
Under consideration for publication in J. Functional Programming 1

Algebraic Fusion of Functions with an
Accumulating Parameter and Its Improvement

Shin-ya Katsumata
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

(e-mail: sinya@kurims.kyoto-u.ac.jp)

Susumu Nishimura
Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

(e-mail: susumu@math.kyoto-u.ac.jp)

Abstract

This paper develops a new framework for fusion that is designed for eliminating the intermediate data
structures involved in the composition of functions that have one accumulating parameter. The new
fusion framework comprises two steps: algebraic fusion and its subsequent improvement process.

The key idea in our development is to regard functions with an accumulating parameter as func-
tions that operate over the monoid of data contexts. Algebraic fusion composes each such function
with a monoid homomorphism that is derived from the definition of the consumer function to obtain
a higher-order function that computes over the monoid of endofunctions. The transformation result
may be further refined by an improvement process, which replaces the operation over the monoid of
endofunctions (i.e., function closures) with another monoid operation over a monoid structure other
than function closures.

Using our framework, one can formulate a particular solution to the fusion problem by devising
appropriate monoids and monoid homomorphisms. This provides a unified exposition of a variety
of fusion methods that have been developed so far in different formalisms. Furthermore, the cleaner
formulation makes it possible to argue about some delicate issues on a firm mathematical basis. We
demonstrate that algebraic fusion and improvement in the world of CPOs and continuous functions
can correctly fuse functions that operate on partial and infinite data structures. We also show that
subtle differences in termination behaviors of transformed programs caused by certain different fu-
sion methods can be cleanly explained by corresponding improvement processes that have different
underlying monoid structures.

1 Introduction

Modular programming is a widely approved programming discipline and functional pro-
gramming languages support fine modularity by encouraging us to write a program as a
combination of small functions. However, this fine modularity comes with a cost: those
small functions must be interfaced with intermediate data. For instance, given a composi-
tion c ◦ p of two functions of type p, c : list → list, the producer function p generates the
intermediate list which is immediately consumed by the consumer function c. Though nec-
essary for the composition, the production of the intermediate list is usually inessential for
the computation. Thus we would prefer to replace the composed function by an individual
function that does not produce any intermediate data.

2 S. Katsumata and S. Nishimura

Fusion is a family of program transformation techniques which transform a given pair
(p, c) of producer and consumer functions into an individual function that performs the
same computation as the composed function c ◦ p does. A substantial amount of research
has been done in the last few decades to develop fusion techniques. Wadler (1990) pre-
sented a transformation method called deforestation, which is an algorithmic instance of
Burstall and Darlington’s generic unfold-fold transformation strategy (Burstall & Darling-
ton, 1977). Another significant family of solutions consists of calculational approaches,
where programs are transformed by stepwise application of a set of equational laws on
a few combinators (e.g., generic recursion operators such as foldr on lists). Examples of
such calculational methods include the promotion theorem (Malcolm, 1989), shortcut fu-
sion (Gill et al., 1993), and its generalizations (Gill, 1996; Takano & Meijer, 1995; Johann,
2002; Ghani et al., 2005).

1.1 Handling accumulating parameters in fusion transformation

These earlier developments of fusion techniques have been very successful, but they do not
work for a significant class of functions — functions with accumulating parameters. An
accumulating parameter of a recursive function is the function’s argument on which tempo-
rary data is accumulated during recursion. The most typical function with an accumulating
parameter is the tail-recursive list reverse function rev defined as follows:

rev [] x = x
rev (a :: l) x = rev l (a :: x),

where [] stands for the empty list and a :: x for the addition of an element a to the head of
a list x.

Accumulating parameters are commonly used in functional programming, but a naı̈ve
application of the fold-unfold transformation strategy does not handle them successfully.
Let us consider the above reverse function composed with a map function and suppose that
the input is a non-empty list a1 :: l1 and the initial value of the accumulating parameter is
the empty list []. Then we have an unfolding:

map f (rev (a1 :: l1) []) = map f (rev l1 [a1])

This does not give any chance of folding and thus we can only continue unfolding, like
map f (rev l1 [a1]), map f (rev l2 [a2, a1]), map f (rev l3 [a3, a2, a1]), etc. This symptom is
well-known as “not reaching the accumulating parameter,” where the values accumulated
in the parameter have no chance to be consumed by the outer function application (Chin,
1994).

We may instead apply calculational fusion methods such as shortcut fusion to functions
with accumulating parameters, if we regard a function with an accumulating parameter as
a function returning a function closure. For example, the list reverse function rev can be
regarded as a function that takes an input list and returns a function of type list → list.
However, this means that the result of fusion is a higher-order function, whose evaluation
produces function closures instead of intermediate data.

Fusion of functions with accumulating parameters has received much attention and sev-
eral solutions have been proposed in different formalisms: the composition method for

Algebraic Fusion and its Improvement 3

attribute grammars (Ganzinger & Giegerich, 1984), tree transducer composition methods
(Engelfriet & Vogler, 1985; Voigtländer & Kühnemann, 2004), and fusion methods for
functional programs (Sheard & Fegaras, 1993; Kakehi et al., 2001; Voigtländer, 2004;
Nishimura, 2003; Nishimura, 2004). Though built on different formalisms, these devel-
opments have had strong influences on each other and thus often employ similar trans-
formation techniques. (See Section 1.3 for a more detailed historical background and the
relationship among these developments.)

These precursor methods brought significant advances in dealing with accumulating pa-
rameters but their formulations are very syntactic. That is, each transformation method is
defined by a set of transformation rules that simply operate on the syntax of programs.
Fusion of functions with accumulating parameters is generally a complicated task and thus
the syntactic formulation often prevents easy access to the significant ideas behind the
transformation techniques. For example, transformation methods by Voigtländer (2004)
and Nishimura (2003; 2004) make use of a circular let construction, which is the central
mechanism in their methods to encode the computation of accumulating parameters in the
target program. However, this encoding, at least at first sight, looks quite tricky. It requires
a careful reading of every transformation rule and a deep understanding of the behavior of
circular let in order to figure out what global effect is intended by the transformation sys-
tem. Furthermore the syntactic formulation makes it difficult to compare different fusion
methods in a formal setting. The above mentioned methods by Voigtländer and Nishimura,
for instance, seem to have very close transformation powers, but establishing a formal
statement for that would require a considerable amount of rigorous arguments on their
syntactic properties.

It seems that the source of complication is the syntax-oriented formulation of the ex-
isting fusion methods. A more semantic investigation into the transformation mechanism
behind the syntactic formulation would be needed to better understand of the fusion princi-
ple, which would enable establishing formal properties, e.g. comparison of transformation
powers between different methods. On a more technical side, a more precise semantic
analysis into the fusion principle would also contribute to the establishment of the cor-
rectness of each fusion method, i.e. preservation of semantics by program transformation.
This is a more delicate matter than one might expect. For example, though Sheard and
Fegaras (1993) composed the list reverse function with itself into the identity function, this
transformation is not necessarily correct, depending on the semantic domain on which the
functions operate. The reverse function composed with itself works as the identity function
only if lists of finite size are considered. It behaves differently if the input is an infinite
list: the identity function returns the infinite list immediately, while the composition of the
reverse functions gets stuck, as the first application of the reverse function falls into an
infinite search for the last element of the infinite list.

1.2 Algebraic fusion and its improvement

The fusion method proposed in this paper comprises a fusion transformation called alge-
braic fusion and a strategy called improvement which is useful for refining and reasoning
about the result of algebraic fusion. The inputs of algebraic fusion are i) a producer, which
is a recursive function with one accumulating parameter, and ii) a consumer, which is given

4 S. Katsumata and S. Nishimura

as a catamorphism to an arbitrary set. In this paper we concentrate on the case where the
number of accumulating parameters is one. We discuss the merit and demerit of this deci-
sion at the end of this section.

The key objects in algebraic fusion are data contexts, which are formulated as Σ-contexts
in Section 2. Data contexts are data structures with holes, and are used to represent the in-
formation accumulated by functions with an accumulating parameter. For instance, func-
tion rev described in Section 1.1 accumulates the reverse of the first argument on the sec-
ond argument. We express this behavior by the following unary function revc : list→ listc
which returns list contexts:

revc [a1, · · · , an] = an :: · · · :: a1 :: [−].

The set of data contexts together with the hole and the substitution operation forms a
monoid, which we exploit for the formulation of the concept of functions with an accu-
mulating parameter.

Algebraic fusion alone is not always a perfect solution for the fusion problem of func-
tions with an accumulating parameter. When both producer and consumer have an ac-
cumulating parameter, algebraic fusion transforms their composition into a higher-order
function. For example, algebraic fusion of rev : list → list → list with itself results in the
following higher-order function revrev : list→ (list→ list)→ (list→ list).

revrev [] f = f
revrev (a :: l) f = revrev l (λw . f (a :: w)),

which satisfies revrev t (rev u) s = rev (rev t u) s. Having higher-order function types
means that this function operates over function closures.

In the subsequent improvement phase, we shift the operation over function closures to
that over first-order objects. Our strategy is to find a data structure M, a recursive function
g : list → M and a function h : M → (list → list) → (list → list) so that we can
represent the computation of revrev via h; i.e., revrev = h ◦ g. This is essentially the
same as finding a factorization of the result of algebraic fusion. Improvement provides a
convenient method for solving this problem. For example, with the aid of improvement, we
can find a decomposition of revrev into the list append function app and a simple function
h that takes only constant time (so g = app and M = list → list). By a simple calculation,
we can turn revrev into a function that operates over list rather than list→ list.

We present the above mentioned idea of algebraic fusion and improvement as a general
theory for the fusion of functions with one accumulating parameter. The merits of our
solution are addressed as follows.

A meta-theory for different fusion techniques. The theory of algebraic fusion and im-
provement does not represent a single concrete fusion method but it rather serves as a
‘meta-theory’ of various fusion methods. That is, we can obtain different fusion methods
by instantiating appropriate algebraic structures to the theory. This makes it possible to
give a uniform account of different fusion methods on a common platform and conse-
quently makes it easier to compare these different methods. More significantly, it also
contributes to showing the essence of the intricate business of dealing with accumulat-
ing parameters, giving rise to a better understanding of the transformation mechanism
behind them. We will demonstrate the strength of algebraic fusion and improvement by

Algebraic Fusion and its Improvement 5

showing that central techniques of certain existing fusion methods are instances of our
theory.

Distinction between delicate semantic differences. Our framework provides a theory for
the fusion of functions whose semantics is given by a denotational semantics. This al-
lows us to pinpoint the semantic differences that we discussed in Section 1.1.
The development of algebraic fusion is carried out within the elementary universal alge-
bra over the world of sets and functions (i.e. category Set). In this setting, the correctness
of algebraic fusion and improvement is shown by an equation between two expressions
about set-theoretic functions over total and finite data structures. Next, we redevelop al-
gebraic fusion and improvement for functions over partial and infinite data structures.
This is carried out by switching the underlying semantic domain to the world of ω-
complete pointed partial orders and continuous functions (i.e. categoryωCPPO). In this
setting, the correctness of improvement is characterized by an inequation unless a strict-
ness condition is satisfied. The inequation expresses that the improved program is more
likely to terminate, and (informally) corresponds to the fact that some fusion transfor-
mations change termination behavior of functions before and after the transformation.
More details on this topic will be discussed in Section 3 and 4.

Straightforward equational reasoning. For each particular instance of an intended fu-
sion transformation task our fusion method gives a small set of calculational laws that
allow simple equational reasoning (occasionally involving a few inequations when infi-
nite and partial data structures are under consideration).
These (in)equational laws are not only useful for the derivation of a fusion result but are
also essential in establishing the correctness of each particular transformation task. We
will later show that the central technique behind the circular let construction found in
Voigtländer’s or Nishimura’s method mentioned above can be formulated in our frame-
work so that it is amenable to equational reasoning, using the standard fixpoint seman-
tics. This establishes a simple correctness proof of the technique and also reveals a new
semantic perspective of it.

Being a meta-theory, algebraic fusion and improvement give neither immediate indica-
tions of automatic strategy for deriving transformation methods nor any guarantee of im-
proved efficiency. As our theory is primarily concerned with semantic properties of trans-
formed program, it is not suitable for estimating the computational cost of the transformed
program. This is in contrast to the previous solutions that are based on syntactic formula-
tions, in which the analysis of computational cost is more manageable (see (Voigtländer,
2007), for example). However, we think that this is not necessarily a deficiency of our solu-
tion. We claim that our solution has a definite advantage over the syntactically formulated
ones in establishing and analyzing semantic properties of transformation. For instance, the
standard proof techniques of denotational semantics can be applied to establish the correct-
ness of the circular let construction technique.

We study the case where the number of accumulating parameters is one. This simplifies
the task of formulating the concept of functions with an accumulating parameter, and more
importantly, the simplification helps introducing a concise formulation of such functions
in terms of the theory of universal algebra and monoids. The price to pay is that algebraic
fusion can handle fewer producer functions than some existing fusion methods (e.g., Voigt-

6 S. Katsumata and S. Nishimura

lander’s and Nishimura’s). However, we believe that our semantic formulation is enough
to capture the common usage of an accumulating parameter.

1.3 Related work

The earliest attempts for ‘fusion’ of programs with accumulating parameters are traced
back to 1980’s. Ganzinger and Giegerich (1984) proposed a composition method for at-
tribute grammars. Engelfriet and Vogler (1985) developed a composition method for tree
transducers (corresponding to the case where consumer functions have no accumulating
parameters). Later Kühnemann (1998) proposed an improved method that can compose
two macro tree transducers (corresponding to functions that have accumulating parame-
ters) subject to certain restrictions. This method was further extended by Voigtländer and
Kühnemann to allow more transducers to be composed (Voigtländer & Kühnemann, 2004).
Attribute grammars and tree transducers are close cousins and both include mechanisms
for computing with accumulating parameters (Fülöp & Vogler, 1998). Both formalisms are
based on formal language theory and provide a general platform for fusion transforma-
tion, but their formulations look complicated for non-specialists and this makes their core
techniques not easily accessible by a wider audience.

Kakehi et al. (2001) proposed a fusion law for a list-processing combinator called dmap.
This combinator satisfies a quite simple calculational rule, which works elegantly for a less
general but important class of functions. Voigtländer (2004) presented a fusion method,
called lazy composition, that incorporates the macro tree transducer composition technique
presented in (Voigtländer & Kühnemann, 2004) into the functional setting. He makes use of
circular let to eliminate multiple traversals of the input data. The second author (Nishimura,
2003; Nishimura, 2004) applied the attribute grammar composition technique to obtain a
fusion result as a first-order program from a higher-order intermediate transformation result
that is obtained by shortcut fusion. He also makes use of circular let in his higher-order
removal technique. However, his higher-order removal method sticks to certain particular
syntactic forms of program, which makes it difficult to capture its essence.

The solution proposed in this paper gives a cleaner presentation of the second author’s
transformation on the higher-order programs representing the intermediate program trans-
formation result. Pushing the intricacies related to circularity construction into a suitable
monoid structure, we can derive transformation laws in a strikingly simple way.

Here we point out that the computational structure that is employed in the development
of our general fusion law coincides with other formalisms. The computational diagram in
Figure 3 of Section 5 looks very similar to those found in the literature on the composition
techniques of attribute grammars and tree transducers (say, Figure 11 in (Giegerich, 1988)).
Interestingly, similar diagrams also appear in the definition of the composition of mor-
phisms in Abramsky’s geometry-of-interaction construction (Abramsky, 1996) and Joyal
et al.’s Int-construction (Joyal et al., 1996). Though out of the scope of the present paper,
it would be interesting to study a deeper connection between these different formalisms.

Shortcut fusion by Gill et al. (1993) is one of the most successful fusion methods in
practice, because of its conceptual simplicity: a single fusion law for program calculation
is derived from the parametricity principle (Wadler, 1989; Ma & Reynolds, 1991). Short-
cut fusion has been refined and extended in many directions. Takano et al. generalized it

Algebraic Fusion and its Improvement 7

to arbitrary algebraic data types (Takano & Meijer, 1995). Svenningsson (2002) proposed
to make use of a dual of the shortcut fusion rule in order to eliminate accumulating param-
eters, but his method can only deal with accumulating parameters in consumer functions.
Gill (1996) introduced a combinator called augment to accommodate shortcut fusion with
the list append function. Johann generalized the augment combinator to arbitrary algebraic
data types (Johann, 2002) and proved its correctness. Ghani et al. analyzed the underlying
mathematical structure of the augment combinator, and proposed a more general scheme
called monadic augment (Ghani et al., 2005; Ghani et al., 2006).

Algebraic fusion proposed in the present paper looks similar to shortcut fusion but is
built on different theoretical foundation, namely, the theory of monoids and universal al-
gebra. Built on different concepts, algebraic fusion and shortcut fusion are thus closely
related but have many subtle differences as well. See Section 2.5 for a detailed discussion
of this topic.

Ohori and Sasano recently proposed lightweight fusion in (Ohori & Sasano, 2007), for
the purpose of providing to a practical compiler a built-in fusion engine that can fuse a wide
range of typical recursive function definitions with a low additional compiler overhead. In
the paper it is demonstrated that their method can fuse a certain class of functions that
have extra parameters. However, as their fusion method is a particular instance of Burstall
and Darlington’s unfold-fold transformation strategy, it also suffers from the problem of
“not reaching the accumulating parameter” in dealing with accumulating parameters, as
we have seen in Section 1.1.

Hu et al. (1999) proposed a method to derive a function with an accumulating parameter
from an ordinary recursive function over a first-order data type. They took a different for-
mulation of the concept of function with an accumulating parameter from ours; they used
higher-order catamorphisms, i.e., initial algebra morphisms induced by algebras whose
carrier sets are function spaces. While this formulation makes their methods very flexi-
ble, it captures some functions that do not use the second parameter as an accumulating
parameter. For example, functions that actually reduce the size of the second parameter
are included in their formulation. We exclude such functions from our consideration by
employing data contexts as a representation of functions over data structures.

Some fusion techniques (such as (Johann, 2002) and (Nishimura, 2003)) base their cor-
rectness argument on the observational equivalence of programs. Our fusion method is
built on denotational semantics and hence it does not immediately imply correctness up
to observational equivalence. Establishing the connection to the observational equivalence
property requires a more precise semantic argument, which we leave for future investiga-
tion.

1.4 Outline

The rest of the paper is organized as follows. In Section 2 we give a formal definition of
algebraic fusion and shows its correctness. The relationship with shortcut fusion and its
derivatives is also mentioned. In Section 3 we introduce the concept of improvement. We
demonstrate that the fusion law of Kakehi et al.’s dmap combinator can be derived by alge-
braic fusion and improvement. Section 4 exploits a more sophisticated monoid supporting
partial and infinite data structures and shows that algebraic fusion and improvement can

8 S. Katsumata and S. Nishimura

achieve the same program transformation as the second author’s previous work. Finally,
Section 7 concludes the paper.

1.5 Notations

We use Σ,∆ for ranging over single-sorted first-order signatures. By o ∈ Σ(n) we mean that
o is an n-ary operator in Σ. A Σ-algebra is a pair (D, {δo}o∈Σ) of a carrier set D and a family
δ of functions indexed by operators in Σ such that δo ∈ Dn → D for each o ∈ Σ(n). A
Σ-algebra homomorphism from a Σ-algebra (D, δ) to another Σ-algebra (E, ε) is a function
h ∈ D → E such that h(δo(d1, · · · , dn)) = εo(h(d1), · · · , h(dn)) holds for any operator
o ∈ Σ(n) and d1, · · · , dn ∈ D. The pair of the set TΣ of closed Σ-terms and the family ι of
functions defined by

ιo(t1, · · · , tn) = o(t1, · · · , tn) (o ∈ Σ(n), t1, · · · , tn ∈ TΣ)

is called initial Σ-algebra, which satisfies the following universal property: for any Σ-
algebra (D, δ) there exists a unique Σ-algebra homomorphism (a.k.a. catamorphism) from
(TΣ, ι) to (D, δ). We will write this homomorphism by ~δ� ∈ TΣ → D.

We fix a finite set A (ranged over by a) for the elements of lists. We frequently use the
following signatures throughout this paper:

nat = {Z0, S 1} tree = {L0,N2} list = {[]0} ∪ {a :: (−)1 | a ∈ A}.
A monoid is a tuple (M, e ∈ M, ? ∈ M2 → M) of a carrier set M, a unit e and multipli-

cation operator ? such that they obey the following axioms:

e ? x = x, x ? e = x, (x ? y) ? z = x ? (y ? z). (1)

A monoid homomorphism h fromM = (M, e, ?) toN = (N, ε, ∗) is a function h ∈ M → N
obeying the following axioms:

h(e) = ε, h(x ? y) = h(x) ∗ h(y). (2)

We write h :M→ N to mean that h is a monoid homomorphism fromM toN .

2 Algebraic Fusion

In Section 1 we saw that classical fusion strategies such as fold-unfold transformation do
not work well with producer functions with an accumulating parameter. We generalize this
problem as follows.

We consider the following two functions:

prod ∈ T∆ → TΣ → TΣ cons ∈ TΣ → D,

and assume that prod uses the second parameter as an accumulating parameter, like x in
the definition of rev. The fusion problem we tackle is to remove the intermediate Σ-terms
passed from prod to cons in the computation of the following expression:

cons (prod x y).

The fusion process highly depends on how the concept of functions with an accumulating

Algebraic Fusion and its Improvement 9

parameter is formulated. Therefore, we first discuss two characteristic features of such
functions: sequential accumulation and no inspection of the accumulating parameter, 1

and adopt them as an assumption that classify functions with an accumulating parameter.
We then formulate the assumptions by means of polynomial algebras over the monoid of
Σ-contexts. We believe that our formulation covers most functions with an accumulating
parameter in common use.

2.1 Σ-contexts

Definition 2.1 For a signature Σ, by Σ+ we mean the signature extended with a nullary
operator [−] denoting a hole (without loss of generality we assume [−] < Σ(0)). A Σ-context
k is simply a Σ+-term. We write CΣ for the set of Σ-contexts instead of TΣ+ .

Σ-contexts are simply Σ-terms which may contain some holes, like

S (S ([−])) ∈ Cnat, N(L,N([−], [−])) ∈ Ctree, a :: a′ :: [] ∈ Clist. (3)

We equip CΣ with a monoid structure given by the hole [−] and the substitution operation
− · −, which is recursively defined by

[−] · k = k

(o(k1, · · · , kn)) · k = o(k1 · k, · · · , kn · k).

It is easy to check that [−] and − · − obey the axioms (1) of monoids, hence the following
is a reasonable definition.

Definition 2.2 The monoid CΣ of Σ-contexts is the triple (CΣ, [−],− · −).

Next, we introduce the monoid of endofunctions over a set D.

Definition 2.3 The function space monoid D ⇒ D over a set D is the triple (D →
D, idD,− ◦ −).

Each Σ-context k gives an endofunction λt . k[t] ∈ TΣ → TΣ, where k[t] is the Σ-term
obtained by filling all holes in k with t. For instance, Σ-contexts in (3) give the following
functions:

λx . S (S (x)) ∈ Tnat → Tnat, λx . N(L,N(x, x)) ∈ T tree → Ttree,

λx . a :: a′ :: [] ∈ T list → T list.

The above correspondence between Σ-contexts and functions is summarized as a function
fillΣ ∈ CΣ → TΣ → TΣ defined by:

fillΣ k = λt . k[t].

1 The latter restriction corresponds to that in every state of a macro tree transducer (Engelfriet & Vogler, 1985)
we can not inspect the arguments of the state except the recursion argument.

10 S. Katsumata and S. Nishimura

The subscript of fill may be omitted when it is clear from context. The function fill is in-
jective, so we can think of CΣ as a part of the function space TΣ → TΣ. Furthermore, fillΣ
respects the monoid structures of CΣ and TΣ ⇒ TΣ, i.e.,

fillΣ([−]) = idTΣ
, fillΣ(k · k′) = fillΣ(k) ◦ fillΣ(k′).

Therefore fillΣ is a monoid homomorphism from CΣ to TΣ ⇒ TΣ.

2.2 Assumptions on Functions with an Accumulating Parameter

We discuss the assumption we make on functions with an accumulating parameter.
There should be no objection to the function rev and the following function count using

the second argument as an accumulating parameter.

count L x = S x
count (N (l, r)) x = S (count l (count r x)).

This function adds the number of leaves in the first argument to the second argument.
On the other hand, what kinds of functions do not use the second argument as an accu-

mulating parameter? The first example is the following function repl:

repl L x = x
repl (N (l, r)) x = N (repl l x, repl r x)

which replaces all the leaves in the first argument with the second argument. In this pa-
per we exclude repl from consideration, because there is no accumulation of information
from the second argument, and the flow of information accumulation is discontinuous, i.e.,
the result of a recursive call is not passed to another recursive call as an accumulating
parameter (unlike rev or count).

The second example is the following function rem:

rem [] x = x
rem (a :: l) (b :: l′) = rem l l′

rem (a :: l) [] = rem l []

This function removes the first n elements from the list in the second argument, where n
is the length of the list in the first argument (when it is longer than the second argument,
rem simply returns []). This function contradicts the idea of accumulation, as it removes
information on the second argument. In general, pattern-matching on the second argument
allows us to write functions that reduce the size of the second argument.

In order to exclude such functions, we introduce two assumptions on the notion of func-
tions with an accumulating parameter.

The first assumption is that functions with an accumulating parameter sequentially accu-
mulate information on their second argument. We express this assumption in the following
way: such a function f ∈ T∆ → TΣ → TΣ computes the value of a ∆-term o(t1, · · · , tn) by

f (o (t1, · · · , tn)) = g1 ◦ (f ti1) ◦ g2 ◦ · · · ◦ gl ◦ (f til) ◦ gl+1, (4)

where i1, · · · , il ∈ {1, · · · , n} are indices of subterms and g1, · · · , gl+1 ∈ TΣ → TΣ are
functions which accumulate information on their argument.

Algebraic Fusion and its Improvement 11

The second assumption is that functions with an accumulating parameter do not inspect
the contents of the accumulating parameter. This assumption requires that each function
gi in (4) can only accumulate some information on its argument, but not inspect it. We
express this requirement by the existence of a Σ-context ki (1 ≤ i ≤ l + 1) such that

gi = fill ki.

We summarize the above two assumptions. We regard f ∈ T∆ → TΣ → TΣ as a function
with an accumulating parameter if it satisfies the following condition:

(C-prod-s) f ∈ T∆ → TΣ → TΣ is a recursive function defined by

f (o (t1, · · · , tn)) = (fill k1) ◦ (f ti1) ◦ (fill k2) ◦ · · · ◦ (fill kl) ◦ (f til) ◦ (fill kl+1) (5)

where o ∈ ∆(n), i1, · · · , il ∈ {1, · · · , n} are indices of subterms and k1, · · · , kl+1 ∈ CΣ are
Σ-contexts representing accumulation of information.

Functions repl and rem are excluded from consideration as they do not satisfy (C-prod-s).
We note that there are some functions that use the second argument as an accumulating

parameter but fail to satisfy (C-prod-s). An example of such function is repl′ defined by

repl′ L x = x
repl′ (N (l, r)) x = N (repl′ l L, repl′ r (N (L, x)).

Although in the second line each recursive call of repl′ does not take the result of the other
call as an argument, it is reasonable to recognize repl′ as a function with an accumulating
parameter.

Therefore there is a room for discussion about whether (C-prod-s) is the definitive for-
mulation of functions with an accumulating parameter. However, the producer functions
appearing in typical fusion problems of functions with an accumulating parameter satisfy
(C-prod-s), and more importantly, (C-prod-s) has a concise mathematical reformulation in
terms of polynomial algebras over monoids. Therefore we stop pursuing the concept of
accumulating parameters here, and proceed to the development of algebraic fusion. In the
next section we give a reformulation of (C-prod-s).

2.3 Polynomial Σ-Algebras over Monoids

First, we observe that the following recursive function f ′ ∈ T∆ → CΣ:

f ′ (o (t1, · · · , tn)) = k1 · (f ′ ti1) · k2 · · · · · kl · (f ′ til) · kl+1 (o ∈ ∆(n)), (6)

where k1, · · · , kl+1 ∈ CΣ are Σ-contexts taken from (5), satisfies

fill ◦ f ′ = f , (7)

since fill is a monoid homomorphism. With (7) in mind, we transform (C-prod-s) to the
following equivalent condition (C-prod-s’):

(C-prod-s’) f ∈ T∆ → TΣ → TΣ is a function such that f = fill ◦ f ′ for some recursive
function f ′ ∈ T∆ → CΣ defined by (6).

Next, we introduce polynomials over a monoid, which generalize the pattern of the right
hand side of (6) for arbitrary monoids.

12 S. Katsumata and S. Nishimura

Definition 2.4 LetM = (M, e, ?) be a monoid. An n-variable polynomial P overM is a
formal expression

P[X1, . . . , Xn] = c1 ? Xi1 ? c2 ? Xi2 ? . . . ? Xil ? cl+1

where n, l are natural numbers, c1, . . . , cl+1 are elements in M called coefficients, and 1 ≤
i1, · · · , il ≤ n are indices of the formal parameter variables. For readability, we suppress
writing units e in the body of a polynomial. 2

For example,

Reva::−[X] = X · (a :: [−]) (over Clist)

CountN[X1, X2] = (S [−]) · X1 · X2 (over Cnat)

are polynomials over monoids.
Each polynomial over a monoid denotes a function over the carrier set of the monoid.

Definition 2.5 Let P be an n-variable polynomial overM = (M, e, ?). We define a function
fun(P) ∈ Mn → M by

fun(P) (x1, · · · , xn) = P[x1/X1, · · · , xn/Xn].

We further transform (C-prod-s’) to the following equivalent condition (C-prod-s”) by
means of polynomials over monoids.

(C-prod-s”) f ∈ T∆ → TΣ → TΣ is a function such that f = fill ◦ f ′ for some recursive
function f ′ ∈ T∆ → CΣ defined by

f ′ (o (t1, · · · , tn)) = fun(Po)(f ′ t1, · · · , f ′ tn)

where o ∈ ∆(n) and Po is an n-variable polynomial over CΣ.

We notice that f ′ is nothing but the initial ∆-algebra homomorphism determined by the
following ∆-algebra:

(CΣ, {fun(Po)}o∈∆).

The essential information of this algebra is of course the family {Po}o∈∆ of polynomials
indexed by operators in ∆. This observation leads us to the notion of polynomial algebras
over monoids.

Definition 2.6 A polynomial Σ-algebra over a monoidM = (M, e, ?) is a family P of poly-
nomials indexed by operators in Σ such that for each o ∈ Σ(n), Po is an n-variable poly-
nomial overM. A polynomial Σ-algebra P overM induces a Σ-algebra (M, {fun(Po)}o∈Σ),
which we also refer to as P.

An example of a polynomial list-algebra over Clist is the family

Rev = {Rev[] = [−],Reva::−[X] = X · (a :: [−])}. (8)

2 By defining suitable unit and multiplication operator, one can turn the set of polynomials overM to the monoid
that satisfies a similar universal property owned by polynomial rings — this is the reason for the name ”poly-
nomial”.

Algebraic Fusion and its Improvement 13

This polynomial algebra induces the initial list-algebra homomorphism ~Rev� ∈ T list →
Clist, which has the following recursive definition:

~Rev� [] = [−]
~Rev� (a :: l) = ~Rev� l · (a :: [−]).

This function satisfies

~Rev� [a1, . . . , an] = an :: . . . :: a1 :: [−]. (9)

Another example of a polynomial tree-algebra over Cnat is

Count = {CountL = S [−],

CountN[X1, X2] = (S [−]) · X1 · X2}.
The initial tree-algebra homomorphism ~Count� ∈ T tree → Cnat has the following recur-
sive definition:

~Count� L = S [−]
~Count� (N (l, r)) = (S [−]) · ~Count� l · ~Count� r.

By the notion of polynomial algebras over monoids, we finally obtain a concise formulation
(which is equivalent to (C-prod-s) and its variants) of the assumption on functions with an
accumulating parameter.

(C-prod) f ∈ T∆ → TΣ → TΣ is a function such that f = fill◦~Prod� for some polynomial
∆-algebra Prod over CΣ.

It is easy to observe that rev = fill◦ ~Rev� and count = fill◦ ~Count�. Hence rev and count
satisfy (C-prod).

We next introduce the concept of images of polynomial algebras along monoid homo-
morphisms.

Definition 2.7 Let M = (M, e, ?),N = (N, ε, ∗) be monoids, h : M → N be a monoid
homomorphism and P be the following n-variable polynomial overM:

P[X1, . . . , Xn] = c1 ? Xi1 ? c2 ? Xi2 ? . . . ? Xil ? cl+1.

We define an n-variable polynomial h(P) overN by

h(P)[X1, · · · , Xn] = h(c1) ∗ Xi1 ∗ h(c2) ∗ Xi2 ∗ . . . ∗ Xil ∗ h(cl+1).

We call this polynomial the image of P by h.

Lemma 2.8 LetM,N be monoids, h :M→ N be a monoid homomorphism and P be an
n-variable polynomial overM. Then we have

fun(h(P)) (h m1, . . . , h mn) = h (fun(P) (m1, . . . ,mn)).

Proof
By the axioms (2) of homomorphism.

This simple lemma implies an important property of polynomial Σ-algebras. In general,
given a Σ-algebra (D, δ) and a function f ∈ D → E, there is no generic way to obtain

14 S. Katsumata and S. Nishimura

a Σ-algebra (E, ε) so that f becomes a Σ-algebra homomorphism from (D, δ) to (E, ε).
However, this is possible if δ is a polynomial algebra and f is a monoid homomorphism;
for ε, we take the image of P by h.

Definition 2.9 LetM,N be monoids, h :M→ N be a monoid homomorphism and P be
a polynomial Σ-algebra overM. The image of P by h (denoted by h(P)) is the following
polynomial Σ-algebra overN:

{h(Po)}o∈Σ.
The following proposition is a variant of the promotion theorem (Malcolm, 1989), and
plays an essential role in this paper.

Proposition 2.10 For any monoidM,N , monoid homomorphism h : M → N and poly-
nomial Σ-algebra P overM, h is a Σ-algebra homomorphism from P to h(P). Therefore

h ◦ ~P� = ~h(P)� .

Proof
Follows from Lemma 2.8.

2.4 Algebraic Fusion

We now return to the original problem. The aim of algebraic fusion is to fuse a producer
function and a consumer function:

prod ∈ T∆ → TΣ → TΣ cons ∈ TΣ → D

where prod uses the second argument as an accumulating parameter. As discussed before,
we express this assumption by the following condition (C-prod):

(C-prod) There exists a polynomial ∆-algebra Prod overCΣ such that prod = fill◦~Prod�.

We also impose the following condition on the consumer:

(C-cons) cons = ~δ� for some Σ-algebra (D, δ).

This is a common requirement in the study of fusion transformations. In other words, cons
is a recursive function defined by

cons (o (t1, · · · , tn)) = δo (cons t1, · · · , cons tn) (o ∈ Σ(n)).

We note that any function satisfying (C-prod) also satisfies (C-cons), since

prod = fill ◦ ~Prod� = ~fill(Prod)�

by Proposition 2.10.

2.4.1 The Idea of Algebraic Fusion

We first explain the idea of algebraic fusion by a simple example. The target expression of
the fusion problem is

map f (rev x y), (10)

Algebraic Fusion and its Improvement 15

where map f ∈ T list → T list is the map function defined by

map f [] = []
map f (a :: l) = f a :: (map f l).

Functions rev and map f satisfy (C-prod) and (C-cons), respectively.
We analyze the computation of (10) with the case where x is instantiated with a three-

element list x3 = [a1, a2, a3]. First, the computation of subexpression rev x3 y appends
the reverse of x3 to y. Since rev satisfies (C-prod), this computation can be decomposed
into two steps: i) calculation of a list-context representing the accumulation, and ii) the
execution of the accumulation by filling the hole of the context with y.

rev x3 y

= fill (~Rev� x3) y by (C-prod)

= fill (a3 :: a2 :: a1 :: [−]) y by (9)

= a3 :: a2 :: a1 :: y.

We name the underlined list-context k3. Next, function map f consumes the above list and
yields the result r3 of the computation of map f (rev x3 y):

r3 = (f a3) :: (f a2) :: (f a1) :: map f y.

The goal of algebraic fusion is to refine the above computation steps so that we can
compute r3 directly from x3. We observe that:

1. The part of r3 which depends on x3 is the first three elements. We separate this part
by introducing a new function φ3:

φ3 = λw . (f a3) :: (f a2) :: (f a1) :: w.

With this, we have r3 = φ3 (map f y).
2. If we can compute φ3 directly from x3, then the goal is achieved because the com-

putation of φ3 (map f y) directly gives r3 without creating the intermediate list a3 ::
a2 :: a1 :: y. So we reduce the fusion problem to the quest of a function computing
φ3 from x3.
In fact, we can calculate φ3 from k3 by the following function map f ∈ Clist →
T list → T list, which extends the domain and codomain of map f to Clist and T list → T list

respectively:

map f [−] w = w
map f [] w = []
map f (a :: l) w = f a :: (map f l w).

This function is derived by adding to the recursive definition of map f i) an extra
argument w to each line of map f , and ii) an extra line that handles the case where
the first argument is a hole (the first line). The argument w is simply passed to each
recursive call of map f , and is returned when the first argument is a hole.
Function map f satisfies

φ3 = map f k3 = map f (~Rev� x3). (11)

16 S. Katsumata and S. Nishimura

3. The extension map f is not merely a function, but also a monoid homomorphism
from Clist to T list ⇒ T list. The equality

map f [−] = id

is obvious. We can also show the following equality by induction on the structure of
k1:

map f (k1 · k2) = (map f k1) ◦ (map f k2).

Hence we can refine the computation of the right hand side of (11) by Proposition
2.10:

φ3 = map f (~Rev� x3) = ~map f (Rev)� x3.

From this, ~map f (Rev)� ∈ T list → T list → T list is a good candidate for the function which
calculates φ3 directly from x3. The recursive definition of ~map f (Rev)� is

~map f (Rev)� [] x = x
~map f (Rev)� (a :: l) x = ~map f (Rev)� l (f a :: x),

and we see that this function performs the list reversal and mapping of f at the same time.
Furthermore, it is easy to show that for any x, y ∈ T list,

~map f (Rev)� x (map f y) = map f (rev x y). (12)

So we take ~map f (Rev)� as the answer of the fusion problem.

2.4.2 Algebraic Fusion

Algebraic fusion is a straightforward generalization of the fusion steps described above.
Let prod ∈ T∆ → TΣ → TΣ and cons ∈ TΣ → D be functions satisfying (C-prod) and
(C-cons) respectively.

The first step of algebraic fusion is to extend the domain and codomain of cons from TΣ

and D to CΣ and D → D, respectively. This is done by adding two things to the recursive
definition of cons: (i) an extra argument w, and (ii) a line which handles the case where the
argument is a hole. This extension yields the following recursive function cons ∈ CΣ →
D→ D:

cons [−] w = w
cons (o (k1, · · · , kn)) w = δo (cons k1 w, · · · , cons kn w). (o ∈ Σ(n))

The extra argument w is distributed to each recursive call of cons (for o ∈ Σ(0), w is simply
discarded), and is returned only when the argument is the hole.

This extension can also be described as follows: from the Σ-algebra (D, δ) determining
the consumer, we construct a Σ+-algebra (D→ D, δ); its algebra structure δo is defined by

δ[−] = idD

δo(f1, · · · , fn) = λx ∈ D . δo(f1(x), · · · , fn(x)). (o ∈ Σ(n))

Then cons is exactly the initial Σ+-algebra homomorphism ~δ� : CΣ → D→ D.
The extension cons satisfies the following two properties that are essential to algebraic

fusion.

Algebraic Fusion and its Improvement 17

Proposition 2.11 For any cons ∈ TΣ → D satisfying (C-cons),

1. the function cons ∈ CΣ → D→ D constructed as above is a monoid homomorphism
from CΣ to D⇒ D, and

2. for any k ∈ CΣ and t ∈ TΣ, we have cons k (cons t) = cons (fill k t).

Proof
1, 2) Easy induction on the structure of Σ-contexts.

Next, we take the image of the polynomial ∆-algebra Prod mentioned in (C-prod) by
cons. The image is a polynomial ∆-algebra cons(Prod) over D ⇒ D. Then, the result of
the algebraic fusion of prod and cons is defined by the initial ∆-algebra homomorphism

~cons(Prod)� ∈ T∆ → D→ D.

The following theorem, which generalizes (12), shows the correctness of algebraic fu-
sion.

Theorem 2.12 For any t ∈ T∆ and u ∈ TΣ, we have
�

cons(Prod)
�

t (cons u) = cons (prod t u).

Proof
Let t ∈ T∆ and u ∈ TΣ. Then,

�

cons(Prod)
�

t (cons u)

= cons (~Prod� t) (cons u) by Proposition 2.10

= cons ((fill ◦ ~Prod�) t u) by Proposition 2.11-2

= cons (prod t u) by (C-prod).

2.5 Relationship with Shortcut Fusion

In this section we informally compare algebraic fusion and a variant of shortcut fusion
(Gill et al., 1993) through a fusion problem where intermediate data structures passed
from producers to consumers are tree-terms.

We discuss the variant of shortcut fusion in a call-by-name functional language with
parametric polymorphism (such as Haskell), and allow ourselves to use Reynolds’ para-
metricity principle. We fix k : τ → τ → τ and z : τ for some type τ, and write cata :
∀α.(α → α → α) → α → tree → α for the polymorphic catamorphism constructor
for tree-terms (we identify the signature tree and the algebraic data type corresponding
to tree). We consider the following minor extension of the shortcut fusion for tree-terms
using the combinator build′ : (∀α.(α → α → α) → α → α → α) → tree → tree defined
by

build′ g y = g (N) L y,

where (N) is the curried version of the data constructor N in tree. This combinator allows us
to write functions with an extra argument, including those with an accumulating parameter.

18 S. Katsumata and S. Nishimura

For instance, function repl′ in Section 2.2 can be expressed as repl′ = build′ ◦ f where f is
the following recursive function:

f L p q x = x
f (N (l, r)) p q x = p (f l p q q) (f r p q (p q x)).

By Reynolds’ parametricity principle (Wadler, 1989; Ma & Reynolds, 1991), for every
g : ∀α.(α→ α→ α)→ α → α→ α, the following equality holds:

g k z (cata k z y) = cata k z (build′ g y).

From this, we obtain build′/cata fusion: for any producer prod : ρ → tree → tree and
consumer cons : tree→ τ satisfying

(B-prod) ∃ f .prod = build′ ◦ f and
(B-cons) cons = cata k z

respectively, we have

f x k z (cons h) = cons (prod x h). (13)

The key observation that relates build′/cata fusion and algebraic fusion is that the type

∀α.(α→ α→ α)→ α→ α → α

of the first argument of build′ can be identified with the set of tree-contexts, because
this type has a canonical initial tree+-algebra structure by the parametricity principle (see
(Plotkin & Abadi, 1993) for a general exposition). Furthermore, the computation of build′

coincides with that of filltree. This observation leads us to the following relationship be-
tween build′/cata fusion and algebraic fusion:

build′/cata fusion Algebraic fusion
(B-prod) · · · (C-prod)
(B-cons) · · · (C-cons)

Fusion law (13) · · · Theorem 2.12.

The difference between build′/cata fusion and algebraic fusion is that condition (B-prod)
is much weaker than condition (C-prod), i.e., build′/cata fusion accepts more producers
than algebraic fusion (e.g., function repl and repl′ in Section 2.2). In algebraic fusion,
producers are supposed to perform primitive recursion over tree-terms and calculate values
in the way given by polynomial tree-algebras. On the other hand, build′/cata fusion has
no such constraints on producers, and the domain of producers can be of any type. The
major source of this difference stems from the technical foundation on which each fusion
transformation is built. Algebraic fusion is formulated in the world of sets and functions
using the universal property of initial algebras (Proposition 2.10), while build′/cata-fusion
is formulated in a second-order logic for a polymorphic programming language with the
parametricity principle.

Both build′/cata fusion and algebraic fusion are driven by essentially the same fusion
law; fusion law (13) corresponds to the equation in Theorem 2.12. Therefore, algebraic
fusion performs the same fusion transformation as build′/cata-fusion, but accepts fewer
producers than build′/cata-fusion. However, there is a merit in considering fusion of a
restricted class of producers. The program structure of producers is preserved by algebraic

Algebraic Fusion and its Improvement 19

fusion in an explicit form, which makes the subsequent manipulation process easier. In the
next section we propose the concept of improvement, which is useful for reasoning about
and transforming results of algebraic fusion.

3 Improving Algebraic Fusion

Algebraic fusion does not impose any restriction on the codomain of consumers, so it can
be a function space D → D′. When such consumers are supplied to algebraic fusion, it
results in higher-order functions of type T∆ → (D → D′) → (D → D′). Below we see an
example of this situation.

Example 3.1 Function rev satisfies both (C-prod) and (C-cons). Hence we can apply al-
gebraic fusion to fuse rev with itself. We first extend rev to a monoid homomorphism
rev : Clist → (T list → T list)⇒ (T list → T list).

rev [−] w x = w x
rev (a :: l) w x = rev l w (a :: x)
rev [] w x = x

We then take the image of the polynomial list-algebra Rev by rev, and obtain the following
polynomial list-algebra rev(Rev) over (T list → T list)⇒ (T list → T list):

rev(Rev) = {rev(Rev[]) = idT list→T list

rev(Reva::−)[X] = X ◦ (λwx . w(a :: x))}.
Hence the result of the algebraic fusion of rev with itself is

�

rev(Rev)
� ∈ T list → (T list →

T list) → (T list → T list). Below we write this function revrev for short. The recursive defini-
tion of revrev, with the second argument being explicit, is

revrev [] w = w
revrev (a :: l) w = revrev l (λx . w (a :: x)),

and from Theorem 2.12, revrev satisfies

revrev t (rev u) s = rev (rev t u) s. (14)

Although revrev does not create intermediate lists passed between rev and itself, it is
not a satisfactory result because revrev is a higher-order function that creates a closure for
each recursive call of itself. Can we represent the computation of revrev by means of some
other data structures, say M? We capture this question as a decomposition (factorization)
problem of revrev into two functions f , h such that h ◦ f = revrev.

M

h

��
T list

f //

revrev
// (T list → T list)⇒ (T list → T list)

(15)

In general finding a nontrivial decomposition is difficult, particularly if we do not use
any structure of revrev and its (co)domain. We propose a decomposition strategy, called
improvement, that exploits the underlying structures of algebraic fusion. Suppose that we

20 S. Katsumata and S. Nishimura

find a monoidM = (M, e, ?) and a monoid homomorphism h : M → (T list → T list) ⇒
(T list → T list) such that the single coefficient λwx . w (a :: x) in rev(Rev) can be given by
some kc ∈ M via h, i.e.,

h(kc) = λwx . w (a :: x).

Then, by replacing the coefficient and multiplication symbol ◦ in rev(Rev) with kc and ?
respectively, we obtain the following polynomial algebra P overM:

P = {P[] = e, Pa::−[X] = X ? kc}.
This clearly satisfies

h(P) = rev(Rev);

hence from Proposition 2.10 we obtain a decomposition:

~h(P)� = h ◦ ~P� = revrev.

Generalizing this pattern, we introduce the concept of improvement.

Definition 3.2 An improvement of the result of algebraic fusion of prod ∈ T∆ → TΣ → TΣ

satisfying (C-prod) and cons ∈ TΣ → D satisfying (C-cons) is a triple of:

• a monoidM = (M, e, ?),
• a monoid homomorphism h :M→ D⇒ D and
• a polynomial ∆-algebra P overM such that h(P) = cons(Prod),

where cons and Prod are the monoid homomorphism and polynomial algebra defined in
Section 2.4.

We note that there always exists two trivial improvements: i)M = CΣ, h = cons, P = Prod
and ii)M = D⇒ D, h = idD, P = cons(Prod).

Finding an improvement takes the following steps.

1. We first guess a monoidM and a monoid homomorphism h : M → D ⇒ D that
seem suitable for improvement. This choice requires some heuristics, and depends
on the specific fusion problems.

2. For every coefficient c ∈ D → D in the polynomial algebra cons(Prod), we find an
element ĉ ∈ M such that h(ĉ) = c. If we cannot find such an element in M for some
coefficient c, then we go back to step 1 and try another monoid.

3. Suppose that the component of the polynomial algebra cons(Prod) at o ∈ Σ(n) is the
following:

cons(Prodo)[X1, · · · , Xn] = c1 ◦ Xi1 ◦ c2 ◦ Xi2 ◦ · · · ◦ cl ◦ Xil ◦ cl+1

where c1, · · · , cl+1 ∈ D → D and 1 ≤ i1, · · · , il ≤ n (c.f. Definition 2.4). We then
define the following n-variable polynomial Po overM:

Po[X1, · · · , Xn] = ĉ1 ? Xi1 ? ĉ2 ? Xi2 ? · · · ? ĉl ? Xil ? ĉl+1.

By gathering Po we obtain a polynomial ∆-algebra P overM such that

h(P) = cons(Prod).

Algebraic Fusion and its Improvement 21

To summarize, when we restrict the decomposition problem (15) to the case where M is a
monoid and h is a monoid homomorphism, the problem is reduced to finding appropriate
elements in M that give coefficients in cons(Prod) via h.

We note that there seems to be no universal method to find a monoid and monoid ho-
momorphism that guarantee the improvement of efficiency or readability of any result of
algebraic fusion.

We devote the rest of this paper for demonstrating the strength and flexibility of im-
provement. We begin with a small example of improvement, then gradually increase the
size and complexity, using sophisticated monoids and monoid homomorphisms. We cover
several examples of improvement that give alternative accounts of existing (post-) fusion
transformations.

The first example is an improvement of revrev.

Example 3.3 (Continued from Example 3.1) We improve revrev with the following pa-
rameters:

Monoid We take the opposite monoid (T list ⇒ T list)op of T list ⇒ T list, that is, the monoid
(T list → T list, idT list , •) where the multiplication • is defined by

f • g = g ◦ f .

Monoid Homomorphism We take h = λ f g . g◦ f . This is a monoid homomorphism since

h idT list = λg . g = idT list→T list

(h f ◦ h f ′) g = g ◦ f ′ ◦ f = g ◦ (f • f ′) = h (f • f ′) g.

Polynomial Algebra We take the following polynomial list-algebra P over (T list ⇒ T list)op:

P = {P[] = idT list

Pa::−[X] = X • (λx . a :: x)}.
This satisfies h(P) = rev(Rev) since the single coefficient in P is mapped to the one in
rev(Rev), i.e.,

h (λx . a :: x) = λwx . w (a :: x).

These data give an improvement ~P� ∈ T list → T list → T list of revrev via h, and it satisfies

revrev = ~h(P)� = h ◦ ~P�. (16)

We notice that the recursive definition of ~P�, with the second argument being explicit,
coincides with that of the list concatenation function app:

~P� [] x = x
~P� (a :: l) x = ((~P� l) • (λx . a :: x)) x

= a :: (~P� l x).

Therefore we simply write app for ~P� below. From Theorem 2.12, we obtain a law about

22 S. Katsumata and S. Nishimura

rev and app:

rev (rev s t) u

= revrev s (rev t) u by (14)

= h (app s) (rev t) u by (16)

= rev t (app s u) by definition of h.

Taking the opposite monoid is crucial in the improvement of revrev. If we take the ordinary
function space monoid T list ⇒ T list and the monoid homomorphism h′ : (T list ⇒ T list) →
(T list → T list) ⇒ (T list → T list) defined by h′ = λ f g . f ◦ g, we cannot find a polynomial
algebra P′ that gives an improvement. This is because the single coefficient λwx . w (a :: x)
can not be represented by h′, i.e. there is no f ∈ T list → T list such that

λgx . f (g x) = λwx . w (a :: x).

3.1 Algebraic Fusion of Kakehi et al.’s Dmap with Itself

We next see a bigger example of algebraic fusion and improvement. In (Kakehi et al.,
2001), Kakehi et al. studied a combinator called dmap (dm for short), which abstracts a
common pattern shared by list-manipulating functions with an accumulating parameter.
For functions f , g ∈ A→ A3, dmg

f ∈ T list → T list → T list is recursively defined by

dmg
f [] = λx . x

dmg
f (a :: l) = λx . (f a) :: (dmg

f l ((g a) :: x)).

Kakehi showed that the following fusion law holds:

dmg′

f ′ (dmg
f l l′) = (dm f ′◦g

f ′◦ f l) ◦ (dmg′

f ′ l′) ◦ (dmg′◦ f
g′◦g l) (17)

where f , g, f ′, g′ ∈ A→ A are functions.
In this section we demonstrate that the above law can also be derived using algebraic

fusion and improvement. By carefully choosing a monoid in improvement process, we
derive (17) without using explicit induction over l or l′.

Algebraic Fusion of dmap and dmap We first apply algebraic fusion to dmg
f as a producer

and dmg′

f ′ as a consumer. It is easy to check that dmg′

f ′ satisfies (C-cons). To see that dmg
f

satisfies (C-prod) we first transform the definition of dmg
f using function composition and

fill:
dmg

f [] = λx . x

= fill [−]
dmg

f (a :: l) = λx . (f a) :: (dmg
f l ((g a) :: x))

= (λx . (f a) :: x) ◦ (dmg
f l) ◦ (λx . (g a) :: x)

= (fill ((f a) :: [−])) ◦ (dmg
f l) ◦ (fill ((g a) :: [−])).

3 In this article the domain and range of f , g are fixed to A because we only consider the list of elements in A (see
Section 1.5). In general, f , g can be any function in A→ B, and the discussion in this section is not affected by
this generalization.

Algebraic Fusion and its Improvement 23

This definition matches with the condition (C-prod-s), and the following polynomial list-
algebra Dmg

f over Clist gives dmg
f :

Dmg
f = {(Dmg

f)[] = [−],

(Dmg
f)a::−[X] = ((f a) :: [−]) · X · ((g a) :: [−])}.

We proceed to apply algebraic fusion. We extend dmg′

f ′ to a monoid homomorphism

dm
g′

f ′ : Clist → (T list → T list)⇒ (T list → T list):

dm
g′

f ′ [−] w = w

dm
g′

f ′ [] w = λx . x

dm
g′

f ′ (a :: l) w = λx . (f ′ a) :: (dm
g′

f ′ l w ((g′ a) :: x)),

then calculate the image of Dmg
f by dm

g′

f ′ :

dm
g′

f ′ (Dmg
f) = {dm

g′

f ′ ((Dmg
f)[]) = idT list→T list

dm
g′

f ′ ((Dmg
f)a::−)[X] = α(f ′, g′, f a) ◦ X ◦ α(f ′, g′, g a)}

where α(f , g, a) is the coefficient defined by

α(f , g, a) = dm
g
f (a :: [−]) = λwx . (f a) :: (w ((g a) :: x)).

The result of the algebraic fusion of dmg
f and dmg′

f ′ is thus the initial list-algebra homomor-

phism
�

dm
g′

f ′ (Dmg
f)

�

∈ T list → (T list → T list) → (T list → T list), but we do not display its

recursive definition here.

Improvement We improve the above result of algebraic fusion with the following data.

Monoid We take the product monoid (T list ⇒ T list)× (T list ⇒ T list)op whose multiplication
will be denoted by ?. Explicitly, ? is defined as follows:

(f , g) ? (f ′, g′) = (f ◦ f ′, g • g′) = (f ◦ f ′, g′ ◦ g).

The first and second projection functions π1, π2 from this product monoid are monoid
homomorphisms.

Monoid Homomorphism We take the function h ∈ (T list → T list) × (T list → T list) →
(T list → T list)→ (T list → T list) defined by

h (p, q) = λw . (p ◦ w ◦ q).

One can easily verify that this is a monoid homomorphism from (T list ⇒ T list) × (T list ⇒
T list)op to (T list → T list)⇒ (T list → T list).

Polynomial Algebra Any coefficient of the form α(f , g, a) can be given by h and the fol-
lowing element A(f , g, a) ∈ (T list → T list) × (T list → T list) in the product monoid:

A(f , g, a) = (λx . (f a) :: x, λx . (g a) :: x),

i.e., h (A(f , g, a)) = α(f , g, a). Therefore the following polynomial list-algebra DM over

24 S. Katsumata and S. Nishimura

(T list ⇒ T list) × (T list ⇒ T list)op:

DM = {DM[] = (idT list , idT list)

DMa::−[X] = A(f ′, g′, f a) ? X ? A(f ′, g′, g a)}
satisfies

dm
g′

f ′ (Dmg
f) = h(DM).

From this, we obtain an improvement ~DM� ∈ T list → (T list → T list) × (T list → T list) of the
result of algebraic fusion of dmg

f and dmg′

f ′ , and it satisfies
�

dm
g′

f ′ (Dmg
f)

�

= ~h(DM)� = h ◦ ~DM�. (18)

Decomposition of the Improvement We calculate the images of DM by π1 and π2.

π1(DM[]) = idT list

π1(DMa::−)[X] = (λx . (f ′ (f a)) :: x) ◦ X ◦ (λx . (f ′ (g a)) :: x)
π2(DM[]) = idT list

π2(DMa::−)[X] = (λx . (g′ (f a)) :: x) • X • (λx . (g′ (g a)) :: x)

By expanding the recursive definition of ~π1(DM)� and ~π2(DM)�, we obtain

~π1(DM)� = dm f ′◦g
f ′◦ f ~π2(DM)� = dmg′◦ f

g′◦g .

Furthermore, for any l ∈ T list, we have

(dm f ′◦g
f ′◦ f l, dmg′◦ f

g′◦g l)

= (~π1(DM)� l, ~π2(DM)� l)

= (π1(~DM� l), π2(~DM� l)) by Proposition 2.10

= ~DM� l. (19)

From this, we derive the law of dmap:

dmg′

f ′ (dmg
f l l′)

=

�

dm
g′

f ′ (Dmg
f)

�

l (dmg′

f ′ l′) by Theorem 2.12

= h (~DM� l) (dmg′

f ′ l′) by (18)

= h (dm f ′◦g
f ′◦ f l, dmg′◦ f

g′◦g l) (dmg′

f ′ l′) by (19)

= (dm f ′◦g
f ′◦ f l) ◦ (dmg′

f ′ l′) ◦ (dmg′◦ f
g′◦g l) by definition of h.

4 Algebraic Fusion and Improvement for Partial and Infinite Data Structures

To extend the development in the previous sections to partial and infinite data structures,
we replace sets and functions with ω-complete pointed partial orders (CPO for short) and
continuous functions. For CPOs D, E, by [D → E] ([D →⊥ E]) we mean the CPO of
(strict) continuous functions. The concept of continuous Σ-algebras is fairly standard; see
for example (Goguen et al., 1977).

Algebraic Fusion and its Improvement 25

Definition 4.1 A continuous Σ-algebra is a pair (D, δ) of a CPO D and a family δ of con-
tinuous functions indexed by operators in Σ such that δo ∈ [Dn → D] for each o ∈ Σ(n). A
(strict) continuous Σ-algebra homomorphism f ∈ (D, δ)→ (D′, δ′) is a (strict) continuous
function f ∈ [D→ D′] satisfying

f (δo(x1, · · · , xn)) = δ′o(f (x1), · · · , f (xn)) (x1, · · · , xn ∈ D)

for each o ∈ Σ(n).

It is well-known that we can construct an initial object T∞
Σ

= (T∞
Σ
, in∞) in the category of

continuous Σ-algebras and strict continuous Σ-algebra homomorphisms (see e.g. (Goguen
et al., 1977)). This construction yields a CPO T∞

Σ
consisting of partial and infinite Σ-terms,

including total ones. For example, T∞nat is the CPO of lazy natural numbers whose Hasse
diagram is illustrated as follows:

S (S (Z))
PPP S (S (· · ·))

S (Z)
NNN S (S (⊥))

nnnn

Z
FFFF S (⊥)

ooooo

⊥
Below we assume TΣ ⊆ T∞

Σ
without loss of generality. We identify each operator in Σ and

the corresponding continuous term constructor over T∞
Σ

. For a continuous Σ-algebra (D, δ),
we write ~δ� for the unique strict continuous Σ-algebra homomorphism from T ∞

Σ
to (D, δ).

The universal property of the initial object asserts that for each strict continuous Σ-
algebra homomorphism h ∈ (D, δ)→ (D′, δ′), we have h ◦ ~δ� = ~δ′�. However, it should
be weakened to an inequality if h is a (not necessarily strict) continuous Σ-algebra homo-
morphism.

Proposition 4.2 Let h ∈ (D, δ) → (D′, δ′) be a continuous Σ-algebra homomorphism.
Then,

1. ~δ′� v h ◦ ~δ�,
2. for any t ∈ TΣ, we have ~δ′� t = h (~δ� t), and
3. ~δ′� = h ◦ ~δ� if and only if h is strict.

Next, we introduce the concept of continuous monoids, which are simply monoid objects
in the category of CPOs and continuous functions.

Definition 4.3 A continuous monoid is a monoidD = (D, e, ?) where D is a CPO and the
multiplication is a continuous function −?− ∈ [D×D→ D]. A (strict) continuous monoid
homomorphism h : (D, e, ?) → (E, ε, ∗) is a (strict) continuous function h ∈ [D → E]
satisfying the laws of monoid homomorphisms.

For a CPO D, by [D ⇒ D] we mean the continuous monoid ([D → D], idD,− ◦ −) of the
continuous endofunctions over D.

The definition of monoid polynomials, polynomial Σ-algebras and images of polynomial
algebras remains the same. A polynomial Σ-algebra Q over a continuous monoid D now

26 S. Katsumata and S. Nishimura

determines a continuous Σ-algebra, since each n-variable polynomial over D determines
an n-ary continuous function. A (strict) continuous monoid homomorphism h : D → E is
then a (strict) continuous Σ-algebra homomorphism from Q to h(Q) (c.f. Proposition 2.10).

We write C∞
Σ

for the carrier CPO of the continuous Σ+-algebra T∞
Σ+ . The substitution

operator − · − ∈ [(C∞
Σ

)2 → C∞
Σ

] is continuous, and the triple (C∞
Σ
, [−],− · −) forms the

continuous monoid C∞
Σ

of Σ-contexts. The action of filling a Σ-context with a Σ-term is a
strict continuous monoid homomorphism fill∞Σ : C∞

Σ
→ [T∞

Σ
⇒ T∞

Σ
]. The subscript of fill∞Σ

may be omitted when it is clear from context.
We introduce the algebraic fusion for partial and infinite data structures. Let

prod ∈ [T∞∆ →⊥ [T∞Σ → T∞Σ]], cons ∈ [T∞Σ →⊥ D]

be continuous functions satisfying the following conditions:

(C-prod’) There exists a polynomial ∆-algebra Prod over C∞
Σ

such that prod = fill∞ ◦
~Prod� (hence, prod should be strict with respect to the first argument).

(C-cons’) There exists a continuous Σ-algebra (D, δ) such that cons = ~δ� (hence, cons
should be strict).

Similarly to the algebraic fusion for total and finite data structures, we first extend the
domain and codomain of the consumer function to C∞

Σ
and [D → D], respectively. This

extension yields a strict continuous monoid homomorphism cons : C∞
Σ
→ [D ⇒ D]

satisfying

cons k (cons t) = cons (fill∞ k t)

for any k ∈ C∞
Σ

and t ∈ T∞
∆

(c.f. Proposition 2.11).
We then calculate the image of Prod by cons and obtain the following strict continuous

∆-algebra homomorphism:

~cons(Prod)� ∈ [T∞∆ →⊥ [D→ D]].

We call this the result of algebraic fusion of prod and cons.

Theorem 4.4 For any x ∈ T∞
∆

and y ∈ T∞
Σ

, we have

~cons(Prod)� x (cons y) = cons (prod x y).

Proof
Since cons is strict, we have cons ◦ ~Prod� = ~cons(Prod)� by Proposition 4.2-3. There-
fore, we can prove this theorem in the same way as the equational reasoning in the proof
of Theorem 2.12.

The concept of improvement is affected by the transition from the world of sets and
functions to that of CPOs and continuous functions. Suppose that we find a continuous
monoidM, a polynomial ∆-algebra P overM and a continuous monoid homomorphism
h :M→ [D⇒ D] such that h(P) = cons(Prod). From Proposition 4.2, we have

1. ~cons(Prod)� = ~h(P)� v h ◦ ~P�,
2. for any t ∈ T∆, we have ~cons(Prod)� t = h (~P� t), and
3. ~cons(Prod)� = h ◦ ~P� if and only if h is strict.

Algebraic Fusion and its Improvement 27

Unlike the improvement in Section 3, we now have the equality ~cons(Prod)� = h◦ ~P� if
and only if h is strict; in general, we merely have the inequality ~cons(Prod)� v h ◦ ~P�,
which means that h◦ ~P� is more likely to terminate than the result of the algebraic fusion.
To examine this phenomenon in detail, we revisit the example of algebraic fusion of rev
with itself.

Example 4.5 In the continuous setting, the reverse function rev is interpreted as a contin-
uous function rev∞ ∈ [T∞list →⊥ [T∞list → T∞list]] that satisfies (C-prod’) and (C-cons’). By
applying algebraic fusion to rev∞ and rev∞ in the same way as in Example 3.1, we obtain
revrev∞ ∈ [T∞list →⊥ [[T∞list → T∞list]→ [T∞list → T∞list]]], which satisfies

revrev∞ t (rev∞ u) = rev∞ (rev∞ t u)

by Theorem 4.4.
Similarly to Example 3.3, we can improve revrev∞ by

• the continuous monoid [T∞list ⇒ T∞list]
op,

• the continuous monoid homomorphism h∞ : [T∞list ⇒ T∞list]
op → [[T∞list → T∞list] ⇒

[T∞list → T∞list]] defined by h∞ = λ f g . g ◦ f and
• the polynomial list-algebra P∞ over [T∞list ⇒ T∞list]

op, which is the same as P in Ex-
ample 3.3 except that P’s single coefficient λx . a :: x ∈ T list → T list is replaced with
the continuous function λx . a :: x ∈ [T list → T list].

However, here a subtlety about termination behavior slips in; the continuous monoid
homomorphism h∞ is not strict, because

h∞(⊥) = λg . g ◦ ⊥ , ⊥.
Hence, from Proposition 4.2 we merely have the following inequality:

revrev∞ t v h∞ (~P∞� t)

and the inequality becomes an equality only for total and finite lists t ∈ T list. As we
have seen in Example 3.3, ~P∞� coincides with the continuous list-concatenation func-
tion app∞. From Theorem 4.4, we obtain:

rev∞ (rev∞ t s) u = revrev∞ t (rev∞ s) u

v h∞ (app∞ t) (rev∞ s) u

= rev∞ s (app∞ t u),

and the inequality becomes an equality for t ∈ T list. This indicates that the improvement
does not have the same termination behavior as revrev∞ for partial and infinite lists. This
correctly captures the actual differences between rev (rev t s) u and rev s (app t u) in
call-by-name languages with lazy lists.

Example 4.6 In the continuous setting, the recursive definition of dmg
f in Section 3.1 gives

a continuous function dmg
f ∈ [T∞list →⊥ [T∞list → T∞list]]. We can safely replace monoids and

monoid homomorphisms used in the derivation process of (17) with continuous counter-
parts, because monoid homomorphisms h, π1, π2 used in the process are all strict. Hence
the fusion law (17) holds for partial and infinite lists as well.

28 S. Katsumata and S. Nishimura

5 A Semantic Higher-Order Removal

The motivation for introducing the concept of improvement in Section 3 was that when
both a producer and a consumer have an accumulating parameter, their algebraic fusion
(hence, shortcut fusion) yields a higher-order function. This problem has already been
recognized as a folklore problem, and the second author tackled it in (Nishimura, 2003;
Nishimura, 2004). He introduced a program transformation, called higher-order removal,
that reduces the order of computation. His transformation is designed for a call-by-name
functional language, and transforms a result of shortcut fusion:

f : τ → (σ→ σ)→ (σ→ σ)

satisfying certain syntactic conditions to a function of the following type:

f ′ : τ→ (σ × σ)→ (σ × σ),

which essentially performs the same computation as f .
Here, we give a similar program transformation in a simple and clean way using the

concept of improvement with appropriate monoids and monoid homomorphisms. Let D be
a CPO. We introduce two continuous monoids DB,D∞ and two strict continuous monoid
homomorphisms αD : DB → D∞, βD : D∞ → [[D → D] ⇒ [D → D]] (the subscript of
α, β may be omitted) that play a central role in the semantic representation of higher-order
removal given below.

1. The first continuous monoid is DB = ([D → D] × [D2 → D], (idD, π2),@), where
the multiplication (f , g) @ (f ′, g′) is defined by

(f , g) @ (f ′, g′) = (f ′ ◦ f , λ(x, y) . g (x, g′ (f x, y))).

To give an intuitive understanding of this monoid, we give a graphical presentation
of elements of DB by circuits processing bidirectional (say, inbound and outbound)
information flow. We draw the circuit corresponding to (f , g) ∈ DB as shown in Fig-

g

f f(x)

g(x,y)

x

y

Fig. 1. Diagram for (f , g) ∈ DB

ure 1. It processes inbound and outbound information by f and g respectively. This
circuit has an asymmetry in that g can refer to the input of f . Under this graphi-
cal presentation, the input-output relation of (f , g) @ (f ′, g′) can be captured by the
following series circuit:

2. The second continuous monoid is D∞ = ([D2 → D2], idD2 ,∞) whose multiplication
f ∞ g is defined by:

f ∞ g(x, y) = let ((, q), (r,)) = Y (λ((p,), (, s)) . (f (x, s), g (p, y))) in (r, q),

where Y ∈ [[(D2)2 → (D2)2] → (D2)2] is the least fixed point operator. If we are

Algebraic Fusion and its Improvement 29

g

f

g’

f’ f’(f x)

g(x,g’(f x,y)) y

x

Fig. 2. Diagram for (f ,g) @ (f ′, g′)

allowed to use recursive let expressions (see Appendix A for the formal definition),
an alternative definition of f ∞ g is

f ∞ g(x, y) = let (p, q) = f (x, s) ; (r, s) = g (p, y) in (r, q).

A graphical presentation of this monoid is the following: an element of this monoid
is a processing box with two input terminals on the left and two output terminals
on the right. The multiplication of two elements in this monoid corresponds to the
wiring of two processing boxes as follows:

f g

Fig. 3. Diagram for f ∞ g

The lower output of the left box is connected to the lower input of the right box,
while the upper output of the right box is feed-backed to the upper input of the left
box.

3. Two strict continuous monoid homomorphismsα : DB → D∞ and β : D∞ → [[D→
D]⇒ [D→ D]] are defined by

α (f , g) = λ(x, y) . (f x, g (x, y))

β f = λwx . let (p, q) = f (x,w p) in q

(see Appendix A for the verification of α and β being monoid homomorphisms).
Below we give the behavior of α and β in terms of the action on circuit diagrams.

• Monoid homomorphism α flips over g in Figure 1 and regards the entire circuit
as a processing box with two input terminals on the left and two output terminals
on the right.

• Monoid homomorphism β constructs from f ∈ [D2 → D2] an action which maps
the one-input one-output processing box w drawn on the left in Figure 4 to the
one-input one-output circuit described on the right in Figure 4.

We note that the composition β ◦ α behaves as follows:

β (α (f , g)) = λwx . g (x,w (f x)). (20)

Definition 5.1 Let f ∈ [T∞
Σ
→⊥ [[D → D] → [D → D]]] be a result of algebraic

fusion such that f can be improved with the monoid DB, the strict continuous monoid

30 S. Katsumata and S. Nishimura

w f
w

β(f)

Fig. 4. Action of β(f)

homomorphism β ◦ α and a polynomial Σ-algebra P over DB. Then we call ~α(P)� ∈
[T∞

Σ
→⊥ [D2 → D2]] the higher-order removal of f .

There is an equivalent but more syntactic description of higher-order removal. Suppose
that a result f of algebraic fusion has the following recursive definition for each o ∈ ∆(n):

f (o(t1, · · · , tn)) = (λwx . g1 (x,w (f1 x))) ◦ f ti1 ◦ (λwx . g2 (x,w (f2 x))) ◦
· · · ◦ f til ◦ (λwx . gl+1 (x,w (fl+1 x))),

where l is a natural number, 1 ≤ i1, · · · , il ≤ n are indices of subterms and f1, · · · , fl+1 ∈
[D → D] and g1, · · · , gl+1 ∈ [D2 → D] are continuous functions. That f can be written in
this form is equivalent to the improvability of f with some polynomial algebra P over DB.
Then the higher-order removal of f is a strict continuous function f ′ ∈ [T∞

Σ
→⊥ [D2 →

D2]] defined by

f ′(o(t1, · · · , tn))(x, y) =let (q1, s1) = (f1 x, g1 (x, r1)) ;

(p2, r1) = f ′ ti1 (q1, s2) ;

· · ·
(q j, s j) = (f j p j, g j (p j, r j)) ;

(p j+1, r j) = f ′ ti j (q j, s j+1) ;

· · ·
(repeat the above pattern till j = l)

(ql+1, sl+1) = (fl+1 pl+1, gl+1 (pl+1, y)) in

(ql+1, s1).

(21)

This f ′ is exactly the recursive definition of ~α(P)� in Definition 5.1.
We show that higher-order removal retains the computational content of the original

program, and it can be recovered via β. Since β is a strict monoid homomorphism, the
following theorem is an immediate consequence of Proposition 4.2.

Theorem 5.2 Let f ∈ [T∞
Σ
→⊥ [[D→ D]→ [D→ D]]] be a result of an algebraic fusion

such that f can be improved with the monoid DB, the strict monoid homomorphism β ◦ α,
and a polynomial Σ-algebra P over DB.

Then the higher-order removal ~α(P)� ∈ [T∞
Σ
→⊥ [D2 → D2]] of f satisfies

f = β ◦ ~α(P)�.

As we discussed in Section 1.2, algebraic fusion can handle fewer producer functions
than the modern syntactic fusion transformations using recursive let bindings, such as lazy
composition and Nishimura’s higher-order removal. However, within the restricted class of

Algebraic Fusion and its Improvement 31

producers, algebraic fusion plus the semantic higher-order removal can achieve the same
transformation as these precursors. Below we see an example of such transformation.

We instantiate the set A of elements of lists with {0, · · · , 9,+}. We also assume the ex-
istence of a continuous function showsk ∈ [T∞list → T∞list] which adds the numeric repre-
sentation of a natural number k in front of a given list. Furthermore, we introduce a new
signature term:

term = {Num0
k | k ∈ N} ∪ {Add2}.

We consider the fusion of the following functions asc ∈ [T∞term →⊥ [T∞term → T∞term]]
and unp ∈ [T∞term →⊥ [T∞list → T∞list]], which were introduced as a running example of lazy
composition by Voigtländer (2004).

asc Numk y = Add (y,Numk)
asc (Add (t, u)) y = asc t (asc u y)

unp Numk y = showsk y
unp (Add (t, u)) y = unp t (′+′ :: unp u y)

Voigtländer applied his lazy composition method to asc (as a producer) and unp (as
a consumer) and obtained the following function ascunp (function ascunp′′ in p. 131,
(Voigtländer, 2004); the order of outputs is swapped):

ascunp Numk (x, y) = (′+′ :: showsk x, y)
ascunp (Add (t, u)) (x, y) = let (p, q) = ascunp t (x, s) ;

(r, s) = ascunp u (p, y)
in (r, q).

He then applied a post-fusion transformation, called tuple elimination, and derived the
following simpler function ascunp′ (function ascunp′′′′ in p.132, (Voigtländer, 2004)):

ascunp′ Numk x = ′+′ :: showsk x
ascunp′ (Add (t, u)) x = ascunp′ u (ascunp′ t x)

In Section 5.2 of (Voigtländer, 2004), he also pointed out that ascunp′ shows different
termination behavior from ascunp when partial or infinite lists are supplied.

We aim to derive the same results using algebraic fusion and improvement. We first
apply algebraic fusion to asc and unp. To see that the producer asc satisfies (C-prod’), we
transform the definition of asc using the function composition and fill∞.

asc Numk = λy . Add (y,Numk)
= fill∞(Add ([−],Numk))

asc (Add (t, u)) = λy . asc t (asc u y)
= (asc t) ◦ (asc u)

From this, the following polynomial term-algebra Asc over C∞term satisfies asc = ~Asc�
(c.f. (C-prod-s)):

Asc = {AscNumk = Add ([−],Numk),

AscAdd[X, Y] = X · Y}.
The consumer unp satisfies (C-cons’) since it is a recursive function over T∞term. So we

32 S. Katsumata and S. Nishimura

extend unp to a strict continuous monoid homomorphism unp : C∞term → [[T∞list → T∞list]⇒
[T∞list → T∞list]] as follows:

unp [−] w x = w x
unp Numk w x = showsk x
unp (Add (t, u)) w x = unp t w (′+′ :: unp u w x).

The image of Asc by unp is

unp(Asc) = {unp(AscNumk) = λwx . w (′+′ :: showsk x)

unp(AscAdd)[X, Y] = X ◦ Y},

and the result of the algebraic fusion is ~unp(Asc)� ∈ [T∞term →⊥ [[T∞list → T∞list]→ [T∞list →
T∞list]]]. We display its recursive definition below:

~unp(Asc)� Numk = λwx . w (′+′ :: showsk x)
~unp(Asc)� (Add (t, u)) = ~unp(Asc)� t ◦ ~unp(Asc)� u.

We next derive ascunp and ascunp′ by improvement using appropriate monoids. For
deriving ascunp, we apply the semantic higher-order removal (Definition 5.1). We observe
that the above result can be improved by

• the continuous monoid (T∞list)
B,

• the strict continuous monoid homomorphism

βT∞list
◦ αT∞list

: (T∞list)
B → [[T∞list → T∞list]⇒ [T∞list → T∞list]]

and

• the following polynomial term-algebra Q over (T∞list)
B:

Q = {QNumk = (λx . ′+′ :: showsk x, π2)

QAdd[X, Y] = X @ Y}.

The single coefficient in QNumk is obtained by finding continuous functions f , g sat-
isfying

β ◦ α(f , g) = λwx . g (x,w (f x)) = λwx . w (′+′ :: showsk x).

A solution is f = λx . ′+′ :: showsk x and g = π2.

Hence we can give the higher-order removal of ~unp(Asc)�. By Definition 5.1, it is ~α(Q)� ∈
[T∞term →⊥ [(T∞list)

2 → (T∞list)
2]] where the image α(Q) is

α(Q) = {α(QNumk) = λ(x, y) . (′+′ :: showsk x, y)

α(QAdd)[X, Y] = X ∞ Y}.

By expanding the recursive definition of ~α(Q)�, we conclude ~α(Q)� = ascunp. We
can also directly derive ascunp from the syntactic formulation of higher-order removal

Algebraic Fusion and its Improvement 33

(eq. (21) in page 30). From Theorem 5.2, ascunp satisfies

unp (asc x y)

= ~unp(Asc)� x (unp y) by Theorem 4.4

= β (ascunp x) (unp y) by Theorem 5.2

= λz . let (p, q) = (ascunp x) (z, unp y p) in q by Definition of β.

Next, we derive ascunp′. We observe that the algebraic fusion result ~unp(Asc)� of asc
and unp can be improved by

• the continuous monoid [T∞list ⇒ T∞list]
op,

• the non-strict continuous monoid homomorphism h∞ : [T∞list ⇒ T∞list]
op → [[T∞list →

T∞list]⇒ [T∞list → T∞list]] defined by h∞ = λ f g . g ◦ f (c.f. Example 4.5) and

• the following polynomial term-algebra R over [T∞list ⇒ T∞list]
op:

R = {RNumk = λx . ′+′ :: showsk x

RAdd[X, Y] = X • Y}.

Again, the single coefficient at RNumk is obtained by finding a continuous function f
satisfying

h∞(f) = λg . g ◦ f = λwx . w (′+′ :: showsk x).

A solution is f = λx . ′+′ :: showsk x.

From these data, we obtain an improvement ~R� ∈ [T∞term →⊥ [T∞list → T∞list]] of ~unp(Asc)�.
The recursive definition of ~R� coincides with that of ascunp′. Since the monoid homo-
morphism h∞ is non-strict, we have the following inequation:

unp (asc x y)

= ~unp(Asc)� x (unp y) by Theorem 4.4

v h∞ (ascunp′ x) (unp y) by Proposition 4.2-1

= (unp y) ◦ (ascunp′ x) by Definition of h∞.

This inequation correctly captures the change of the termination behavior, which is dis-
cussed in Section 5.2 of (Voigtländer, 2004).

Finally, we point out a relationship between the above two improvements. There is a
non-strict continuous monoid homomorphism j : [T∞list ⇒ T∞list]

op → (T∞list)
B defined by

j(f) = (f , π2),

and we have Q = j(R).

34 S. Katsumata and S. Nishimura

6 Summary of Continuous Monoids Used in Improvement

We present a diagram which summarizes continuous monoids and continuous monoid ho-
momorphisms that appeared in this paper.

[D⇒ D]op

j

!!
(idD,−)

��

h∞

((
[D⇒ D] × [D⇒ D]op k // DB

αD // D∞
βD // [[D⇒ D]⇒ [D⇒ D]]

[D⇒ D]

(−,idD)

OO

• In the above diagram, k is a strict continuous monoid homomorphism defined by
k(f , g) = (g, λ(x, y) . f (y)). The monoid homomorphism j : [D⇒ D]op → DB in the
previous section is actually the composite k ◦ (idD,−).

• The non-strict continuous monoid homomorphism h∞ is used to improve the result
of algebraic fusion of rev∞ with itself in Example 4.5. We have h∞ = βD ◦ αD ◦ j.

• The continuous monoid homomorphismsαD and βD are used in the semantic higher-
order removal in Section 5.

• The composite βD ◦ αD ◦ k is equal to (the continuous version of) the monoid homo-
morphism h used in the improvement of the result of algebraic fusion of dmap with
itself in Section 3.1 (see also Example 4.6).

• There is a non-strict continuous monoid homomorphism (−, idD) : [D ⇒ D] →
[D ⇒ D] × [D ⇒ D]op, and the composite βD ◦ αD ◦ k ◦ (−, idD) is equal to the
continuous monoid homomorphism f 7→ λg . f ◦ g. This is strict, and can be used to
improve the result of algebraic fusion of the list append function app∞ (see Example
4.5) with itself. The improvement tells us the associativity of app∞.

7 Conclusion

We have developed a new fusion method called algebraic fusion, and its subsequent im-
provement process, as a general solution to the problem of fusing a producer function and a
consumer function which have one accumulating parameter. Built on top of the elementary
theory of universal algebra and monoids, our solution provides a simple but flexible frame-
work that gives a clean account of existing fusion methods and also establishes semantic
justification for those methods that previously relied on delicate arguments.

As handling accumulating parameters in fusion transformation is a fairly complicated
task, we believe that semantic abstractions of the fusion process, such as the algebraic pre-
sentation given in this paper, are a quite effective tool for analyzing the existing fusion
methods and even devising new ones. The precursor fusion techniques, which we have
summarized in the Introduction, provide powerful solutions but are not easily adapted for
further extensions and improvements, as they are so densely formulated in their own syn-
tactic realm. We hope that the algebraic exposition in this paper contributes to a deeper
understanding of different fusion techniques and that it leads to the development of new
techniques.

Algebraic Fusion and its Improvement 35

Acknowledgment

The first author thanks Zhenjiang Hu, who kindly offered an opportunity to present the
early version of this work in Tokyo Programming Seminar. Janis Voigtländer’s detailed
comments and constructive criticism significantly contributed for revising this paper. We
are grateful to Samuel Lindley for proofreading the draft of this paper, to Masahito Hasegawa
for his comment on the connection between Figure 3 and Int-construction, and to Takeshi
Abe for fruitful discussions. Last but not least, the authors thank Julia Lawall and anony-
mous referees for their valuable comments.

References

Abramsky, Samson. (1996). Retracting some paths in process algebra. Pages 1–17 of: Proc. of
CONCUR ’96, concurrency theory, 7th international conference. Lecture Notes in Computer
Science, vol. 1119. Springer.

Burstall, Rod M., & Darlington, John. (1977). A transformation system for developing recursive
programs. Journal of ACM, 24(1), 44–67.

Chin, Wei-Ngan. (1994). Safe fusion of functional expressions II: Further improvements. Journal of
functional programming, 4(4), 515–555.

Engelfriet, Joost, & Vogler, Heiko. (1985). Macro tree transducers. Journal of computer and system
sciences, 31, 71–146.

Fülöp, Zoltán, & Vogler, Heiko. (1998). Syntax-directed semantics: Formal models based on tree
transducers. Monographs in Theoretical Computer Science. Springer Verlag.

Ganzinger, Harald, & Giegerich, Robert. 1984 (June). Attribute coupled grammars. Pages 157–
170 of: Proceedings of the ACM SIGPLAN ’84 symposium on compiler construction. SIGPLAN
Notices, vol. 19(6).

Ghani, Neil, Johann, Patricia, Uustalu, Tarmo, & Vene, Varmo. (2005). Monadic augment and gen-
eralised short cut fusion. Pages 294–305 of: International conference on functional programming
(ICFP ’05). ACM Press.

Ghani, Neil, Uustalu, Tarmo, & Vene, Varmo. (2006). Generalizing the augment combinator. Pages
65–78 of: Trends in functional programming 5. Intellect.

Giegerich, Robert. (1988). Composition and evaluation of attribute coupled grammars. Acta infor-
matica, 25(4), 355–423.

Gill, Andrew. (1996). Cheap deforestation for non-strict functional languages. Ph.D. thesis, Univer-
sity of Glasgow.

Gill, Andrew, Launchbury, John, & Peyton Jones, Simon. (1993). A short cut to deforestation. Pages
223–232 of: Proc. of the conference on functional programming languages and computer archi-
tecture. ACM Press.

Goguen, Joseph A., Thatcher, James W., Wagner, Eric G., & Wright, Jesse B. (1977). Initial algebra
semantics and continuous algebras. Journal of ACM, 24(1), 68–95.

Hu, Zhenjiang, Iwasaki, Hideya, & Takeichi, Masato. (1999). Calculating accumulations. New
generation comput., 17(2), 153–173.

Johann, Patricia. (2002). A generalization of short-cut fusion and its correctness proof. Higher-order
and symbolic computation, 15(4), 273–300.

Joyal, A., Street, R., & Verity, D. (1996). Traced monoidal categories. Mathematical proceedings of
the cambridge philosophical society, 119(3), 447–468.

Kakehi, Kazuhiko, Glück, Robert, & Futamura, Yoshihiko. (2001). On deforesting parameters of
accumulating maps. Pages 46–56 of: Logic based program synthesis and transformation, 11th

36 S. Katsumata and S. Nishimura

international workshop, LOPSTR 2001. Lecture Notes in Computer Science, vol. 2372. Springer
Verlag.

Kühnemann, Armin. (1998). Benefits of tree transducers for optimizing functional programs. Pages
146–157 of: Foundations of software technology and theoretical computer science 18th confer-
ence. Lecture Notes in Computer Science, vol. 1530. Springer Verlag.

Ma, QingMing, & Reynolds, John C. (1991). Types, abstractions, and parametric polymorphism, part
2. Pages 1–40 of: Proc. of mathematical foundations of programming semantics (MFPS 1991).
Lecture Notes in Computer Science, vol. 598. Springer Verlag.

Malcolm, G. (1989). Homomorphisms and promotability. Pages 335–347 of: Mathematics of pro-
gram construction. Lecture Notes in Computer Science, vol. 375. Springer Verlag.

Nishimura, Susumu. (2003). Correctness of a higher-order removal transformation through a rela-
tional reasoning. Pages 358–375 of: Programming language and systems, first Asian symposium,
APLAS 2003 proceedings. Lecture Notes in Computer Science, vol. 2895. Springer Verlag.

Nishimura, Susumu. (2004). Fusion with stacks and accumulating parameters. Pages 101–112 of:
Proc. of the 2004 ACM SIGPLAN symposium on partial evaluation and semantics-based program
manipulation. ACM Press.

Ohori, Atsushi, & Sasano, Isao. (2007). Lightweight fusion by fixed point promotion. Pages 143–154
of: Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on principles of program-
ming languages. ACM press.

Plotkin, G., & Abadi, M. (1993). A logic for parametric polymorphism. Pages 361–375 of: In-
ternational conference on typed lambda calculi and applications, TLCA ’93. Lecture Notes in
Computer Science, vol. 664. Springer.

Sheard, Tim, & Fegaras, Leonidas. (1993). A fold for all seasons. Pages 233–242 of: International
conference on functional programming languages and computer architecture (FPCA’93). ACM
Press.

Svenningsson, Josef. (2002). Shortcut fusion for accumulating parameters & zip-like functions.
Pages 124–132 of: Proc. of the 2002 international conference on functional programming.

Takano, Akihiko, & Meijer, Erik. (1995). Shortcut deforestation in calculational form. Pages 306–
313 of: Proc. of international conference on functional programming languages and computer
architecture (FPCA’95). ACM Press.

Voigtländer, Janis. (2004). Using circular programs to deforest in accumulating parameters. Higher-
order and symbolic computation, 17(1), 129–163.

Voigtländer, Janis. (2007). Formal efficiency analysis for tree transducer composition. Theory of
computing systems, 41(4), 619–689.

Voigtländer, Janis, & Kühnemann, Armin. (2004). Composition of functions with accumulating
parameters. Journal of functional programming, 14(3), 317–363.

Wadler, Philip. (1989). Theorems for free! Pages 347–359 of: International conference on functional
programming and computer architecture (FPCA’89). Addison-Wesley.

Wadler, Philip. (1990). Deforestation: transforming programs to eliminate trees. Theoretical com-
puter science, 73(2), 231–248.

A Proof of α and β being monoid homomorphisms

Definition A.1 Let D1, · · · ,Dn,D be CPOs and fi ∈ [D1 × · · · ×Dn → Di] (1 ≤ i ≤ n) and
g ∈ [D1×· · ·×Dn → D] be continuous functions. We also assume that values fi(x1, · · · , xn)
and g(x1, · · · , xn) can be expressed by mathematical expressions Mi and N using xi ∈ Di

(1 ≤ i ≤ n). By recursive let expression

let x1 = M1 ; . . . ; xn = Mn in N,

Algebraic Fusion and its Improvement 37

we mean the following element in D:

g

Y
λv ∈

n∏

i=1

Di . (f1(v), · · · , fn(v))




where Y ∈ [[
∏n

i=1 Di →∏n
i=1 Di]→∏n

i=1 Di] is the least fixpoint operator.

We also allow tuple patterns to appear in the binding, like

let (x, y) = M ; z = L in N.

We regard this as an abbreviation of

let v = M[π1(v)/x, π2(v)/y] ; z = L[π1(v)/x, π2(v)/y] in N[π1(v)/x, π2(v)/y]

where π1, π2 are projections from a product CPO.
There are some equations that hold for recursive let expressions:

(let V in L) = (let π(V) in L)

(let (x, y) = (M1, M2) ; V in L) = (let x = M1 ; y = M2 ; V in L)

(let x = f (· · · , let V in M, · · ·) ; W in L) = (let x = f (· · · , M, · · ·) ; V ; W in L)

(let x = M ; V in L) = (let V[M/x] in L[M/x]) (x < FV(M))

where V and W are meta-variables denoting (possibly empty) sequences of variable bind-
ings x1 = M1 ; · · · ; xn = Mn. In the first equation π(V) is a permutation of the variable
bindings in V. In the last equation V[M/x] is the binding obtained by substituting M for
every occurrence of x in V.

Below we prove that the continuous functionsαD and βD defined in Section 5 are monoid
homomorphisms. It is obvious that αD(idD, π2) = idD2 and βD(idD2) = id[D→D].

αD(f , g)∞ αD(f ′, g′)(x, y)

= let (p, q) = (f x, g(x, s)) ; (r, s) = (f ′ p, g′(p, y)) in (r, q)

= let p = f x ; q = g(x, s) ; r = f ′ p ; s = g′(p, y) in (r, q)

= (f ′ (f x), g(x, g′(f x, y)))

= αD((f , g) @ (f ′, g′))(x, y).

βD(f ∞ g) h x

= let (p, q) = (let (p′, q′) = f (x, s) ; (r, s) = g(p′, h p) in (r, q′)) in q

= let (p′, q′) = f (x, s) ; (r, s) = g(p′, h p) ; (p, q) = (r, q′) in q

= let (p′, q′) = f (x, s) ; (r, s) = g(p′, h r) in q′

= let (p′, q′) = f (x, βD g h p′) in q′

= ((βD f) ◦ (βD g)) h x.

