
Categorical Descriptional Composition

Shin-ya Katsumata

Research Institute for Mathematical Sciences
Kyoto University, Kyoto, 606-8502, Japan

sinya@kurims.kyoto-u.ac.jp

Abstract. Descriptional composition is a method to fuse two term transforma-
tion algorithms described by attribute couplings (AC, attribute grammars over
terms) into one. In this article, we provide a general categorical framework for
the descriptional composition based on traced symmetric monoidal categories and
the Int construction by Joyal et al. We demonstrate that this framework can han-
dle the descriptional composition of SSUR-ACs, nondeterministic SSUR-ACs,
quasi-SSUR ACs and quasi-SSUR stack ACs.

1 Introduction

Descriptional composition[6–8] is a method to fuse two term transformation algorithms
described by attribute couplings (ACs; attribute grammarsover terms) into one. The AC
yielded by the descriptional composition computes the composition of two ACs with-
out constructing the intermediate data structure passed between two ACs; hence it saves
time and space in many cases. The descriptional compositionwas first introduced as an
optimisation method for compilers described by ACs [7]. Around the same time Bartha
introduced a similar composition method for linear attributed tree transformations [1].
Later, it was realised that ACs can be used to represent functional programs with ac-
cumulating parameters [10], and the descriptional composition inspired various fusion
transformations of such functional programs [19, 22].

The descriptional composition was first given for the ACs consisting only of term
constructors [7]. Later, extensions of the ACs have been studied in [18, 20, 3]. In [3],
Boyland considered an extension of ACs with conditional expressions. In [18], Nakano
introduces stacks to ACs so that complex parsing functions can be expressed. In each
work, the descriptional composition was also considered tothese extended ACs. In
general, the descriptional composition is sensitive on thelanguage describing ACs, and
formulating the descriptional composition verifying its correctness tend to be involved
when expressive power of the language increases.

The question we address here is to find a mathematical framework that can uni-
formly treat these extensions of ACs and the descriptional composition of them. In this
paper, we propose such a general categorical framework based on the theory oftraced
symmetric monoidal categories(TSMCs) and theInt constructionby Joyal et al. The
key observation in the categorical treatment of ACs and the descriptional composition
is that every attribute grammar determines a traced symmetric strict monoidal functor

F : L(Σ)→ Int (C) whereL(Σ) is a free TSMC over a signatureΣ, and especially every
AC satisfyingsyntactic single use condition (SSUR), which is the essential condition for
the descriptional composition to work, determines a tracedsymmetric monoidal functor
G : L(Σ)→ Int (L(∆)). With this functorial presentation, the descriptional composition
becomes the composition of functors, and its associativitycan be easily verified. This
story scales up to the TSMCs with extra structures, providedthat theInt construction
is also extended to such TSMCs; examples include nondeterministic ACs, quasi-SSUR
ACs (an affine version of SSUR AC), and ACs with stacks [18].

In this paper we do not exclude circular terms and recursive computation as mean-
ingless things. Hence every AG assigns some meaning to a given term.

Conventions and NotationsSignatures are all many-typed and first-order. We reserve
∆, Σ, Ξ for ranging over signatures. Byρ ∈ Σ ando ∈ Σρ1···ρn→ρ we mean thatρ is a type
of Σ ando is an operator of typeρ1 · · ·ρn → ρ, respectively. We declare the signature
for binary trees, cons-lists and natural numbers by

Σtree= ({∗}, L∗,N∗∗→∗), Σlist = ({∗}, [] ∗, a :: (−)∗→∗), Σnat = ({∗},Z∗,S∗→∗).

For a typeσ ∈ Σ and sequence ofΣ-typesρ1 · · · ρn, by TσΣ (ρ1 · · · ρn) we mean the set
of openΣ-terms that may contain some variablesxi of type ρi (1 ≤ i ≤ n). We then
extend this notation byTσ1···σm

Σ
(ρ1 · · · ρn) = Tσ1

Σ
(ρ1 · · · ρn) × · · · × Tσm

Σ
(ρ1 · · · ρn). By Σ+

we mean thatΣ contains a special type #; such signature is calledrooted. We assume
that the readers are familiar with the concept of symmetric monoidal categories [17].
We also employ the 2-category theory and the theory of pseudo-monads and pseudo-
distributive laws; see e.g. [21].

2 Classical Attribute Couplings and Descriptional Composition

A classical attribute grammar (AG) for a signature∆ is a tripleA = (I ,S, a) where for
each typeρ ∈ ∆, Iρ andSρ are resp. sets of inherited and synthesised attribute values,
and for each operatoro ∈ ∆ρ1,··· ,ρn→ρ, ao is a function called theattribute calculation
rule1:

ao : Sρ1 × · · · × Sρn × Iρ→ Sρ × Iρ1 × · · · × Iρn. (1)

This function captures the input-output relation of a computation unit that processes
bidirectional information flow (Figure 1, left). Given a∆-term M, we connect the as-
signed computation units according to the shape ofM (Figure 1, right). The function
corresponding to the entire circuit is the meaningA[[M]] assigned toM by the AGA.
Depending on the configuration of the attribute calculationrules, such function may
not exist in general, but if any combination of attribute calculation rules does not yield
cyclic information dependency (such AGs are callednon-circular), the functionA[[M]]
uniquely exists for anyM. See [14, 15] for the detail.

An attribute coupling(AC) from ∆ to Σ is a special AG such that the set assigned
to Iρ (resp.Sρ) is a setTσ1,··· ,σn

Σ of tuples ofΣ-terms for someσ1, · · · , σn ∈ Σ, and

1 This form of attribute calculation rule is calledBochmann normal form.

Fig. 1. Attribute Grammars

each attribute calculation rule comprises only ofΣ-operators rather than arbitrary func-
tions. Briefly speaking, ACs are AGs constructingΣ-terms. We can extract the essential
information from such AGs and redefine ACs from∆ to Σ as the tupleA = (I ,S, a),
where for each typeρ ∈ ∆, Iρ andSρ are sequences ofΣ-types, and for each operator
o ∈ ∆ρ1,··· ,ρn→ρ, ao is a tuple of (open)Σ-terms:

ao ∈ TSρ,Iρ1,··· ,Iρn

Σ (Sρ1, · · · ,Sρn, Iρ).

We writeAC(∆, Σ) for the set of ACs from∆ toΣ. We assume that ACs (I ,S, a) between
the signatures containing the special type # satisfyI# = ǫ andS# = #. With this con-
vention we can view every non-circular ACA from ∆+ to Σ+ as a term transformation
functionTA : T#

∆+
→ T#

Σ+ , defined byTA(M) = A[[M]].
LetA ∈ AC(∆+, Σ+) andB ∈ AC(Σ+, Ξ+) be non-circular ACs. We seek for an AC

B c©A such thatT(B c©A) = TB◦TA. In general such AC may not exist, but whenA
satisfies a condition calledsyntactic single-use restriction (SSUR), we can buildB c©A
by thedescriptional composition, which we illustrate below.

Suppose that the attribute calculation rules ofA andB look like the left of Figure
2. There,A assigns to a∆+-operatorf a computation unit that constructsΣ+-terms,

Fig. 2. The descriptional composition

which is drawn as a circuit. Similarly,B assigns to aΣ+-operatora a computation unit
b, which is just drawn as a round box. We now replace each wire inthe right hand side
of the attribute calculation rule ofA with bidirectional wire, and replace eachΣ+-term
constructor with the computation unit assigned byB. The result of this replacement is
drawn on the right of Figure 2, which is a new attribute coupling from∆+ toΞ+. This is
the descriptional compositionB c©A.

The hidden point in the above process is that the computationunit (circuit) assigned
byA should not contain any branching wires nor terminals. This is because we do not

know how to make branches and terminals bidirectional (Figure 3). This suggests that

? ?

Fig. 3.How to Make Branches and Terminals Bidirectional?

each attribute calculation rule assigned byA should use each variable exactly once, and
an AC satisfying this linearity condition is calledsyntactic single use restriction(SSUR)
AC. We will see its precise definition in Section 2.2, and reformulate it as an AG in a
linear recursive language, which we introduce below.

2.1 The Linear Recursive LanguageL(Σ)

We introduce a simply-typed first-order linear language with recursive declarations
calledL(Σ). It has only one form of raw-expressions:

λx1, · · · , xn . let y1 = M1, · · · , yl = Ml in z1, · · · , zm,

and they are given a typeσ1, · · · , σn → τ1, · · · , τm by the type system in Figure 4,
where U and D are typing contexts defined by

U = Γ1 ∪ · · · ∪ Γn ∪ {z1 : τ1, · · · , zm : τm}

D = {x1 : σ1, · · · , xn : σn, y1 : ρ1, · · · , yl : ρl},

such thatxi , y j, zk and variables inΓ1, · · · , Γn are different from each other. The leading
λ of expressions is a formal binder forx1, · · · , xn, rather than the lambda abstraction in
the lambda calculus. Expressions are treated moduloα-equivalence.

Expressions ofL(Σ) are identified by the rules in Figure 4, where the sequence of
variable declarations afterlet is abbreviated asD. The first axiom allows us to permute
D without affecting the meaning of expressions. In the secondaxiom,D[w/v] denotes
the sequence of variable declarations obtained by replacing v in D with w. This axiom
allows us to forwardv to w whenv = w is contained inD.

Here are some examples ofL(Σtree)-expressions:

⊢M λx . let y = N(l, x), l = L in y : ∗ → ∗

⊢M λx, y, z . let w = N(x,w), l = L, v = N(l, z) in y, v : ∗∗∗ → ∗∗. (2)

Note that in (2) the variablew can not be used for output due to the linearity constraint.
This means that when the underlying signature has a binary operator then there is a way
to discard inputs.

ρ ∈ Σ

x : ρ ⊢E x : ρ
o ∈ Σρ1···ρn→ρ

x1 : ρ1, · · · , xn : ρn ⊢E o(x1, · · · , xn) : ρ

Γ1 ⊢E M1 : ρ1 · · · Γl ⊢E Ml : ρl U = D
⊢M λx . let y1 = M1, · · · , yl = Ml in z : σ1, · · · , σn → τ1, · · · , τm

(λx . let D in z) = (λx . let π(D) in z)

(λx . let v = w,D in z) = (λx . let D[w/v] in z[w/v]) (v , w)

Fig. 4. Type System and Axiom forL(Σ)

2.2 SSUR-ACs as Attribute Grammars inL(Σ)

An AC (I ,S, a) ∈ AC(∆, Σ) satisfies thesyntactic single use restriction(SSUR) [6] if
each attribute calculation rule satisfies the following linearity condition. We letl be
the length of the concatenationSρ, Iρ1, · · · , Iρn, and writeτi (1 ≤ i ≤ l) for the i-th
component of this sequence. We prepare sequencesΓi (1 ≤ i ≤ l) of Σ-types such
thatSρ1, · · · ,Sρn, Iρ is a permutation of the concatenationΓ1, · · · , Γl . We then ask the
attribute calculation rule to be in the following set:

ao ∈ Tτ1Σ (Γ1) × · · · × TτlΣ (Γl), (3)

and, moreover, in thei-th component ofao, each variable occurs exactly once.
We observe that there is a one-to-one correspondence between such a tuple and a

L(Σ)-expression of typeSρ1, · · · ,Sρn, Iρ → Sρ, Iρ1, · · · , Iρn. We exploit this corre-
spondence to redefine the concept of SSUR-AC.

Definition 1. An SSUR-AC from∆ toΣ is a triple (I ,S, a) where for each typeρ ∈ ∆, Iρ
and Sρ are sequences ofΣ-types, and for each o∈ ∆ρ1,··· ,ρn→ρ, ao is anL(Σ)-expression
of type ao : Sρ1, · · · ,Sρn, Iρ → Sρ, Iρ1, · · · , Iρn. We writeSSUR-AC(∆, Σ) for the set
of SSUR-ACs from∆ to Σ. When∆, Σ contains the special type#, we assume that every
SSUR-AC(I ,S, a) from∆ to Σ satisfies I# = ǫ and S# = #.

We note that this correspondence is not surjective, asL(Σ) permits recursively defined
variables that can not be expressed by SSUR-ACs.

3 Categorical Aspect of Attribute Couplings

3.1 L(Σ) as a Traced Symmetric Monoidal Category

We next viewL(Σ) as a category. We regard a sequenceρ = ρ1 · · · ρn of types inΣ as
an object, and an equivalence class of expressions of typeρ → σ as a morphism from
ρ toσ. The composition is defined by

(λx . let D in y) ◦ (λz . let D′ in w) = λz . let D[w/x],D′ in y[w/x];

here we assume that every bound variable in the above expression is distinct from each
other. The categoryL(Σ) has an evident symmetric strict monoidal structure. The unit
object is the empty sequence and the tensor product of two objects is the concatenation
of them. The tensor product of two morphisms is defined by merging two expressions:

(λx . let D in y) ⊗ (λz . let D′ in w) = λx, z . let D,D′ in y,w.

The symmetry morphism is given byλx, y . let ǫ in y, x.
In addition to this, the followingtrace operatorconstructs recursive declarations in

expressions. Letx, y, z,w be sequences of different variables, andρ,σ, τ be sequences
of types such that|x| = |ρ|, |z| = |σ|, |y| = |w| = |τ|. We define thetrace operatortrτρ,σ as
follows:

trτρ,σ(λx, y . let D in z,w) = λx . let y = w,D in z.

A pair of a symmetric monoidal category and a trace operator is calledtraced sym-
metric monoidal category(see Appendix B). In this article we only consider the traced
symmetricstrict monoidal categories, and call them TSMC.2 The above discussion is
summarised as follows:

Proposition 1. The above data makeL(Σ) a TSMC.

We call a symmetric strong monoidal functor between TSMCstracedif it preserves the
trace operator in an evident way (see Appendix B). We writeTSMC for the 2-category
of TSMCs, traced symmetric strong monoidal functors and monoidal natural isomor-
phisms. Its 2-subcategory consisting of traced symmetric strict monoidal functors will
be denoted byTSMCs.

From a traced strong monoidal functor (F, φF
ǫ , φ

F
ρ,σ) ∈ TSMC(L(Σ),C), we can

construct a traced strict monoidal functorStr(F) ∈ TSMCs(L(Σ),C) which is naturally
isomorphic toF. The strict functor is constructed as follows:

Str(F)(ρ1 · · ·ρn) = Fρ1 ⊗ · · · ⊗ Fρn Str(F)(f : ρ→ σ) = (φF
σ)−1 ◦ F f ◦ φF

ρ .

The assignmentF 7→ Str(F), which we will call strictification operator, extends to
an equivalence of categoriesStr : TSMC(L(Σ),C) → TSMCs(L(Σ),C). It satis-
fies the following property: for anyF ∈ TSMCs(L(Σ),D),G ∈ TSMC(D,E),H ∈
TSMC(E, F), we haveStr(F) = F andStr(H ◦G ◦ F) = Str(H ◦ Str(G ◦ F)).

3.2 Monoidal Attribute Grammar

We generalise the underlying semantic domain of AGs to arbitraryC ∈ TSMC. This
generalisation is done by replacing sets with objects and attribute calculation rules with
C-morphisms.

Definition 2 ([12]). LetC ∈ TSMC. A monoidal attribute grammar(MAG) for∆ in C
is a triple (I ,S, a) where for each typeρ ∈ Σ, Iρ and Sρ areC-objects (of domains of
inherited and synthesised attributes), and for each operator o ∈ ∆ρ1···ρn→ρ, ao is a C-
morphism of type ao : Sρ1⊗ · · ·⊗Sρn⊗ Iρ→ Sρ⊗ Iρ1⊗ · · ·⊗ Iρn.We writeMAG (∆,C)
for the collection of MAGs for∆ in C.

2 Every traced symmetric monoidal category is equivalent to atraced symmetric strict monoidal
category (coherence theorem).

Some instances of MAGs are studied in [12]; in the categoryωCPPOof pointed CPOs
andω-continuous functions, monoidal attribute grammars are equivalent to Chirica and
Martin’s K-systems [4]. The categoryRel of sets and relations has traced biproducts
[11], and MAGs in this traced symmetric monoidal category are local dependency
graphs, which are the standard tool to represent dependencies between the attributes
in attribute calculation rules. MAGs over the compact closed structure onRel arerela-
tional attribute grammars[5]. In addition to this, by comparing Definition 1 and 2, we
conclude that SSUR-ACs are exactly MAGs inL(Σ).

Proposition 2. SSUR-AC(∆, Σ) = MAG (∆,L(Σ)).

3.3 MAGs as Algebras in Int(C)

Below we give two concepts that are equivalent to MAG: one is algebras in the cat-
egories obtained by Joyal, Street and Verity’sInt construction [11], and the other is
traced symmetric strict monoidal functors of typeL(Σ)→ Int (C).

Let C ∈ TSMC. The categoryInt (C) is defined by the following data: an object is
a pair (A+,A−) of C-objects, and homsets are defined by

Int (C)((A+,A−), (B+, B−)) = C(A+ ⊗ B−, B+ ⊗ A−).

In categoryInt (C) we can naturally model computation over bidirectional information
flow. An object (A+,A−) denotes the type of upward and downward information; in the
context of attribute grammar, they correspond to the type ofsynthesised and inherited
attributes, respectively. A morphismf : (A+,A−) → (B+, B−) then represents a compu-
tation that processes bidirectional information flow.

We give a symmetric strict monoidal structure toInt (C) by

I Int (C)
= (IC, IC), (A+,A−) ⊗Int (C) (B+, B−) = (A+ ⊗C B+,A− ⊗C B−).

The categoryInt (C) has acompact closed structure[11], which yields thecanonical
trace operatorwith respect to the above symmetric monoidal structure. Themapping
C 7→ Int (C) extends to a 2-endofunctor overTSMC, and moreover, to a pseudo-monad
(Int , (N, n), (M,m), τ, λ, ρ) overTSMC; see Appendix B for the detail.

We extend the concept ofΣ-algebra from the set-theoretic one to the categorical
one. AΣ-algebra in a monoidal categoryC is a pair (A, a) whereA is a family ofC-
objects indexed byΣ-types anda is a family ofC-morphisms indexed byΣ-operators,
such that the type ofao is Aρ1⊗· · ·⊗Aρn→ Aρ for each operatoro ∈ Σρ1···ρn→ρ. We write
AlgΣ(C) for the collection ofΣ-algebras inC. The concept ofΣ-algebras has another
presentation: there is a natural bijection betweenΣ-algebras inC and traced symmetric
strict monoidal functors fromL(Σ) toC:

AlgΣ(C) ≃ TSMCs(L(Σ),C) (4)

Let (I ,S, a) be a MAG for∆ in C ∈ TSMC. We defineAρ to be the pair (Sρ, Iρ) of
C-objects (note that it is an object inInt (C)). Then for each operatoro ∈ Σρ1···ρn→ρ, the
C-morphismao can be seen as anInt (C)-morphism:

ao ∈ C(Sρ1 ⊗ · · · ⊗ Sρn ⊗ Iρ,Sρ ⊗ Iρ1 ⊗ · · · ⊗ Iρn) = Int (C)(Aρ1 ⊗ · · · ⊗ Aρn,Aρ).

This means that every MAG determines a∆-algebra (A, a) in Int (C), and the other way
around. We summarise these concepts by the following bijective correspondences:

MAG (∆,C) ≃ Alg∆(Int (C)) ≃ TSMCs(L(∆), Int (C)) (5)

SSUR-AC(∆, Σ) ≃ TSMCs(L(∆), Int (L(Σ))). (6)

These three equivalent forms have different advantages. The first form is the actual
data we give when defining AGs. The second form is used to explain the initial alge-
bra semantics of AGs [12]. The third form is suitable for discussing the descriptional
composition. We mainly adopt the functorial representation of AGs and ACs below.

4 Descriptional Composition

We begin with a categorical formulation of the descriptional composition of SSUR-
ACs. LetA ∈ SSUR-AC(∆, Σ) andB ∈ MAG (Σ,C), regarded as functors. We define
their (categorical) descriptional compositionB c©A by

B c©A = Str(B# ◦ A),

whereB#
= MC ◦ Int (B) is the Kleisli lifting of B by the pseudo-monadInt . We

insert the strictification operatorStr (Section 3.1) asB# is not strict monoidal.3 The
SSUR-ACA constructs bidirectional networks ofΣ-operators, whileB can only accept
single-directional networks of them. The Kleisli lifting extends the domain ofB to the
bidirectional network ofΣ-operators (see Figure of 5) so that this mismatch is resolved.

Fig. 5. Kleisli Lifting of B

Theorem 1. 1. SSUR-ACs are closed under the descriptional composition.
2. The descriptional composition is associative up to a natural isomorphisms; for

anyA ∈ SSUR-AC(∆, Σ),B ∈ SSUR-AC(Σ, Ξ) andC ∈ MAG (Ξ,C), there is a
natural isomorphism between(C c© B) c©A andC c© (B c©A).

We do not prove this theorem as it is subsumed by Theorem 2. We note that the asso-
ciativity of the descriptional composition holds only up toa natural isomorphism. This
isomorphism has no computational meaning; it just permutesthe order of arguments.
This permutation is invisible in the syntactic study of the descriptional composition
because arguments are passed by records rather than tuples.

3 This is because the multiplicationMC : Int 2(C)→ Int (C) is not strict monoidal.

We extend this formulation of the descriptional composition to a more general set-
ting where TSMCs are equipped with some extra structures, such as nondeterminism,
undefined values, stacks, etc. To capture such extensions, we introduce the concept of
extension of TSMC.

Definition 3. We call the following situation anextension of TSMC.

1. There is a 2-categoryTSMC′ and its 2-subcategoryTSMC′s.
2. There is a 2-functor U: TSMC′ → TSMC that can be restricted to a 2-functor

Us : TSMC′s → TSMCs. Furthermore, Us, as an ordinary functor, has a left
adjoint F. We write(−) : |TSMC(FC,D)| → |TSMC(C,UsD)| for the bijection
between homsets, and(−) for its inverse.

3. There is a pseudo-monad(Int ′, (N′, n′), (M′,m′), τ′, λ′, ρ′) overTSMC′ such that
Int ′ is a 2-functor, and is a strict lifting of the pseudo-monadInt along U, that is,
U ◦ Int ′ = Int ◦ U, U(N′F) = NUF , Uτ′

C
= τUC, etc. We note that the Kleisli lifting

(−)♭ of Int ′ also commutes with U, that is, U((A)♭) = (UA)#.
4. There is an equivalenceStr′ : TSMC′(FL(Σ),C) → TSMC′s(FL(Σ),C) such

that Str′(F) = Str(F), and for any functor F∈ TSMC′s and G,H ∈ TSMC′ of
appropriate type,Str′(F) = F andStr′(H ◦G ◦ F) = Str′(H ◦ Str′(G ◦ F)).

We express such a situation by a tupleE = (F,U, Int ′).

Definition 4. LetE = (F,U, Int ′) be an extension of TSMC. We define the collection of
E-MAG for∆ in C ∈ TSMC′ andE-AC from∆ to Σ by

E-MAG (∆,C) = TSMCs(L(∆), Int (UC)) ≃ MAG (∆,UC)

E-AC(∆, Σ) = TSMCs(L(∆), Int (UFL(Σ))) ≃ MAG (∆,UFL(Σ)).

LetA ∈ E-AC(∆, Σ) andB ∈ E-MAG (Σ,C). We define their descriptional compo-
sitionB c©A by

B c©A = Str(U((B)♭) ◦ A).

We writeHC : C→ FUsC for the unit of the adjunctionF ⊣ Us. We assume that any
E-ACA between rooted signatures satisfiesA(#) = (I ,H(#)). We define the translation
TA : UFL(∆+)(I ,H#)→ UFL(Σ+)(I ,H#) induced byA ∈ E-AC(∆+, Σ+) as follows:

TA(f) = uniqueg such thatUA(f) = NUFL(Σ)(g).

This is well-defined asN is full and faithful [11]. When we do not consider the extension
(F = U = Id), the translationTA is just a mapping off ∈ L(∆+)(ǫ, #) to a morphism
in L(Σ+)(ǫ, #). Under the identification of terms and morphisms in a free TSMC, TA
represents the term translation induced by the attribute couplingA.

Theorem 2. LetE be an extension of TSMC.

1. E-ACs are closed under descriptional composition.
2. For anyA ∈ E-AC(∆, Σ),B ∈ E-AC(Σ, Ξ) and C ∈ E-MAG (Ξ,C), there is a

natural isomorphism between(C c© B) c©A andC c© (B c©A).

3. For anyA ∈ E-AC(∆+, Σ+),B ∈ E-AC(Σ+, Ξ+) and f ∈ L(∆+)(ǫ, #), we have
T(B c©A) ◦ HL(∆+)(f) = TB ◦ TA ◦ HL(∆+)(f).

The proof is in Appendix A.

Corollary 1. For any composable SSUR-ACsA,B, we have T(B c©A) = TB ◦ TA.

In the subsequent sections, we show that some useful extensions of (SSUR)-ACs
can be captured as attribute couplings in extensions of TSMC. From the above general
theorem, the associativity of the descriptional composition and the closure property of
extended ACs under the descriptional composition.

4.1 Descriptional Composition for Nondeterministic ACs

We look at an example of an extension of TSMC arising from a symmetric monoidal
monad (T, η, µ, φI , φA,B) overSet. 4 Given such a monad, for a categoryC, we define a
new categoryT∗(C) by the following data:|T∗(C)| = |C| andT∗(C)(A, B) = T(C(A, B)).
The identity and composition ofT∗(C) defined as follows:

1
φI

// T1
T(idCA)

// T∗(C)(A,A)

T∗(C)(B,C) × T∗(C)(A, B)
φC(B,C),C(A,B)

// T(C(B,C) × C(A, B))
T(compC)

// T∗(C)(A,C).

This construction is well-known aschange-of-basein enriched category theory. The
mappingC 7→ T∗C extends to a 2-monad (T∗, µ∗, η∗) overTSMC andTSMCs. We write
TSMCT∗ for the 2-category of strictT∗-algebras (which are exactlyT-algebra enriched
TSMCs), strictT∗-algebra morphisms andT∗-algebra transformations; see [2] for the
detail. We also writeTSMCT∗

s for its 2-subcategory such thatT∗-algebra morphisms
belong toTSMCs. The Eilenberg-Moore 2-adjunctionF ⊣ U : TSMCT∗ → TSMC can
be restricted toFs ⊣ Us : TSMCT∗

s → TSMCs. One can easily extend the strictification
operatorStr to the one satisfying the condition 4 of Definition 3.

To lift the pseudo-monadInt to the 2-categoryTSMCT∗ , we (necessarily) give a
pseudo-distributive law [21] ofT∗ overInt . In fact, it consists only of identities, as the
components ofInt andT∗ commutes with each other, such asInt (T∗(C)) = T∗(Int (C)),
T∗(NC) = NT∗C, Int ((µ∗)C) = (µ∗)Int (C), etc. Thus the above data determine an extension
of TSMC.

Example 1.We writeP : Set→ Setfor the covariant powerset monad. LetC ∈ TSMC.
A monoidal attribute grammar (I ,S, a) for Σ in P∗(C) assignsC-objectsIρ,Sρ to each
typeρ ∈ Σ, and aP∗(C)-morphism

ao ∈ P∗(C)(Sρ1 ⊗ · · · ⊗ Sρn ⊗ Iρ,Sρ ⊗ Iρ1 ⊗ · · · ⊗ Iρn)

to each operatoro ∈ Σρ1···ρn→ρ; this means that aP∗-MAG assigns an attribute calcu-
lation rulenondeterministicallyto each operator inΣ. For instance, we consider the
following P∗-AC from Σnat to Σlist:

I (∗) = ǫ, S(∗) = ∗,

4 This is equivalent to a commutative monad [16].

aZ = {[] }, aS = {(λx . let y = 0 :: x in y), (λx . let y = 1 :: x in y)}.

This AC maps each natural numberS(n)(Z) to the set of all binary digit with lengthn,
represented as morphisms of typeǫ → ∗ in P∗(L(Σlist)).

4.2 Descriptional Composition for quasi-SSUR ACs

In [20], Nishimura and Nakano introduced a relaxation of SSUR calledquasi-SSUR. It
relaxes the linear use (exactly once) of variables to affine use (at most once), and intro-
duces a constant denoting the undefined value to the languagefor attribute calculation
rules. We formulate their quasi-SSUR ACs and the descriptional composition of them
in our categorical framework.

First, we introduce the languageA(Σ) that modifies the typing rules ofL(Σ) so
that variables can be discarded, and that has an extra constant⊥ρ for each typeρ ∈ Σ.
These features directly correspond to Nishimura and Nakano’s modification of SSUR.
The detail ofA(Σ) is the following:

1. We replace the typing rule ofL(Σ) in Figure 4 as follows:

Γ1 ⊢E M1 : ρ1 · · · Γl ⊢E Ml : ρl U ⊆ D
⊢M λx . let y1 = M1, · · · , yl = Ml in z : σ1, · · · , σn→ τ1, · · · , τm

What is new toL(Σ) is that some defined variables may be unused (U⊆ D). For
instance, the following is now a valid derivation inA(Σ):

⊢M λx1 · · · xn . let ǫ in ǫ : ρ1 · · · ρn→ ǫ

We write this expression⊤ρ1···ρn.
2. We add toL(Σ) a constant⊥ρ : ρ for each typeρ ∈ Σ, corresponding to undef in

[20]. We then extend this to any sequence ofΣ-types by

⊥ρ1···ρn = (λǫ . let x1 = ⊥ρ1, · · · , xn = ⊥ρn in x1, · · · , xn).

Definition 5. A quasi-SSUR AC from∆ to Σ is a triple (I ,S, a) where for each type
ρ ∈ ∆, Iρ and Sρ are sequences ofΣ-types, and for each o∈ ∆ρ1,··· ,ρn→ρ, ao is an
A(Σ)-expression of type ao : Sρ1, · · · ,Sρn, Iρ→ Sρ, Iρ1, · · · , Iρn.

We next introduce the concept ofbipointed TSMC. It is a triple (C,⊤,⊥) where
C ∈ TSMC and⊤,⊥ areC-object indexed families of morphisms⊤A : A → I and
⊥A : I → A such that

⊤I = idI , ⊤A⊗B = ⊤A ⊗ ⊤B, ⊥I = idI , ⊥A⊗B = ⊤A ⊗ ⊤B. (7)

Discarding variables is modelled by the morphism⊤. We say that a traced symmetric
strong monoidal functor (F, φI , φA,B) preserves bipointsif it satisfiesF(⊥A) ◦ φI = ⊥FA

andφI ◦ ⊤FA = F(⊤A). We write TSMC• for the 2-category of bipointed TSMCs,
traced symmetric strong monoidal functors preserving bipoints and monoidal natural
isomorphisms. We writeTSMC•s for its 2-subcategory consisting of traced symmetric

strict monoidal functors. There is an evident forgetful functorU• : TSMC• → TSMC
that can be restricted toU•s : TSMC•s → TSMCs, and it has an ordinary left adjoint
F• : TSMCs → TSMC•s that freely adds morphisms⊥A : I → A and⊤A : A → I ,
subject to the equations in (7).

The Int construction can be lifted overTSMC•. For a bipointed TSMC (C,⊥,⊤),
we defineInt (C)-morphisms⊥Int (C)

A and⊤Int (C)
A by

⊥
Int (C)
A = ⊥A+ ⊗ ⊤A− , ⊤

Int (C)
A = ⊤A+ ⊗ ⊥A− .

Then we defineInt •(C,⊥,⊤) to be the tuple (Int (C),⊥Int (C),⊤Int (C)). One can easily
check that this is a bipointed TSMC. The mapping (C,⊥,⊤) 7→ Int •(C,⊥,⊤) extends
to a 2-functor overTSMC•, and the pseudo-monad structure ofInt also makesInt • a
pseudo-monad. Furthermore, it is a strict lifting ofInt alongU.

Proposition 3. The tripleE• = (F•,U•, Int •) forms an extension of TSMCs.

Proposition 4. The tuple(A(Σ),⊥,⊤) is a bipointed TSMC, and it is equivalent to
F(L(Σ)). Therefore, quasi-SSUR ACs areE•-ACs.

4.3 Descriptional Composition for Stack AGs

In [18], Nakano introduced an extension of AC calledstack AC, where we can use
stacks in attribute calculation rules. He then showed that the stack ACs satisfying cer-
tain linearity condition are closed under the descriptional composition. Inspired by his
extension, below we express his theory of stack ACs in our categorical framework by
setting-up an appropriate extension of TSMC. Our approach differs from Nakano’s
work as follows: 1) the concept of stack ACs given below allowstacks to be stack
elements, and 2) we represent the empty stack by undefined stack⊥, and combine stack
deconstructors (head, tail) into single operatordec.

We introduce a languageS(Σ) and capture the stack ACs satisfying a linearity con-
dition as AGs inS(Σ). In this language we can use a stack of typeρ, whose type is de-
noted byρ∞. Stacks are then manipulated by two operators: constructorcons : ρ, ρ∞ →
ρ∞ and deconstructordec : ρ∞ → ρ, ρ∞. The operatorcons pushes a given value on a
given stack, whiledec separates the top value of a given stack from the rest of it.

We move on to the formal definition ofS(Σ). First, we defineS(Σ)0 to be the set
of pairs of the form (n, ρ) wheren is a natural number andρ is aΣ-type. We identify a
typeρ ∈ Σ and the pair (0, ρ) ∈ S(Σ)0. We denote a pair (n, ρ) by ρ∞...∞, wheren is the
length of∞’s on the shoulder. Next, we define|S(Σ)| to be the set of finite sequences
of S(Σ)0. Below we use metavariablesB andC to denote elements inS(Σ)0 and|S(Σ)|,
respectively. The set of raw terms ofS(Σ) is defined by

M ::= λx. let D in x

D ::= x = x | x = o(x) | x = ⊥B | x = consB(x, x) | x, x = decB(x).

The typing rules ofS(Σ) extends the one forA(Σ) with cons anddec:

x : B ⊢E x : B ⊢E ⊥B : B
o ∈ Σρ1···ρn→ρ

x1 : ρ1, · · · , xn : ρn ⊢E o(x1, · · · , xn) : ρ

x : B, y : B∞ ⊢E consB(x, y) : B∞ x : B∞ ⊢E decB(x) : B, B∞

Γ1 ⊢E M1 : C1 · · · Γl ⊢E Ml : Cl U ⊆ D
⊢M λx . let y1 = M1, · · · , yl = Ml in z : C′ → C′′

where U= Γ1 ∪ · · · ∪ Γl ∪ {z : C′′} and D= {x : C′, y1 : C1, · · · , yl : Cl}, and each
variable inΓ1, · · · , Γn, x, y, z is different from the other. The set of axioms forS(Σ)-
expressions extends the one forA(Σ) with the following rules (leadingλ is omitted):

(let x, y = decB(z), z= consB(x′, y′),D in v) = (let x = x′, y = y′,D in v)

(let x, y = decB(z), z= ⊥B∞ ,D in v) = (let x = ⊥B, y = ⊥B∞ ,D in v)

(let z= consB(x, y),D in v) = (let D in v (z < FV(D) ∪ v ∪ {y})).

Definition 6. A quasi-SSUR stack AC from∆ toΣ is a triple(I ,S, a) where for each type
ρ ∈ ∆, Iρ,Sρ ∈ |S(Σ)|, and for each operator o∈ ∆ρ1,··· ,ρn→ρ, ao is anS(Σ)-expression
of type ao : Sρ1, · · · ,Sρn, Iρ→ Sρ, Iρ1, · · · , Iρn.

Example 2.This example is from [18]. We consider a stack AC that converts reverse-
polish notations to ordinary expressions. LetΣp andΣe be signatures defined as follows:

Σp = ({∗}, {p∗→∗n , a∗→∗,m∗→∗, r→∗}) (n ∈ N),

Σe = ({∗}, {num→∗n , add∗,∗→∗,mul∗,∗→∗}) (n ∈ N).

The signatureΣp is for the reverse-polish notation of expressions. For instance, aΣp-
expressionp3(p2(p5(a(m(r))))) denotes (5+2)∗3. The stack AC (I ,S, a) that constructs
Σe-terms from reverse-polish expressions is the following (type annotations are omit-
ted):

I∗ = (∗)∞,O∗ = ∗

apn = λs1, i . let i1 = cons(numn, i) in s1, i1
aa = λs1, i . let h1, t1 = dec(i), h2, t2 = dec(t1), i1 = cons(add(h1, h2), t2) in s1, i1
am = λs1, i . let h1, t1 = dec(i), h2, t2 = dec(t1), i1 = cons(mul(h1, h2), i2) in s1, i1
ar = λi . let h, t = dec(i) in h.

Definition 7. A TSMC with stackis a tuple(C,⊥,⊤, (−)∞, cons, dec) where

– (C,⊥,⊤) is a bipointed TSMC,
– (−)∞ : |C| → |C| is a mapping such thatI∞ = I and(A⊗ B)∞ = A∞ ⊗ B∞,
– consA : A⊗ A∞ → A∞ anddecA : A∞ → A⊗ A∞ areC-object indexed families of

morphisms such that

decA ◦ consA = idA⊗A∞ , decI = consI = idI ,

decA ◦ ⊥A = ⊥A ⊗ ⊥A∞ , ⊤A ◦ consA = ⊤A ⊗ ⊤A∞ ,

consA⊗B = (consA ⊗ consB) ◦ (A⊗ σB⊗A∞ ⊗ B∞),

decA⊗B = (A⊗ σA∞⊗B ⊗ B∞) ◦ (decA ⊗ decB).

A stack-preserving functorbetween TSMCs with stack is a traced symmetric strong
monoidal functor(F, φI , φA,B) such that it preserves bipoints, F(A∞) = (FA)∞ and

F(consA) ◦ φA,A∞ = consFA φA,A∞ ◦ decFA = F(decA).

We defineTSMCS to be the 2-category of TSMCs with stack, stack-preserving functors
and monoidal natural isomorphisms. Its 2-subcategory consisting of traced symmetric
strict monoidal functors is denoted byTSMCS

s . We write US : TSMCS → TSMC for
the canonical forgetful functor.

Next,US can be restricted to a 2-functorUS
s : TSMCS

s → TSMCs, and when viewed
as an ordinary functor, it has a left adjointFS : TSMCs → TSMCS

s . This left adjoint
constructs a syntactic TSMC with stacks from a given category. We omit its detail, but
an object of the categoryFS

C is an element of the countably infinite coproduct of the
monoid (|C|, I ,⊗), that is, a sequence (k1,C1) · · · (kn,Cn) such thatki ∈ N, Ci ∈ |C|

(1 ≤ i ≤ n) andki , k j if i , j. The unitHC and counitEC of the adjunction is defined
by (on objects)HC(C) = (0,C) andHC(k1,C1) · · · (kn,Cn) =

⊗n
i=1 C∞(ki)

i . The category
FSL(C) admits the strictification operatorStrS satisfying the condition 4 of Definition
3; on objects it is defined byStrS(F)((k1, ρ1) · · · (kn, ρn)) =

⊗
1≤i≤n,1≤ j≤|ρi |

(Fρi j)∞(ki).

Let (C,⊥,⊤, (−)∞, cons, dec) ∈ TSMCS, which we just writeC. We define the
tupleInt S(C) = (Int (C),⊥Int (C),⊤Int (C), (−)∞

Int (C)
, consInt (C), decInt (C)) by

⊥
Int (C)
A = ⊥A+ ⊗ ⊤A− , ⊤

Int (C)
A = ⊤A+ ⊗ ⊥A− , A∞

Int (C)
= ((A−)∞, (A+)∞),

consInt (C)
A = consA+ ⊗ decA− , decInt (C)

A = decA+ ⊗ consA− .

We defineInt S of 1-cells and 2-cells inTSMCS to be Int of them. In this wayInt S

becomes a 2-functor. One can check that we can adopt the structure of the pseudo-
monadInt to makeInt S a pseudo-monad overTSMCS. Thus we obtain a pseudo-
monadInt S : TSMCS → TSMCS which is a strict lifting of the pseudo-monadInt
alongUS.

Proposition 5. The tripleES
= (FS,US, Int S) forms an extension of TSMC.

Proposition 6. The tuple(S(Σ),⊥,⊤, (−)∞, cons, dec) is a TSMC with stack, and is
equivalent to FS(L(Σ)). Therefore, quasi-SSUR stack ACs areES-ACs.

5 Conclusion and Discussion

We presented a categorical framework for capturing variousextensions of ACs and
their descriptional composition. By setting up appropriate extensions of TSMCs, the
descriptional composition of non-deterministic ACs, quasi-SSUR ACs and quasi-SSUR
stack ACs are covered by our framework. The framework uniformly guarantees the
associativity of the descriptional composition and the closure property of extended ACs
under the descriptional composition.

We strongly believe that our framework will contribute to extending the fusion trans-
formation of functions with accumulating parameters. In attribute grammar framework,

the fusion problem is reformulated as the descriptional composition of attribute cou-
plings that represent functions with accumulating parameters. Extending this approach
with extra language features is a delicate task (see e.g. [18]), and our categorical frame-
work indicates the direction of the extension of ACs so that the descriptional compo-
sition works. For instance, one may consider introducing the map operator to stack
ACs. In our framework, this is done by promoting the operator(−)∞ in Section 4.3 to a
functor, then form a suitable extension of TSMCs.

We also expect that our framework can provide an alternativeaccount for the exist-
ing fusion methods that use circular let bindings to expressfusion results as first-order
functional programs [22, 19, 13]. An interesting connection between these transforma-
tions and the category theory is that, these fusion results,when viewed as morphisms,
often have the same pattern as the composition of morphisms in Int (C); this is also ob-
served in [13]. Through this similarity, our categorical view of the descriptional com-
position will be helpful to understand these fusion methods, and hopefully provide an
equational proof of their correctness.

One possible future work is to implement the descriptional composition based on
our categorical framework. The major task will be to define the data structure repre-
senting TSMCs and implement theInt construction on them. The implementation task
breaks down the descriptional composition into fundamental operations on categories
and functors, each of which will be easily verifiable.

AcknowledgementThe author is grateful to Susumu Nishimura and Craig Pastro for
discussions, and Masahito Hasegawa for his encouragement and helpful feedback.

References

1. Miklós Bartha. Linear deterministic attributed transformations. Acta Cybern., 6:125–147,
1983.

2. R. Blackwell, G. M. Kelly, and A. J. Power. Two-dimentional monad theory.Journal of pure
and applied algebra, 59:1–41, 1989.

3. John Boyland. Conditional attribute grammars.ACM Trans. Program. Lang. Syst., 18(1):73–
108, 1996.

4. Laurian M. Chirica and David F. Martin. An order-algebraic definition of Knuthian seman-
tics. Mathematical Systems Theory, 13:1–27, 1979.

5. Bruno Courcelle and Pierre Deransart. Proofs of partial correctness for attribute grammars
with applications to recursive procedures and logic programming. Inf. Comput., 78(1):1–55,
1988.

6. Harald Ganzinger. Increasing modularity and language-independency in automatically gen-
erated compilers.Sci. Comput. Program., 3(3):223–278, 1983.

7. Harald Ganzinger and Robert Giegerich. Attribute coupled grammars. InSIGPLAN Sympo-
sium on Compiler Construction ’84, pages 157–170. ACM, 1984.

8. Robert Giegerich. Composition and evaluation of attribute coupled grammars.Acta Inf.,
25(4):355–423, 1988.

9. Masahito Hasegawa.Models of Sharing Graphs: A Categorical Semantics oflet and letrec.
Springer-Verlag, 1999.

10. Thomas Johnsson. Attribute grammars as a functional programming paradigm. In Gilles
Kahn, editor,FPCA, volume 274 ofLecture Notes in Computer Science, pages 154–173.
Springer, 1987.

11. Andre Joyal, Ross Street, and Dominc Verity. Traced monoidal categories.Mathematical
Proceedings of the Cambridge Philosophical Society, 119(3):447–468, 1996.

12. Shin-ya Katsumata. Attribute grammars and categoricalsemantics. In Luca Aceto, Ivan
Damgrd, Leslie Ann Goldberg, Magnús M. Halldórsson, AnnaIngólfsdóttir, and Igor
Walukiewicz, editors,ICALP (2), volume 5126 ofLecture Notes in Computer Science, pages
271–282. Springer, 2008.

13. Shin-ya Katsumata and Susumu Nishimura. Algebraic fusion of functions with an accumu-
lating parameter and its improvement. In John H. Reppy and Julia L. Lawall, editors,ICFP,
pages 227–238. ACM, 2006.

14. Donald E. Knuth. Semantics of context-free languages.Mathematical Systems Theory,
2(2):127–145, 1968.

15. Donald E. Knuth. Correction: Semantics of context-freelanguages.Mathematical Systems
Theory, 5(1):95–96, 1971.

16. Anders Kock. Strong functors and monoidal monads.Archiv der Math., 23(1):113–120,
1972.

17. Saunders MacLane.Categories for the Working Mathematician (Second Edition), volume 5
of Graduate Texts in Mathematics. Springer, 1998.

18. Keisuke Nakano. Composing stack-attributed tree transducers. Theory Comput. Syst.,
44(1):1–38, 2009.

19. Susumu Nishimura. Deforesting in accumulating parameters via type-directed transforma-
tions. InAPLAS ’02, pages 145–159, 2002.

20. Susumu Nishimura and Keisuke Nakano. XML stream transformer generation through pro-
gram composition and dependency analysis.Sci. Comput. Program., 54(2-3):257–290, 2005.

21. Miki Tanaka and John Power. Pseudo-distributive laws and axiomatics for variable binding.
Higher-Order and Symbolic Computation, 19(2-3):305–337, 2006.

22. Janis Voigtländer. Using circular programs to deforest in accumulating parameters.Higher-
Order and Symbolic Computation, 17(1-2):129–163, 2004.

A Proof of Theorem 2

1) Obvious. 2) First, we introduce an auxiliary binary operator c©′. For functorsA ∈
TSMC′s(FL(∆), Int ′FL(Σ)) andB ∈ TSMC′s(FL(Σ), Int ′(C)), we defineB c©′ A to
beStr′((B)♭ ◦ A). It is associative up to an isomorphism:

C c©′ (B c©′ A) = Str′((C)♭ ◦ (B)♭ ◦ A) � Str′(((C)♭ ◦ B)♭ ◦ A) � (C c©′ B) c©′ A.

LetA ∈ TSMCs(L(∆), Int UFL(Σ)) andB ∈ TSMCs(L(Σ), Int UC). Then we have

B c©A = Str(U((B)♭) ◦ A) = Str((B)♭ ◦ A) = Str′((B)♭ ◦ A) = (B c©′ A).

The bijection(−) : |TSMC′s(FC,D)| → |TSMCs(C,UD)| extends to an ordinary func-
tor TSMC′s(FC,D) → TSMCs(C,UD), because it is defined asF = UF ◦ HC. There-
fore if F andG are naturally isomorphic, so areF andG. Then we have

C c© (B c©A) = C c©′ (B c©′ A) � (C c©′ B) c©′ A = C c© (B c©A).

3) Note thatN(TA(H(f))) = A(f). SinceN is faithful, it is sufficient to showN ◦
T(B c©A) ◦ H(f) = N ◦ TB ◦ TA ◦ H(f).

N(T(B c©A)(H(f))) = Str((UB)# ◦ A)(f) = (UB)#(N(TA(H(f))))

= (UB)(TA(H(f))) = N(TB(TA(H(f)))).

B Traced Symmetric Monoidal Categories and the Int
Construction

Traced Symmetric Monoidal CategoryWe recall the concept of trace operator [11].
A trace operatoron a symmetric strict monoidal category (C, I ,⊗, σ) is a mapping
trA

B,C : C(B⊗ A,C ⊗ A)→ C(B,C) satisfying the following equations.

(Naturality) h ◦ trA
B,C(f) ◦ g = trA

B′,C′ ((h⊗ A) ◦ f ◦ (g⊗ A))
(Dinaturality) trAB,C((C ⊗ g) ◦ f) = trA′

B,C(f ◦ (B⊗ g))
(Vanishing I) trIA,B(f) = f
(Vanishing II) trA⊗B

C,D (g) = trA
C,D(trB

C⊗A,D⊗A(g))
(Superposing) trAB⊗C,B⊗D(B⊗ f) = B⊗ trA

C,D f
(Yanking) trAA,A(σA,A) = id.

We simplify the superposing axiom in [11] using naturality and dinaturality [9]. A
traced symmetric strict monoidal category(TSMC) is a pair of a symmetric strict
monoidal category and a trace operator on it. We say that a symmetric strong monoidal
functor (F, φI , φA,B) : C→ D between TSMCsC,D is tracedif it satisfiesF(trC

A,B(f)) =
trFC

FA,FB(φ−1
B,C ◦ F f ◦ φA,C).

TheInt ConstructionJoyal, Street and Verity showed that the forgetful functor from the
2-category of tortile monoidal categories to that of traced(braided) monoidal categories
has a left biadjoint, which they calledInt [11]. This biadjunction can be restricted to
the one betweenTSMC and the 2-category of strict compact closed categories, strong
monoidal functors and monoidal natural isomorphisms. Likethe usual construction of
monads from adjunctions, we obtain a pseudo-monad overTSMC, which we also write
Int . Below we give an explicit definition of this pseudo-monadInt .

Let C ∈ TSMC. We define the TSMCInt (C) by the following data. An object is
a pair (A+,A−) of C-objects. Below, whenA is declared as anInt (C)-object, byA+

and A− we mean its first and second component. A morphism fromA to B is a C-
morphismf : A+ ⊗ B− → B+ ⊗A−. The identity is defined by idInt (C)

A = idA+⊗A− , and the
composition off : A → B andg : B→ C is defined byg ◦Int (C) f = trB−

A+⊗C− ,C+⊗A− (h)
whereh = (C+ ⊗ σB−,A−) ◦ (g ⊗ A−) ◦ (B+ ⊗ σA− ,C−) ◦ (f ⊗ C−) ◦ (A+ ⊗ σC− ,B−). The
(strict) tensor product inInt (C) is given byA ⊗Int (C) B = (A+ ⊗ B+,A− ⊗ B−) and
f ⊗Int (C) g = (B+ ⊗ σA− ,D+ ⊗C−) ◦ (f ⊗ g) ◦ (A+ ⊗ σC+ ,B− ⊗ D−). The unit object of this
tensor product is given by (I , I). The symmetry morphism isσInt (C)

A,B = σA+,B+ ⊗ σA− ,B−.
We give the trace operator with respect to the above symmetric monoidal structure by
(trInt (C))C

A,B(f) = trC+⊗C−

A+⊗B−,B+⊗A−((B
+ ⊗ σC+ ,A− ⊗C−) ◦ f ◦ (A+ ⊗ σB−,C+ ⊗C−)).

We next give a functorInt C,D : TSMC(C,D) → TSMC(Int (C), Int (D)), which
we simply write byInt . We defineInt of a traced symmetric strong monoidal functor
(F, φI , φA,B) : C → D to be the tuple (Int (F), φInt (F)

I , φ
Int (F)
A,B) : Int (C) → Int (D) defined

by Int (F)(A) = (FA+, FA−), Int (F)(f) = φ−1
B+,B− ⊗ F f ⊗ φA+,A− , φ

Int (F)
I = φI ⊗ φ

−1
I

andφInt (F)
A,B = φA+,B+ ⊗ φ

−1
A−,B−. For a monoidal natural isomorphismα : F → G, we

defineInt (α) : Int (F) → Int (G) by Int (α)A = αA+ ⊗ α
−1
A− . These data determine a

2-endofunctorInt : TSMC → TSMC.
Let C ∈ TSMC. A calculation shows that the homsetInt 2(C)(A, B) is identical to

C(A++ ⊗ B−+ ⊗ B+− ⊗ A−−, B++ ⊗ A−+ ⊗ A+− ⊗ B−−); thus we manipulate morphisms
in Int 2(C) asC-morphisms. The unit of the pseudo-monadInt is the traced symmetric
strict monoidal functorNC : C → Int (C) defined byNC(A) = (I ,A) andNC(f) = f ,
while the multiplication ofInt is the traced symmetric strong monoidal functorMC :
Int 2(C)→ Int (C) defined byMC(A) = (A−−⊗A++,A−+⊗A+−) andMC(f) = r−1

B,A◦ f◦rA,B,
whererA,B is the symmetry morphismσA−− ,A++⊗B−+⊗B+− in C. We also define monoidal
natural isomorphismsnF : Int (F)◦NC → ND◦F andmF : Int 2(F)◦MC → MD◦ Int (F)
for (F, φI , φA,B) ∈ TSMC(C,D) by (nF)A = idFA ⊗ φI and (mF)A = φ

−1
A−−,A++ ⊗ φA−+ ,A+− .

These data determine pseudo-natural transformations (N, n) : Id → Int and (M,m) :
Int 2→ Int .

Finally, we define modificationsλC : MC ◦ Int (NC) → IdInt (C) and ρC : MC ◦
NInt (C) → IdInt (C) to be identities, andτC : MC ◦ Int (MC) → MC ◦ MInt (C) by (τC)A =

(σA−−+ ,A−+−⊗A+−− ⊗ A+++) ⊗ (σ−1
A−−− ,A−++⊗A+−+ ⊗ A++−).

Theorem 3. The tuple(Int , (N, n), (M,m), τ, λ, ρ) forms a pseudo-monad onTSMC.

