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Abstract. We generalise the notion of pre-logical predicates [HS02] to arbitrary
simply typed formal systems and their categorical models. We establish the basic
lemma of pre-logical predicates and composability of binary pre-logical relations
in this generalised setting. This generalisation takes place in a categorical frame-
work for typed higher-order abstract syntax and semantics [Fio02,MS03].

1 Introduction

Pre-logical predicates (relations) [HS02] are a generalisation of logical predicates. They
are defined for thesimply typed lambda calculuand its set-theoretic environmental
models calledambda applicative structurddit96]. Two important properties are en-
joyed by pre-logical predicates but not logical predicates. One is that pre-logical predi-
cates arequivalento predicates satisfying the basic lemma (interpretation of all terms
respects predicates — this is the key to many applications of logical relations), and the
other is that binary pre-logical relations are closed under relational composition.

We aim to generalise pre-logical predicates from the simply typed lambda calculus
to arbitrarysimply typed formal system@ve just saytyped formal systerbelow) and
their categorical models, then show that the above important properties hold in this
generalised setting.

This generalisation enables us to extend pre-logical predicates systematically to
other calculi, such as lambda calculus with various type constructors and variable
binders, and calculi other than lambda calculus, such as logics and process calculi.
This opens up the possibility of characterising observational equivalence [HS02] and
constructive data refinement [HLSTOO] in various non-lambda calculi.

There are three underlying elements on which pre-logical predicates are defined:
syntax (normally the simply typed lambda calculus), semantics (set-theoretic environ-
mental models) and predicates (as subsets of carrier sets). We generalise these three
elements along the following dimensions:

— We generalise syntax to an arbitrary typed formal system describetypgebind-
ing signaturelMS03]. A typed formal system is a formal system whose inference
rules fit within the following scheme:
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This is general enough to subsume various simple type systems and calculi such as
the simply typed lambda calculus, many-sorted first-order logic, pi-calculus, etc.

— We generalise from set-theoretic to category-theoretic semantics. Following the
principle of categorical semantics, we give a semantics of a typed formal system in
a Cartesian categofy by mapping types to objects and terms to morphisnds.in

— As we move to category theory, we need to change the notion of predicates from
subsets to appropriate category-theoretic constructs. Wsulseongswhich is a
mild generalisation of the injective scones of [MS93].

We represent all three elements as objects and morphisms in the categueyeni-
tation modelsM 7, whereT is the set of types [MS03]. In this category, the collection
of well-formed terms module-equivalence is represented as the initial algebra of the
endofunctor corresponding to a typed binding signature.

After this generalisation, we formulate pre-logical predicates and predicates satis-
fying the basic lemma, and show their equivalence. Then we show the composability of
binary pre-logical relations.

We look at three examples of pre-logical predicates, i) the relationship between
pre-logical predicates for combinatory algebra and those for lambda calculus, ii) the
connection between pre-logical predicates and lax logical predicates [PPST00] and iii)
a characterisation of elementary submodels of first-order classical logic by a pre-logical
relation.

Structure of This Paper The generalisation of pre-logical predicates takes place in
the following way. In section 2, we first introduce a category of presentation models
Mr, and typed binding signatures as a description of typed formal systems. We give
a categorical semantics of typed formal systems in a very weak sense. We introduce
a formulation of predicates with respect to this semantics, using subscones. All three
elements (syntax, semantics and predicates) are expressed in catégomhen we
formulate pre-logical predicates and predicates satisfying the basic lemma in section 3.
The basic idea of the formulation of pre-logical predicates is that the inverse image of a
predicate along the meaning function has an algebra structure. We show that predicates
satisfying the basic lemma and pre-logical predicates are equivalent. Composition of
binary pre-logical relations is discussed in section 4. In section 5, we look at three
examples of pre-logical predicates. Proofs are attached in the appendix.

Related Work First, we briefly consider formulations of logical predicates. Logical
predicates (and relations) have been widely used as a tool to study properties of the sim-
ply typed lambda calculus. Ma and Reynolds [MR92] formulated logical predicates as
Cartesian closed functors from the free CC@ Pred(G). Hermida [Her93] pointed

out thatPred(G) can be replaced with the total categdtyof a fibrationp : E — B,
provided that CCC structures @ncan be lifted tdE. Plotkin et al. [PPSTO0O0] introduced

a weakening of Ma and Reynolds’ formulation calleak logical predicateswhich are
functors fromL to Pred(G) preserving only finite products. The basic lemma still
holds for lax logical predicates, and furthermore the converse holds. In this sense lax
logical predicates and pre-logical predicates are the same. They extended lax logical



predicates from the lambda calculus to the language described by a finitary monad over
Cat extending finite product structure.Lax logical predicates are also extended to the
computational lambda calculus [KP99]. Binary lax logical relations are closed under
composition.

Kinoshita, et al. [KOPT97] proposed a generalisation of logical relations chled
relations Their framework is also parameterised by a finitary mohaserCat, which
allows us to generalise the language from the lambda calculus. They used category
objects inCat to formulate the composition of L-relations.

Lei3[Lei01] extended pre-logical predicates to systém and characterised obser-
vational equivalence in terms of existence of binary pre-logical relation.

An application of binary pre-logical relations is to characterise observational equiv-
alence between two models of a language [Lei01,HS02,Kat03].

This work refers to the framework by Fiore [Fio02] and Miculan and Scagnetto
[MS03] on a categorical model of typed higher-order abstract syntax. This framework
is a natural extension of the one considered in [FPT99,Hof99] to take types into account.

Convention We identify a set and its discrete category. We assume that all categories
appeared in this paper are locally small. By a Cartesian category we mean a category
with chosen finite products. We fix a countably infinite set of variaeganged over

by z,y, z). For a finite set4, by | A| we mean the number of elementsdnWe useA

for a sequence of meta variables, like, - - - , A,,.

2 Preliminaries

Category of Presentation Models We introduce the category gresentation mod-
els[MS03] plus some auxiliary categories for the following sections. We represent all
three elements involved in the notion of pre-logical predicates (syntax, semantics and
predicates) in this category.

LetT be the set of types, whose elements are ranged overdA context(ranged
over byI") is a function from a finite subset df to 7". A context renamindgrom I" to
I'"is afunctionf : dom(I") — dom(I") suchthatl” o f = I". They form thecategory
of contextsCr! with the initial object given by the empty context() — 7" and binary
coproducts given by cotupling of conteXts, I'"’] : dom(I") + dom(I”) — T. By
I', I'" we mean the coproduct of contedfsandI” whose domains are disjoint. We fix
avariabler € X and defing/—) : T — Cr by (1) = {z — 7}. We assume that each
variablez € dom(I") has an index number denoted i) € {1,--- ,|dom(I")|}.

We define theambient categonB, = Set©”. CategoryS; has small limits and
colimits, and has aontext extension operat¢s, A)(I") = A(I" + (r)). Infacti, A is
isomorphic toV. = A, whereV,(I') is the presheaf ofariables of typer, defined to
beCr((r),I') = {z | I'(x) = 7}, thusd, has a left adjoint. Moreover it has a right

! categoryCr can be described as the comma category T wherel : X < Set is the
inclusion functor of the full subcategoX of Set whose objects are finite subsets Xf
[Fio02,MS03]. It is a free co-Cartesian category generated ffom



adjoint ([MS03], proposition 2), thus preserves both limits and colimits. We wite
for the compositiod, o --- 06, .

The category opresentation mode®I is defined to bgS7)? =~ SetCr>T |t
also has small limits and colimits.

Syntax: Typed Binding Signature A typed binding signaturéanged over byT) is

a tuple (T, O) whereT is the set oftypes(ranged over byr, o) andO is the set of
operators(ranged over by), each of which is a pair of aoperator symbok and its
arity ((71,01),-+ , (Tom»0m),7) € (TH)* x T. We write s(T1-01):-(Toi.om) =7 for
such a pair inO 2, ando™ € O for an operator whose result type7sA typed first-
order signature(ranged over byY) is just a typed binding signatufd’, O) such that
for all s(T1:01):.(Fm.om)=7 ¢ O, 77 = €. It coincides with the notion of many-sorted
signature.

A typed binding signaturé/ specifies dyped formal systenwe first defingaw-I11
term(ranged over by, N) by the BNFM ::= 27 | o(?.M, e ,x_T).M). In this BNF,
2”7 .M means binding of variables’ in M. As usual, we identifyx-equivalent terms.
The typed formal system is a system to derive judgniémt; M : 7, wherel” is an
object inCr. The system consists of the following rules for variables and operators.

R e
I'(z)=r Ixy:mbpgMy:ov -+ LIz, :71,bpg My, :om
TF T . TIF (T1,01)s (T om) =7 (o T1 M Tm M. .
ot T s\ (x1™ My, sz ™ M) o T

Example 1. 1. Let B be a set. ByT'yp~ (B) we mean the set defined by the BNF
7 u=b| 71 = 7whereb € B. The typed binding signatut, for the simply typed
lambda calculus is defined to §&yp= (B), {lam"7) 7= appr=7"m= 1)
wherer, 7’ ranges ovellyp ™~ (B).

2. The typed first-order signature for combinatory logic is

Yo = (Typé(B), {appré‘r',rﬁT" S(‘ré‘r'é‘r”)é(ré‘r'):w'é'r”’ K‘r:>7":>‘r})

wherer, 7/, 7'’ ranges oveyp~ (B).
3. LetX = (Tp, Og) be a typed first-order signature. The typed binding signature for
first-order classical logic oveY is

Hs 0 = (Ty U {0}, 0 U {exists D=L | 7 € Ty} U {not? %, orH2—2))

The typed formal system described Bydetermines an obje&t; (7)(I') = {M |I'
M : 7} in Mp. This object can be characterised as an initial algebra of the functor as-
sociated tall by (ITA)T =V + [[,7.00 . .momi—rco ([1g 07 (A0;)) together
with the IT-algebra structurer; : I1S; — Sy corresponding to the inference rules
(IMSO03], theorem 1).

2 This definition of typed binding signature is a special case of the one in [MS03] where the set
of types allowed for variables is equal to the set of all types.



Semantics: Very Weak Categorical Model We formulate a semantics of a typed for-
mal system/] = (T, O) by a morphism to the object iNL which reflects a Cartesian
category. The notion of semantics considered here is very weak in the sense that it does
not exploit any categorical structure other than finite products. The semantics keeps the
basic principle of categorical model theory: that is, types are interpreted as objects and
terms are interpreted as morphisms.

An interpretation of typess just a functorF' : T — C whereC is a Cartesian cate-
gory. We extend it to the functdf* : Cr — C by F*I" = [ p(1(y=1(i))),
which preserves finite products (€1)°?. We writesp v : F*I" x F*I"" — F*(I" +
I'") for the natural isomorphism. For an interpretation of tygess T — C, we
define theclone of typed operation&/©’ by H¥ (7)(I") = C(F*I',F7). LetD be
a Cartesian category. For a functgr : C — D preserving finite products strictly,
we define a morphisndi/¢ : HY — HSF in My by HE(7)(I)(f : F*T" —
Fr) = Gf : (GF)*I' = GF*I' — GF. A categorical interpretation of! con-
sists of a Cartesian categofy an interpretation of typeB' : T' — C and a morphism
m : Sp — HF in My calledinterpretation of termswhich assigns to a well-formed
termI” F; M : 7 a morphismm(M) : F*I" — Fr.We use the notatiof[—] to
represent a categorical interpretation. We defineptioeluctof categorical interpreta-
tions (C, Fl, ’I’TLl)7 (]D), FQ, mg) to be (C X D, <F1, F2>, (ml, mg)) Where(ml, mg) is
defined by(mq, mo)(7)(I") = (m1(7)(I"), ma(7)(I)).

Often, H” is equipped with all-algebra structure. In this case we can obtain an
interpretation of terms by the initiality & ;. This is theinitial algebra semantic$or
typed binding signature ([FPT99,MS03]).

To specify alT-algebra structure ovei ', it is sufficient to specify a morphism, :
[T, 0= (H"0;) — Hrin Sy for each operatar € O ofarity (71, 01), -+ , (T, 0m) —
7. Together with the mapping™ : V, — H'r defined to bey™ (I')(z) = 7. (,), we
obtain alT-algebra structure ovei ©' by [v=,u,-]o-co : (THT) — HF.

Example 2.(Continued from example 1)

1. LetF) : Typ~ (B) — C be an interpretation of types satisfyidg (r = 7/) =
F\(1) = Fx(7'). The morphisms it8, given by (u,_c--—r=-)r(f) = A(f o
sry(ry) @nd(u,ppr= e ) r(f, 9) = @o (f, g) yield all,-algebra structure over
HPx. The initial algebra semantics coincides with the standard semantics of the
simply typed lambda calculus i@.

2. Let X = (Tp,09) be a typed first-order signature. rhany-sorted*-algebra. .4
consists of aly-indexed family of setsA : Ty — Set calledcarrier setsand an
assignment of a function, : A™ x --- x A™ — A" to each operatas € Oy of
arity r,--- , 7, — 7.

To each operatov € Og, we assign a morphisru,)r(fi, -+, fn) = o4 ©
(f1,-+, fn) in Sz. This yields a>-algebra structure ovelf# and the interpre-
tation of terms, namely[—] : S — HA.

3 We note that interpretations of terms are not restricted to algebra morphisms. The reason is to
cover the interpretation of terms which is obtained by composition of morphisms of different
algebras. This case is considered in example 5.



3. Let X = (Ty,00) be a typed first-order signature antlbe a many-sorted.-
algebra. We give a categorical semanticdbf ¢ in Set, which coincides with
the standard interpretation of the first-order classical logic in the model constructed
over A. The interpretation of typegs : Tp U {Q2} — Set is given byl 4(Q2) =
2 ={T,L}andI4(r) = A" forall € Tj,. To give an interpretation of terms, we
specify the following morphisms for each operator.

(Usrimn=r)p(f1oo o fu) = sa0(fr, - fa) (87777 € Oo)
(Uexistsm—a)r(f)(p) =T <= Jw €A™ f(p,z) =T
(Unota—2)r(f)(p) =T = f(p)=1

(ugn.—a)r(f1, f2)(p) =T <= filp) =TV fa(p) =T

This gives the standard set-theoretic semantics of first-order classical logig pver
namelyZa[—] : Smy.q — H'A,

Predicates: SubsconeWe introduce the notion of predicates over a categorical in-
terpretation of types. When types are interpreted in set theory, the natural notion of
predicate is simply a subset of each carrier set. In categorical settings, carrier sets are
replaced by objects, and the notion of predicates is more subtle.

We writeSub (D) for the category of subobjects in a categBryandpy : Sub(D) —
D for the forgetful functor. First we recalhjective sconesn [MS93]. The injective
scone of a Cartesian categdryis the category obtained by pulling bagk.; along the
global section functo€(1, —) ([Jac99], example 1.5.2). In this approach, the notion of
predicates over an obje€tin C is represented as subsets of global elemends. of

In this paper we use treubsconapproach [Laf88,MR92,MS93,PPSTO0O0], which is
a mild generalisation of injective scones. We repl8@e¢ with a categoryD with finite
limits and the global section functor with finite-product preserving functor. We define
thecategoryPred(G) of G-predicatesby pulling backpp alongG.

Pred(G) —— Sub(D)

C—% D
CategoryPred(G) has finite products which are strictly preservedsy*. We also
define the categoRel, (G) of binary G-relations to béPred(prod o G x G), where
prod : C x C — C gives the binary products i@.

We adopt the following notational convention. Letand@ be objects iPred(G)
andf : mg(P) — 7 (Q) be a morphism irfC. We write f : P — @ if there exists a
morphismg : P — @ in Pred(G) such thatr¢(g) = f.

LetF: T — CandP : T — Pred(G) be interpretations of types. We say that
P is aG-predicate overF (written P C F) if 71g o P = F. A binary G-relation P
betweenF, F; : T — C (written P C Fi, Fy) isjusta(prodoG x G7)-predicate over
(Fy, F,). For a predicaté® C F, there exists a monomorphis©c : HP — HY.

4 We give a proof in terms of fibred category theory. In fagtis a fibration with fibred finite
limits, thus so istg (see [Jac99], section 1.8). Then it follows from lemma 8.5.2 of [Jac99].



3 Pre-logical Predicates

In this section, we fix a Cartesian categdya categoryD with finite limits, a finite
product preserving functar : C — D and a binding signatur® .

Let C[-]r be a categorical interpretation &f and P C F' be a predicate. We
consider taking pullback aff "¢ alongC[—] r in M.

SE——— P

ZI (*) IH"G

- S F
St Cl-1r H

The vertexS% can be calculated ash (7)(I') = {M | I' bz M : 7 AC[M]F :
P*I' — Pr}. This represents the collection of terms whose meaning8[by]  re-
spects the predicatB. Thus when this is isomorphic t6;;, the meanings of all the
well-formed terms byC[—] r respects the predicafe.

Definition 1. Let C[—]» be a categorical interpretation off. We say that a predi-
cate P Cq F satisfies the basic lemma féf alongC[—]r if in diagram (x), ST is
isomorphic toSy7. This is equivalent to say that there exists a necessarily unique mor-
phismp : S;; — HP (convention: we use the small letter of the predicate) such that
H™ op =C[-]F.

Example 3.(Continued from example 2)

1. LetP C¢(1,—) F) be a predicate satisfying the basic lemmalfgralongCJ[—] r, .
It is equivalent to thél'yp~ ( B)-indexed family of subset®r C C(1, F)\7) such
that for allp € P*I"andI" -, M : 7, we haveC[M]F, o p € Pr.

2. LetP Cyqq,, A be a predicate satisfying the basic lemmaXoalongA[—]. Itis
equivalent to thdy-indexed family of subset®r C Ar satisfyingA[M]p € Pt
forall 'z M : 7andp € P*I".

3. Let X be a first-order signature4, B be many-sorted--algebras and® Cpqg.,
14, I be a binary relation satisfying the basic lemma fbx.;q) alongZ 4[—] x
Ip[—] and P2 = idgq. It is equivalent to &l U {2}-indexed family of sub-
setsPr C Ar x Br such that for alll’ +y.,, M : 7 and(p,p) € P*T,
(Za[M]p,Zg[M]p") € Pt whent € Ty andZ4[M]p = Ip[M]p whent = Q.
The latter implies thad and B3 areelementary equivalent

Now we introduce the notion of pre-logical predicates.

Definition 2. Let C[—]r be a categorical interpretation off. We call a predicate
P Cg F pre-logical forIT along C[—] if in diagram () there exists a necessar-
ily unique I7-algebra (S5, a : I1SE — SE) such that the projection induced by
pullback is alT-algebra morphism to the initial algebrgsrr, ¢17).

An elementary description of being pre-logical is that a) for all” -7 27 : T,
Cl«"]F : P*I" — Pt and b) for all operatos € O of arity (77, 01), - , (T, Om) —



rand well-formed term&, z; - 7; Fr7 M; : 0, (1 < i < n),C[M;]F : P*([,z; : 75) —
—

Po;forall1 < i < nimpliesClo(z]'. My, -,z .M,)]r : P*I" — Pr. Normally
a) is satisfied as variables are interpreted by projections. For operators having no vari-
able binding, if the interpretation of terni§—]  satisfies a) and the semantic substi-

. . — or—— g
tution lemma, i.eC[M[M;/z;]]r = C[M]r o (C[M;]r), then the condition b) can
be rewritten taC[s™> ™7 (a7, -+ ,xI")]F € P*(x: 7) — PT.

n

Example 4.(Continued from example 2)

1. A predicateP Cc(;,—y Fy is pre-logical forIl, along C[—]r, if for all f €
P(r = 1/)andg € Pr,Qo (f,g) € Pr',andforalllz : 7 Fpg, M : 7/,
Vpe P*(Iz:7).C[M]g,op € Pr'impliesVp € P*I" .C[Ax : 7. M]p,op €
P(r=1').

2. ApredicateP Cq,., Ais pre-logical for2 alongA[—] if forall ¢™» ™7 € Oq
andz; € P, ¢ (2, -+ ,x,) € PT. An algebraic predicatdHS02] is
just a pre-logical predicate fot-;, alongl{[—] for a typed combinatory algebra
U (i.e. a many-sorted’~, algebra).

3. ApredicateP Cyq_, 14 is pre-logical forlls.io alongZ 4[—] if for all first-order
operator (includingr, not) s™ ™7 andxz; € P7i, s T (@, an) €
P7 holds, andforal- € Tpandlz : 7+ M : Q,Vp € P*(Ix : 7). Za[M]p €
PQ impliesVp € P*I" . T 4[exists(z.M)]p € PSQ.

Theorem 1 (The Basic Lemma of Pre-logical Predicates).etC[—] » be a categori-
cal interpretation offI. A predicateP Cq F'is pre-logical if and only ifP satisfies the
basic lemma.

Proof. (if) If P satisfies the basic lemma, we have an isomorphfsmS% = S;.
Thenf : (SE, f~Youg o (ITf)) — (Sm, ) is all-algebra morphism. Therefore
is pre-logical.

(only ify Suppose there existsi@-algebra(SL, o). Let! : (S, ur) — (S5, ) be
the unique morphism from the initidl -algebra. From the universal property of initial
11-algebra, we havéo ! = id. Now we have o ! o i = i = i o id, and since is mono,
loi = id. Thereforg(SE, o) and (S, 1;7) are isomorphic, thu§;; andS% are so. O

This theorem is a categorical re-formulation of the inductive proof of the basic lemma
for pre-logical relations in [HS02]. From now on we identify pre-logical predicates and
predicates satisfying the basic lemma.

We give one sufficient condition foP being pre-logical. Below we identify a
monomorphism iMM7 and an object irBub(M7). First, we canlift the endofunc-
tor (of a typed binding signaturéd] to the one oveSub(Mr), namelylI. Here lifting
means thatl] satisfiespy,. o IT = IT o pnp, (see [Jac99], section 9.2). This is be-
cause all the constructs &f have liftings overSub(S). Functorpys,. is a subobject
fibration, thus admits comprehension ([Jac99], example 4.6.3). It is easy to see that
IToT = Toll whereT : My — Sub(My7) is the right adjoint ofpn,. giving
fibred terminal objects. Thus an initidd-algebra is inductive ([Jac99], definition 9.2.6,
proposition 9.2.7), i.eidgs,, is an initial II-algebra.



Proposition 1. Let P C¢ F' be a predicate and suppose thdf< : H? » H" hasa
II-algebra structure. The® satisfies the basic lemma féf along the initial algebra
semantics of7 in HF".

4 Composability of Pre-logical Relations

We move to the composability of binary pre-logical relations. Binary pre-logical rela-
tions are closed under relational composition, which is not enjoyed by logical relations
[HS02]. We give here a categorical account of composability of pre-logical relations. In
this section we fix a typed binding signatuie a Cartesian categofy, a categoryD

with finite limits, a finite-product preserving functéf : C — D and categorical inter-
pretationsC[—]r, (1 < i < 3) of IT. We writefst,snd : C x C — C for projections.

First, we assume that a composition operataver Rely(G) is available. This
operator is partial, and defined ox@mposable pairs of relationse. a pair(R, S) of
objects inRelz(G) such thatnd(rg(R)) = fst(me(S)). The composition operator
yields an object(R,.S) in Rely(G) such thatfst(mg(c(R, S))) = fst(rg(R)) and
snd(mg(¢(R, S))) = snd(ng(S)), and a morphisme(f,g) : ¢(R,S) — c(R',S")
for composable pairs of relatiori$, S), (R, S") and morphismgf : R — R'|g :

S — 5" in Rely(G). Itis natural to assume thRel,(G) has identity relation, and the
composition operator satisfies the laws of identity and associativity. To summarise, we
assume that we havecategory objecin Cat:

01 =fstorg
Rel.(G) —~= Rely(G) =—i——=C (**)
Ozx=sndomg

whereRel.(G) is the category of composable pairs of relations obtained by pulling
backds alongd; . Using category objects i@at to formulate the composition of rela-
tions is due to [KOPT97].

ForR C¢ Fy, F» andS Cq Fs, F3, we define their compositios( R, S)(7) to be
¢(Rt,ST). Itis clear that(R, S) Cg Fi, Fs.

Theorem 2 (Composability of Pre-logical Relations)Let R Cs Fi, F» andS Cg
F,, F;3 be pre-logical binary relations fofT alongC[—]r, x C[-]r, andC[—]r, %
C[—]r, respectively. Then(R, S) C¢ Fi, Fs is pre-logical forIT along C[—] s, %
(C[[fﬂFs‘

Proof. We find a morphisnt: : Sy — H°%9 such thatH™ o h = C[—]p, x
C[-]r, whereH™ : HRS) — [{F1.Fs) is the morphism inMI;. We giveh by
M) () (M) = e(r(r)(T) (M), s(7)(I")(M)) for all well-formed terms" 7 M : 7,
wherer : S;; — H™ ands : S;; — H® are morphisms which exist by definition of
the basic lemma (see definition 1). O

When do we have a category object(ag) above? Recall that composition of re-
lations can be expressed by th@?, S)(z,z) = Jy.R(z,y) A S(y, z). The standard
interpretation of this formula in set theory gives the composition of binary relations.
Now we replace set theory witlegular fibration [Jac99], which is a preordered fi-
brationp : E — B such thatB is Cartesian angh has fibred finite products, fibred



equality and simple coproducts satisfying Frobenius and Beck-Chevalley (for details,
see [Jac99]). A regular fibration provides a categorical model of the=-fragment of
predicate logic. Interpreting the above formula in this model gives rise to a composition
operation, which enjoys the identity and associativity laws.

Proposition 2. Assume thapp : Sub(D) — D is a regular fibration. Then we can
construct a category object dsx) above inCat.

5 Examples

Example 5.In this example, we examine the relationship between pre-logical predi-
cates for combinatory algebras and pre-logical predicates for the simply typed lambda
calculus in our framework. This is a revisit of proposition 3.3 in [HS02].

The standard abstraction mechanisinz:. M in combinatory logic (see definition
7.1.5, [Bar84]) induces &/ ,-algebra structures ovéfs,,, . From the universal prop-
erty of initial IT,-algebra, there is a uniqui -algebra morphism, namely-)cr, :

S, — Sx.., which coincides with the standard lambda-to-CL translation (defini-
tion 7.3.1, [Bar84]). The compositidi[(—)c 1] gives an interpretation of the simply
typed lambda calculus in a combinatory algefardn general this is not &/, -algebra
morphism. Conversely, giving the standard representatidt) &f combinators inSy;,
equips it with a¥'-;, algebra structure. Then there exists a unidlyg,-algebra mor-
phism from an initial¥- -algebra, namely—)» : Sx., — Sm, -

Let!/ be a combinatory algebra aftiCrqe,, U be a pre-logical predicate fdrc,
along{[-]. Then we haveé{ "¢ opo(—)cr = U[(—)cL], thusP is pre-logical forll
alongU[(—)c]. This explains that an algebraic predicate relating combinators yields a
pre-logical predicate (“if” part of proposition 3.3, [HS02]). Conversely,fe€ 4., U
be a pre-logical predicate fdr, alongl/[(—)cr]. Itis a pre-logical predicate fa¥ ¢y,
along[((—)x)cr] — but not fori/[—] in general!

Theorem 3. There exists a combinatory algelddg and a pre-logical predicat® Cpqg.,
Uy for II, alongiy [(—)c 1] which is not not pre-logical fofl-r, alongidy[—].

The proof uses the fact that the image of the standard lambda-to-CL translation does
not cover the entire set of combinatory logic terms, particul&rignd K. To exploit

this fact, we také/, as the closed term algebra, and see that the definability predicate
by Uy [(—)c 1], which is pre-logical forlIy, is not pre-logical forll-, alongif[—].

This means that “only if” part of proposition 3.3, [HS02] is not precise enough. The
subtle point is that “to which semantics” it satisfies the basic lemma, and it was missed
in [HS02].

When isP a pre-logical predicate foE, alongl/[—]? One answer is to fix the
lambda-to-CL translatioi—)-;, to make it surjective. To achieve this, we introduce
another abstraction mechanisttx. M defined to beN'z.x = SKK, Na.M = KM
providedz ¢ FV(M), NxXNyx = K, Ve Xy Nzxz(yz) = S, Ve MN =
S(Nx.M)(Nz.N). The lambda-to-CL translation constructed from this abstraction
mechanism, saf) 1+, covers all the combinators, and moreover satigfi#s) ) o =
M. Thus a pre-logical predicate féf, along{[(—)c 1] is a pre-logical predicate for



Yo alongl{[—]. Another answer is to requité to be alambda algebrawhich always
satisfied/[((—)x)cr] = U[—] (see lemma 5.2.3-2, [Bar84]).

Example 6.We examine the connection between lax logical predicates [PPSTO00] and
pre-logical predicates as defined in here. For this, we fix a set of base Byjpes
define the set of types including finite products by the BRFp~ *(B) > 7 ==
b|1|7x 7|7 = 7whereb e B. The signature for the simply typed lambda calculus
with finite products is defined by

Il = (Typ~ *(B), {Iam(T’Tl)*T;ST/7 app™=" T Kb
pairT,T,—PTXTI’ fStTXT,HT, sndTXT/HT/}).

Let L be the free CCC generated from the set of base typesn object ofLL is a type
7 € Typ~ *(B), and a morphism from to 7’ in L is an-equivalence class of a well-
formed termse : 7 7, M : 7. We write] : Typ~ *(B) — L for the inclusion
functor. As we have seen in example 2, sidcés a CCC, it provides dl, «-algebra
structure, thus there exists a unigllg x-morphismL[—]; : Sy, — H!. We note
that the mappind.[—]; is an epimorphism.

Let C be a CCCD be a CCC with finite limits : C — D be a functor preserving
finite products and—] : L — C be a strict Cartesian closed functér.lax logical
predicateg [PPSTO00] ovef—] is a finite-product preserving functgr. L — Pred(G)
such thatrg o ¢ = [—].

Theorem 4. A lax logical predicate : L — Pred(G) determines a pre-logical pred-
icatep o I Cg [~] o I for Iy« along HI-I o L[—];. Conversely, itP Cq [-] o T
is a pre-logical predicate foiTy, along HI-1 o L[], then there exists a lax logical
predicateg such that for alll” 7, M : 7, H? o L[M]; = p(7)(I")(M).

Example 7.In this example we see a characterisation of elementary submodels in terms
of a binary pre-logical relation. Le¥ = (T, O,) be a typed first-order signaturs,

be a many-sorted’-algebra and4 be a subalgebra &. For all I" Fp,., M : 7 with

T € Ty, we haveA[M] = B[M] becauseA is a submodel o3. However, this may

not hold whenr = Q because of existential quantifier. Thus we ghig anelementary
submodebf 5 (written 4 < B) if the above holds for = €2 as well.

Theorem 5. A < B if and only if the inclusion relatiom? Crqg,, 14, I5, i.e. R =
idg andR™ = {(z, z) | = € A"}, is pre-logical forII s.io alongZ 4[] x Zp[—].

6 Conclusion

We have given a generalisation of pre-logical predicates to arbitrary typed formal sys-
tems, and shown that they are equivalent to predicates satisfying the basic lemma, and
that binary pre-logical relations are closed under composition. We represent three un-
derlying components of pre-logical predicates — syntax, semantics and predicates —
in the category of presentation models. Then we formulate pre-logical predicates and
predicates satisfying the basic lemma, and show their equivalence.



It is interesting to extend our framework for defining formal systems. One direction
is to allow type variables so that we can cover type systems such as System F or FPC
[FP94]. The other direction is to modify the notion of contexts from the Cartesian one
to linear one to cover linear logic. In both cases we also have to switch the notion
of models from Cartesian categories to more elaborate categorical structures such as
polymorphic fibrations, symmetric monoidal categories, etc.
Acknowledgments| thank Donald Sannella, Daniel Turi and John Power for useful
discussions. This work was supported by an LFCS studentship.
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A Proofs

Proof of proposition 1 The initiality of ids,, gives a morphisnf : S;; — H¥ which
is above thdI-algebra morphismh: S;; — HY,i.e. H™¢ o f =|. ThusP satisfies the
basic lemma by definition. O

Proof of proposition 2 To prove this proposition, we use the internal logic of fibra-
tions [Jac99]. From the assumption, the logic providesithé =-fragment of predicate
logic. For details, see [Jac99]. The following reasoning is done in the internal logic of
Pp-

An object inRely(G) is a triple(C, C’, P) whereC, C’ are objects irfC andP is a
predicater : GC,y : GC' + P(x,y) of the internal logic of the fibration. A morphism
from (C,C’, P) to (D, D’, Q) is a pair of morphismg : C — D,g: C’ — D" inC
such thate : GC,y : GC' | P(z,y) - Q(Gf(x),Gg(y)) holds.

AnobjectinRel.(G) isatuple(C, C’,C", P, P") suchthatC, C’, P) and(C’,C", P’)
are objects irRely(G). A morphism from(C,C’,C", P, P’) to (D,D’,D",Q, Q")
in Rel.(G) isatriple(f : C — D,g : ¢ — D' h : C" — D") such that
(f,9): (C,C",P) — (D,D',Q) and(g,h) : (C',C",P") — (D', D",Q’) are mor-
phisms inRelz(G).

For an objecC in C, we assign an objectl(C) in Rely(G) byz : GC,y : GC +
xz=y.Forallf:C — DinC, we can derive a judgment: GC,y: GC+xz =y
Gf(x) = Gf(y) inthe internal logic of the fibration. We can extend this assignment to
a functorC — Rely(G).

For an objectC, C’,C”, P, P’) in Rel.(G), we define an objee{ C, C’, C", P, P’)
inRelx(G) by C,C", 2 : GC,z : GC" ++ Jy : GC' . P(x,y) A P'(y, z) (we omit re-
indexing functors along projections for readability).

Let(f,g,h): (C,C",C",P,P") — (D,D’,D",Q,Q") be amorphismiRel.(G).

In the internal logic of the fibration, we have the following derivation (annotation of ob-
jects are omitted for readability):

z,y | P(z,y) - Q(Gf(x),Gg(y)) z | P'(y,2) - Q' (Gg(y), Gh(z))
z,y,z | P(z,y) AN P'(y,2) F Q(Gf(x),Gg(y)) z,y,2 \ P(m,y) P'(y,2) - Q' (Gg(y), Gh(2))
z,y,z | Pz,y) AN P'(y,2) - Q(Gf(x),Gg(y)) A Q' (Gg(y), Gh(2))
z,y,2 | P(z,y) AN P'(y,2) F 3y . Q(Gf(x),y) A Q'(y, Gh(z))
x,z| 3y . P(x,y) A P'(y,2) F 3y . Q(Gf(x),y) A Q'(y,Gy(z))

Thusc extends to a functar : Rel.(G) — Rely(G).

To see thatd andc satisfy the laws of category object, suckeésl(C), (C,C’, P)) =
(C,C’, P), we show that the predicates on both sides are provably equal. The calcu-
lation is much like that in [Jac99], example 4.3.8. Singeis a fibred partial order,
provable equality implies equality of objects. Thus the above equation strictly holds.

O

Proof of theorem 3 We use the fact that the image of the standard lambda-to-CL
translation does not cover the entire set of combinatory logic terms.



First we write[)],, for the equivalence class of a combinatory logic tevfby
weak equivalence-,, (see [Bar84], definition 7.2.1). We define tbi®sed term com-
binatory algebrat4, by the tuple(U, ®w, [S]w, [K].) whereUs = {[M],, | M €
Ss.,.(0,7)} ande™™ is the application operators defined by/],, o;™ [N}, =
[MN),, for [M],, € U;=" and[N],, € Uj. Itis easy to see that the above choice of
combinators satisfies the axioms of the combinatory algebra. As we have seen in exam-
ple 2, we obtain an interpretation of combinatory logic termiggnnamelyisy[—]. Ex-
plicitly, 2o[MI{[My]/x1, -, [Malu/2n} = [M[My/a1, - My/2y]].. We in-
terpret simply typed lambda terms b[(—)c 1]

Now we define the definability predica®”™ C UJ by D™ = {Uy[McL] €
Ui | M € S, (0,7)}. This is a pre-logical predicate fdr,, alongif[(—)cr]. How-
ever,D™=7'=T7 does not includék ™= =7],, for all r andr’, thus is not a pre-logical
predicate forX«, alonglf[—].

Itis easy to see that there exists no closed téfrauch thatV/;, = K by induction
on M. Next we prove the following lemma:

Lemma 1. For all closed lambda ternd/ and all combinatory terniV, Moy —»,, N
implies there exists a closed lambda teNfisuch thatV = N/, .

When M begins with a lambda abstractiohf-, is always a normal form. Thus the
claim clearly holds by takingV’ = M. We do not consider the case whéh is a
variable, since we assunié is closed. So we think of the case wh&h= MM, with
two closed lambda term&/, and M. There are several possible causedff;, —,
N.

— N = Mgy, We just takeN’ = M.

— There exists a combinatory terinsuch tha{ M) ¢, — L andL —»,, N. From
IH, there exists a combinatory terfif such thatL = L{,;. Again from IH, there
exists a combinatory terdV’ such thatV = N/, .

— (Mo)cr, —w Noand N = Ny(M;)cr. From IH, there exists a closed lambda
termNé such tha(Né)CL = Ny. ThusN = <N6)0L<M1)CL = (N[/)Ml)CL-

— (My)er, —w N1 andN = (My)cr N1. The proof is similar to the above case.

— (Myp)cr, = KNy with a combinatory termiVy and N = Ny. From the definition
of lambda-to-CL translation}/, should be equal tax . N} whereN/ is a closed
lambda term. ThusVy = (V{)cL-

— (Mp)cr, = SNyN; with some combinatory term$y, Ny andN = No(M1)crn(N1(Mi)er)-
From the definition of lambda-to-CL translatial, should be equal tax . (NjN7).
ThenAz . (Nj{N7) = S(N))erL(Ny)cr, which impliesNy = (Nf)cr and Ny =
(M7)cr. Thus we takeV’ = NjM; (N My).

Thus there exists no term reducing &bin the image of(—)¢,, otherwiseK should

be in the image of—)¢. (we assume the strong noramlisation-ef,,). Thus[K],, ¢
pT=TST 0O

Proof of theorem 4 We only show the converse. The assumption says that there exists
a morphisny : Sy, — H' such thatd™s o p = HI-1 o L[-];. Recall thaf.[];
is an epimorphism an "< is a monomorphism. In categoM -, any epimorphism is



orthogonal to monomorphism, thus there exists a unique morphisach that s o
h = HI=landhoL[~]; = p. Now we define the functar : L — Pred(G) in question
by gr = Prandqf = h(7')(7)(f) for a morphismf : 7 — 7’ in L. We seg is indeed
a functor. Firsty preserves identity, sinceg(q(id,)) = [id.] = idj;) = ng(idp,)
andr is faithful, we haveg(id,) = idp,. Next we showy(f o g) = qf o qg for
all f: v — 7" andg : 7 — 7'. We haverg(q(f © ) = [f o gl = [f] o [g] =
ma(qf o qg), and sincer is faithful, we havey(f o g) = ¢ f o qg. Itis routine to check
H? o L[M]; = p(r)(I)(M).

Next we showP(r x 7/) = Pt x P7’. We consider well-formed terms : 7 x
7' b, fst(z) : 7andx : 7 x 7' b, snd(x) @ 7. We definej = (p(7)(z :
Tx7")(fst(x)), p(7")(x : 7 x7")(snd(z))). SinceH”< op = [—] oL[—], we can show
thatrgj = id[, ], Which impliesj = idp(, ;) Sincer is faithful. This means that
the comparison map(r x 7') — Pt x P7’is identity, thusP(7 x 7') = Pr x P71’
holds. O

Proof of theorem 5 AssumeA =< 5. We only have to show that for all -y, ., M : 7
wherer € Ty andp € A*I", T4[M]p = Ip[M]p. This is clear, sincéd/ consists of
operators inX, and.A is a subalgebra d8. Conversely, assume that the basic lemma
holds. Then for all” Fp,..,, M : Q andp € A*I", we have(Z[M]p,Zp[M]p) €

RQ =idg. ThusA < B holds. O



