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Abstract. Descriptional composition is a method to fuse two term ti@msa-
tion algorithms described by attribute couplings (AC,ikttte grammars over
terms) into one. In this article, we provide a general caiegbframework for
the descriptional composition based on traced symmetritial categories and
thelnt construction by Joyal et al. We demonstrate that this fraonkewan han-
dle the descriptional composition of SSUR-ACs, nondetristic SSUR-ACSs,
quasi-SSUR ACs and quasi-SSUR stack ACs.

1 Introduction

Descriptional compositiof6—8] is a method to fuse two term transformation algorithms
described by attribute couplings (ACs; attribute grammaes terms) into one. The AC
yielded by the descriptional composition computes the amsitjpn of two ACs with-
out constructing the intermediate data structure pasgeatba two ACs; hence it saves
time and space in many cases. The descriptional compositgriirst introduced as an
optimisation method for compilers described by ACs [7]. émd the same time Bartha
introduced a similar composition method for linear atttéaitree transformations [1].
Later, it was realised that ACs can be used to representifumadtprograms with ac-
cumulating parameters [10], and the descriptional contiposinspired various fusion
transformations of such functional programs [19, 22].

The descriptional composition was first given for the ACssisting only of term
constructors [7]. Later, extensions of the ACs have beedietuin [18, 20, 3]. In [3],
Boyland considered an extension of ACs with conditionakegpions. In [18], Nakano
introduces stacks to ACs so that complex parsing functiansbe expressed. In each
work, the descriptional composition was also considerethése extended ACs. In
general, the descriptional composition is sensitive oldhguage describing ACs, and
formulating the descriptional composition verifying itsroectness tend to be involved
when expressive power of the language increases.

The question we address here is to find a mathematical frarkeivat can uni-
formly treat these extensions of ACs and the descriptioo@position of them. In this
paper, we propose such a general categorical frameworkl lnessthe theory ofraced
symmetric monoidal categori€$SMCs) and thdnt constructionby Joyal et al. The
key observation in the categorical treatment of ACs and #seidptional composition
is that every attribute grammar determines a traced synrsttict monoidal functor



F: £(2) — Int(C) whereL(2) is a free TSMC over a signatukg and especially every
AC satisfyingsyntactic single use condition (SSURMich is the essential condition for
the descriptional composition to work, determines a tray@admetric monoidal functor
G L(2) — Int(L(4)). With this functorial presentation, the descriptionaifrgposition
becomes the composition of functors, and its associatisty be easily verified. This
story scales up to the TSMCs with extra structures, provilatithelnt construction
is also extended to such TSMCs; examples include nondetetimiACs, quasi-SSUR
ACs (an affine version of SSUR AC), and ACs with stacks [18].

In this paper we do not exclude circular terms and recurgiveptation as mean-
ingless things. Hence every AG assigns some meaning to a tava.

Conventions and NotationSignatures are all many-typed and first-order. We reserve
4,%, = for ranging over signatures. Bye X ando € 2¥1*~f we mean thgp is a type

of X ando is an operator of typg; - - - pn — p, respectively. We declare the signature
for binary trees, cons-lists and natural numbers by

Ziree= ({+}, L, N"77), Zise = ({=L[0%a: (=)77), Zha= ({+},2°,877).

For a typeos € X and sequence df-typesps - - - pn, by TS (o1 - - - pn) we mean the set
of openX-terms that may contain some variablef typepi (1 < i < n). We then
extend this notation by “"™(p1---pn) = Ty (p1---pn) X === X T{™(p1- - - pn). By 2+
we mean that' contains a special type #; such signature is caibeded We assume
that the readers are familiar with the concept of symmetianoidal categories [17].
We also employ the 2-category theory and the theory of pseunlvads and pseudo-
distributive laws; see e.g. [21].

2 Classical Attribute Couplings and Descriptional Compodion

A classical attribute grammar (AG) for a signaturés a tripleA = (1, S, a) where for
each typep € 4, |p andSp are resp. sets of inherited and synthesised attribute s;alue
and for each operatar € 4°+ > a, is a function called thattribute calculation
rulet:

8 :Sp1 X -+ XSppXlp— Spxlpy x---Xlpp. (1)

This function captures the input-output relation of a cotafian unit that processes
bidirectional information flow (Figure 1, left). Given#term M, we connect the as-
signed computation units according to the shap#lofFigure 1, right). The function
corresponding to the entire circuit is the meanififM] assigned taM by the AGA.
Depending on the configuration of the attribute calculatigles, such function may
not exist in general, but if any combination of attributeccadtion rules does not yield
cyclic information dependency (such AGs are cated-circular), the functionA[ M]
uniquely exists for anyvl. See [14, 15] for the detail.
An attribute coupling(AC) from 4 to X' is a special AG such that the set assigned

to Ip (resp.Sp) is a setTy* 7" of tuples of>-terms for somery,--- , 0 € 2, and

1 This form of attribute calculation rule is call®&bchmann normal form



Ip; Spr Ip, Spx

Fig. 1. Attribute Grammars

each attribute calculation rule comprises onlyZebperators rather than arbitrary func-
tions. Briefly speaking, ACs are AGs constructiiigerms. We can extract the essential
information from such AGs and redefine ACs frahto 2 as the tupleA = (I, S, a),
where for each typp € 4, |p andSp are sequences af-types, and for each operator
0 € APrPn™P g4 is a tuple of (openY-terms:

ao c TZSp,lpl,...,lpn(Spl’ cee Spn, |p)

We writeAC(4, 2) for the set of ACs from to 2. We assume that AC$,(S, a) between
the signatures containing the special type # safigfy: € andS# = #. With this con-
vention we can view every non-circular A@ from 4* to 2* as a term transformation
functionTA : T# — T%,, defined byT A(M) = A[M].

LetA e AC(4*,2%)andB € AC(2*, Z*) be non-circular ACs. We seek for an AC
B© Asuch thall (BO A) = TBoTA. In general such AC may not exist, but whén
satisfies a condition callegyntactic single-use restriction (SSURje can buildB © A
by thedescriptional compositigrwhich we illustrate below.

Suppose that the attribute calculation rules/bnd B look like the left of Figure
2. There, A assigns to al™-operatorf a computation unit that constructs -terms,

A B BO©A

8-

Fig. 2. The descriptional composition

which is drawn as a circuit. Similarly8 assigns to &*-operatora a computation unit
b, which is just drawn as a round box. We now replace each witledmight hand side
of the attribute calculation rule off with bidirectional wire, and replace eagh-term
constructor with the computation unit assignedyT he result of this replacement is
drawn on the right of Figure 2, which is a new attribute couglrom4™* to £*. This is
the descriptional compositid © A.

The hidden point in the above process is that the computatigrfcircuit) assigned
by A should not contain any branching wires nor terminals. Thisdcause we do not



know how to make branches and terminals bidirectional (feé@). This suggests that

I b =l

Fig. 3. How to Make Branches and Terminals Bidirectional?

each attribute calculation rule assigned#ghould use each variable exactly once, and
an AC satisfying this linearity condition is callsgintactic single use restrictiq® SUR
AC. We will see its precise definition in Section 2.2, and refolate it as an AG in a
linear recursive language, which we introduce below.

2.1 The Linear Recursive LanguageL(Z)

We introduce a simply-typed first-order linear languagehwicursive declarations
called £(2). It has only one form of raw-expressions:

AXg, -, Xn . letyr = Mg, -,y = Mjinz, - -+, Zy,

and they are given a types,--- ,on — 71, -+, Tm by the type system in Figure 4,
where U and D are typing contexts defined by

U=T1U---Ulhu{zs i1, ,Zm: Tm}
D={Xt: 01, % 0n Y101, Y pi}

such thatx;, y;, z. and variables iif’y, - - - , I'y are different from each other. The leading
A of expressions is a formal binder fgy, - - - , X,, rather than the lambda abstraction in
the lambda calculus. Expressions are treated magi@quivalence.

Expressions of(2) are identified by the rules in Figure 4, where the sequence of
variable declarations aftést is abbreviated aB. The first axiom allows us to permute
D without affecting the meaning of expressions. In the se@idm, D[w/v] denotes
the sequence of variable declarations obtained by readim D with w. This axiom
allows us to forward/ to w whenv = wis contained irD.

Here are some examples 6{Z.c)-expressions:

Fm AX. lety=N(IL,X),l =Liny:* — *
Fm AX Y, 2. letw = N(X, W), | = L,v=N(,2) iny,V: sxx — %=, 2

Note that in (2) the variable can not be used for output due to the linearity constraint.
This means that when the underlying signature has a binamatgr then there is a way
to discard inputs.



pEE 0 € JPr=pPn=p
XIpFe XIp Xt ip1,- -+, % i pnke O(Xe, -+, %) I p

IreMiipr -+ LNFeMiip U=D
FM/lX'Iety]-:Mls"'sylzMIinZ:O-]_,"',O'n—)T]_,"',Tm

(Ax.letDin 2) = (Ax . let x(D) in 2
(Ax.letv=w,Din 2) = (Ax. let D[w/Vv] in Zw/V]) (v # w)

Fig. 4. Type System and Axiom faf(X)

2.2 SSUR-ACs as Attribute Grammars in£(X)

An AC (1, S,a) € AC(4,2) satisfies thesyntactic single use restrictiofBSUR [6] if
each attribute calculation rule satisfies the followingeéirity condition. We let be
the length of the concatenati@p, lp1,- - , lpon, and writer; (1 < i < 1) for thei-th
component of this sequence. We prepare sequelficéks < i < |) of X-types such
thatSps, - - - , Spn, lp is a permutation of the concatenatibp - - - , I'}. We then ask the
attribute calculation rule to be in the following set:

A € TH(I1) X --- x T (), 3)

and, moreover, in theth component oé,, each variable occurs exactly once.

We observe that there is a one-to-one correspondence besueh a tuple and a
L(2)-expression of typ&p1,---,Spn, lp — Sp, lp1, -+, lpn. We exploit this corre-
spondence to redefine the concept of SSUR-AC.

Definition 1. An SSUR-AC from to X' is a triple (I, S, a) where for each typg € 4, Ip
and S are sequences af-types, and for each e A° " ~P g, is an L(X)-expression
oftype @ : Sp1, -+, Spn, lp = Sp,lp1,- -+, lpn. We writeSSURAC (4, 2) for the set
of SSUR-ACs from to 2. Wherd, X contains the special typg we assume that every
SSUR-AQI, S, a) from 4 to X satisfies # = e and S# = #.

We note that this correspondence is not surjective;, @3 permits recursively defined
variables that can not be expressed by SSUR-ACs.

3 Categorical Aspect of Attribute Couplings

3.1 L(2) as a Traced Symmetric Monoidal Category

We next view/L(X) as a category. We regard a sequepcep; - - - pn Of types in2 as
an object, and an equivalence class of expressions ofgdypeo as a morphism from
p too. The composition is defined by

(Ax.letDiny)o(Az.letD’" inw) = Az. let D[w/x], D" in y[w/X];



here we assume that every bound variable in the above eigmésslistinct from each
other. The category(X) has an evident symmetric strict monoidal structure. The un
object is the empty sequence and the tensor product of tvextshis the concatenation
of them. The tensor product of two morphisms is defined by imgryvo expressions:

(Ax.letDiny)®(1z.letD"inw) = Ax,z.let D,D’ in y, w.

The symmetry morphismis given b, y . let e in y, X.

In addition to this, the followingrace operatorconstructs recursive declarations in
expressions. Let, y, z w be sequences of different variables, and-, T be sequences
of types such thak| = |pl, |2 = |o], |yl = W] = |7]. We define thdrace operatottr;, , as
follows:

tr (A, y.letDin zw) = Ax . lety=w,Din z

A pair of a symmetric monoidal category and a trace operataalledtraced sym-
metric monoidal categorfsee Appendix B). In this article we only consider the traced
symmetricstrict monoidal categories, and call them TSMCThe above discussion is
summarised as follows:

Proposition 1. The above data maké&(>) a TSMC.

We call a symmetric strong monoidal functor between TSKt@&sedif it preserves the
trace operator in an evident way (see Appendix B). We WIrgdC for the 2-category
of TSMCs, traced symmetric strong monoidal functors and erdal natural isomor-
phisms. Its 2-subcategory consisting of traced symmedtiict snonoidal functors will
be denoted by SMCs.
From a traced strong monoidal functd¥, (bf,q&,f’(,) e TSMC(L(X),C), we can

construct a traced strict monoidal func®ir(F) € TSMC(£L(2), C) which is naturally
isomorphic toF. The strict functor is constructed as follows:

Str(F)(o1---pn) =Fp1®---®@Fpn  Str(F)(f :p - o) = (¢5) o Ffog).

The assignmenfE — Str(F), which we will call strictification operatoy extends to
an equivalence of categori&r : TSMC(L(2),C) — TSMC4(L(2),C). It satis-
fies the following property: for anff € TSMCs(£L(2),D),G € TSMC(D,E),H €

TSMC (E, F), we haveStr(F) = F andStr(H o G o F) = Str(H o Str(G o F)).

3.2 Monoidal Attribute Grammar

We generalise the underlying semantic domain of AGs to ramyitC € TSMC. This
generalisation is done by replacing sets with objects amnithatte calculation rules with
C-morphisms.

Definition 2 ([12]). LetC € TSMC. A monoidal attribute gramm&MAG) for 4 in C
is a triple (I, S, a) where for each typpe € 2, |p and S are C-objects (of domains of
inherited and synthesised attributes), and for each opgrate A4°1 =P, g, is a C-
morphism of typeg: Sp1®---®Spn®lp = Sp®lp1®---& | pn. We writeMAG (4, C)
for the collection of MAGs fod in C.

2 Every traced symmetric monoidal category is equivalenttta@ed symmetric strict monoidal
category (coherence theorem).



Some instances of MAGs are studied in [12]; in the categ@ZPO of pointed CPOs
andw-continuous functions, monoidal attribute grammars atévadent to Chirica and
Martin's K-systems [4]. The categoifgel of sets and relations has traced biproducts
[11], and MAGs in this traced symmetric monoidal categorg lacal dependency
graphs which are the standard tool to represent dependenciegbstihe attributes
in attribute calculation rules. MAGs over the compact ctbstucture orRel arerela-
tional attribute grammarg5]. In addition to this, by comparing Definition 1 and 2, we
conclude that SSUR-ACs are exactly MAGSA().

Proposition 2. SSURAC(4,2) = MAG (4, L(2)).

3.3 MAGs as Algebras in Int(C)

Below we give two concepts that are equivalent to MAG: onelgelaras in the cat-
egories obtained by Joyal, Street and Verityis construction [11], and the other is
traced symmetric strict monoidal functors of tyfi€>) — Int (C).

LetC € TSMC. The categorynt (C) is defined by the following data: an object is
a pair A+, A7) of C-objects, and homsets are defined by

Int(C)((A*,A"),(B",B7))=C(A*®B",B*® A").

In categoryint (C) we can naturally model computation over bidirectionabimfiation
flow. An object @*, A”) denotes the type of upward and downward information; in the
context of attribute grammar, they correspond to the typgyathesised and inherited
attributes, respectively. A morphisi: (A*, A") — (B*, B™) then represents a compu-
tation that processes bidirectional information flow.

We give a symmetric strict monoidal structurdno(C) by

||nt((C) — (|C, |C)’ (A+,A_) ®Int(’C) (B+, B—) — (A+ ®C B+,A_ ®(C B_).

The categorynt (C) has acompact closed structufd 1], which yields thecanonical
trace operatomwith respect to the above symmetric monoidal structure. apping

C — Int(C) extends to a 2-endofunctor ovEEMC, and moreover, to a pseudo-monad
(Int, (N, n), (M, m), 7, 4, p) overTSMC; see Appendix B for the detalil.

We extend the concept df-algebra from the set-theoretic one to the categorical
one. AX-algebra in a monoidal categofyis a pair @, &) whereA is a family of C-
objects indexed by-types anda is a family of C-morphisms indexed b¥-operators,
such that the type af; is Ao1®- - -®Ap, — Ap for each operatap € 2° P, We write
Alg;(C) for the collection of>-algebras inC. The concept of-algebras has another
presentation: there is a natural bijection betw&esigebras irC and traced symmetric
strict monoidal functors fron(X) to C:

Alg;(C) ~ TSMC4(L(2),C) 4)

Let (I, S,a) be a MAG for4 in C e TSMC. We defineAp to be the pair$p, | p) of
C-objects (note that it is an object int (C)). Then for each operatare 2+ *~* the
C-morphisma, can be seen as ant (C)-morphism:

8 €C(Sp1®---®Spn®1p,Sp@1p1®---® lpy) = INt(C)(Ap1 ® - - - ® Apn, Ap).



This means that every MAG determined-algebra A, a) in Int (C), and the other way
around. We summarise these concepts by the following bifecbrrespondences:

MAG (4, C) = Alg,,(Int (C)) = TSMCs(£(4), Int(C)) (5)
SSURAC(4, X) = TSMC(£L(4), Int (£())). (6)

These three equivalent forms have different advantages.fif$t form is the actual
data we give when defining AGs. The second form is used to ex{ila initial alge-
bra semantics of AGs [12]. The third form is suitable for dissing the descriptional
composition. We mainly adopt the functorial representatibAGs and ACs below.

4 Descriptional Composition

We begin with a categorical formulation of the descriptloc@mposition of SSUR-
ACs. LetA € SSURAC(4,2) andB € MAG (2, C), regarded as functors. We define
their (categorical) descriptional compositi®nC) A by

B© A = Str(8* 0 A),

where8* = Mc o Int(8) is the Kleisli lifting of 8 by the pseudo-monakht. We
insert the strictification operat@tr (Section 3.1) as$3* is not strict monoidaf. The
SSUR-ACHA constructs bidirectional networks dfoperators, while3 can only accept
single-directional networks of them. The Kleisli liftingtends the domain o8 to the
bidirectional network o-operators (see Figure of 5) so that this mismatch is redolve

Bobil R

Fig. 5.Kleisli Lifting of B

Theorem 1. 1. SSUR-ACs are closed under the descriptional composition
2. The descriptional composition is associative up to a ratisomorphisms; for
any A € SSURAC(4,2),8 € SSURAC(Z2,E) andC € MAG (=, C), there is a
natural isomorphism betwed@ © 8) © A andC © (8B © A).

We do not prove this theorem as it is subsumed by Theorem 2.0f¢ethat the asso-
ciativity of the descriptional composition holds only upamatural isomorphism. This
isomorphism has no computational meaning; it just permilteorder of arguments.
This permutation is invisible in the syntactic study of thesdriptional composition
because arguments are passed by records rather than tuples.

3 This is because the multiplicatidv: : Int?(C) — Int(C) is not strict monoidal.



We extend this formulation of the descriptional compositio a more general set-
ting where TSMCs are equipped with some extra structuret, as hondeterminism,
undefined values, stacks, etc. To capture such extensiensiteduce the concept of
extension of TSMC

Definition 3. We call the following situation aextension of TSMC

1. There is a 2-categorySMC’ and its 2-subcategorySMC®.

2. There is a 2-functor U TSMC’ — TSMC that can be restricted to a 2-functor
Us : TSMC;, — TSMCs. Furthermore, U, as an ordinary functor, has a left
adjoint F. We write(-) : [TSMC(FC,D)| — [TSMC(C, UD)| for the bijection
between homsets, afid) for its inverse.

3. There is a pseudo-mondhht’, (N, n"), (M’, ), 7/, A, p’) over TSMC’ such that
Int’ is a 2-functor, and is a strict lifting of the pseudo-moratialong U, that is,
Uolnt’ =Int o U, U(N{) = Nur, Ut = Tuc, etc. We note that the Kleisli lifting
()’ of Int” also commutes with U, that is,((A)") = (UA)".

4. There is an equivalencgtr’ : TSMC'(FL(X),C) —» TSMCy(FL(X),C) such
that Str’(F) = Str(F), and for any functor Fe TSMC, and GH € TSMC’ of
appropriate typestr’(F) = F andStr'(H o Go F) = Str’(H o Str'(G o F)).

We express such a situation by a tugle: (F, U, Int”).

Definition 4. Let& = (F, U, Int’) be an extension of TSMC. We define the collection of
&E-MAG for4 in C e TSMC’ and&-AC from4 to X by

E-MAG (4, C) = TSMC(L(4). Int (UC)) ~ MAG (4, UC)
E-AC(4,X) = TSMC(L(), Int (UF £(X))) =~ MAG (4, UF £(2)).

Let A € E-AC(4,2) andB € E-MAG (X, C). We define their descriptional compo-
sition B © A by
B@© A = Str(U(B)") o A).

We writeH¢ : C —» FU4C for the unit of the adjunctiof 4 Us. We assume that any
&E-AC A between rooted signatures satisfiggt) = (1, H(#)). We define the translation
TA: UFLAY)(,H#) - UFLE)(I, H#) induced byA € E-AC(4*, 2™*) as follows:

TA(f) = uniqueg such thal A(f) = Nur £(5)(Q).

This is well-defined abl is full and faithful [11]. When we do not consider the extemsi
(F = U = 1d), the translatiorm A is just a mapping of € L(4%)(e, #) to a morphism
in £(2*)(e, #). Under the identification of terms and morphisms in a fré&MC, TA
represents the term translation induced by the attributplom A.

Theorem 2. LetE be an extension of TSMC.

1. &-ACs are closed under descriptional composition.
2. ForanyA € 8-AC(4,2),8 € E&AC(2,E) andC € &MAG (Z,C), there is a
natural isomorphism betwed@ © 8) © A andC © (B © A).



3. For anyA € E-AC(4*,2%),8B € E&-AC(2*,E*) and f € L(4%)(e, #), we have
T(B © ﬂ) o HL(A*)(f) =TBoTAo H,C(A‘f)(f)-

The proofis in Appendix A.
Corollary 1. For any composable SSUR-A@s 8B, we have T8 © A) = TBo TA.

In the subsequent sections, we show that some useful estensf (SSUR)-ACs
can be captured as attribute couplings in extensions of TIV@n the above general
theorem, the associativity of the descriptional compositind the closure property of
extended ACs under the descriptional composition.

4.1 Descriptional Composition for Nondeterministic ACs

We look at an example of an extension of TSMC arising from aragtnic monoidal
monad T, 7, i ¢1, dap) OverSet # Given such a monad, for a categdatywe define a
new categonyl.(C) by the following data|{T.(C)| = |C| andT.(C)(A, B) = T(C(A, B)).
The identity and composition df.(C) defined as follows:

1 11 1 oA

T.(C)(B,C) x T.(C)(A B)“®242 1 (c(B, C) x C(A, B) 22 T_(C)(A C).
This construction is well-known ashange-of-basé enriched category theory. The
mappingC +— T.C extendsto a 2-monad {, u.., 7.) overTSMC andTSMC s. We write
TSMCT for the 2-category of strict,.-algebras (which are exactRalgebra enriched
TSMCs), strictT.-algebra morphisms anfl.-algebra transformations; see [2] for the
detail. We also writeTSMC!* for its 2-subcategory such tha@it-algebra morphisms
belong toTSMCs. The Eilenberg-Moore 2-adjunctidh- U : TSMC™ — TSMC can
be restricted td-s 4 Us : TSMC} — TSMC.. One can easily extend the strictification
operatoiStr to the one satisfying the condition 4 of Definition 3.

To lift the pseudo-monatht to the 2-categorffSMC '™, we (necessarily) give a
pseudo-distributive law [21] of . overInt. In fact, it consists only of identities, as the
components ot andT. commutes with each other, suchlas(T.(C)) = T.(Int(C)),
T.(N¢) = Nr,¢, Int ((1t.)c) = (.)int(©), etc. Thus the above data determine an extension
of TSMC.

Example 1.We write® : Set— Setfor the covariant powerset monad. &t TSMC.
A monoidal attribute grammai (S, a) for 2 in £, (C) assignsC-objectsl p, Sp to each
typep € 2, and aP.(C)-morphism

3 € P.(C)(Sp1®---®Spn®1p,Sp®lp1®---® I pp)

to each operaton € 2P *~P; this means that ®#.-MAG assigns an attribute calcu-
lation rule nondeterministicallyto each operator ix. For instance, we consider the
following P.-AC from X510 Zjjt:

I)=e S()==

4 This is equivalent to a commutative monad [16].



az={[l}, as={(Ax.lety=0:xiny),(Ax.lety=1:xiny)}.

This AC maps each natural numis)(2) to the set of all binary digit with length,
represented as morphisms of type» = in P.(L(Ziist)).

4.2 Descriptional Composition for quasi-SSUR ACs

In [20], Nishimura and Nakano introduced a relaxation of 8tdlledquasi-SSURIt
relaxes the linear use (exactly once) of variables to affsee(at most once), and intro-
duces a constant denoting the undefined value to the landoingtribute calculation
rules. We formulate their quasi-SSUR ACs and the descriptioomposition of them
in our categorical framework.

First, we introduce the languag&(2) that modifies the typing rules of(2) so
that variables can be discarded, and that has an extra obnstéor each type € 2.
These features directly correspond to Nishimura and Nakanodification of SSUR.
The detail ofA(Y) is the following:

1. We replace the typing rule df(X) in Figure 4 as follows:

I'ireMi:p1 - NreMip UCD
Fm /lx.letylel,---,y|= M| in Z.01,"*,0n—>T1, " ,Tm

What is new to£(2) is that some defined variables may be unused (D). For
instance, the following is now a valid derivation#i(X):

FM AX1---Xp.leteine:py---pn— €

We write this expressiof,..,,..
2. We add ta£(2) a constantL, : p for each type € X, corresponding to undef in
[20]. We then extend this to any sequenceefypes by

Loppn = (A€ let Xy = Ly, - o, Xn = Lp, IN Xg, -+, Xn).

Definition 5. A quasi-SSUR AC from to X is a triple (1, S, a) where for each type
p € 4, lp and S are sequences af-types, and for each & AP+~ ™P g, is an
A(X)-expression of typesa Sp1,---, Spn, lp = Sp, lp1,---, lpn.

We next introduce the concept bfpointed TSMCIt is a triple C, T, L) where
C € TSMC andT, L areC-object indexed families of morphisnms, : A — | and
1a: 1l = Asuch that

Ti=idi, Tae=Ta®Te, L =id, Lagg=Ta® Te. (7)

Discarding variables is modelled by the morphismWe say that a traced symmetric
strong monoidal functor, ¢, ¢a g) preserves bipoints it satisfiesF(La) o ¢ = Lga
andg¢, o Tea = F(Ta). We write TSMC* for the 2-category of bipointed TSMCs,
traced symmetric strong monoidal functors preserving ibiggoand monoidal natural
isomorphisms. We writd SMC?, for its 2-subcategory consisting of traced symmetric



strict monoidal functors. There is an evident forgetfuldtorU® : TSMC*® — TSMC
that can be restricted td: : TSMC3; — TSMCg, and it has an ordinary left adjoint
F* : TSMCs — TSMC¢ that freely adds morphismsa : | - AandTa : A — |,
subject to the equations in (7).

ThelInt construction can be lifted ovdiISMC®. For a bipointed TSMCG, L, T),
we defineint (C)-morphismsL*© and T/ by

MO = eTa, TRO=Th 1A

Then we defindnt*(C, L, T) to be the tuplelft (C), L'™©), 1) One can easily
check that this is a bipointed TSMC. The mappifg (, T) + Int*(C, L, T) extends
to a 2-functor ovelfSMC*, and the pseudo-monad structurdrmf also makednt*® a
pseudo-monad. Furthermore, it is a strict liftinglof alongU.

Proposition 3. The triple&*® = (F*, U*, Int*) forms an extension of TSMCs.

Proposition 4. The tuple(A(X), L, T) is a bipointed TSMC, and it is equivalent to
F(£L(2)). Therefore, quasi-SSUR ACs d&t-ACs.

4.3 Descriptional Composition for Stack AGs

In [18], Nakano introduced an extension of AC callstdck AC where we can use
stacks in attribute calculation rules. He then showed tiastack ACs satisfying cer-
tain linearity condition are closed under the descripti@eaposition. Inspired by his
extension, below we express his theory of stack ACs in owegratcal framework by
setting-up an appropriate extension of TSMC. Our approaifersl from Nakano’s
work as follows: 1) the concept of stack ACs given below allstacks to be stack
elements, and 2) we represent the empty stack by undefirgdistand combine stack
deconstructors (head, tail) into single operatec.

We introduce a languag®(>) and capture the stack ACs satisfying a linearity con-
dition as AGs inS(2). In this language we can use a stack of tgpevhose type is de-
noted byp®. Stacks are then manipulated by two operators: constrootsr: p, o> —
o> and deconstructatec : p* — p,p*™. The operatocons pushes a given value on a
given stack, whilelec separates the top value of a given stack from the rest of it.

We move on to the formal definition &(2). First, we defineS(X), to be the set
of pairs of the form, p) wheren is a natural number angdis aX-type. We identify a
typep € 2 and the pair (o) € S(2)o. We denote a paim(p) by o>, wheren is the
length ofeco’s on the shoulder. Next, we defing(X)| to be the set of finite sequences
of S(2)o. Below we use metavariabl&andC to denote elements if(2)o and|S(Y)|,
respectively. The set of raw terms8¢2) is defined by

M = Ax.letDin x
D:=x=x|x=0(X)|X= Lg|X=consg(X X) | X, x = decg(X).
The typing rules ofS(2) extends the one fafA(X) with cons anddec:

0 € JPLPn—p
X:Brex:B ‘relg:B Xg:p1,oo,Xniponte O(Xg, -, %) i p




X:B,y:B®rg consg(x,y): B® x:B® e decg(X) : B,B”

FireMi:Cy -+ NkeM:C UCD
Fm AX . letyy = Mq,--- ,yy=Mjinz:C" - C”

whereU=T1U---Ulu{z:C’}and D= {x : C',y; : C1,---,¥ : C}, and each
variable inl'y,--- , Iy, X, Y, Zis different from the other. The set of axioms {8¢X)-
expressions extends the one f#¢X) with the following rules (leading is omitted):

(let x,y = decg(2), z= consg(X,y),Dinv) = (letx= X,y =y,Dinv)
(letx,y = decg(2),z= Lg~,DinVv) = (letx= 1g,y= Lp~,DinV)
(letz=consg(x,y),Dinv) = (letDinv (z¢ FV(D)UVvU {y})).

Definition 6. A quasi-SSUR stack AC frarto 2 is a triple (I, S, a) where for each type
p €4, 1p,Sp € |S(2), and for each operator @ 4°v =P g, is anS(X)-expression
oftype @ : Sp1, -, Spn, lp = Sp, lp1,--, lpn.

Example 2.This example is from [18]. We consider a stack AC that corveaterse-
polish notations to ordinary expressions. Egtand2, be signatures defined as follows:

Ze — ({*}’ {numn—M«’ add*’*_)*, mul*,*—)*}) (n c N)

The signatureXy, is for the reverse-polish notation of expressions. Forinst, a>,-
expressioms(p2(ps(a(m(r))))) denotes (5 2)« 3. The stack ACI(, S, a) that constructs
2e-terms from reverse-polish expressions is the followirypétannotations are omit-
ted):

I = (%), 0% = %
ap, = Asy,i . letiy = cons(nump, i) in S, i1
8, = Asy,i . let hy, t; = dec(i), hy, t = dec(ty), i1 = cons(add(hy, hy),t2) in sy, i1
am = AS,1 . let hy, ty = dec(i), hy, to = dec(ty), i1 = cons(mul(hy, hy), i2) in sy, i1
a- = di.leth,t =dec(i)inh.

Definition 7. A TSMC with stackis a tuple(C, L, T, (-)®, cons, dec) where

— (C, 1, T)is abipointed TSMC,

— (=)* :|C|] - |C|is a mapping such thdt® = | and(A® B)* = A* @ B%,

— consp : A® A® — A® anddeca : A — A® A™ are C-object indexed families of
morphisms such that

deca o consp = idaga~,  decy = cons) = id,,
decao o= 1A® La~, TAOCONSA = TA® TaAx,
€oNsags = (consa @ consg) o (A® ogga~ @ BY),
decags = (A® oaxga ® B™) o (deca ® decp).



A stack-preserving functdsetween TSMCs with stack is a traced symmetric strong
monoidal functol(F, ¢, ¢a ) Such that it preserves bipoints(&*) = (FA)* and

F(consa) o ¢aa~ = CONSEA dan- o decpa = F(deca).

We defind' SMCS to be the 2-category of TSMCs with stack, stack-preservingtfrs
and monoidal natural isomorphisms. Its 2-subcategory iting of traced symmetric
strict monoidal functors is denoted BBMC?. We write P : TSMC® — TSMC for
the canonical forgetful functor.

Next, US can be restricted to a 2-functorS : TSMCS — TSMCs, and when viewed
as an ordinary functor, it has a left adjoit : TSMCs — TSMCZ. This left adjoint
constructs a syntactic TSMC with stacks from a given catedble omit its detail, but
an object of the categorySC is an element of the countably infinite coproduct of the
monoid (C|, 1,®), that is, a sequencdq(C,) - - - (k,, Cn) such thatk; € N, C; € |C|
(1 <i<n)yandk #k;if i # j. The unitHc and counitEc of the adjunction is defined
by (on objectsH:(C) = (0,C) andH¢(ks, Cq) - - - (Kq, Cp) = ®i":l Cf"('“). The category
FS £(C) admits the strictification operat&tr® satisfying the condition 4 of Definition
3; on objects it is defined b$trS(F)((k, p1) - - - (kn, pn)) = & 1<icnicjep) (Foi)) .

Let (C, L, T, (=), cons,dec) € TSMCS, which we just writeC. We define the
tupleIntS(C) = (Int(C), L"©, 1Int©) (=)™ cons™(©) dec™ @) py

MO =y eTa, THO-The1a, AT = (A7, (AN,
consp'© = consa ® deca-,  decy'© = decar ® consa-.
We definelnt® of 1-cells and 2-cells iTSMCS to belnt of them. In this wayintS
becomes a 2-functor. One can check that we can adopt théwtuwr the pseudo-
monadint to makelntS a pseudo-monad ov@iSMCS. Thus we obtain a pseudo-
monadintS : TSMC® — TSMCS® which is a strict lifting of the pseudo-monéuat
alongUs.

Proposition 5. The triple&S = (FS, US, Int®) forms an extension of TSMC.

Proposition 6. The tuple(S(2), L, T, (-)*, cons, dec) is a TSMC with stack, and is
equivalent to F(£(X)). Therefore, quasi-SSUR stack ACs &feACs.

5 Conclusion and Discussion

We presented a categorical framework for capturing varexiensions of ACs and

their descriptional composition. By setting up approgriextensions of TSMCs, the
descriptional composition of non-deterministic ACs, g¢8SUR ACs and quasi-SSUR
stack ACs are covered by our framework. The framework unifgrguarantees the

associativity of the descriptional composition and thesale property of extended ACs
under the descriptional composition.

We strongly believe that our framework will contribute tagexding the fusion trans-
formation of functions with accumulating parameters. niladte grammar framework,



the fusion problem is reformulated as the descriptional masition of attribute cou-
plings that represent functions with accumulating paranseExtending this approach
with extra language features is a delicate task (see e.p), il our categorical frame-
work indicates the direction of the extension of ACs so thatdescriptional compo-
sition works. For instance, one may consider introducirgriiap operator to stack
ACs. In our framework, this is done by promoting the oper&tdf° in Section 4.3to a
functor, then form a suitable extension of TSMCs.

We also expect that our framework can provide an alternatieeunt for the exist-
ing fusion methods that use circular let bindings to expfes®n results as first-order
functional programs [22, 19, 13]. An interesting connatti@tween these transforma-
tions and the category theory is that, these fusion resulien viewed as morphisms,
often have the same pattern as the composition of morphisins(iC); this is also ob-
served in [13]. Through this similarity, our categoricadwi of the descriptional com-
position will be helpful to understand these fusion metheas hopefully provide an
equational proof of their correctness.

One possible future work is to implement the descriptiomahposition based on
our categorical framework. The major task will be to define tlata structure repre-
senting TSMCs and implement th@ construction on them. The implementation task
breaks down the descriptional composition into fundamergarations on categories
and functors, each of which will be easily verifiable.

Acknowledgementhe author is grateful to Susumu Nishimura and Craig Pastro f
discussions, and Masahito Hasegawa for his encouragemehtedpful feedback.
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A Proof of Theorem 2

1) Obvious. 2) First, we introduce an auxiliary binary opgergc)’. For functorsA €
TSMCL(F L(4), Int’F L(2)) andB € TSMCLFL(Z), Int’(C)), we define8 ©’ A to
beStr'((8)" o A). Itis associative up to an isomorphism:

CO (BO® A)=Str'(([C) o (B)' o A) = S'((C) 0 B) 0o A) = (CO B) © A.

Let A € TSMC(L(4), IntUF L(X)) andB € TSMC(L(2), Int UC). Then we have

BOA=Str(U((B)) o A) = Sr((B)’ o A) = Str'(B) o A) = (BO' A.

The bijection(-) : [TSMC4(FC,D)| — [TSMC(C, UD)| extends to an ordinary func-
tor TSMC(FC, D) — TSMC(C, UD), because it is defined &= UF o Hc. There-
fore if F andG are naturally isomorphic, so afeandG. Then we have

COBOAN=COBOA=(COBHOA=COBOA.

3) Note thatN(TA(H(f))) = A(f). SinceN is faithful, it is sufficient to showN o
TBO A) o H(f)=NoTBoTAoH(f).

N(T(8 © A)(H(1))) = Str(UB)* o A)(f) = (UB*(N(TAH())))
= (UB)(TAH(f))) = N(TB(TAH(1)))).

B Traced Symmetric Monoidal Categories and the Int
Construction

Traced Symmetric Monoidal Categoie recall the concept of trace operator [11].
A trace operatoron a symmetric strict monoidal categor@,(,®, o) is a mapping
tr’g,c :C(B® A,C® A) — C(B, C) satisfying the following equations.

(Ngturalit){) hotrg(f)og= ”@;,0 (heA)o fo(g®A)
(Dinaturality) tg (C®g)o f) =trg(f o (B®Q))
(Vanishing I) tha(f)=f

(Vanishing I1) e (9) = tra 5 (tr8oa peal9))
(Superposing) fl,cgep(B® f) = Botrd, f

(Yanking) tia a(oan) = id.

We simplify the superposing axiom in [11] using naturalitydadinaturality [9]. A
traced symmetric strict monoidal categofySMC) is a pair of a symmetric strict
monoidal category and a trace operator on it. We say that anggrit strong monoidal
functor , ¢1, #ap) : C —» D between TSMCE, D is tracedif it satisfiesF(trKB(f)) =

trEXFB((ﬁE’]b oFfo ¢A.C)'



Thelnt ConstructionJoyal, Street and Verity showed that the forgetful funatonf the
2-category of tortile monoidal categories to that of tragtdided) monoidal categories
has a left biadjoint, which they callddt [11]. This biadjunction can be restricted to
the one betweefSMC and the 2-category of strict compact closed categoriemgtr
monoidal functors and monoidal natural isomorphisms. ltileeusual construction of
monads from adjunctions, we obtain a pseudo-monadTS®C, which we also write
Int. Below we give an explicit definition of this pseudo-monatl

Let C € TSMC. We define the TSMQnt (C) by the following data. An object is
a pair A", A”) of C-objects. Below, wherf is declared as aimt (C)-object, by A*
and A~ we mean its first and second component. A morphism fAomo B is a C-
morphismf : A*® B~ —» B* ® A". The identity is defined by Ef(c) = ida+ga-, and the
composition off : A — Bandg : B — Cis defined byg o'™© f = tr8, . ... (h)
whereh = (C* ®o0p-a-) o (@A) o (B"®0a-c-) o (f®CT) o (A* ® oc--). The
(strict) tensor product ifnt (C) is given by A @"(© B = (A* ® B*, A~ ® B") and
M@ g=(B*®cap ®C)o(f ®g)o (A* ® oc-g- ® D). The unit object of this
tensor product is given by (1). The symmetry morphism isjs ) = oarg: ® 0a -
We give the trace operator with respect to the above symomaimnoidal structure by
(tr'"t(c))gyB(f) = trﬁfggfmA_ (B*®oc-a-®C 7)o f o (A*®0p-c- ®C)).

We next give a functointcp : TSMC(C,D) — TSMC(Int(C), Int(D)), which
we simply write bylnt. We definelnt of a traced symmetric strong monoidal functor

(F.¢1.¢ag) : C > D to be the tuplelit (F), o™ ®, g"”) : Int (C) - Int (D) defined

by Int(F)(A) = (FA*,FA7), Int(F)(f) = ¢l @ Ff @ parn, 9" = o1 @ ¢
and ¢ = ¢a B+ ® ¢l . For a monoidal natural isomorphism: F — G, we
definelnt(a) : Int(F) — Int(G) by Int(a)a = aa ® a;}. These data determine a
2-endofunctoint : TSMC — TSMC.

LetC € TSMC. A calculation shows that the homdat 2(C)(A, B) is identical to
CA*"®B*®B"" @ A,B""® A" ® A"~ ® B™"); thus we manipulate morphisms
in Int?(C) asC-morphisms. The unit of the pseudo-moradis the traced symmetric
strict monoidal functoN¢z : C — Int(C) defined byNc(A) = (I, A) andNe(f) = f,
while the multiplication ofint is the traced symmetric strong monoidal funchés :
Int?(C) — Int (C) defined byMc(A) = (A~ ®A™, A"®A™) andMc(f) = rgloforag,
wherera g is the symmetry morphismra— a~gs—+os+ in C. We also define monoidal
natural isomorphismse : Int (F)oNg — NpoF andme : Int?(F)o Mg — Mpolnt (F)
for (F, ¢|’¢A,B) € TSMC(C,D) by (nF)A = idea ® o] and (nF)A = ¢;,L,’AH ® Pa-+ A+
These data determine pseudo-natural transformating ( Id — Int and (M, m) :
Int? — Int.

Finally, we define modificationdc : Mc o Int(Ng) — Idintc) andpc @ Mc o
Nint(c) = ldint(c) to be identities, andc : Mc o Int(Mc) — Mc o Mint(c) by (tc)a =
(caA—+p+ea— @A) ® (O’A},,’A,++®A+,+ ® A7),

Theorem 3. The tuple(Int, (N, n), (M, m), 7, 2, p) forms a pseudo-monad AGiSMC.



