For d ∈ Dt, by fst(d) we mean the first component of d (so fst(d) ∈ D+X). Next, we
construct a continuous function H t : [D−X ×Dt → Dt] by induction on the structure of
t.

Hp(t1,...,tnp )(i, s, i1, . . . , inp ,w1, . . . ,wnp )

= ( fp(i, s, i1, fst(w1), . . . , inp , fst(wnp )),Ht1(i1,w1), . . . ,Htnp (inp ,wnp )).

This function congregates one-step computation of inherited and synthesized attributes
at every node of t. We apply the least fixpoint operator to H t(i,−) : [Dt → Dt], and
obtain the synthesized attribute by the first projection. We summarize this process by
the following functionD(t) : [D−X → D+X]:

D(t)(i) = fst(fix(λx.Ht(i, x))).

7.1 Correspondence between K-systems and Monoidal Attribute
Grammars

We can obtain a monoidal attribute grammar in ωCPPO from a K-system by feeding-
back the outputs of each semantic function to its inputs. On the other hand every
monoidal attribute grammar in ωCPPO can be casted to a K-system in an obvious
way. We show that these constructions preserve meanings of ΣG-terms. In this sense
K-systems and monoidal attribute grammars in ωCPPO are equivalent.

We fix a CFG G = (T,N, P, S ).

Definition 7.2 Let D = (D−,D+, f ) be a K-system for G. From this K-system we
construct a monoidal attribute grammar M(D) = (D, δ) for G in ωCPPO where

• D is a N-indexed family of Int(ωCPPO)-objects such that DX = (D−X,D+X)
for each X ∈ N.

• δ is a P-indexed family of Int(ωCPPO)-morphisms such that for each operator

p ∈ Σ
X1···Xnp→X

G ,

δp :





























np
∏

k=1

D+Xk















× D−X → D+X ×
np
∏

k=1

D−Xk















is a continuous function defined by

δp(s1, . . . , snp , i) = fix(λ(s, i1, . . . , inp ) . fp(i, s, i1, s1, . . . , inp , snp )).

Conversely any monoidal attribute grammar A determines a K-system K(A) in an
obvious way.
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Below we identify an Int(ωCPPO)-morphism f : (1, 1)→ (X, Y) and a continuous
function f : [X → Y].

Theorem 7.3 Let t be a ΣG-term of a sort X ∈ N. Then for any K-system D for G and
monoidal attribute grammarA for G in ωCPPO, we have

1. M(D) ~t� = D(t), and

2. K(A)(t) = A ~t�.

P Easy induction on the structure of t.

The above discussion also suggests that in TCCs we can model full attribute gram-
mars, where the semantic rule for a production rule p : X → a0X1 . . . an−1Xnp anp ∈ P is
given by a morphism of the following type:

fp : DX ×















np
∏

k=1

DXk















→ D+X ×
np
∏

k=1

D−Xk.

In TCCs trace operators specify Conway operators (Theorem 4.6). Therefore by taking
the fixpoint of

fp ◦ α :





























np
∏

k=1

D+Xk















× D−X















×















D+X ×
np
∏

k=1

D−Xk















→ D+X ×
np
∏

k=1

D−Xk,

(α is an appropriate isomorphism) we obtain monoidal attribute grammars in TCCs.

8 Equivalence between Monoidal Attribute Grammars
and Synthesized Ones

Attribute grammars that do not use inherited attributes are called synthesized attribute
grammar (S-attribute grammar for short). In [6] Chirica and Martin observed that
by using function spaces as attribute domains every K-system can be reduced to the
one which does not use inherited attributes. Based on the same observation, in [12]
the authors showed that every attribute grammars can be represented by higher-order
catamorphisms.

In this section we show a similar result for monoidal attribute grammars. We in-
troduce a monoidal version of synthesized attribute grammars (monoidal S-attribute
grammars), and show that in traced symmetric monoidal closed categories every monoidal
attribute grammar is equivalent to a monoidal S-attribute grammar. We fix a CFG
G = (T,N, P, S ).

Definition 8.1 A monoidal S-attribute grammar for G in a TSMC C is a monoidal
attribute grammar (A, α) for G such that A−X = I (equivalently AX = NC(A+X)) for
each sort X ∈ N.

Every ΣG-algebra in C carries the same information as a monoidal S-attribute grammar.
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Proposition 8.2 For any TSMC C, the functor

Alg
ΣG

(NC) : Alg
ΣG

(C)→ Alg
ΣG

(Int(C))

can be restricted to the equivalence between Alg
ΣG

(C) and the full subcategory of
Alg

ΣG
(Int(C)) specified by monoidal S-attribute grammars.

We show that the computational content specified by a ΣG-algebra in C is the same as
the one specified by the corresponding monoidal S-attribute grammar. We capture this
claim by the equivalence of algebras (Definition 3.7).

Lemma 8.3 The monoidal natural transformation GNC : GC → GInt(C) ◦ NC is a
monoidal natural isomorphism.

P The isomorphism is given as follows:

GC(C) = C(I,C)

� Int(C)(NCI,NCC) (NC is full faithful)

= Int(C)(I,NCC)

= GInt(C) ◦ NC(C).

Theorem 8.4 For any TSMC C, every ΣG-algebraA in C is equivalent to a monoidal
S-attribute grammar Alg

ΣG
(NC)(A) in C.

P From 2-functoriality of Alg
ΣG

, monoidal natural isomorphism GNC in Lemma
8.3 gives the isomorphism Alg

ΣG
(GNC) betweenA and Alg

ΣG
(NC)(A).

To show that every monoidal attribute grammar is equivalent to a monoidal S-
attribute grammar, we need an extra structure on C. We assume that C is closed, that
is, − ⊗ B has a right adjoint B ( − for every object B in C. The key to prove the
equivalence is the following theorem due to Hasegawa.

Theorem 8.5 ([19]) Let C be a TSMC. Then NC : C → Int(C) has a symmetric
monoidal right adjoint if and only if C is closed.

Lemma 8.6 Let C be a traced symmetric monoidal closed category. We write RC :
Int(C)→ C for the symmetric monoidal right adjoint that exists by Theorem 8.5.

The monoidal natural transformation GRC : GInt(C) → GC ◦ RC is a monoidal
natural isomorphism.

P We first consider the following natural isomorphism:

GInt(C) = Int(C)(I,−)

= Int(C)(NCI,−)

� C(I,RC−)

= GC ◦ RC.

This isomorphism maps a global element f ∈ GInt(C)(A) to RC( f ) ◦ RC((mNC)−1) ◦ ηI.
Recall that NC is strong monoidal; so mNC : IInt(C) → NCIC is an isomorphism. Since
NC a RC is a monoidal adjunction, we have (mNC)−1

= εI ◦ NC(mRC). Therefore the
passage from the top to bottom is equal to GRC .
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Theorem 8.7 For any traced symmetric monoidal closed categoryC, every ΣG-algebra
A in Int(C) is equivalent to Alg

ΣG
(RC)(A) in C.

P Similar to the proof of Theorem 8.4.

Corollary 8.8 In any traced symmetric monoidal closed category C, every monoidal
attribute grammar for G is equivalent to a monoidal S-attribute grammar for G.

Category ωCPPO is a traced Cartesian closed category, and Theorem 4.4 and Section
4.5 in [6] is an instance of Theorem 8.7 and Corollary 8.8 with C = ωCPPO.

9 Related Work

In [25], Knuth proposed attribute grammars as a formalism to interpret derivation trees
of context free grammars. Since then attribute grammars has been extensively studied
both from theoretical and practical perspective.

There are many works on the classification of well-formed attribute grammars;
there is a good survey in [10]. In this paper we do not regard cyclic computation of
attributes as a bad phenomenon; we rather aim to establish a categorical formulation of
general attribute grammars including non-well formed ones.

The primary application of attribute grammars is compiler description languages.
In this area various extensions of the (classical) attribute grammars have been proposed
to make languages flexible and strong [11, 5, 4, 29]. We do not know any formal
relationship between monoidal attribute grammars and these extensions. To catch up
with these advanced attribute grammars further investigation is needed.

Recently, attribute grammars are recasted to the foundation for fusion transfor-
mations in functional languages [7, 8, 30, 28, 23]. These works are influenced by
Ganzinger and Giegerich’s descriptional composition [13, 14, 15]. We believe that our
categorical formulation of attribute grammars provides a new perspective on program
transformations.

In this paper we studied monoidal attribute grammars within two concrete TSMCs,
namely Rel+ and ωCPPO. In fact these categories are TCCs, and we have not yet seen
any example using proper TSMCs. The author is currently working on a categorical
formulation of the descriptional composition, where the full generality of monoidal
attribute grammars and the universal property of Int construction (Theorem 4.11) will
be exploited.

Girard proposed a new paradigm, called geometry of interaction (GoI), for model-
ing dynamics of cut-elimination procedure in linear logic [16, 17, 18]. Girard’s models
were later analyzed and axiomatized in subsequent studies [9, 1, 3, 2]. The concept
that contributed to the analysis of GoI program is traced monoidal categories, which
were introduced in the context of the mathematical models of knots and tangles [22].

The connection between trace operators and parameterized fixpoint operators in
Cartesian categories is discovered independently by Hasegawa [20] and Hyland. This
connection allows us to consider attribute grammars in various domain-theoretic cate-
gories. Chirica and Martin’s work can be seen as a practice of this observation.
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