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Abstract. We study the construction of preorders®etmonads by the semantic
TT-lifting. We show the universal property of this construction, and dtterése
the class of preorders on a monad as a limit @aad®P-chain. We apply these
theoretical results to identifying preorders on some concrete monadisdiimg
the powerset monad, maybe monad, and their composite monad. Welalso
the construction of preorders and coalgebraic formulation of simulations

1 Introduction

In the coalgebraic treatment of labelled transition systemd process calculi, several
coalgebraic formulations dfisimulationsare proposed [1, 12, 18], and their relation-
ships are well-studied [25]. On the other hand, to expressasymmetry of simulations
between coalgebras, we need to generalise the framewoikigfutations. One of the
earliest works in this direction is [13], where Hesselinkl dmijs introduced a class of
relational liftings ofSetfunctors calledelational extensionswith which simulations
can be coalgebraically captured. Hughes and Jacobgteokdered functoras a basis
for constructing relational extensions of endofunctonsisTapproach was further de-
veloped in the subsequent studies on coalgebraic tracentiesf0] and forward and
backward simulations of coalgebras [9]. The key assumptidhe last two works is
that anorder enrichmenis given to the Kleisli category of a monad.

One natural problem arising in this line of research is howystematically con-
struct preordered functors. In fact, many coalgebra fusabb transition systems con-
tain the functor part omonadsto describe branching types of transition systems, and
they are the focal point when considering relational lgnand preorders on endo-
functors. Upon this observation, we address the probleno$tcucting preorders on
monads, and study its relationship to the coalgebraic ftatiwn of simulations.

The main technical vehicle to tackle the problersésnantict T-lifting [16], which
originates from the proof of the strong normalisation of Mg computational meta-
language by reducibility candidates [21, 22]. We apply #manticT T-lifting to con-
struct preorders on monads, and show that this construstitisfies a universal prop-
erty. We also characterise the class of preorders on a marthé émit of a large chain
of certain preorders. We then apply these theoreticalteguldentifying preorders on
some concrete monads, including the semiring-valued satilthonad, powerset monad
and maybe monad. We finally show that the semantielifting satisfies a couple of
properties that are relevant to the coalgebraic formutaticsimulations.



Preliminaries

Throughout this paper we assume the axiom of choice. We W®riég(resp.Pog for
the cartesian monoidal category of preorders (resp. poaats monotone functions
between them. For setsJ, by | = J we mean the set of functions frohto J. Each
preorder< on a set) extends to the pointwise preorder on a function spaee J,
which we denote by. In this paper the metavariable (and its variants) is reserved
for monads oveBet Its components are written by (i, ). For a functionf : | — T J,
by f# we mean the Kleisli liting off, that is, the functionu; o T f. A preordered
functor[13, 15] consists of an endofunctbr: Set— Setand an assignmemht— C, of

a preorder or-| such that for any functiofi : | — J, Ff is a monotone function from
(Fl,g)) to (FJ ).

2 Preorders on Monads

Definition 1. Let | be a set. We call a binary relation § T1 x T substitutiveif for
each function . | — Tland(x,y) € S,(f#(X), f#(y)) € S.

Especially, a preordeg onT | is substitutive if and only if for each functioh: | — T,
f# is a monotone function of typd(, <) — (T, <).

Definition 2. Let | be a set. We call a preorderon T | congruentf for each set J and
functions fg:J — TI, f <gimplies f < g".

Under the correspondence between monads and algebraie#)@d may be viewed
as the set of-many variable polynomials in the algebraic theory coroesiing to7.
Then a binary relatio® € T x T1 is substitutive if for each polynomial pait, (1) € S
and a simultaneous substitutianf vi]ic; of polynomials, we havet[i := vi]iei, U[i :=
Viliet) € S. The congruence of a preordgron T1 means that for each polynomial
v € TJ and two simultaneous substitutionp {= tj]jc; and [j := uj]jey such that
tj < uj, we havev[j :=tj]jes < V[j := Ujljes.

We introduce the main subject of this papaeorders on monads

Definition 3. A preorderC on7 is an assignment of a preordey on T1 to each set |
such that

1. each preorder, is congruent, and
2. for each function f | — TJ, f*is a monotone function froT I, ;) to (T 1C;)
(we also call this propertgubstitutivity).

From this definition, is substitutive for each sétand [T, C) is a preordered functor.
We write Pre(7) for the class of preorders on. We define a pointwise partial order
<onPre(7) by:c < ' if 5, € Cj holds for each set. The classPre(7") admits
intersections of arbitrary size: for a subcollectiorof Pre(7), its intersection is the
preorden E on7 defined bya (N E), bif ac, b holds for each preorder € C.

Example 1.We write 7, for the powerset monad. For each $efl ;1 has a natural
preorder given by the set inclusion. This is a preordef gn



Example 2.We write7; for the monad whose functor part is given By = | +{x}; this
is known as thenaybe monaéh Haskell. We assign to each dethe flat partial order
on Tl that makes,(x) the least element. This is a preorderign

Example 3.We write 7, for the free monoid monad. For each $etve define a pre-
orderc, on Tyl by: xC, y if the length ofx is equal or shorter thayp This isnot a
preorder onT, because it is not substitutive.

Suppose that the Kleisli categaBet- of a monad/ is Pre-enriched, and moreover
the enrichment ipointwise that is, /x € Set-(1,1) . f*ox £y 5 gfoX) impliesf &, 5 g
for all f,g € Set-(l, J). Then the assignmeht— C,; gives a preorder ofi under the
identificationSet-(1,1) ~ T 1. Conversely, given a preorderon 7, the assignment of
the preordec:; to Set-(l, J) gives a pointwiséPre-enrichment. This correspondence
between pointwis@re-enrichments oiset- and preorders oft” is bijective.

3 Relational Liftings and Preorders on Monads

After reviewing a coalgebraic formulation of (bi)simulatis in the categorBRel of
binary relations and relation-respecting functions, weoithuce a relational lifting of
monads, callegreorderT T-lifting, and show that it gives rise to preorders on monads.

3.1 The Category BRel of Binary Relations

We define the categofRel (which is the same as Rel in [15]) by the following data.
An object inBRelis a triple (X, I1, 1) such thaiX C 11 x1,. Amorphism from K, I, 1)

to (Y, J1, Jo) is a pair (1, fp) of functionsf; : 1; — J; andf, : I, — J, such that for
each {1,i2) € X, (fi(i1), f2(i2)) € Y. We use bold letterX, Y, Z to range over objects in
BRel, and refer to each componentXfe BRel by (X, X1, X2). We writeix : X —
X1 x X, for the inclusion function. We say that € BRel is above(ly, I,) € Sef if
X1 = l; andX, = I,. Objects above the sanset-object are ordered by the inclusion
of their relation part. We denote this order by For each objecK, Y in BRel and
morphism (1, f2) : (X1, X2) — (Y1, Y>) in Sef, we abbreviatefy, f,) € BRel(X,Y) to
(f1, f2) : X > Y. We call a pair X, Y) of objects inBRel composabléf X, = Y;. Their
compositionX = Y is given by the relational composition 8§ andY q:

XY =({(X1,y2) | 3z € X2 . (X1,2) € Xo,(Z Y2) € Yo}, X1, Y2).

A preorder< on a sell determines 8Rel-object &, 1, 1), which we also denote by
<. We write Eq for the BRel-object of the identity relation oh

The categoryBRel arises as the vertex of the pullback of the subobject filmatio
p : Sub(Set) — Set(see [14, Chapter 0]) along the product fundbor Sef — Set

BRel —— Sub(Sef
”l ip wherer is{ﬂ(x) = (X1, Xa),

n(fy, f2) = (1, f2)

Sef —5— Set



The legr : BRel — Set of the pullback is a partial order fibration [14]. For an objec
X in BRel and a morphismfg, f2) : (11, 12) — (X1, X») in Set, we define thénverse
image objec(f, f,)*X by

(fr, F2)"X = ({(x2, %) | (f1(Xa), f2(x2)) € X}, 1, 12).
The categornBRel has a bi-cartesian closed structure that is strictly puvestyr.
The object part of this structure is given as follows:
[TiarXi = (0 1 Vi € 1. (x(¥, mi(y) € (K)ol TTiet (X1, TTier (Xi)2)
[ierXi = Uier (@09 a0 1 (% Y) € (Ko Liar (X1, Lir (X0)2)
X=Y =({(f,9) IY(xy) € Xo. (f(x),9()) € Yol, X1 = Y1, X2 = Y2).
This structure captures the essenclkogical relationsfor product, coproduct and arrow

types interpreted in type hierarchies [23]. We note thaetgality functor Eq Set—
BRel also preserves the bi-CC structuigehtity extension

3.2 Relational Liftings and Coalgebraic Simulations

Definition 4. A relational lifting of an endofunctor F. Set — Setis an assignment
F : IBRell — |BRel| such that for each morphis(f,g) : X — Y, we have(F f, Fg) :
FX 5 FY. We say thaF is

reflexiveif Eqg, € FEq,, _

lax compositionaif FX = FY € F(X *Y),

— compositionalf FX « FY = F(X = Y), and

arelational extensiofil3] if it is reflexive and compositional.

A relational lifting bijectively corresponds to an endoétior F : BRel - BRel such
thatr o F = F2 o 7. We later see that the lax compositionality guaranteesdnepos-
ability of simulations between coalgebras.

Example 4.The bi-cartesian closed structure BRel gives canonical relational exten-
sions of functors consisting of @4 (the constant functor for a sé9, + and x. For
instance, the canonical lifting &fX = Ca + X x Xis FX = Eqy + X X X.

Example 5.The following relational liftingF is known to capture the concept of bisim-
ulation betweer-coalgebras in many cases (see e.g. [12]):
FX = (Im, FX1, FXy),

where Im is the image afFr1, Fro) o Fix : FXp = FX1 X FXo. Itis always reflexive,
and also compositional if and only i preserves weak pullbacks [3].

Example 6.In [13, Section 4.1] Hesselink and Thijs give the followingnstruction of
a relational liftingF*©)(X) from a preordered functoF(C):

F*O(X) = Cx, * FX # Cx,.

They show that every relational extensioof aSetfunctorF gives rise to a preordered
functor F, F(Eq.)), andF can be recovered d&s = F*(FE4) |n [20], it is shown that
the preordered functor~(C) is stable (Definition 10, [20]) if and only ifF*© is a
relational extension such tha@& {©, F?) is an endomorphism over.



A natural generalisation of the coalgebraic formulationljsimulations in [12,
15] is to make it parametrised by relational liftings of apetbra functors.

Definition 5. Let F be a relational lifting of an endofunctor E Set — Set An F-
simulationfrom an F-coalgebra(ly, f1) to another F-coalgebrdl,, f2) is an object
X € BRel above(ly, 1) such that(f;, f) : X - FX.

Example 7.Hermida and Jacobs formulated bisimulations betwe@oalgebras aB-
simulations [12]. Later, Hughes and Jacobs empldy&®-simulations to capture the
concept of simulations betweéncoalgebras [15].

Here are some properties Bfsimulations. [)F-simulations are closed under the union
of arbitrary family. 1) If F is reflexive, F-simulations ard=-simulations. II) IfF is lax
compositional F-simulations are closed under the relational composition

We extend the concept of relational liftings of endofunstimr monads.

Definition 6. Arelational liftingof 7~ is an assignmen'i’ : IBRel| — |BRel| such that

— For each objecX in BRel, we have(nxl,qxz) X 5 TX, and
— for each morphisngfi, f2) : X = TY, we have(ff, ) : TX S TY.

A relational lifting of 7~ bijectively corresponds to a monad = (T. 7, /1) overBRel
such that

m(TX) = (TX1, TX2), a(T(f, £2)) = (TFL T ), ix = (xes 1x)s fix = (Hx o HXs)-

We note that every relational lifting of 7~ is a strong monad ové@Rel, and its strength
0 satisfiest(6x v) = (6x,.v,,Ox,.v,), wheregd is the canonical strength Gf.
The relational lifting in Example 5 extends to monads:

Proposition 1. For each monad™, T is a relational lifting of7".

Larrecq, Lasota and Nowak further generalised this faatgisubscones and mono
factorisation systems [8]. Hesselink and Thijs’s condtaucin Example 6 also yields
relational liftings of monads, when preorders on monadsapplied:

Proposition 2. For each monad™ and preorderC on 7, T*© is a lifting of 7.

3.3 Preorder TT-Lifting

Inspired from [22,21, 24], in [16] the first author introdaceemanticT T-lifting, a
method to lift strong monads on the base cate@of a certain partial order fibration
p: E — B to its total categonE. This method takes a paiR(S) such thatppS = TRas

a parameter of the lifting, and by varying this parameter @ a@erive various liftings
of 7. In this paper, we apply the semanticr-lifting to the strong monad? over
Sef and the fibrationr : BRel — Sef, and we supply congruent (and substitutive)
preorders to the semanticr-lifting as parameters.

Definition 7. A preorder parametdor 7 is a pair (R, <) of a set R and a congruent
preorder<on TR.



The following is a special case of the semantic-lifting [16, Definition 3.2], where a
preorder parameter is supplied.

Definition 8. Let (R, <) be a preorder parameter fof . We writeo, for the function
Axk. K¥(x) : Tl - (I = TR = TR! We define the assignment™®®*<) : |BRel —
BRel| by:

TTRIX = (0%, 0x,) (XS )= <). (1)

Below we callT™®R=) preorder T T-lifting to distinguish it from the general semantic
TT-lifting. When the preorder parameter is obvious from cofjtere simply writeT ™
instead ofT T(R<) An equivalent definition of X using an auxiliary objecXT is:

XT=X=<=({(f, f2) | V(X1 X2) € Xo . fi(x1) < f2(x2)}, X1 = TRX2 = TR),
TTX = (({(%0, %) | V(fr, f2) € (XT)o . Ff(x0) < (%)}, TX1, TX2).

Theorem 1 ([16]). The preorderr T-lifting T™ is a relational lifting of7".

Example 8 (Example 3.6, [16]yVe regardT,1 = {0, 1} as the congruent preorder<
1. The preorder T-lifting of 7, with this preorder parameter is

To X = ({(P1, P2) | VX1 € P1. 3% € P2 (X1, X2) € Xo}, TpX1, TpX2).
Every preorderr T-lifting of a monad7" yields a preorder off.
Theorem 2. Let (R, <) be a preorder parameter for .

1. Foreach set |, we have™Eq, = ({(x,y) | Vf : | = TR. f#(x) < f¥(y)L, TI, TI).
2. The assignment#> T Eq, is a preorder or/~ (which we denote bfx]R).

Proof. We note thatT™Eq)o = {(x.Y) | Vf,g: 1 > TR. f<g = f*(X) < g*(y)).

1. () Immediate. €) Let x,y € Tl and assum&h: | — TR. h#(x) < h#(y). For
functionsf,g : | — TRsuch thatf < g, we havef#(x) < g#(x) as< is congruent,
andg”(x) < g#(y) from the assumption. Therefor(x) < g*(y) holds by the
transitivity of <.

2. (Transitivity) Let &, Y), (y,2 € TTEq,. From 1, for any functiorf : | - TR we
havef#(x) < f#(y) andf#(y) < #(2), hencef*(x) < f#(2). (Reflexivity) Reflexivity
is immediate from the congruence ©f (Congruence) The Kleisli lifting off; g) :
Eq - TTEq; satisfies t#, g*) : TTEq, - TEq;. From the reflexivity off "Eq,,
we have (*,g") : Eqr, € TTEq — TTEq. (Substitutivity) Letf : | — TJbe a
function andx,y € T such thatx,y) € T Eq,. For each functiog : J » TR we
have

g (F7(¥) = (g% o )" (x) < (& o F)*(y) = F*(F* ),

implying (f#(x), f#(X)) € T Eq;.
Below we writeCSPrg(77, 1) for the set of congruent and substitutive preorder3 bn
ordered by inclusion. The mapping)( : C +— L, is a monotone function of type

Pre(7)) — CSPre(7,1). We characterise the assignments [<]R as the right adjoint
[-]' : CSPreg(T,1) — Pre(7) to (-),.

! This is called theunit of the continuation monad transformer [4].



Theorem 3. For each set |, we have the following adjunctiés), 4 [-]' such that
[} =id.

(CSPrg7,1),9) T (Pre(7), <). (2)

Proof. Monotonicity of [-]' is easy. We show < [T,]'. Let J be a set and suppose
X Cyy. Then from the substitutivity of, for each functionf : J — TI, we have
f#(x) T, #(y), thatis,x[Z])) y. Next, we show§]| = <. We first calculate];:

<) = y) IVl =TI £4(x) < f4(y))

Then< ¢ [<]| is equivalent to the substitutivity of, which is already assumed. To
show [<]| € <, use the uniy : | — Tl of 7.

Example 9. 1. We define a congruent preorderon T2 = 2* by: x < yif xis a
subsequence gf Then we havex[<]? yif and only if x is a subsequence gf

2. Forx € Tyl andi € 1, by o(x,i) we mean the number of occurrencesi oh
x. For each congruent preordgron T,1 =~ N, we havex [<]! y if and only if
Yiel.o(xi)<ofy,i).

4 Characterising Pre(7) as the Limit of a Large Chain

Using the family of adjunctions (2), for setsJ we define the monotone functign; :
CSPre(7, 1) — CSPre(7, J) by ¢1.5(<) = [<]),. Theorem 3 asserts = id.

Lemma 1. For eachC € Pre(7") and sets |J such thatcard() < card{), we have
L= [EJLJ-

Proof. FromC < [C,]7, we haveC, C [T;]]. We show the converse. We take an
injectioni : | > J and a surjectiors : J - | such thatso i = id. Supposeq(,];y.
Then for the functiomoi : | — TJ, the following holds:

Ti(x) = (70 1)* () &5 (7 0 1)*(y) = Ti(Y).
From the substitutivity of, we obtainxC, y, because
x=TsoTi(x) = (70 9*(Ti(X) T (70 9*(Ti(y)) = Tso Ti(y) = y.
Lemma 2. For sets | J, K such thatcard() < card@), we havep;; o o3 = ¢k, -
Proof. We havepy (<) = [<]K = [<]K]) = ¢a1 0 ¢k.3(<); here,= is by Lemma 1.

This implies that when cart)( < card(J), we havepy, o ¢, 5 = id, hencep, ; is a split
monomorphism ifPos

Lemma 3. For eachC € Pre(7) and sets JJ such thatcard() < card(), we have
=y (=) 05



Proof. We have £;]” < [[£5]]]' = [5]'; the last step is by Lemma 1.

Thus eactt € Pre(7") determines a descending chain of preordersoimdexed by
cardinals: £o]° > [E4]* > - -+, andC is a lower bound by Theorem 3. In fagt,is the
greatestower bound:

Theorem 4. For eachC € Pre(77), we haveE = (N ,ecard [Ee]®-

Proof. It is sufficient to Show,ecarg [Eo]” < C. Let] be a setx,y € T1 and suppose
that x [Z,]{ y holds for any cardinal; so this especially holds at catfl( Taking a
bijectionh : | — card(), we obtainT h(X) Ccaraq) Th(y). AsC is substitutive, we have
X=ThloTh(X) g ThloThy)=y.

Let us writeCard for the linear order of cardinals (recall that we assume Kiena
of choice). To clarify the relationship betweBre(7") andCSPrg(7, —), we extend the
assignment € Card — CSPre(7, @) to a functorCSPre(7, -) : Card®® — Pre; the
morphism part is given by. We thus obtain a large chain:
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CSPre(7,0) <—— CSPrg(7,1) <—— -+ <—— CSPre(7,8g) <—— -

We characterisre(7") as a limit of this large chain.
Theorem 5. The family(-), : Pre(7") — CSPrg(7, ) is a limiting cone.

Proof. We first show that<{), : Pre(7) — CSPrg7, ) is a cone oveCSPre(7, -).
LetC e Pre(7) anda, 8 be cardinals such that < 8. Theng,,(Cs) = [E5)° = C, by
Lemma 1.

Next, letV be a class angd : V — CSPreg(7, —) be a cone. We construct the unique
mediating mappingn : V — Pre(7") such that{), c m = p,. For this, we first prove
the following lemma:

Lemma 4. For each class V, cone pV — CSPre(7, —) and cardinalse, 8 such that
@ < B, we have[p,(V)]” = [ps(V)]’.

Proof. As pis a cone, for any cardinal < 8, we haveg; ,(ps(V)) = [ps(M)]5 = pa(V).
Then [p,(V]® = [ pﬁ(v)]ﬁ]“ > [ps(V)IP; the last step is by Lemma 3.

Therefore every e V determines a decreasing sequence of preordeys. §po(v)]° >
[p(V)]* = - - -. We then define a mapping : V — Pre(7) by

my) = (] [Pa)]".
aeCard
This mapping satisfies(v), = p.(v) because
mWe = () Ip0E= (] [BME= () pal¥)=p(¥).
peCard peCard,a<p BeCard,a<B
When another mappingy : V — Pre(7) satisfiesn’ (v), = p.(Vv), thenm'(v) = m(v)
because
M) = () MMl = () [Pe(W]” = M),

aeCard aeCard



Corollary 1. We have an isomorphis@SPre(7", a) =~ Pre(7) if ¢z, is an isomor-
phism for each cardingd > «.

Finding such a cardinal is not obvious and depends @n Below we present a conve-
nient condition for finding such; see Example 11 for a concrete case.

Definition 9. We say that a cardinat is large enough for preorder axiorng 7 if for
each cardinalg > a and xy € T, there exists functionsg8 — Te and f: a —» TS
(depending on ) such that f o g(x) = x and o g¥(y) = y.

Theorem 6. If « is large enough for preorder axioms on, then CSPreg(7,a) =~
Pre(7).

Proof. We show thatp, s is surjective as a function for any cardigat «. When this is
shown,y, s becomes the inverse g}, in Posbecause, s is a split monomorphism.

LetB be a cardinal such thgt> «, and suppose that it is withessed by an injection
w: @ » B. For each congruent and substitutive preorder CSPre(T, 8), we define a
binary relation<’c Ta x Ta by

a<’ b < there exists an injectiom : @ > 8 such thaff m(@) < Tm(b).
Lemma5. <’ € CSPr(7, o).
We omit the proof of this lemma. We next show tkais the image ok’ by ¢, 4.
Lemma 6. ¢,5(<’) =<.
Proof. Let x,y € TS such thaix < y. For each functiorf : 8 — Ta, we obtain
Two f4(x) = (Two f)*(x) < (Two f)*(y) = Two f¥(y)

from the substitutivity of<, thusf#(x) <’ f#(y). Therefore we obtain [<']; y.

Conversely, suppose [<']; y. From the assumption, we hage: g — Ta and
f . @ — TB such thatf* o g#(x) = x and f# o gf(y) = y. We thus have®(x) <’ g*(y),
hence there is an injectian : @ > S such thafT mo g#(x) < Tmo g#(y). Now take a
surjections : 8 -» « such thatso m = id,. Then we have a functioho s: 8 — TS,
and as the preorderis substitutive, we have

x=(fog oTmog'(x) < (fo 9o Tmogi(y) =y.

Theorem 7. The rank of a monad™, if it exists, is large enough for preorder axioms
onT.

Proof. We writea for the rank of7". Let be a cardinal such thgt> « andxy, X, € TS.
There exists a cardinal © y < « (withessed by an injection : y »— @), my,mp € Ty
and an injection : y »» B such thafT (i)(m) = X (i = 1,2). We then take surjections
s: B » yands : a » y that are left inverses tbandi’, respectively. Therf =
noi’os:B— Taandg=noios :a— TBsatisfyg? o f#(x) = x because

g o f %) =TioTSoTioTsoTiM) =TiM)=x (i =12).



5 Enumerating and Identifying Preorders on Monads

The understanding of the categorical statuB@(7") allows us to identify its contents
in several ways. Below we illustrate some methods with ceteamonads.

5.1 Showing the Adjunction(2) being an Isomorphism

Let M be a semiring. We write M for the M-valued finite multiset monad, whose
functor part is given byfM1 = {f : | — M | supp(f) is finite}; here, suppl) = {i €

I | f(i) # 0}. Below we show that the adjunction (2) becomes an isomanpfos| = 1.
The following is the key lemma, which states that each precod7 M is pointwise:

Lemma 7. Each preorderc on7M satisfies: dg; d' = Vi e | . d(i) ©; d'(i).
This implies E4]* < . Therefore from Theorem 3, we obtain:
Theorem 8. We haveCSPre(7 M, 1) ~ Pre(7M).

By letting M be the two-point boolean algebra and removing the finiteregsiction,
TM becomes the powerset monag. A similar argument then identifigre(75):

Theorem 9. We have4 ~ CSPre(7,,1) =~ Pre(7,). The preorders o, are: |) the
discrete order, 11) the inclusion order, 11l) the oppositélband 1V) the trivial preorder
(thatis,C; = Tpl x Tpl).

5.2 Collecting Preorders of the Form K]R

From Theorem 4, every preorderon 7 is the intersection of preorders of the form
[<]R. Therefore if the collectio[<]® | R € Set < € CSPrg(7,R)} is closed under
intersections of arbitrary size, then it is equalRe(7"). Below we identifyPre(7;)
using this fact. We note that Levy identifiétte(7,) using a dfferent method called
boolean precongruencé$9]; see Section 7.

Example 10.Let (R <) be a preorder parameter for. Then ] is either I) the discrete
order, II) the flat order with,(+) being the least element, IIl) the opposite of Il, or
IV) the trivial order. For proving this statement, we comsithe combinations of two
subcases: A) whethes(=) is the least element irR(<) or not, and B) whethes(x)

is the greatest element iR(<) or not. From this, we conclude that |—IV are the only
preorders ory;.

5.3 Computing CSPre(f, «) with a Large Enough « for Preorder Axioms

In the previous method, we have managed to find a good casgsenal preorder pa-
rameters. However, when the mornadbecomes more complex, we immediately have
no idea what kind of case analysis on preorder parameteusfisient for classifying
all the preorders on the monad. The second method presemthis isection circum-
vents this problem by exploiting Theorem 6. We find a finitedasal « that is large
enough for preorder axioms on, then comput€€SPre(7, ). Below we examine the



case where this computation is feasible. First, we assuat@ this finite. We introduce
the following preordexk onTa X Ta:

(X1, Y1) < (%2, ¥2) = If:a > Ta. (%, fy1) = (%, ¥2)
and the followingcongruent closure operatdr:
C(B) = {(f*(w),g*(w)) | X e Setw e TX, (f,9) : Egy = (B, Ta, Ta)).

For a finite seD, a subseA ¢ D and a monotone increasing functiéroverT,D, the
following function1£p computes the least fixpoint dfincluding A:

1£p(A, f){
if(A= f(A)) { return A;} else { return 1fp(f(A), f);}
}

If fis computable thehfp terminates in finite steps.
We construct the following algorithiaive to computeCSPre(7, a):

CTU(A) { return 1fp( A, CoToU); }
f1(L) { return LU{CTUBU{(x,Y)}) |IBeL, (xyY) e TaxTa\B}; }
Naive() { return 1fp( {Eqy,}, £1); }

where,U is the upward closure operator oRg x Ta, <) andT is the transitive closure
operator; they are both computable. The functiv thus computes the congruent
transitive upward closure of a given binary relation over Whenc is computable, the
above algorithm is also computable.

Proposition 3. Naive() = CSPre7, a).
We explain how the algorithiiaive runs with the following example.

Example 11.First, the cardinal 3 is large enough for preorder axiomshembnempty
powerset monad -, because for each paix,f)) € Ty X x T X, the following two
functionsf: X — T3 andg: 3 — Ty X satisfyg” o f#x = xandg” o f¥y =y

{0} aex\y y b=1
f(@=<{1} aey\x , gb)=<4xNny b=2andxnNny=#0
{2} otherwise X otherwise

SinceT -3 is finite and the multiplication of .+ is the set union operatioR is congru-
ent if and only ifR satisfies X1, y1), (X2, ¥2) € R = (X1 U X2, Y1 U ¥2) € R Therefore,
the following algorithm computes:

C(A){ return 1fp( A, £2); } where £2(B){ return BU {xUy| X,y € B}; }

We haveCSPre(7, ) ~ 4. The orders off ,» remains the same as the one Tgy.



Type of preorders

The definition ofx C, y

Trivial preorder

true

(X=y) Vv (x\{L1}

X=yV(XCYALEeX),
Sy}

Equivalence relations =y, X=y)V(LeXALEYy),
X\{L} = y\{1}
Partial orders Xy, X=yV Xx=y\{l},

X=YyV(XCYALey),
ALEeX)

Proper preorders

X=YV LEX

XCYyV.Ley,

(xSy) VAL S\ A LeX)
Table 1. All Preorders orv, (we omit opposite ones)

We rewrite the naive algorithm to arfieient one. The basic idea to improve the
efficiency is to work on the poset ¢ xTa/~, [<]) rather than the preordef ¢ xTa, <),
where~ is the equivalence relatioa N > and [«] is the extension ok to the partial
order on~-equivalence classes.

SinceTa is finite, the set of alk-equivalence classes and the orde} hetween
them are computable. We then rewrite the naive algoritifilsandNaive to,

CTU(A) { return 1fp( A, C' o T o U"); }
f3(L) { return LU{CTU(BU{d}) | BeL,de (Tax Ta/~)\ B
Modi fied() { return 1fp({{[(x Y)] | (x.Y) € Edr ), £3); )

respectively. Herell’ is the upward closure operator o x Ta/~,[<]), C'(B) =
{x Y] 1 (xy) € c(UB)}, andT'(B) = {[(x.y)] | (xy) € T(UB)}. Since an upward
closed subseB of (Ta x Ta, <) is the union  B' of an upward closed subsBt of
(Ta x Ta/~,[<]), we have{l  B| B € Modified()} = CSPre(7, a).

Algorithm Modified is faster thaNaive because the upward closure operator
and the set comprehension 8 works on the smaller poseT ¢ x Ta/ ~,[<]) than
(Ta x Ta,<). Function£f1 also has a redundant computation: it compuigg(B U
{(x,y)}) for each pairx,y) € Ta x Ta \ B, but the results of this computation are the
same when--equivalent pairs are supplied. The functié® avoids such duplicated
computation by working or-equivalence classes.

We demonstrate an executionMfdified. Below, we write7 , for the composite
monad7, o 77 using the canonical distributive law betwegpand7;.

Example 12.The cardinal 2= {a,b} is large enough for preorder axioms Gfy.
First we calculate alk-equivalence classes and the partial ordgr We have7 7,2 x

To2/~={p1, P2, -+, P2g} Where,

p1 = [({a}. {b} )] ps = [({a, L}, )] pis = [({a) {b, L] pa2 = [({& L}, {b, 1})]

pz = [({a, b}, {b})] pe = [({a, b, L}, {b})] p1s = [({a, b}, {b, L})] pos = [({a,b, L}, {b, L})]
= [({a), {a, b})] pwo = [({a, L}, {a, b})] p1z = [({a}, {a b, L})] p2sa = [({a, L), (& b, 1})]

p4 =[({aL{a)] pu=I[({aih{a)] pwe=[{aL{aL)] ps=I[({a L1} {a L})]

ps = [({a},0)]  pi2=[({a L1},0)] P1o = [({a}, {L})] P2s = [({a, L}, {1})]

Ps = [(0.{a))]  puz=[({L}.{a})] P20 =[(0.{a, L})]  por=[({L}. {& L})]

pr = [(0,0)] Pua = [({1}, 0)] P21 = [(0, {L})] P2s = [({L}. {L})]



We draw the following Hasse diagram of the posgi2 x 72/~ [<]).

Next, we demonstrate the executionMefdified(). It computes the least fixpoint of
£3 containing{{pas, p7, P25, P2s}}. We now see the first loop dffp in the execution
of Modified() in detail. The functionf3 picks up an equivalence class other than
{P4, P7. P25, P2s}, say pe, then pas$pa, Pz, P2s, P2s, Pe} to CTU . The functionCTU pro-
cesses its argument by the closure operatdfs’, C’ repeatedly until it gets stationary.
The following is the first pass of this process:

— U ({pa, P7. P25, P28, Ps}) = {Pa. Ps. P7. P20, P21, P25, P2s)
— T'({ P4, Pe, P7, P20, P21, P25, P28}) = { P4, Pe, P7, P20, P21, P25, P2s}
— C'({p4, Ps> P7, P20, P21, P25, P28}) = {P3, P4, Ps, P7, P17, P18, P20, P21, P24, Pos, P27, Pos}

The result of the last calculation tay, which we callH below, is already closed under
U, T andC’. Therefore CTU({ ps, Pz, P25, P28, Ps}) = H. The functionf3 similarly cal-
culateCTU({ ps, P7, P25, P2s, p}) for each equivalence clapother thamg, pr, P2s, P2s, Pe,
and returns the union of the results of the calculatior®06 andf3’s argument. This
finishes the first call of3. The functionlfp in Modified repeats callingt3 until we
obtain the least fixpoint of 3. The algorithnmModi fied() yields 20 sets of equivalence
classes, hencBSPre(7 ), 2) ~ 20 (see also Section 7 for Levy'’s result).

After this computation, we manually extract the definitiofpreorders off , from
each set of equivalence classes. The 20 preorders areifisiatle 5.3. For this extrac-
tion, we first identify the meaning of the binary relatiophB over T2 for each set
B € Modified() of equivalence classes, then manually characte@sﬁ]f for each set
I. For instance| J H = C,, and from this we obtaind,]? =c;,.

Another method to enumerate congruent substitutive pegerdnT « is to reduce the
problem to finding the valuationsthat satisfy the following boolean formula:

(AP = /\ P (3)
(Q1,Q2)eV peQy peQ2

Here,P,, is the propositional variable assigned to eachTa x Te/~, andV is the set
of the following pairs:

— ({p},{q}) forall p,ge Ta x Ta/~ such thatp< q
— (0,[(x,X)]) forall xe Ta

— (YL [(y: 211 {[(x. 2T}) for all .y, z€ Ter



— (Q,C’(Q)) for all Q € Ta x Ta/~ such that’(Q) # Q.

The setV encodes the conditions of congruent substitutive preott&w is finite and
Cis computable, the boolean formula (3) is finite and can bexggad by an algorithm.

The satisfying assignments of the boolean formula (3) byjely correspond to
preorders irCSPre(7-, @). The number of£SPre(7, ) is the solution of the problem
of counting the number of satisfying assignments of the tdanand this problem is
known as #SAT problem [5].

6 Some Properties on Preorderr T-Lifting

We show that preorder T-liftings satisfy a couple of properties that are relevarthie
coalgebraic simulations discussed in Section 3.2. Thefdrgterty relates oplax coal-
gebra morphisms and simulations. We restrict our attertbohF-coalgebras, where
T is the functor part of a monad arké consists of IdCa, +, x only. Below for each
functiong : | — J, we defineGr(g) to be theBRel-object {(i,g(i)) | i € I},1, J) of the
graph ofg. We noteF(Grg) = Gr(Fg).

Theorem 10. Let (R, <) be a preorder parameter, and;, fi) be TF-coalgebras (i

1,2). For each function g I; — |5, Gr(g) is a T F-simulation from(l4, f1) to (I, )

if and only if g is an oplax morphism of coalgebras with regge¢<]R, that is, T Fgo
‘4R

fi[<]g), f20 0.

In general, preorder T-liftings may not be lax compositional. We here present a
condition to guarantee the lax compositionality.

Theorem 11. Let (R, <) be a congruent preorder such that satisfies the following
condition for all subsets X C TR:

(Vxe X, yeY.x<y) = Fze TRYXe X,yeY.X<zZAZ<LY. 4)

Then T is lax compositional.

For instance, (4) is satisfied when the preorder paramifey) (s a complete lattice.

7 Conclusion and Related Work

We showed that preordarT-liftings construct preorders on monads, and this construc
tion enjoys a universal property. We gave a characterisatiohe collectiorPre(7") of
preorders off” as the limit of the large diagra@SPre(7, -) : Card®? — Set We then
applied these theoretical results to identifying precsaer some concrete monads. We
also showed the properties of the preordar-lifting that are relevant to the coalgebraic
formulation of simulations.

Besides [13, 11, 15], we briefly mention some recent workshdsi(nulations and
relational liftings. Grstea studies modular constructions of relational exbessand
modal logics characterising simulations using the caiegbstructures oBRel [7].
Klin studies the least fibred lifting oBetfunctors across the fibratidéRel — Set,



whereERel is the category of equivalence relations [17]. His liftingnks for mono-
preserving functors, and when they preserve weak pullbdigdifting coincides with
the one in Example 5. Balan and Kurz give liftings and extamsiof finitary Set
functors to endofunctors ovétre andPos[2]. Their method uses the fact that every
finitary Setfunctor T is presented as LafT o I), wherel : Finord — Setis the in-
clusion functor. Bilkova et al. derive a natural definitioirelations between preorders
using Sierpinski-space enriched categories, and givéoeH liftings of endofunctors
over Pre in this context [6]. Levy extends the characterisation airhilarity by final
coalgebras to similarity [20].

The novelty of our approach is that we exploit the structdnmonadto relationally
lift functors. The principle of the semantitT-lifting seems fundamentally fierent
from the lifting methods employed in the above works. Ongirislishing feature of
the semanticr T-lifting is its flexibility. By changing the preorder paratee we can
uniformly derive various relational liftings and preord@n monads. The source of this
flexibility lies at continuation monadswhich are a special case of enrichéght Kan
extensions.

Levy introduces the concept calleterministic/ nondeterministic boolean pre-
congruence$DBP andNDBPfor short) in [19]. They are defined in our language by:

DBPe = CSPreg(7¢,2), NDBPg = CSPre(Ty: 0 T, 2);

here,7E is theerror monad whose functor part is given 6yl = | + E. He shows
CSPre(77,2) ~ Pre(7) for 7 = 7E and7 = Tp- o TE, and enumerates the following
boolean precongruences together with their definitions:

DBPy ~2, DBP;~4, DBP,~13 NDBPy=~4, NDBP;~20.

He also gives modal logics that have Hennesy-Milner prgpeith respect to the con-
cept of simulations derived from boolean precongruencestdsults are derived by the
method that is specialised to these monads.
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