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Abstract. We generalise the notion of pre-logical predicates [HS02] to arbitrary
simply typed formal systems and their categorical models. We establish the basic
lemma of pre-logical predicates and composability of binary pre-logical relations
in this generalised setting. This generalisation takes place in a categorical frame-
work for typed higher-order abstract syntax and semantics [Fio02,MS03].

1 Introduction

Pre-logical predicates (relations) [HS02] are a generalisation of logical predicates. They
are defined for thesimply typed lambda calculusand its set-theoretic environmental
models calledlambda applicative structures[Mit96]. Two important properties are en-
joyed by pre-logical predicates but not logical predicates. One is that pre-logical predi-
cates areequivalentto predicates satisfying the basic lemma (interpretation of all terms
respects predicates — this is the key to many applications of logical relations), and the
other is that binary pre-logical relations are closed under relational composition.

We aim to generalise pre-logical predicates from the simply typed lambda calculus
to arbitrarysimply typed formal systems(we just saytyped formal systembelow) and
their categorical models, then show that the above important properties hold in this
generalised setting.

This generalisation enables us to extend pre-logical predicates systematically to
other calculi, such as lambda calculus with various type constructors and variable
binders, and calculi other than lambda calculus, such as logics and process calculi.
This opens up the possibility of characterising observational equivalence [HS02] and
constructive data refinement [HLST00] in various non-lambda calculi.

There are three underlying elements on which pre-logical predicates are defined:
syntax (normally the simply typed lambda calculus), semantics (set-theoretic environ-
mental models) and predicates (as subsets of carrier sets). We generalise these three
elements along the following dimensions:

– We generalise syntax to an arbitrary typed formal system described by atyped bind-
ing signature[MS03]. A typed formal system is a formal system whose inference
rules fit within the following scheme:

Γ, Γ1 ` M1 : τ1 · · · Γ, Γm ` Mm : τm

Γ ` o(Γ1.M1, · · · , Γm.Mm) : τ



This is general enough to subsume various simple type systems and calculi such as
the simply typed lambda calculus, many-sorted first-order logic, pi-calculus, etc.

– We generalise from set-theoretic to category-theoretic semantics. Following the
principle of categorical semantics, we give a semantics of a typed formal system in
a Cartesian categoryC by mapping types to objects and terms to morphisms inC.

– As we move to category theory, we need to change the notion of predicates from
subsets to appropriate category-theoretic constructs. We usesubscones, which is a
mild generalisation of the injective scones of [MS93].

We represent all three elements as objects and morphisms in the category ofpresen-
tation modelsMT , whereT is the set of types [MS03]. In this category, the collection
of well-formed terms moduloα-equivalence is represented as the initial algebra of the
endofunctor corresponding to a typed binding signature.

After this generalisation, we formulate pre-logical predicates and predicates satis-
fying the basic lemma, and show their equivalence. Then we show the composability of
binary pre-logical relations.

We look at three examples of pre-logical predicates, i) the relationship between
pre-logical predicates for combinatory algebra and those for lambda calculus, ii) the
connection between pre-logical predicates and lax logical predicates [PPST00] and iii)
a characterisation of elementary submodels of first-order classical logic by a pre-logical
relation.

Structure of This Paper The generalisation of pre-logical predicates takes place in
the following way. In section 2, we first introduce a category of presentation models
MT , and typed binding signatures as a description of typed formal systems. We give
a categorical semantics of typed formal systems in a very weak sense. We introduce
a formulation of predicates with respect to this semantics, using subscones. All three
elements (syntax, semantics and predicates) are expressed in categoryMT . Then we
formulate pre-logical predicates and predicates satisfying the basic lemma in section 3.
The basic idea of the formulation of pre-logical predicates is that the inverse image of a
predicate along the meaning function has an algebra structure. We show that predicates
satisfying the basic lemma and pre-logical predicates are equivalent. Composition of
binary pre-logical relations is discussed in section 4. In section 5, we look at three
examples of pre-logical predicates. Proofs are attached in the appendix.

Related Work First, we briefly consider formulations of logical predicates. Logical
predicates (and relations) have been widely used as a tool to study properties of the sim-
ply typed lambda calculus. Ma and Reynolds [MR92] formulated logical predicates as
Cartesian closed functors from the free CCCL to Pred(G). Hermida [Her93] pointed
out thatPred(G) can be replaced with the total categoryE of a fibrationp : E → B,
provided that CCC structures onB can be lifted toE. Plotkin et al. [PPST00] introduced
a weakening of Ma and Reynolds’ formulation calledLax logical predicates, which are
functors fromL to Pred(G) preserving only finite products. The basic lemma still
holds for lax logical predicates, and furthermore the converse holds. In this sense lax
logical predicates and pre-logical predicates are the same. They extended lax logical



predicates from the lambda calculus to the language described by a finitary monad over
Cat extending finite product structure.Lax logical predicates are also extended to the
computational lambda calculus [KP99]. Binary lax logical relations are closed under
composition.

Kinoshita, et al. [KOPT97] proposed a generalisation of logical relations calledL-
relations. Their framework is also parameterised by a finitary monadL overCat, which
allows us to generalise the language from the lambda calculus. They used category
objects inCat to formulate the composition of L-relations.

Leiß[Lei01] extended pre-logical predicates to systemFω, and characterised obser-
vational equivalence in terms of existence of binary pre-logical relation.

An application of binary pre-logical relations is to characterise observational equiv-
alence between two models of a language [Lei01,HS02,Kat03].

This work refers to the framework by Fiore [Fio02] and Miculan and Scagnetto
[MS03] on a categorical model of typed higher-order abstract syntax. This framework
is a natural extension of the one considered in [FPT99,Hof99] to take types into account.

Convention We identify a set and its discrete category. We assume that all categories
appeared in this paper are locally small. By a Cartesian category we mean a category
with chosen finite products. We fix a countably infinite set of variablesX (ranged over
by x, y, z). For a finite setA, by |A| we mean the number of elements inA. We use

−→
A

for a sequence of meta variables, likeA1, · · · , An.

2 Preliminaries

Category of Presentation Models We introduce the category ofpresentation mod-
els [MS03] plus some auxiliary categories for the following sections. We represent all
three elements involved in the notion of pre-logical predicates (syntax, semantics and
predicates) in this category.

Let T be the set of types, whose elements are ranged over byτ, σ. A context(ranged
over byΓ ) is a function from a finite subset ofX to T . A context renamingfrom Γ to
Γ ′ is a functionf : dom(Γ ) → dom(Γ ′) such thatΓ ′ ◦f = Γ . They form thecategory
of contextsCT

1 with the initial object given by the empty context! : ∅ → T and binary
coproducts given by cotupling of contexts[Γ, Γ ′] : dom(Γ ) + dom(Γ ′) → T . By
Γ, Γ ′ we mean the coproduct of contextsΓ andΓ ′ whose domains are disjoint. We fix
a variablex ∈ X and define〈−〉 : T → CT by 〈τ〉 = {x 7→ τ}. We assume that each
variablex ∈ dom(Γ ) has an index number denoted byγ(x) ∈ {1, · · · , |dom(Γ )|}.

We define theambient categoryST = SetCT . CategoryST has small limits and
colimits, and has acontext extension operator(δτA)(Γ ) = A(Γ + 〈τ〉). In factδτA is
isomorphic toVτ ⇒ A, whereVτ (Γ ) is the presheaf ofvariables of typeτ , defined to
beCT (〈τ〉, Γ ) ∼= {x | Γ (x) = τ}, thusδτ has a left adjoint. Moreover it has a right

1 CategoryCT can be described as the comma categoryI ↓ T whereI : X ↪→ Set is the
inclusion functor of the full subcategoryX of Set whose objects are finite subsets ofX
[Fio02,MS03]. It is a free co-Cartesian category generated fromT .



adjoint ([MS03], proposition 2), thus preserves both limits and colimits. We writeδ−→τ
for the compositionδτ1 ◦ · · · ◦ δτn .

The category ofpresentation modelsMT is defined to be(ST )T ∼= SetCT×T . It
also has small limits and colimits.

Syntax: Typed Binding Signature A typed binding signature(ranged over byΠ) is
a tuple(T,O) whereT is the set oftypes(ranged over byτ, σ) andO is the set of
operators(ranged over byo), each of which is a pair of anoperator symbols and its
arity ((−→τ1 , σ1), · · · , (−→τm, σm), τ) ∈ (T+)∗ × T . We write s(−→τ1,σ1),··· ,(−→τm,σm)→τ for
such a pair inO 2, andoτ ∈ O for an operator whose result type isτ . A typed first-
order signature(ranged over byΣ) is just a typed binding signature(T,O) such that
for all s(−→τ1,σ1),··· ,(−→τm,σm)→τ ∈ O, −→τi = ε. It coincides with the notion of many-sorted
signature.

A typed binding signatureΠ specifies atyped formal system. We first defineraw-Π
term(ranged over byM,N ) by the BNFM ::= xτ | o(−→xτ .M, · · · ,

−→
xτ .M). In this BNF,

−→
xτ .M means binding of variables

−→
xτ in M . As usual, we identifyα-equivalent terms.

The typed formal system is a system to derive judgmentΓ `Π M : τ , whereΓ is an
object inCT . The system consists of the following rules for variables and operators.

Γ (x) = τ

Γ `Π xτ : τ

Γ,−−−−→x1 : τ1 `Π M1 : σ1 · · · Γ,−−−−→xn : τn `Π Mm : σm

Γ `Π s(−→τ1,σ1),··· ,(−→τm,σm)→τ (
−−→
x1

τ1 .M1, · · · ,
−−−→
xm

τm .Mm) : τ

Example 1. 1. Let B be a set. ByTyp⇒(B) we mean the set defined by the BNF
τ ::= b | τ ⇒ τ whereb ∈ B. The typed binding signatureΠλ for the simply typed
lambda calculus is defined to be(Typ⇒(B), {lam(τ,τ ′)→τ⇒τ ′ , appτ⇒τ ′,τ→τ ′})
whereτ, τ ′ ranges overTyp⇒(B).

2. The typed first-order signature for combinatory logic is

ΣCL = (Typ⇒(B), {appτ⇒τ ′,τ→τ ′ ,S(τ⇒τ ′⇒τ ′′)⇒(τ⇒τ ′)⇒τ⇒τ ′′ ,Kτ⇒τ ′⇒τ})

whereτ, τ ′, τ ′′ ranges overTyp⇒(B).
3. LetΣ = (T0, O0) be a typed first-order signature. The typed binding signature for

first-order classical logic overΣ is

ΠΣ-fol = (T0 ∪ {Ω}, O0 ∪ {exists(τ,Ω)→Ω | τ ∈ T0} ∪ {notΩ→Ω, orΩ,Ω→Ω})

The typed formal system described byΠ determines an objectSΠ(τ)(Γ ) = {M | Γ `Π

M : τ} in MT . This object can be characterised as an initial algebra of the functor as-
sociated toΠ by (ΠA)τ = Vτ +

∐
s(−→τ1,σ1),··· ,(−→τm,σm)→τ∈O

(∏m
i=1 δ−→τi

(Aσi)
)

together
with the Π-algebra structureιΠ : ΠSΠ → SΠ corresponding to the inference rules
([MS03], theorem 1).

2 This definition of typed binding signature is a special case of the one in [MS03] where the set
of types allowed for variables is equal to the set of all types.



Semantics: Very Weak Categorical ModelWe formulate a semantics of a typed for-
mal systemΠ = (T,O) by a morphism to the object inMT which reflects a Cartesian
category. The notion of semantics considered here is very weak in the sense that it does
not exploit any categorical structure other than finite products. The semantics keeps the
basic principle of categorical model theory: that is, types are interpreted as objects and
terms are interpreted as morphisms.

An interpretation of typesis just a functorF : T → C whereC is a Cartesian cate-
gory. We extend it to the functorF ∗ : CT → Cop byF ∗Γ =

∏|dom(Γ )|
i=1 F (Γ (γ−1(i))),

which preserves finite products in(CT )op. We writesΓ,Γ ′ : F ∗Γ × F ∗Γ ′ → F ∗(Γ +
Γ ′) for the natural isomorphism. For an interpretation of typesF : T → C, we
define theclone of typed operationsHF by HF (τ)(Γ ) = C(F ∗Γ, Fτ). Let D be
a Cartesian category. For a functorG : C → D preserving finite products strictly,
we define a morphismHG : HF → HGF in MT by HG(τ)(Γ )(f : F ∗Γ →
Fτ) = Gf : (GF )∗Γ = GF ∗Γ → GFτ . A categorical interpretation ofΠ con-
sists of a Cartesian categoryC, an interpretation of typesF : T → C and a morphism
m : SΠ → HF in MT calledinterpretation of terms, which assigns to a well-formed
termΓ `Π M : τ a morphismm(M) : F ∗Γ → Fτ . We use the notationC[[−]]F to
represent a categorical interpretation. We define theproductof categorical interpreta-
tions (C, F1,m1), (D, F2,m2) to be(C × D, 〈F1, F2〉, (m1,m2)) where(m1,m2) is
defined by(m1,m2)(τ)(Γ ) = (m1(τ)(Γ ),m2(τ)(Γ )).

Often,HF is equipped with aΠ-algebra structure. In this case we can obtain an
interpretation of terms by the initiality ofSΠ . This is theinitial algebra semanticsfor
typed binding signature ([FPT99,MS03]).3

To specify aΠ-algebra structure overHF , it is sufficient to specify a morphismuo :∏m
i=1 δ−→τi

(HF σi) → HF τ in ST for each operatoro ∈ O of arity (−→τ1 , σ1), · · · , (−→τm, σm) →
τ . Together with the mappingvτ : Vτ → HF τ defined to bevτ (Γ )(x) = πγ(x), we
obtain aΠ-algebra structure overHF by [v−, uo− ]o−∈O : (ΠHF ) → HF .

Example 2.(Continued from example 1)

1. LetFλ : Typ⇒(B) → C be an interpretation of types satisfyingFλ(τ ⇒ τ ′) =
Fλ(τ) ⇒ Fλ(τ ′). The morphisms inST given by(ulam(τ,τ′)→τ⇒τ′ )Γ (f) = λ(f ◦
sΓ,〈τ〉) and(uappτ⇒τ′,τ→τ′ )Γ (f, g) = @ ◦ 〈f, g〉 yield aΠλ-algebra structure over
HFλ . The initial algebra semantics coincides with the standard semantics of the
simply typed lambda calculus inC.

2. Let Σ = (T0, O0) be a typed first-order signature. Amany-sortedΣ-algebraA
consists of aT0-indexed family of setsA : T0 → Set calledcarrier setsand an
assignment of a functionoA : Aτ1 × · · · × Aτn → Aτ to each operatoro ∈ O0 of
arity τ1, · · · , τn → τ .
To each operatoro ∈ O0, we assign a morphism(uo)Γ (f1, · · · , fn) = oA ◦
〈f1, · · · , fn〉 in ST . This yields aΣ-algebra structure overHA and the interpre-
tation of terms, namelyA[[−]] : SΣ → HA.

3 We note that interpretations of terms are not restricted to algebra morphisms. The reason is to
cover the interpretation of terms which is obtained by composition of morphisms of different
algebras. This case is considered in example 5.



3. Let Σ = (T0, O0) be a typed first-order signature andA be a many-sortedΣ-
algebra. We give a categorical semantics ofΠΣ-fol in Set, which coincides with
the standard interpretation of the first-order classical logic in the model constructed
overA. The interpretation of typesIA : T0 ∪ {Ω} → Set is given byIA(Ω) =
2 = {>,⊥} andIA(τ) = Aτ for all τ ∈ T0. To give an interpretation of terms, we
specify the following morphisms for each operator.

(usτ1,··· ,τn→τ )Γ (f1, · · · , fn) = sA ◦ 〈f1, · · · , fn〉 (sτ1,··· ,τn→τ ∈ O0)
(uexists(τ,Ω)→Ω)Γ (f)(ρ) = > ⇐⇒ ∃x ∈ Aτ . f(ρ, x) = >
(unotΩ→Ω)Γ (f)(ρ) = > ⇐⇒ f(ρ) = ⊥
(uorΩ,Ω→Ω)Γ (f1, f2)(ρ) = > ⇐⇒ f1(ρ) = > ∨ f2(ρ) = >

This gives the standard set-theoretic semantics of first-order classical logic overA,
namelyIA[[−]] : SΠΣ-fol → HIA .

Predicates: SubsconeWe introduce the notion of predicates over a categorical in-
terpretation of types. When types are interpreted in set theory, the natural notion of
predicate is simply a subset of each carrier set. In categorical settings, carrier sets are
replaced by objects, and the notion of predicates is more subtle.

We writeSub(D) for the category of subobjects in a categoryD, andpD : Sub(D) →
D for the forgetful functor. First we recallinjective sconesin [MS93]. The injective
scone of a Cartesian categoryC is the category obtained by pulling backpSet along the
global section functorC(1,−) ([Jac99], example 1.5.2). In this approach, the notion of
predicates over an objectC in C is represented as subsets of global elements ofC.

In this paper we use thesubsconeapproach [Laf88,MR92,MS93,PPST00], which is
a mild generalisation of injective scones. We replaceSet with a categoryD with finite
limits and the global section functor with finite-product preserving functor. We define
thecategoryPred(G) of G-predicatesby pulling backpD alongG.

Pred(G) //

πG

��

Sub(D)

pD

��
C

G
// D

CategoryPred(G) has finite products which are strictly preserved byπG
4. We also

define the categoryRel2(G) of binaryG-relations to bePred(prod ◦G×G), where
prod : C× C → C gives the binary products inC.

We adopt the following notational convention. LetP andQ be objects inPred(G)
andf : πG(P ) → πG(Q) be a morphism inC. We writef : P → Q if there exists a
morphismg : P → Q in Pred(G) such thatπG(g) = f .

Let F : T → C andP : T → Pred(G) be interpretations of types. We say that
P is aG-predicate overF (written P ⊆G F ) if πG ◦ P = F . A binary G-relation P
betweenF1, F2 : T → C (writtenP ⊆G F1, F2) is just a(prod◦G×G)-predicate over
〈F1, F2〉. For a predicateP ⊆G F , there exists a monomorphismHπG : HP � HF .

4 We give a proof in terms of fibred category theory. In factpD is a fibration with fibred finite
limits, thus so isπG (see [Jac99], section 1.8). Then it follows from lemma 8.5.2 of [Jac99].



3 Pre-logical Predicates

In this section, we fix a Cartesian categoryC, a categoryD with finite limits, a finite
product preserving functorG : C → D and a binding signatureΠ.

Let C[[−]]F be a categorical interpretation ofΠ andP ⊆G F be a predicate. We
consider taking pullback ofHπG alongC[[−]]F in MT .

SP
Π

//
��

i

��
(∗)

HP

��
HπG

��
SΠ C[[−]]F

// HF

The vertexSP
Π can be calculated asSP

Π(τ)(Γ ) = {M | Γ `Π M : τ ∧ C[[M ]]F :
P ∗Γ → Pτ}. This represents the collection of terms whose meanings byC[[−]]F re-
spects the predicateP . Thus when this is isomorphic toSΠ , the meanings of all the
well-formed terms byC[[−]]F respects the predicateP .

Definition 1. Let C[[−]]F be a categorical interpretation ofΠ. We say that a predi-
cateP ⊆G F satisfies the basic lemma forΠ alongC[[−]]F if in diagram (∗), SP

Π is
isomorphic toSΠ . This is equivalent to say that there exists a necessarily unique mor-
phismp : SΠ → HP (convention: we use the small letter of the predicate) such that
HπG ◦ p = C[[−]]F .

Example 3.(Continued from example 2)

1. LetP ⊆C(1,−) Fλ be a predicate satisfying the basic lemma forΠλ alongC[[−]]Fλ
.

It is equivalent to theTyp⇒(B)-indexed family of subsetsPτ ⊆ C(1, Fλτ) such
that for allρ ∈ P ∗Γ andΓ `Πλ

M : τ , we haveC[[M ]]Fλ
◦ ρ ∈ Pτ .

2. LetP ⊆IdSet
A be a predicate satisfying the basic lemma forΣ alongA[[−]]. It is

equivalent to theT0-indexed family of subsetsPτ ⊆ Aτ satisfyingA[[M ]]ρ ∈ Pτ
for all Γ `Σ M : τ andρ ∈ P ∗Γ .

3. Let Σ be a first-order signature,A,B be many-sortedΣ-algebras andP ⊆IdSet

IA, IB be a binary relation satisfying the basic lemma forΠΣ-fol alongIA[[−]] ×
IB[[−]] and PΩ = idΩ. It is equivalent to aT0 ∪ {Ω}-indexed family of sub-
setsPτ ⊆ Aτ × Bτ such that for allΓ `ΠΣ-fol M : τ and (ρ, ρ′) ∈ P ∗Γ ,
(IA[[M ]]ρ, IB[[M ]]ρ′) ∈ Pτ whenτ ∈ T0 andIA[[M ]]ρ = IB[[M ]]ρ whenτ = Ω.
The latter implies thatA andB areelementary equivalent.

Now we introduce the notion of pre-logical predicates.

Definition 2. Let C[[−]]F be a categorical interpretation ofΠ. We call a predicate
P ⊆G F pre-logical forΠ alongC[[−]]F if in diagram (∗) there exists a necessar-
ily uniqueΠ-algebra (SP

Π , α : ΠSP
Π → SP

Π) such that the projectioni induced by
pullback is aΠ-algebra morphism to the initial algebra(SΠ , ιΠ).

An elementary description ofP being pre-logical is that a) for allΓ `Π xτ : τ ,
C[[xτ ]]F : P ∗Γ → Pτ and b) for all operatoro ∈ O of arity (−→τ1 , σ1), · · · , (−→τm, σm) →



τ and well-formed termsΓ,−−−→xi : τi `Π Mi : σi (1 ≤ i ≤ n), C[[Mi]]F : P ∗(Γ,−−−→xi : τi) →
Pσi for all 1 ≤ i ≤ n impliesC[[o(

−→
xτ1

1 .M1, · · · ,
−→
xτn

n .Mn)]]F : P ∗Γ → Pτ . Normally
a) is satisfied as variables are interpreted by projections. For operators having no vari-
able binding, if the interpretation of termsC[[−]]F satisfies a) and the semantic substi-

tution lemma, i.e.C[[M [
−−−−→
Mi/xi]]]F = C[[M ]]F ◦ 〈

−−−−−→
C[[Mi]]F 〉, then the condition b) can

be rewritten toC[[sτ1,··· ,τn→τ (xτ1
1 , · · · , xτn

n )]]F ∈ P ∗(−−→x : τ) → Pτ .

Example 4.(Continued from example 2)

1. A predicateP ⊆C(1,−) Fλ is pre-logical forΠλ along C[[−]]Fλ
if for all f ∈

P (τ ⇒ τ ′) andg ∈ Pτ , @ ◦ 〈f, g〉 ∈ Pτ ′, and for allΓ, x : τ `Πλ
M : τ ′,

∀ρ ∈ P ∗(Γ, x : τ) . C[[M ]]Fλ
◦ρ ∈ Pτ ′ implies∀ρ ∈ P ∗Γ . C[[λx : τ . M ]]Fλ

◦ρ ∈
P (τ ⇒ τ ′).

2. A predicateP ⊆IdSet
A is pre-logical forΣ alongA[[−]] if for all cτ1,··· ,τn→τ ∈ O0

andxi ∈ P τi , cτ1,··· ,τn→τ
A (x1, · · · , xn) ∈ P τ . An algebraic predicate[HS02] is

just a pre-logical predicate forΣCL alongU [[−]] for a typed combinatory algebra
U (i.e. a many-sortedΣCL algebra).

3. A predicateP ⊆IdSet
IA is pre-logical forΠΣ-fol alongIA[[−]] if for all first-order

operator (includingor, not) sτ1,··· ,τn→τ andxi ∈ P τi , sτ1,··· ,τn→τ
A (x1, · · · , xn) ∈

P τ holds, and for allτ ∈ T0 andΓ, x : τ ` M : Ω, ∀ρ ∈ P ∗(Γ, x : τ) . IA[[M ]]ρ ∈
PΩ implies∀ρ ∈ P ∗Γ . IA[[exists(x.M)]]ρ ∈ PΩ.

Theorem 1 (The Basic Lemma of Pre-logical Predicates).LetC[[−]]F be a categori-
cal interpretation ofΠ. A predicateP ⊆G F is pre-logical if and only ifP satisfies the
basic lemma.

Proof. (if) If P satisfies the basic lemma, we have an isomorphismf : SP
Π
∼= SΠ .

Thenf : (SP
Π , f−1 ◦ ιΠ ◦ (Πf)) → (SΠ , ιΠ) is aΠ-algebra morphism. ThereforeP

is pre-logical.
(only if) Suppose there exists aΠ-algebra(SP

Π , α). Let ! : (SΠ , ιΠ) → (SP
Π , α) be

the unique morphism from the initialΠ-algebra. From the universal property of initial
Π-algebra, we havei ◦ ! = id. Now we havei ◦ ! ◦ i = i = i ◦ id, and sincei is mono,
!◦ i = id. Therefore(SP

Π , α) and(SΠ , ιΠ) are isomorphic, thusSΠ andSP
Π are so. ut

This theorem is a categorical re-formulation of the inductive proof of the basic lemma
for pre-logical relations in [HS02]. From now on we identify pre-logical predicates and
predicates satisfying the basic lemma.

We give one sufficient condition forP being pre-logical. Below we identify a
monomorphism inMT and an object inSub(MT ). First, we canlift the endofunc-
tor (of a typed binding signature)Π to the one overSub(MT ), namelyΠ̃. Here lifting
means thatΠ̃ satisfiespMT

◦ Π̃ = Π ◦ pMT
(see [Jac99], section 9.2). This is be-

cause all the constructs ofΠ have liftings overSub(ST ). FunctorpMT
is a subobject

fibration, thus admits comprehension ([Jac99], example 4.6.3). It is easy to see that
Π̃ ◦ > ∼= > ◦ Π, where> : MT → Sub(MT ) is the right adjoint ofpMT

giving
fibred terminal objects. Thus an initialΠ-algebra is inductive ([Jac99], definition 9.2.6,
proposition 9.2.7), i.e.idSΠ

is an initialΠ̃-algebra.



Proposition 1. LetP ⊆G F be a predicate and suppose thatHπG : HP � HF has a
Π̃-algebra structure. ThenP satisfies the basic lemma forΠ along the initial algebra
semantics ofΠ in HF .

4 Composability of Pre-logical Relations

We move to the composability of binary pre-logical relations. Binary pre-logical rela-
tions are closed under relational composition, which is not enjoyed by logical relations
[HS02]. We give here a categorical account of composability of pre-logical relations. In
this section we fix a typed binding signatureΠ, a Cartesian categoryC, a categoryD
with finite limits, a finite-product preserving functorG : C → D and categorical inter-
pretationsC[[−]]Fi

(1 ≤ i ≤ 3) of Π. We writefst, snd : C× C → C for projections.
First, we assume that a composition operatorc over Rel2(G) is available. This

operator is partial, and defined overcomposable pairs of relations, i.e. a pair(R,S) of
objects inRel2(G) such thatsnd(πG(R)) = fst(πG(S)). The composition operator
yields an objectc(R,S) in Rel2(G) such thatfst(πG(c(R,S))) = fst(πG(R)) and
snd(πG(c(R,S))) = snd(πG(S)), and a morphismc(f, g) : c(R,S) → c(R′, S′)
for composable pairs of relations(R,S), (R′, S′) and morphismsf : R → R′, g :
S → S′ in Rel2(G). It is natural to assume thatRel2(G) has identity relation, and the
composition operator satisfies the laws of identity and associativity. To summarise, we
assume that we have acategory objectin Cat:

Relc(G) c // Rel2(G)
∂1=fst◦πG //

∂2=snd◦πG

// Cidoo (**)

whereRelc(G) is the category of composable pairs of relations obtained by pulling
back∂2 along∂1. Using category objects inCat to formulate the composition of rela-
tions is due to [KOPT97].

For R ⊆G F1, F2 andS ⊆G F2, F3, we define their compositionc(R,S)(τ) to be
c(Rτ, Sτ). It is clear thatc(R,S) ⊆G F1, F3.

Theorem 2 (Composability of Pre-logical Relations).Let R ⊆G F1, F2 andS ⊆G

F2, F3 be pre-logical binary relations forΠ alongC[[−]]F1 × C[[−]]F2 andC[[−]]F2 ×
C[[−]]F3 respectively. Thenc(R,S) ⊆G F1, F3 is pre-logical forΠ along C[[−]]F1 ×
C[[−]]F3 .

Proof. We find a morphismh : SΠ → Hc(R,S) such thatHπG ◦ h = C[[−]]F1 ×
C[[−]]F3 whereHπG : Hc(R,S) → H〈F1,F3〉 is the morphism inMT . We giveh by
h(τ)(Γ )(M) = c(r(τ)(Γ )(M), s(τ)(Γ )(M)) for all well-formed termsΓ `Π M : τ ,
wherer : SΠ → HR ands : SΠ → HS are morphisms which exist by definition of
the basic lemma (see definition 1). ut

When do we have a category object as(∗∗) above? Recall that composition of re-
lations can be expressed by thec(R,S)(x, z) = ∃y.R(x, y) ∧ S(y, z). The standard
interpretation of this formula in set theory gives the composition of binary relations.
Now we replace set theory withregular fibration [Jac99], which is a preordered fi-
brationp : E → B such thatB is Cartesian andp has fibred finite products, fibred



equality and simple coproducts satisfying Frobenius and Beck-Chevalley (for details,
see [Jac99]). A regular fibration provides a categorical model of the∃∧>=-fragment of
predicate logic. Interpreting the above formula in this model gives rise to a composition
operation, which enjoys the identity and associativity laws.

Proposition 2. Assume thatpD : Sub(D) → D is a regular fibration. Then we can
construct a category object as(∗∗) above inCat.

5 Examples

Example 5.In this example, we examine the relationship between pre-logical predi-
cates for combinatory algebras and pre-logical predicates for the simply typed lambda
calculus in our framework. This is a revisit of proposition 3.3 in [HS02].

The standard abstraction mechanismλ∗x.M in combinatory logic (see definition
7.1.5, [Bar84]) induces aΠλ-algebra structures overSΣCL

. From the universal prop-
erty of initial Πλ-algebra, there is a uniqueΠλ-algebra morphism, namely(−)CL :
SΠλ

→ SΣCL
, which coincides with the standard lambda-to-CL translation (defini-

tion 7.3.1, [Bar84]). The compositionU [[(−)CL]] gives an interpretation of the simply
typed lambda calculus in a combinatory algebraU . In general this is not aΠλ-algebra
morphism. Conversely, giving the standard representation ofS, K combinators inSΠλ

equips it with aΣCL algebra structure. Then there exists a uniqueΣCL-algebra mor-
phism from an initialΣCL-algebra, namely(−)λ : SΣCL

→ SΠλ
.

LetU be a combinatory algebra andP ⊆IdSet
U be a pre-logical predicate forΣCL

alongU [[−]]. Then we haveHπG ◦p◦(−)CL = U [[(−)CL]], thusP is pre-logical forΠλ

alongU [[(−)CL]]. This explains that an algebraic predicate relating combinators yields a
pre-logical predicate (“if” part of proposition 3.3, [HS02]). Conversely, letP ⊆IdSet

U
be a pre-logical predicate forΠλ alongU [[(−)CL]]. It is a pre-logical predicate forΣCL

alongU [[((−)λ)CL]] — but not forU [[−]] in general!

Theorem 3. There exists a combinatory algebraU0 and a pre-logical predicateP ⊆IdSet

U0 for Πλ alongU0[[(−)CL]] which is not not pre-logical forΠCL alongU0[[−]].

The proof uses the fact that the image of the standard lambda-to-CL translation does
not cover the entire set of combinatory logic terms, particularlyS andK. To exploit
this fact, we takeU0 as the closed term algebra, and see that the definability predicate
by U0[[(−)CL]], which is pre-logical forΠλ, is not pre-logical forΠCL alongU0[[−]].
This means that “only if” part of proposition 3.3, [HS02] is not precise enough. The
subtle point is that “to which semantics” it satisfies the basic lemma, and it was missed
in [HS02].

When isP a pre-logical predicate forΣCL alongU [[−]]? One answer is to fix the
lambda-to-CL translation(−)CL to make it surjective. To achieve this, we introduce
another abstraction mechanismλ′x.M defined to beλ′x.x = SKK, λ′x.M = KM
providedx 6∈ FV(M), λ′x.λ∗y.x = K, λ′x.λ∗y.λ∗z.xz(yz) = S, λ′x.MN =
S(λ′x.M)(λ′x.N). The lambda-to-CL translation constructed from this abstraction
mechanism, say(−)CL′ , covers all the combinators, and moreover satisfies((M)λ)CL′ =
M . Thus a pre-logical predicate forΠλ alongU [[(−)CL′ ]] is a pre-logical predicate for



ΣCL alongU [[−]]. Another answer is to requireU to be alambda algebra, which always
satisfiesU [[((−)λ)CL]] = U [[−]] (see lemma 5.2.3-2, [Bar84]).

Example 6.We examine the connection between lax logical predicates [PPST00] and
pre-logical predicates as defined in here. For this, we fix a set of base typesB and
define the set of types including finite products by the BNFTyp⇒×(B) 3 τ ::=
b | 1 | τ × τ | τ ⇒ τ whereb ∈ B. The signature for the simply typed lambda calculus
with finite products is defined by

Πλ× = (Typ⇒×(B), {lam(τ,τ ′)→τ⇒τ ′ , appτ⇒τ ′,τ→τ ′ , ∗1,

pairτ,τ ′→τ×τ ′ , fstτ×τ ′→τ , sndτ×τ ′→τ ′}).

Let L be the free CCC generated from the set of base typesB. An object ofL is a type
τ ∈ Typ⇒×(B), and a morphism fromτ to τ ′ in L is aβη-equivalence class of a well-
formed termsx : τ `Πλ× M : τ ′. We writeI : Typ⇒×(B) → L for the inclusion
functor. As we have seen in example 2, sinceL is a CCC, it provides aΠλ×-algebra
structure, thus there exists a uniqueΠλ×-morphismL[[−]]I : SΠλ× → HI . We note
that the mappingL[[−]]I is an epimorphism.

Let C be a CCC,D be a CCC with finite limits,G : C → D be a functor preserving
finite products and[[−]] : L → C be a strict Cartesian closed functor.A lax logical
predicateq [PPST00] over[[−]] is a finite-product preserving functorq : L → Pred(G)
such thatπG ◦ q = [[−]].

Theorem 4. A lax logical predicatep : L → Pred(G) determines a pre-logical pred-
icatep ◦ I ⊆G [[−]] ◦ I for Πλ× alongH [[−]] ◦ L[[−]]I . Conversely, ifP ⊆G [[−]] ◦ I
is a pre-logical predicate forΠλ× alongH [[−]] ◦ L[[−]]I , then there exists a lax logical
predicateq such that for allΓ `Πλ× M : τ , Hq ◦ L[[M ]]I = p(τ)(Γ )(M).

Example 7.In this example we see a characterisation of elementary submodels in terms
of a binary pre-logical relation. LetΣ = (T0, O0) be a typed first-order signature,B
be a many-sortedΣ-algebra andA be a subalgebra ofB. For allΓ `ΠΣ-fol M : τ with
τ ∈ T0, we haveA[[M ]] = B[[M ]] becauseA is a submodel ofB. However, this may
not hold whenτ = Ω because of existential quantifier. Thus we sayA is anelementary
submodelof B (writtenA � B) if the above holds forτ = Ω as well.

Theorem 5. A � B if and only if the inclusion relationR ⊆IdSet
IA, IB, i.e. RΩ =

idΩ andRτ = {(x, x) | x ∈ Aτ}, is pre-logical forΠΣ-fol alongIA[[−]]× IB[[−]].

6 Conclusion

We have given a generalisation of pre-logical predicates to arbitrary typed formal sys-
tems, and shown that they are equivalent to predicates satisfying the basic lemma, and
that binary pre-logical relations are closed under composition. We represent three un-
derlying components of pre-logical predicates — syntax, semantics and predicates —
in the category of presentation models. Then we formulate pre-logical predicates and
predicates satisfying the basic lemma, and show their equivalence.



It is interesting to extend our framework for defining formal systems. One direction
is to allow type variables so that we can cover type systems such as System F or FPC
[FP94]. The other direction is to modify the notion of contexts from the Cartesian one
to linear one to cover linear logic. In both cases we also have to switch the notion
of models from Cartesian categories to more elaborate categorical structures such as
polymorphic fibrations, symmetric monoidal categories, etc.
AcknowledgmentsI thank Donald Sannella, Daniel Turi and John Power for useful
discussions. This work was supported by an LFCS studentship.
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A Proofs

Proof of proposition 1 The initiality of idSΠ
gives a morphismf : SΠ → HP which

is above theΠ-algebra morphism! : SΠ → HF , i.e.HπG ◦ f =!. ThusP satisfies the
basic lemma by definition. ut

Proof of proposition 2 To prove this proposition, we use the internal logic of fibra-
tions [Jac99]. From the assumption, the logic provides the∃∧>=-fragment of predicate
logic. For details, see [Jac99]. The following reasoning is done in the internal logic of
pD.

An object inRel2(G) is a triple(C,C ′, P ) whereC,C ′ are objects inC andP is a
predicatex : GC, y : GC ′ ` P (x, y) of the internal logic of the fibration. A morphism
from (C,C ′, P ) to (D,D′, Q) is a pair of morphismsf : C → D, g : C ′ → D′ in C
such thatx : GC, y : GC ′ | P (x, y) ` Q(Gf(x), Gg(y)) holds.

An object inRelc(G) is a tuple(C,C ′, C ′′, P, P ′) such that(C,C ′, P ) and(C ′, C ′′, P ′)
are objects inRel2(G). A morphism from(C,C ′, C ′′, P, P ′) to (D,D′, D′′, Q,Q′)
in Relc(G) is a triple (f : C → D, g : C ′ → D′, h : C ′′ → D′′) such that
(f, g) : (C,C ′, P ) → (D,D′, Q) and(g, h) : (C ′, C ′′, P ′) → (D′, D′′, Q′) are mor-
phisms inRel2(G).

For an objectC in C, we assign an objectid(C) in Rel2(G) by x : GC, y : GC `
x = y. For allf : C → D in C, we can derive a judgmentx : GC, y : GC ` x = y `
Gf(x) = Gf(y) in the internal logic of the fibration. We can extend this assignment to
a functorC → Rel2(G).

For an object(C,C ′, C ′′, P, P ′) in Relc(G), we define an objectc(C,C ′, C ′′, P, P ′)
in Rel2(G) by C,C ′′, x : GC, z : GC ′′ ` ∃y : GC ′ . P (x, y) ∧ P ′(y, z) (we omit re-
indexing functors along projections for readability).

Let (f, g, h) : (C,C ′, C ′′, P, P ′) → (D,D′, D′′, Q,Q′) be a morphism inRelc(G).
In the internal logic of the fibration, we have the following derivation (annotation of ob-
jects are omitted for readability):

x, y | P (x, y) ` Q(Gf(x), Gg(y))

x, y, z | P (x, y) ∧ P ′(y, z) ` Q(Gf(x), Gg(y))

y, z | P ′(y, z) ` Q′(Gg(y), Gh(z))

x, y, z | P (x, y) ∧ P ′(y, z) ` Q′(Gg(y), Gh(z))

x, y, z | P (x, y) ∧ P ′(y, z) ` Q(Gf(x), Gg(y)) ∧Q′(Gg(y), Gh(z))

x, y, z | P (x, y) ∧ P ′(y, z) ` ∃y . Q(Gf(x), y) ∧Q′(y, Gh(z))

x, z | ∃y . P (x, y) ∧ P ′(y, z) ` ∃y . Q(Gf(x), y) ∧Q′(y, Gg(z))

Thusc extends to a functorc : Relc(G) → Rel2(G).
To see thatid andc satisfy the laws of category object, such asc(id(C), (C,C ′, P )) =

(C,C ′, P ), we show that the predicates on both sides are provably equal. The calcu-
lation is much like that in [Jac99], example 4.3.8. SincepD is a fibred partial order,
provable equality implies equality of objects. Thus the above equation strictly holds.

ut

Proof of theorem 3 We use the fact that the image of the standard lambda-to-CL
translation does not cover the entire set of combinatory logic terms.



First we write[M ]w for the equivalence class of a combinatory logic termM by
weak equivalence=w (see [Bar84], definition 7.2.1). We define theclosed term com-
binatory algebraU0 by the tuple(U0, •w, [S]w, [K]w) whereUτ

0 = {[M ]w | M ∈
SΣCL

(∅, τ)} and •τ,τ ′

w is the application operators defined by[M ]w •τ,τ ′

w [N ]w =
[MN ]w for [M ]w ∈ Uτ⇒τ ′

0 and[N ]w ∈ Uτ
0 . It is easy to see that the above choice of

combinators satisfies the axioms of the combinatory algebra. As we have seen in exam-
ple 2, we obtain an interpretation of combinatory logic terms inU0, namelyU0[[−]]. Ex-
plicitly, U0[[M ]]{[M1]w/x1, · · · , [Mn]w/xn} = [M [M1/x1, · · · ,Mn/xn]]w. We in-
terpret simply typed lambda terms byU0[[(−)CL]].

Now we define the definability predicateDτ ⊆ Uτ
0 by Dτ = {U0[[MCL]] ∈

Uτ
0 | M ∈ SΠλ

(∅, τ)}. This is a pre-logical predicate forΠλ alongU0[[(−)CL]]. How-
ever,Dτ⇒τ ′⇒τ does not include[Kτ⇒τ ′⇒τ ]w for all τ andτ ′, thus is not a pre-logical
predicate forΣCL alongU0[[−]].

It is easy to see that there exists no closed termM such thatMCL = K by induction
onM . Next we prove the following lemma:

Lemma 1. For all closed lambda termM and all combinatory termN , MCL →→w N
implies there exists a closed lambda termN ′ such thatN = N ′

CL.

WhenM begins with a lambda abstraction,MCL is always a normal form. Thus the
claim clearly holds by takingN ′ = M . We do not consider the case whenM is a
variable, since we assumeM is closed. So we think of the case whenM = M0M1 with
two closed lambda termsM0 andM1. There are several possible causes ofMCL →→w

N .

– N = MCL. We just takeN ′ = M .
– There exists a combinatory termL such that(M0)CL →→w L andL →→w N . From

IH, there exists a combinatory termL′ such thatL = L′CL. Again from IH, there
exists a combinatory termN ′ such thatN = N ′

CL.
– (M0)CL →→w N0 andN = N0(M1)CL. From IH, there exists a closed lambda

termN ′
0 such that(N ′

0)CL = N0. ThusN = (N ′
0)CL(M1)CL = (N ′

0M1)CL.
– (M1)CL →→w N1 andN = (M0)CLN1. The proof is similar to the above case.
– (M0)CL = KN0 with a combinatory termN0 andN = N0. From the definition

of lambda-to-CL translation,M0 should be equal toλx . N ′
0 whereN ′

0 is a closed
lambda term. ThusN0 = (N ′

0)CL.
– (M0)CL = SN0N1 with some combinatory termsN0, N1 andN = N0(M1)CL(N1(M1)CL).

From the definition of lambda-to-CL translation,M0 should be equal toλx . (N ′
0N

′
1).

Thenλx . (N ′
0N

′
1) = S(N ′

0)CL(N ′
1)CL, which impliesN0 = (N ′

0)CL andN1 =
(M ′

1)CL. Thus we takeN ′ = N ′
0M1(N ′

1M1).

Thus there exists no term reducing toK in the image of(−)CL, otherwiseK should
be in the image of(−)CL (we assume the strong noramlisation of→→w). Thus[K]w 6∈
Dτ⇒τ ′⇒τ . ut

Proof of theorem 4 We only show the converse. The assumption says that there exists
a morphismp : SΠλ× → HP such thatHπG ◦ p = H [[−]] ◦ L[[−]]I . Recall thatL[[−]]I
is an epimorphism andHπG is a monomorphism. In categoryMT , any epimorphism is



orthogonal to monomorphism, thus there exists a unique morphismh such thatHπG ◦
h = H [[−]] andh◦L[[−]]I = p. Now we define the functorq : L → Pred(G) in question
by qτ = Pτ andqf = h(τ ′)(τ)(f) for a morphismf : τ → τ ′ in L. We seeq is indeed
a functor. Firstq preserves identity, sinceπG(q(idτ )) = [[idτ ]] = id[[τ ]] = πG(idPτ )
andπG is faithful, we haveq(idτ ) = idPτ . Next we showq(f ◦ g) = qf ◦ qg for
all f : τ ′ → τ ′′ andg : τ → τ ′. We haveπG(q(f ◦ g)) = [[f ◦ g]] = [[f ]] ◦ [[g]] =
πG(qf ◦ qg), and sinceπG is faithful, we haveq(f ◦ g) = qf ◦ qg. It is routine to check
Hq ◦ L[[M ]]I = p(τ)(Γ )(M).

Next we showP (τ × τ ′) = Pτ × Pτ ′. We consider well-formed termsx : τ ×
τ ′ `Πλ× fst(x) : τ and x : τ × τ ′ `Πλ× snd(x) : τ . We definej = 〈p(τ)(x :
τ×τ ′)(fst(x)), p(τ ′)(x : τ×τ ′)(snd(x))〉. SinceHπG ◦p = [[−]]◦L[[−]]I , we can show
thatπGj = id[[τ×τ ′]], which impliesj = idP (τ×τ ′) sinceπG is faithful. This means that
the comparison mapP (τ × τ ′) → Pτ × Pτ ′ is identity, thusP (τ × τ ′) = Pτ × Pτ ′

holds. ut

Proof of theorem 5 AssumeA � B. We only have to show that for allΓ `ΠΣ-fol M : τ
whereτ ∈ T0 andρ ∈ A∗Γ , IA[[M ]]ρ = IB[[M ]]ρ. This is clear, sinceM consists of
operators inΣ, andA is a subalgebra ofB. Conversely, assume that the basic lemma
holds. Then for allΓ `ΠΣ-fol M : Ω andρ ∈ A∗Γ , we have(IA[[M ]]ρ, IB[[M ]]ρ) ∈
RΩ = idΩ. ThusA � B holds. ut


