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Abstract. We give a new characterisation of morphisms that are defrtabthe
interpretation of the simply typed lambda calculus with sumany bi-Cartesian
closed category. The T-closure operator will be used twnstructthe category
in which the collection of definable morphisms at sum typeshmcharacterised
as the coproducts of such collections at lower types.

1 Introduction

TheA-definability problenis to characterise the semantic elements that are defingble b
denotationa/ categorical semantics of the simply typédalculus. A characterisation

of the A-definable elements in full type hierarchies was first givgnPotkin using
Kripke logical relations This result was later generalized by Jung and Tiuryn to any
Henkin model usindripke logical predicates with varying aritjl5]; its categorical
formulation was also given by Alimohamed [1].

These precursors considered the definability problem irsttmply typed lambda
calculus with only arrow types (and possibly product typ&$je problem becomes
more subtle when sum types are added. There is a naturaltiefiof coproducts for
Kripke predicates with varying arity, but these coprodwats not sfficient to charac-
terise the definable elements at sum types. In [11] Fiore amgs®n overcome this
difficulty by introducing a new concept callétothendieck logical predicate3hey
used Grothendieck topology to improve the definition of ocajucts of Kripke pred-
icates. By constructing a suitable category of worlds amblmgy on it, Fiore and
Simpson succeeded in giving a characterisation of defimablphisms in any bi-CCC
with stablecoproducts.

In this paper we approach the definability problem in the $§typed lambda cal-
culus with sums using afiierent technique calledT-closure operatorThe main con-
tribution of this paper is the following:

1. We characterise the definability predicat¢he collection of definable morphisms)
at sum types by means of the standard coproducts for Kripdigates and the
semantict T-closure operatar

Def0=0"",  Def(r+7) = (Defr + Defr)™.

This characterisation holds with respect to the interpiataf the lambda calculus
with sums inanybi-CCC. We also give a characterisation of morphisms delinab



by the simply typed lambda calculus with sums by meanaedk logical predi-
cates

2. We analyse the underlying categorical essence of theesdoguments, and present
it as therestriction theoremThe statement of the theorem is the following:Pdie
a logical predicate in a shiciently rich fibrationp : P — C. If P respects product
and arrow types, then we can restiitcto a full reflective subcategofy’ ™ of P so
thatP respects sum types as well.

The characterisation stated in item 1 implies that in thegaty K™™ of TT-closed
objects the definability predicates at sum types are givehdgoproducts of the defin-
ability predicates at lower types. By employiKg ™ as a gluing category, we also show
that the inclusion from the free distributive categhgyB) over the seB of base types
to the free bi-CCQ_1(B) over B is full. We note that this result is proved in [10], but
there a diferent gluing category is employed.

Preliminary We define categories and functors by the following table:

A category/ functor is ... | when it hag preserves ...
Cartesian finite products
co-Cartesian finite coproducts
bi-Cartesian finite products and finite coproducts
Cartesian closed (CC) finite products and exponentials
bi-Cartesian closed (bi-C@nite products, finite coproducts and exponentials

2 Definability of Calculi with Sums

We deal with the definability problem in the context of funéb semantics, where
syntatic theories are treated as freely generated cagsgand interpretations are rep-
resented by structure-preserving functors. We fix a smateSe&n categorl, that plays
the role of a syntactic theory, a bi-CQCthat plays the role of a semantic domain, and

a strict Cartesian functd¥:
F

L——C
that gives an interpretation of the syntactic theory. We firgiew some basic properties
of the definability predicate fofF in this setting, then extend andF with additional
structures (coproducfsexponentials) toward the main theorems of this paper. At thi
moment we do not require thiatis a freely generated category, as the freeness does not
play any role in the following discussion.

2.1 Kripke Predicates with Varying Arity

We first introduce the poséltx,_ that plays the role of Kripke structure for Kripke
predicates with varying arity. The carrier of the poset@bj(L))*, the set of finite
sequences df-objects, and these sequences are ordered by the prefixngrdat is,

7 < o if T is a prefix ofo). Below we treaCtx, as a category.



WhenL is identified as a syntactic (type) theory, the p&3ist expresses inclusions
of typing contexts. We associate these inclusions withgut@jns inL by the following
functor| — | : Ctx, — L°F:

m

oy — e
|T1"'Tn|=("'((1XT1)XT2)"')XT[‘|, |T1-'-TnST1-'-Tn+m|=IdO7TO-'-O7T,

wherer is the first projection for appropriate objects.
We next define the cateqgoKg of Kripke predicates with varying arity

— An object ofKg is a pair C, X) whereC is aC-object andX is a subpresheaf of the
contravariant preseh&f(F| — |, C) on Ctx, .

— A morphism from C, X) to (D, Y) is aC-morphismf : C — D such that for any
Ctx_-objectI" andC-morphismg € XI", we havef o g € YTI.

The categonKr is constructed as follows. Let
He : C — [Ctx_, Sef be a functor defined by
He(C) = C(F| - |,C). ThenKg is the vertex of
the change-of-base (pullback) of the subobject fi- k. "> Sul([Ctx,, Sef)

brationp : Sub([Ctx,, Sef) — [Ctx,, Sef along ip
He (Figure 1). This construction is an instance of l
subscong22] or categorical gluing1]. C—— [Ctxi, Sef

Proposition 1. The leg g K¢ — C of the change-
of-base (Figure 1) is a strict bi-CC functor and a

. L o Fig. 1. Derivation ofq
partial order fibration with fibred small products.

Proof. Sincep is a partial order fibration with fi-

bred small productgj inherits these structures via

the change-of-base along the Cartesian funidiarThe bi-CC structure akg, which
is strictly preserved by, is given as follows (see also Section 1.5, [1]):

1= {'mm)r)
(C,X)%(D,Y) = (CxD,{h|moheXI,mohe YT}
0=(0,0)

(C.X)+(D,Y)=(C+D,({inlo f|feXrjyulinrof|feYr},)
(C.X)=(D,Y)=(C=>D,{f |VI" 2T .¥Yxe XI'" .evo(f o FIC < I"|,X) € YI"'}).

(heref- - -} denotes a presheaf described by an auxiliary paramieteCtx ).
We define the target of our study, thefinability functoDef : L — Kg, by

Defr = (r,{Fg e C(FIIl, F7) | g € L(T. )}r)
Deff = Ff.

We call Defr the definability predicatgof F) at 7. We refer to the presheaf part of
Defr by Dr; in other wordsD = r o Def (r is the other leg of the change-of-base).

Proposition 2. Def : L — K is a full strict Cartesian functor, and g Def = F.



Ke bi-CCC (1, x,0,+, )
oo C  bi-CCC (1x,0,+,=)
L——Kg — - g strict bi-CC functor and partial order

\ lq (Figure 1) fibration with.fibered small products
L small Cartesian category

c o F strict Cartesian functor
Def full strict Cartesian functor

Fig. 2. Categories and Functors for the Argument of Definability

Figure 2 summarises categories and functors we have irtea&o far.
One important property of the functor Def, which is implicitthe characterisation
of A-definability by Jung and Tiuryn [15], is the following:

Lemma 1. For any L-objects, 7" andCtx_-objectl’, we have
f e r(Defr = Defr)(I") = A7X(f) e DI(I'),

(herea! denotes the uncurrying operator).

2.2 A Characterisation of Definability with Sums

We next assume that the categariy Figure 2 is a distributive category (in the sense of
Walters [26, 7]) andF is a strict bi-Cartesian functor. Recall that a distribetbategory
C is a bi-Cartesian category such that the canonical morphism

[Axinl,Axinr]: (AxB)+(AxC) » Ax (B+C)
has the inverse (calletistributive law * :
Migc i Ax (B+C) > (Ax B)+ (AxC).

We note thaF strictly preserves distributive laws, that Fs(mkj,y p) = mET o Fpr
The functor Def in Figure 2 is still full strict Cartesian froProposition 2, but not
co-Cartesian. We merely have the following inequations:

Def0> 0, Def(r + 7') > Defr + Def7’. 1)

Interestingly, these inequations are equated when api¢ite contravariant functor
(- = Defp).

Lemma 2. For any L-objects, 7/, p, we have

Def0=s Defp = 0= Defp
Def(r + 7') = Defp = (Defr + Defr’) = Defp.

! The distributive law implies that the unique map-0A x 0 is the isomorphism; see [7].



Proof. We leave the proof of the first equation to the reader. We sheve¢cond equa-
tion. Lett, 7/, p be L-objects. The inequation (1) implies half of the equatiorb&®
proved. We therefore show the other half displayed below:

Def(r + 7') = Defp > (Defr + Def1’) = Defp.
LetI" be aCtx_-object andf € r((Defr + Defr’) = Defp)(I'). The isomorphism
(Defr + Defr’) = Defp = (Defr = Defp) x (Defr’ = Defp)

implies thati(evo (f x inl)) € r(Defr = Defp)(I') andA(evo f xinr) € r(Defr’ =
Defp)(I'). From Lemma 1, we obtain

(g1 =) evo (f xinl) € Dp(I'7), (92 =) evo (f xinr) € Dp(I't").
We thus take_-morphismsh; : |[I'tf] — p andh; : |[I't'| — p such thaig; = Fh; and
02 = Fhy. SinceF is a strict bi-Cartesian functor, we have
[92. G2l © Meypy pr e = F[ha Dol o My ).
The left hand side is equal &vo (f x (Fr + F1)):
[91,92] e m=evo (f x (FT+ F’)) o [F|I' xinl, F|I'| X inr] o m
=evo (f x (Fr+ F1)).

Henceevo (f x (Ft+ F1’)) € Dp(I'( + 7’)). From Lemma 1, we obtaif € r(Def(r +
') = Defp)(I).

We combine this lemma and theemantic
TT-closure operatof16] to extractkg's full re-
flective sub bi-CCC whose coproducts can char-

acterise the definability predicates at sum types. KT

The semantia T-closure operator (we may drop Def .7

the word “semantic” thereafter) is a semantic lA‘
analogue of Pitt'sT T-closure technique in [25], L —Def—= Kg —— -~
and is an instance of the author’'s semarntic- > \Lq (Figure 1)

lifting [16]. The TT-closure operator in this sec-
tion is specialised to the argument of definabil-
ity. In Section 3 it will be re-introduced in more
general form, together with the proofs of propoFig. 3. Restriction of Definability
sitions and theorems in this section. Functor

The TT-closure operator is defined as fol-
lows. LetX be aKg-object above &-objectl.
For each_-objectp, we defineX™™®) to be the vertex of the following inverse image in
the fibrationq : Kg — C:

C “ee

XTTE) v - (X = Defp) = Defp Kr
q

| —— (I=>Fp)=Fp C
1" =A(eve(n’ 1))



wherenlF

of X by

? is the unit of thecontinuation monadwe then defin&X™ ", the TT-closure

XTT = /\ XTT0)
peODj(L)

Proposition 3. The assignment %> X™T extends to a monad ov&r whose unit and
multiplication are vertical (c.f. Proposition 7).

Below we call the assignme(gemantic)r T-closure operatorlt indeed gives an idem-
potent closure operator at every fibre, as unit and mulgibn are vertical.

Corollary 1. We have X< X"T and(X™")T" = X™7, and the monad is idempotent (c.f.
Corollary 2).

We then consideKe's full reflective subcategor§{. ™ consisting ofT T-closed objects
(that is, objectsX such thatX™™ = X); see Figure 3. Some calculation shows that
closed objects form aexponential idealTherefore we obtain the following:

Proposition 4. The categorn[ " is a bi-CCC and ¢ ¢ is a strict bi-CC functor (c.f.
Theorem 4).

The CC structure i [ is inherited fromKr, while the co-Cartesian structure is given
by 0" and (X + Y)TT. That theT T-closure operator is defined in terms of the defin-
ability predicates themselves implies the following imjaait property:

Proposition 5. For every L-objecp, Defp is TT-closed (c.f. Proposition 8).

Thus functor Def can be restricted to the full Cartesian fan¢Def in Figure 3) to
K{LT. Furthermore, from Lemma 2 we obtaircharacterisation of the definability pred-
icates at sum typgg.f. Theorem 5-2):

Def0= (Def0)’ " =07 )
Def(r + 7') = (Def(r + v))"" = (Defr + Defr’)"". (3)

This is equivalent to saying that Da$ a strict co-Cartesian functor. To summarise:

Theorem 1 (Restriction Theorem for Definability Functor). In Figure 3, assume
that L is a small distributive category and F is a strict bi+@sian functor. Theef’
is a full strict bi-Cartesian functor.

We next letL be a small bi-CCC an# : L — C be a strict bi-CC functor. Under this
situation, the restriction of the definability functor ¥ ™ becomes a bi-CC functor.
Since any bi-CCC is a distributive category, Dif Figure 3 is full bi-Cartesian from
the restriction theorem. Moreover, as shown in [1] (c.f]]1fhe functor Def (and Déj
strictly preserves exponentials. Therefore we obtainthievfing theorem:

Theorem 2. Infigure 3, assume that L is a small bi-CCC and F is a strict iQnctor.
ThenDef’ in Figure 3 is a full strict bi-CC functor.



2.3 Fullness of Free Distributive Categories in Free Bi-CC&

As an application of the restriction theorem, we show thatdéinonical inclusion from
the free distribute category to the free bi-CCC is full. Wdenthat this result (and
faithfulness) is proved in [10] using aftBrent gluing category.

We fix the setB of base types and regard it as a discrete category. In thiex play
the free distributive category§(B),no : B — Lo(B)) overB, we mean the distributive
category with the following universal property: for any tdilsutive categoryC and a
functorF : B — C, there exists a unique strict bi-Cartesian fundfor Lo(B) — C
such thatF o 579 = F. We also define the free bi-CCCy(B),7; : B — Li(B)) over
B as the one having the similar universal property. Such fedegories arise as term
categories of the simply typed (lambda) calculus with siis.omit the detail of the
construction of free categories due to lack of space; se¢18p

We instantiate Figure 3 with the following data:

1. L = Lo(B), the free distributive category ovet

2. C = L4(B), the free bi-CCC oveB.

3. F =71 : Lo(B) — L1(B), the strict bi-Cartesian functor derived from the uniaérs
property ofLy(B).

Lafont applied categorical gluing to show that any smallt€sian categor{ can be
fully embedded into the CCC that is relatively free with resptoC [17]. We apply
his proof technique to the show thatis full. Here we us&[™ as a substitute for the
gluing category.

Theorem 3. The strict bi-Cartesian functoyy : Lo(B) — Li(B) is full.

Proof. Below we writeF for 777. From Theorem 1 we obtain a full strict bi-Cartesian
functor Def : Lo(B) — KL 7. From Proposition 4K[ " is a bi-CCC; hence we obtain a
strict bi-CC functord = Def o : L1(B) — K[ '. Furthermoregq o « is a strict bi-CC
functor, sagocoJ = Id by the universal property af; (B). This implies thatl is faithful.

L1(B)

T

Lo(B) —pef—= KL

\ lqo[

L1(B)

In the above diagram, the upper half of the triangle commfutes the universal prop-
erty ofLo(B). The lower half of the triangle also commutes from Figuré/@.now show
thatF is full. Let f : Fr — Fo be alL;(B)-morphism. We seek for by(B)-morphism

g such thatf = Fg. We first havel f : Def’ r — Def’ o Since Defis full, there exists
a Lo(B)-morphismg : T — ¢ such that) f = Def g = J(Fg). SinceJ is faithful, we

obtainf = Fg.



3 TT-Closure Operators and the Restriction Theorem

In this section we focus on the general scheme that undénligee derivation of the
restriction theorem (Theorem 1), and re-establish it inerg@neral form.

We first identify the class of fibrations in which we can coesidT-closure oper-
ators. If a functot : P — C satisfies the following conditions:

P P bi-CCC (1, %,0,+,=,1, 7,7, A,6V---)
lu C bi-CCC (1, x,0,+,=,l,m, 7', A, eV,---)

U strict bi-CC functor and partial order
C fibration with fibered small products

we say thaty admitsT T-closure operatorsBelow we give a sfiicient condition for
ensuring that a fibration admitsT-closure operators.

Proposition 6. Let p: E — B be a partial order bifibration such tha is a bi-CCC,
p has fibred small products, fibred finite coproducts, fibregoeentials and simple
products (see e.g. Jacobs [14]). Then p admmits-closure operators.

3.1 TT-Closure Operators

We fix a fibrationU : P — C which admitsT T-closure operators. EachT-closure
operator takes &-object as a parameter calletbsure parameterLet S be a closure
parameter. For &-objectX, we defineX™™®) to be the vertex of the following inverse
image:
XTT(S) oo > (X = S) =S P
U

UX—— = (UX=>US) = US C
ngx=Alew(r 1)
We note that th@-morphismngi is the unit of the continuation monad & US) =
US. This construction exactly coincides with tekemantict T-lifting [16] of the iden-
tity monad.

Proposition 7. [16] Let S be a closure parameter. The assignmentXXT ™) ex-
tends to an endofunctgr)""® : P — P such that Uo (=)™™®) = U. Furthermore,
there exists vertical natural transformationd ™S and ™™ that make the triple
((_)TT(S), TITT(S),IUTT(S)) a monad.
Corollary 2. Let S be a closure parameter. For aByobject X, we have

X < XTT(S), (XTT(S))TT(S) — XTT(S), S = STT(S).
Proof. In this proof we simply writeTT for TT(S). The first two (in)equations are

immediate consequences of the previous lemma. To $iow= S, it is suficient to
showS™" < S. We consider the following diagram:

STT ......................... >(S:>S):>S%S P
evo(id, (7" )o!y

lu

C

UST(USﬁUS)ﬁUSWUS



The composite of morphisms fhis the identity. Henc&™™ < S holds.

We next generalisg T-closure operators to take multiple closure parameteitsSlze
{Silier be a set-indexed family of closure parameters. We defife’(® by

XTT(S) — XTT(Si)
[
where /\ denotes the fibred product. Below we only consider set-iaddamily of
closure parameters.

Proposition 8. Let S = {S;}ic; be a family of closure parameters. The mapping-X
XTT® extends to a monad ov&rwhose unit and multiplication are vertical. Further-
more, for anyP-object X, we have

X < xTT(S), (xTT(S))TT(S) — xTT(S)’ Sl — SITT(S) (| € I)

3.2 Full Reflective Subcategory ofr T-Closed Objects

We investigate the structure of the full reflective subcatg@f T T-closed objects. Let
Sbe a family of closure parameters. We wiit€"® for P’s full reflective subcategory
consisting ofT T(S)-closed objects (that is, objecXssuch thatX ™™ = X). We write:
for the inclusion functor fror®™™® to P.

SinceP is bi-CartesianP™™® s also bi-Cartesian (see e.g. Proposition 3.5.3 and
3.5.4,[6]). The Cartesian structure is inherited frBmvhile the co-Cartesian structure
is given by the following diagram:

inl inr

X > X+Y—>=(X+Y)TTO - Xiy<—v (4)

We next show that T(S)-closed objects form aexponential ideal

Lemma 3. LetS = {Sj}ic; be a family of closure parameters. Then for @&gbject X
and Y above | and J respectivelyl ¥ = Y implies(X = Y)"™® = X 5 Y.

Proof. Below we only show X = Y)™™® < X = Y; the other direction is clear as
(-)"™® is a closure operator. Léte |. We definew : (X=Y)T™® - (X=Y) =
Si) = Si) to be the composite &-morphisms in the following diagram:

(X => Y)TT(S)
(X=Y)TTE) s >(X=2Y)=2S5)=S; P
U
| =J (1= J)=>US) = US; C

Us;
M=

us;
1=J"

From the diagramy is aboven
(X=>Y)= S by

We also define @ morphismc: X x (Y = S;) —

¢ = A(6vo (id X 8V) o (' o 71, (7', 7t 0 7)),



which is above the followin@-morphismc: | x (J = US;) - (I = J) = US;:
c = A(evo (id x eV) o {n’ o 7, (n’, 7 o 7))).
By combining these, we obtainfamorphism
AEvo (Wx &) od): X=2Y)TOXX 5 (YS)=> S
above

n3> oevy = Aevo (S xc)oa): (I = J) x| - (I = US) = US

1=J

(wherea anda are associativity morphisms it andP respectively). This implies that
the following inequation holds for evere | in the fibre over( = J) x I:

(XS Y)TTE XX < ev,(YTTEI),
Therefore we have

(XS Y)TO5X < /\ ey (YTTE) = eyt (YTTO),
iel

Now the composite, say of P-morphisms in the following diagram is aboegg ;:

(X=Y)TTO x X

<

evr,J(YTT(S)) ....................... SVARIC! P

lu

C

SOAW) : (X=Y)TTO - X = YO js abovel(ev ;) = id. Hence K = Y)TTO <
X= YT = X 5 Y.

Theorem 4. For any familyS of closure parameters; T(S)-closed objects form a full
reflective sub bi-CC®™™® of P, and Uo ¢ : PTT® — C is a faithful strict bi-CC
functor.

Proof. ThatP™™® is a bi-CCC follows from Lemma 3 and Day'’s reflection theor&n [
The CC structure o™ ™® is inherited fromP; so. is a strict CC functor. In general,
is not a co-Cartesian functor, but the coproduct diagram)ms(strictly mapped to the
coproduct diagram i€ by U o «. HenceU o« is a strict bi-CC functor. The faithfulness
is obvious.

3.3 Restriction Theorem

We next consider a small categdryand functord= : L — C andP : L — P such that
U o P = F (see the lower half of the commutative diagram in Figure 4k TunctorP
specifies a family of closure parametérs: {Pt},conj()-



P  bi-CCC,x%,0,+ =)

P77 C bi-CCC (1, x,0, +,=)

F’__...---"7 l‘, U strict bi-CC functor and partial order
fibration with fibred small products
L P P L smallcategory
F J/U P.F functors
c PTT( bi-CCC of TT(P)-closed objects

L strict CC inclusion functor

Fig. 4. Restriction ofP to TT(P)-Closed Objects

Proposition 9. The functor P. L — P restricts toP™ " (see P in Figure 4).

Proof. From Proposition 8,R7)""®" = Pr holds for anyL-objectr, that is,Pr is an
object in the full subcategoi™™P) of P. HenceP restricts tap™™®).

Theorem 5 (Restriction Theorem).In the commutative diagram in Figure 4,

1. If L is a Cartesian (closed) category and F and P are strieirt€sian (closed)
functors, then Pis also a strict Cartesian (closed) functor.
2. If F is a strict co-Cartesian functor and P satisfies

PO= Pp=0= Pp, Pr+7)=Pp=(Pr+Pr)=Pp

then P is a strict co-Cartesian functor.
3. If Lis a bi-CCC, F is a strict bi-CC functor and P is a stricQCfunctor, then P
satisfies the above equations (hen¢ésRa strict bi-CC functor).

Proof. 1. The Cartesian (closed) structureRh™® is the restriction of that i to
PTT®), SinceP strictly preserves Cartesian (closed) structure, so Baes
2. Suppos®(r+1')= Pp = (Pt + Pt’) = Pp. From the definition ofr T(P), we have

P(r+7)=P(r+ T')TT(P)

= N\ G (P +7)= Pp) = Pp)
peObj(L)

= N Ofe) ((Pr+ Pr) = Pp) = Pp)
peObj(L)
= (Pr+ Pr)TT®),

One can similarly show0 = (P0)"™®).
3. We show that the equations in 2 holds for each strict CCtarftsuch that) o P =
F. In any bi-CCCD there is an isomorphism

(YA' BC

(A+B)=>C$(A=>C)x(5:@)
BD~



which is preserved by strict bi-CC functors. Consider tHfaing diagram:

Pr+7)=Pp

ot/ p
L

P(t+7) = p) ————=P((r=p) x (7' = p)) P

(Pr+ Pr)= Pp<————— (Pt = Pp) x (Pt = Pp) u

PP’ Pp
By
QET,FT’ Fp

(FT+F7) = Fp —— (Fr = Fp) x (FT' = Fp) C

ﬁF‘r.FT’ Fp
c

FromU o P = F, the morphisnP(a["*) is abovea " """. Therefore the com-
position of morphisms P is abovesE™ " o o[""F* = id. Thus we obtain
P(r + ) = Ppo < (Pt + Pt’) = Pp. The other directionP(r + ') = Pp >
(Pt + Pt’) = Pp, follows from a similar argument.

We leave the proof oP0 = Pp = 0= Pp to the reader.

Theorem 1 is an instance of this general restriction theohetRigure 4 we instantiate
U with g : Kg — C, L with a small distributive categor¥; with a bi-Cartesian functor
and P with the definability functor of. From Proposition 2, Lemma 2 and Theorem
5-2, we obtain Theorem 1.

3.4 A Characterisation of Definable Morphisms by Weak Logic&Predicates

We finally give a characterisation of morphisms definablehgydimply typed lambda
calculus with sums by meansweak logical predicated et B be the set of base types,
F : Liy(B) — C be a bi-CC functor and) : P — C be a fibration admittingr 7-
closure operators. A@bj(L1(B))-indexed familyP of P-objects is calledveak logical
predicate(with respect td- andU) if the following holds for anyL;(B)-objectsr, 7/, p:

— Pris aboveFr, .
- P(rx7)=PrxPr, P1=1, P(r=17)=Pr=Pr,and
— (Pr+Pr)=Pp=P((r+7') = p), 0= Pp=P(0= p); (c.f. Theorem 5-2).

We say that &C-morphismf : Fr — Ft’ is invariant under Pif there exists a (neces-
sarily unique)P-morphismg : Pr — Pr’ abovef.

Lemma 4 (Basic Lemma for Weak Logical Predicates)Let P be a weak logical
predicate with respect to a bi-CC functor FL1(B) — C and a fibration U: P —» C
admitting TT-closure operators. Then for any;(B)-morphism f: r — o, Ffis
invariant under P.

Theorem 6. Let C be a bi-CCC and F. L;(B) — C be a bi-CC functor. Then &-
morphism f is definable by F (i.e. f is in the image of F) if andlyohf is invariant
under any weak logical predicate with respect to any fibmatib : P — C admitting
TT-closure operators.



G(C,K,a) — CISubq(i{\C, Sef)

L.(B) Ka — Sub([C, Sef)

T |

C H% [C, Seﬂ
Fig. 5. Construction of the Category of Grothendieck Predicates

Proof. If f is invariant under any weak logical predicate, then it stidna so under Def
with respect td= andqin Section 2. Since Def is fullf is definable byr. The converse
is immediate from Lemma 4.

4 Related Work

4.1 Grothendieck Logical Predicates

We briefly review Fiore and SimpsonGrothendieck logical predicatgd1]. They are

a further refinement of Jung and Tiuryn’s Kripke predicatéth warying arity using
Grothendieck topology et C be a small category be a Grothendieck topology db
anda : C — C be a functor callearity functor. The topologyK induces aridempo-
tent monadK over the categorgub([C°P, Sef) of subpresheaves [4], and one obtains
the full reflective subcategoi@ISuby([C, Sef) — Sub([C, Sef) of K-closed subob-
jects. One can verify thalSuby ([C, Sef) is a bi-CCC, and the composite of functors
ClSubk([C, Sef) — Sub([C, Sef) — [C, Sef strictly preserves the bi-CC structure.
We then take the pullback of the composite aldthg: C — [C°P, Sef defined by
Ha(C) = C(a-,C). This yields the categor$(C, K, a) of Grothendieck predicates,
which is also a bi-CCC (see Figure 5). Every Grothendieckckdgpredicate is then
formulated as a bi-CC functor fror;(B) (the free bi-CCC over the s@& of base
types) toG(C, K, a).

Let C be a bi-CCC whose coproducts are stable BndL — C be a strict bi-CC
functor. For the characterisation of the morphisms defmaplF, Fiore and Simpson
instantiatedC with a syntactically constructed category of constrainautexts K with
a suitable topology o€ anda with the interpretation of contexts ly. They showed
that the functor Def 1;(B) — G(C, K, a) that captures the morphisms definableFby
is a bi-CC functor, that is, a Grothendieck logical predicat

We give an informal comparison of their approach and our @ggir.

1. In our approach the parameter category for Kripke preesce the partial order
Ctx, of context inclusions, while in [11] a non-partial orderegory of constrained
contexts and renamings is used (although it can be switah¢ldet partial order
calledDiaconescu covewithout dfecting the result; see Section 5, [11]).



2. The closure operatdk can be restricted to the orf€lx, overK,, andG(C, K, a)
can be seen as the full reflective subcategory ofAfie,-closed subobjects. In
our approach we derived th& {-)closure operator oveég from the definability
predicates itself, and considered the full reflective stdmaryK " of TT-closed
subobjects. Both approaches perform a similar categocmasdtruction to obtain
the category for characterising the definability predisabeit with diferent closure
operators.

3. One drawback of our characterisation is that the defiityapiledicates at sum types
arenot inductively characterised, although they are coprodutcthe definability
predicates at lower types. This is becausettiteclosure operator used in equations
(2) and (3) refers to the definability predicates at evergtypn the other hand, in
Fiore and Simpson’s work the definability predicates at syjpes are completely
determined by those at lower types.

4. One advantage of our characterisation is that it holdsufigrinterpretation of the
simply typed lambda calculus with sumsanybi-CCC.

4.2 Other Related Work

Pitts introducedr T-closure operator for capturing the concept of admissibl&tions
in the syntactic study of a polymorphic functional langu#®#]. Operators that are
similar to theT T-closure had already appeared in various forms: the duggtigrator
in the phase-space semantics of linear logic [13] and Pgsitgchnique of the strong
normalisation of the second order classical natural déalu¢23] are such instances.
The notion of T T-closure operators also appears in other studies [21, 5].

Hinted from Pitts’ T T-closure operator, Lindley and Stark introduced a new tech-
nique calledr T-lifting for extending the strong normalisation proof ugicomputabil-
ity predicate technique to Moggi’'s computational metalamge [20, 19]. TheirrT-
lifting was later categorically formulated as a method tosirong monads on the base
category of a fibration to the one on its total category [16}Hwsy author. ThereT T-
closure operators are formulated as the-lifting of the identity monad.

Itis widely recognised that re-establishing properties ttold in the lambda calcu-
lus with only arrow types is dicult under the presence of sum types. For instance, the
design of a confluent and strongly normalising rewritingtegs(with 8-reduction and
n-expansion) for the simply typed lambda calculus with sut®@} and the proof of the
completeness of the equational theory of the lambda cadamith sums irSet[9] ex-
hibits the intrinsic dificulty in handling sums. In this stream of research Grotheeidi
logical predicates are shown to be dfeetive tool in reasoning about the lambda cal-
culus with sums. They are applied to the correctness of tmaltsation-by-evaluation
algorithm [2] and the proof of the extensional normalisaf{i®] for the lambda calculus
with sums.
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