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Abstract

We consider the problem of establishing a relationship between two interpretations of
base type terms of aλc-calculus extended with algebraic operations. We show thatthe
given relationship holds if it satisfies a set of natural conditions. We apply this result
to 1) comparing two monadic semantics related by a strong monad morphism, and 2)
comparing two monadic semantics of fresh name creation: Stark’s new name creation
monad [32], and the global counter monad. We also consider the same problem, re-
lating semantics of computational effects, in the presence of recursive functions. We
apply this additional by extending the previous monad morphism comparison result to
the recursive case.

Keywords: logical relation, monad, fibration, computational effects,⊤⊤-lifting,
algebraic operation, generic effect, fresh name creation

1. Introduction

Suppose that two monadic semanticsA1,A2 are given to a call-by-value functional
language, and each semanticsAi (i = 1, 2) interprets a base typeb by a setAib and
computational effects by a monadTi over the categorySet. After comparing these
semantics, we find a relationshipVb⊆ A1b×A2b between base type values, and also a
relationshipCb ⊆ T1A1b× T2A2b between base type computations. We then consider
the following problem:

For any well-typed termx1 : b1, . . . , xn : bn ⊢ M : b and (vi ,wi) ∈ Vbi

(1 ≤ i ≤ n), do we have (A1 ~M� (v1, . . . , vn),A2 ~M� (w1, . . . ,wn)) ∈ Cb?

We name this problem theeffect simulation problem. It subsumes various natural ques-
tions that arise when we have two monadic semantics of a call-by-value functional
language. For instance,

• The standard interpretation of a functional language with anondeterministic
choice operatoror is given by the monadic semanticsA1 employing the pow-
erset monad. On the other hand, we can use the list monad to list up the nonde-
terministic choices made by programs; let us call the monadic semantics using
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the list monadA2. These semantics interpret the same program in two different
ways:

A1 ~or(2, 3)+ or(3, 4)� = {4, 5, 6}, A2 ~or(2, 3)+ or(3, 4)� = 〈5, 6, 4, 5〉

From this, we expect that for all base type programM, A1 ~M� is the set of
occurrences of elements in the listA2 ~M�.

• From a monadic semanticsA of a language by a monadT, we can build an-
other monadic semanticsACPS of the same language by thecontinuation monad
(− ⇒ TR) ⇒ TR. The latter semantics is calledCPS semantics. In [3], Fil-
inski formally established a relationship between monadicsemantics and CPS
semantics.

• The main theme of the recent work [6] by Filinski is the effect simulation prob-
lem; there, some relationships between two monadic semantics of a functional
language with recursive types and computational effects are studied.

We tackle the effect simulation problem under the situation where 1) the functional
language is the simply typedλc-calculus with products, sums, effect-free constants
andalgebraic operations[28], and 2) the underlying category of a semantics is a bi-
cartesian closed category with a strong monad.

The main theorem (Theorem 7) of this paper gives a sufficient conditions to answer
positively to the effect simulation problem; the answer to the effect simulation problem
is “yes” if I) the productη1 × η2 of the monad units map the values related byV to the
pure computations related byC, II) V is closed under the effect-free constants and III)
C is closed under the algebraic operations in theλc-calculus. The point of the main
theorem is the generality: it holds with any monad, algebraic operation and relationV
andC.

The main theorem is helpful for establishing relationshipsbetween various monadic
semantics of call-by-value functional languages. Section10 shows a general compari-
son theorem of two monadic semantics related by strong monadmorphisms. This result
subsumes the comparison of the list monad and the powerset monad for nondetermin-
ism, and Filinski’s result comparing monadic semantics andCPS semantics. Section
11 compares two interpretations of new name creation: Stark’s name creation monad
[32], and a global state monad.

Synopsis.Section 2 presents the syntax of theλc-calculus extended with algebraic
operations. After introducing some category-theoretic concepts used in this paper in
Section 3, Section 4 gives the categorical semantics of theλc-calculus. Section 5 illus-
trates theeffect simulation problemin a set-theoretic setting. To generalise the problem
to a categorical settings, Section 6 introduces the fibrational category theory, which
provides a concept of predicates on objects in a category. Section 7 generalises the set-
theoretic effect simulation problem tofibrational effect property problem, and states
the main theorem (Theorem 7) that gives sufficient conditions to answer positively to
the fibrational effect property problem. Our proof hinges on a construction of logi-
cal relations for monads, and in this paper we employ a technique calledcategorical
⊤⊤-lifting [14], which is a semantic formulation of theleapfrog methodintroduced by
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Lindley and Stark [18, 19]. Section 8 reviews the categorical ⊤⊤-lifting, then gives
a characterisation of when the logical relations for monadsconstructed by⊤⊤-lifting
are closed under a given set of algebraic operations. Section 9 is the proof of Theorem
7. Section 10 and 11 applies Theorem 7 to establish relationships between monadic
semantics of theλc(Σ)-calculus. In Section 12 the effect simulation problem is consid-
ered under the presence of recursive functions. In Section 13 is the conclusion of this
paper and a comparison with related works.

This article is the journal version of [16]. We extend algebraic operations to have
both an arity and aco-arity (which is aparameter typein [29, 30]). We also correct the
mistake in the interpretation of the recursive function term µ f x . M in [16]; the correct
one is presented as equation (7).

Preliminary. Vector notation, such as−→x , abbreviates a sequencex1, . . . , xn. The length
of the sequence is written by|−→x |.

2. Theλc-Calculus with Algebraic Operations

We adopt the simply-typedλc-calculus with effect-free constants and algebraic op-
erations as an idealised call-by-value functional language. In Section 12 we add the
recursive function termsµ f x . M to theλc-calculus.

Let B be a set of base types. We useb (and its variants) to range overB. We define
the set Typ(B) of types by the following BNF:

Typ(B) ∋ ρ ::= b |
∏

(ρ, . . . , ρ) |
∐

(ρ, . . . , ρ) | ρ⇒ ρ.

We write 1 for
∏

(), andn (n ∈ N) for
∐

(

n
︷  ︸︸  ︷

1, . . . , 1). Binary products and binary sums are
denoted by the usual infix operators× and+. We define the subset GTyp(B) ⊆ Typ(B)
of ground types by

GTyp(B) ∋ β ::= b |
∏

(β, . . . , β) |
∐

(β, . . . , β).

Definition 1. A λc-signatureΣ is a tuple

Σ = (B,K,O, ar, car : K ∪O→ GTyp(B))

whereB is a set of base types,K andO are respectively disjoint sets of symbols for
effect-free constants and algebraic operations, andar andcar are respectively functions
giving input and output types to effect-free constant symbols, and arities and co-arities
to algebraic operation symbols.

In this paper, we usually consider a single signatureΣ in a discussion. We thus use
B,K,O, ar, car to refer to each component of the signatureΣ in the context. We some-
times declare aλc-signatureΣ by the following notation:

Σ = (B, K = {. . . ki : βi → β
′
i , . . .}, O = {. . .o j : δ j → δ

′
j . . .})
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The declared signature is such that the set of base types isB, and the other components
are given by

K = {. . . ki . . .}, O = {. . .o j . . .}, ar(ki) = βi , car(ki) = β′i , ar(o j) = δ j , car(o j) = δ′j.

Let Σ be aλc-signature. We define the computational lambda calculusλc(Σ). The
set of raw terms is defined by the following BNF:

M ::= x | k M | oρ M | (M, . . . ,M) | πi M |

ιi M | δ(M, x : ρ . M, . . . , x : ρ . M) | λx : ρ . M | MM

wherek, o ranges overK,O respectively. The type system ofλc(Σ) extends the one for
the simply typed lambda calculus with products and sums (seee.g. [22]). The typing
rules fork M andoρ M are:

Γ ⊢ M : ar(k)
Γ ⊢ k M : car(k),

Γ ⊢ M : (ar(o)⇒ ρ) × car(o)
Γ ⊢ oρ M : ρ .

The following inference for a (β, 1)-ary algebraic operationo:

Γ ⊢ M : β⇒ ρ
Γ ⊢ oρ M : ρ

is the syntactic sugar for the following derivation:

Γ ⊢ M : β⇒ ρ Γ ⊢ () : 1
Γ ⊢ (M, ()) : (β⇒ ρ) × 1
Γ ⊢ oρ(M, ()) : ρ .

It is also convenient to treat an (n, 1)-ary algebraic operation in the generalised sense
as a simplen-ary algebraic operation. The inference:

Γ ⊢ M1 : ρ . . . Γ ⊢ Mn : ρ
Γ ⊢ oρ(M1, . . . ,Mn) : ρ

is the syntactic sugar for the following derivation:

Γ ⊢ M1 : ρ
Γ, x : n, x1 : 1 ⊢ M1 : ρ . . .

Γ ⊢ Mn : ρ
Γ, x : n, xn : 1 ⊢ Mn : ρ

Γ, x : n ⊢ δ(x, x1 : 1 . M1, . . . , xn : 1 . Mn) : ρ
Γ ⊢ λx : n . δ(x, x1 : 1 . M1, . . . , xn : 1 . Mn)p : n⇒ ρ Γ ⊢ () : 1
Γ ⊢ (λx : n . δ(x, x1 : 1 . M1, . . . , xn : 1 . Mn), ()) : (n⇒ ρ) × 1
Γ ⊢ oρ(λx : n . δ(x, x1 : 1 . M1, . . . , xn : 1 . Mn), ()) : ρ .

3. Categorical Preliminary

We regard every set as a discrete category. WhenC is a category, byI ∈ C we mean
that I is an object inC. We fix a distinguished element∗ and let{∗} be the terminal
object (denoted by 1) inSet.
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A bi-cartesian closed (bi-CC) structureon a categoryC consists of a terminal ob-
ject 1, an initial object 0, and an assignment of a binary product (I×J, 〈-, -〉I ,J, (π1)I ,J, (π2)I ,J),
a binary coproduct (I + J, [-, -] I ,J, (ι1)I ,J, (ι2)I ,J) and an exponential (I ⇒ J, λI ,J(-), evI ,J)
to eachI , J ∈ C. We usually omit annotating objects on the components of bi-CC
structures. In this paper we define abi-CCC to be a pair of a categoryC and a bi-CC
structure onC. We write !I : I → 1 (?I : 0 → I ) for the unique morphism to the
terminal (resp. from the initial) object. The inverse of thecurrying operatorλ(−) is
given byλ−1( f ) = ev◦ ( f × id). We fix a method to extend the terminal (initial) object
and the binary (co)product to finite (co)products.

Let F : C → D be a functor between bi-CCCsC andD. The functorF preserves
finite productsif ! F1 : F1 → 1 and l I ,J = 〈Fπ1, Fπ2〉 : F(I × J) → FI × FJ are
isomorphisms. The functorF strictly preserves the bi-CC structureif ! 1, l I ,J and ?F0 :
0 → F0 andmI ,J = [Fι1, Fι2] : FI + FJ → F(I + J) are the identity morphisms,
and moreovernI ,J = λ(F(ev) ◦ l−1

I⇒J,I ) : F(I ⇒ J) → (FI ⇒ FJ) is also the identity
morphism. One can easily show thatF strictly preserves the bi-CC structure if and
only if F commutes with the components of the bi-CC structure, that is, on objects:

F1 = 1, F0 = 0, F(I � J) = FI � FJ (� ∈ {×,+,⇒})

and on morphisms:

F〈 f , g〉 = 〈F f , Fg〉, F[ f , g] = [F f , Fg], F(λ( f )) = λ(F f ),

F! I =!FI , F?I =?FI , Fπi = πi , Fιi = ιi , F(ev) = ev (i = 1, 2).

Let C be a bi-CCC. Astrong monadT on C is a pair of a monad (T, η, µ) and a
natural transformationθI ,J : I × T J→ T(I × J) calledstrengthsuch that

1× T I

π2
%%K

K

K

K

K

K

K

K

K

K

θ1,I
// T(1× I )

Tπ2

��

T I

(I × J) × T K
θI×J,K

//

assocI ,J,T K

��

T((I × J) × K)

T(assocI ,J,K )

��

I × (J × T K)
I×θJ,K

// I × T(J × K)
θI ,J×K

// T(I × (J × K))

I × J

ηI×J
$$I

I

I

I

I

I

I

I

I

I

I×ηJ
// I × T J

θI ,J

��

I × T2J
I×µJ

//

θI ,T J

��

I × T J

θI ,J

��

T(I × J) T(I × T J)
TθI ,J

// T2(I × J) µI×J

// T(I × J)

here assocI ,J,K : (I × J) × K → I × (J × K) is the associativity morphism. We call the
following functionKleisli lifting associated to the monadT .

(−)# : C(I ,T J)→ C(T I,T J), f # = µJ ◦ T f.

Let T = (T, η, µ, θ) be a strong monad onC. In [28, 29], Plotkin and Power
presented two forms of the operations that manipulate computational effects:generic
effectsandalgebraic operations. Let D,C ∈ C. A (D,C)-ary generic effect for T is
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just a morphisme : C → T D in C. Next, a (D,C)-ary algebraic operationfor T is a
natural transformation

αI : (D⇒ T I)→ (C⇒ T I)

such that the following diagrams commute (Proposition 1, [29]):

I × (D⇒ T J)
stDI ,T J

//

I×αJ

��

D⇒ I × T J
D⇒θI ,J

// D⇒ T(I × J)

αI×J

��

I × (C⇒ T J)
stCI ,T J

// C⇒ I × T J
C⇒θI ,J

// C⇒ T(I × J)

D⇒ T2I

αT I

��

D⇒µI
// D ⇒ T I

αI

��

C⇒ T2I C⇒µI

// C⇒ T I

here, stKI ,J : I × (K ⇒ J) → (K ⇒ I × J) is the morphism defined by stK
I ,J = λ(I ×

ev◦ assocI ,K⇒J,K). We callD andC thearity and theco-arity of α, respectively. The
terminology “co-arity” represents the variance that is theopposite of an arity; in [29,
30] parameter typeis also used. We write Alg(T ,D,C) for the collection of (D,C)-ary
algebraic operations forT . The definition of algebraic operations with respect to a
pair of objects is due to [29], and generalises the arity fromnatural numbers [28]. An
n-ary algebraic operation (n ∈ N) bijectively corresponds to a (

∐n
i=1 1, 1)-ary algebraic

operation.
We review the correspondence between generic effects and algebraic operations

studied in [29]. We introduce some auxiliary functions and morphisms. The function

swI ,J
K : C(I , J⇒ K)→ C(J, I ⇒ K), swI ,J

K ( f ) = λ(λ−1( f ) ◦ 〈π2, π1〉)

swaps the order of arguments of a morphism. Doing this twice yields the original
morphism, that is, swJ,IK (swI ,J

K ( f )) = f . Next, the function

nmI ,J : C(I , J)→ C(1, I ⇒ J), nmI ,J = λ( f ◦ π2)

converts a given morphismf : I → J to a point (which we call in this paper itsname)
in I ⇒ J. This function is bijective. The morphism

klTI ,J : (I ⇒ T J)→ (T I ⇒ T J), klTI ,J = λ(ev# ◦ θI⇒T J,I )

internalises the Kleisli lifting. By swapping its arguments, we obtain

σ
T ,J
I : T I → ((I ⇒ T J)⇒ T J), σT ,JI = swI⇒T J,TI

T J (klTI ,J),

which corresponds to thebindoperator in Haskell.
The correspondence between generic effects and algebraic operations is given by

the following assignment:

AopT : C(C,T D)→ Alg(T ,D,C), AopT (e)I = swC,D⇒TI
T I (σT ,ID ◦ e).

It has the inverse GefT : Alg(T ,D,C)→ C(C,T D) given by

GefT (α) = nm−1
C,TD(αD ◦ nmD,TD(ηD)).
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Let T ′ = (T′, η′, µ′, θ′) be another strong monad onC. A strong monad morphism
fromT toT ′ is a natural transformationγI : T I → T′I such that

I
ηI

//

η′I
��

?

?

?

?

?

?

?

?

T I

γI

��

T2I
µI

//

TγI

��

T I

γI

��

I × T J
θI ,J

//

I×γJ

��

T(I × J)

γI×J

��

T′I T(T′I )
γT′ I

// (T′)2I
µ′I

// T′I I × T′J
θ′I ,J

// T′(I × J)

It determines the following function Alg(γ,D,C) : Alg(T ,D,C)→ Alg(T ′,D,C):

Alg(γ,D,C)(α) = AopT
′

(γD ◦GefT (α)).

4. The Semantics of theλc-Calculus

In this paper we consider the semantics of theλc(Σ)-calculus in a bi-CCC with a
strong monad.

Definition 2. A bi-cartesian closedλc(Σ)-structureis a tupleA = (C,T ,A, a) where
C is a bi-CCC,T is a strong monad onC, A is a functor of typeB → C; before
continuing further, we extendA to the functorA ~−� : GTyp(B)→ C by

A ~b� = Ab, A
�∏

(
−→
β )

�

=

|
−→
β |∏

i=1

A
�

βi
�

, A

�∐

(
−→
β )

�

=

|
−→
β |∐

i=1

A
�

ρi
�

.

Continuation of the definition is as follows:a assigns to eachk ∈ K a morphism
a(k) : A ~ar(k)� → A ~car(k)�, and to eacho ∈ O an algebraic operationa(o) ∈
Alg(T ,A ~ar(o)� ,A ~car(o)�).

In this definition, we require thatC hasall exponentials, but this requirement is stronger
than what is needed to interpret theλc(Σ)-calculus. In fact it is sufficient forC to have
Kleisli exponentials, which are representations ofC(− × I ,T J) : Cop → Set [25].
The reason for this requirement is a technical one: at this moment we do not know
how to perform thecategorical⊤⊤-lifting [14] over the categories with only Kleisli
exponentials. Still, many natural concrete semantics of theλc(Σ)-calculus are covered
by bi-cartesian closedλc(Σ)-structures. Below, we simply useλc(Σ)-structure to mean
a bi-cartesian closedλc(Σ)-structure.

We writeA1 × A2 for the evidentλc(Σ)-structure such that its category is given
by the product of the categories ofA1 andA2. Eachλc(Σ)-structureA determines a
natural interpretationA ~−� of well-typedλc(Σ)-terms in the category ofA (see e.g.
[2]). Effect-free constants and algebraic operations are interpreted as follows:

A ~k(M)� = T(a(k)) ◦ A ~M�

A
�

oρ(M)
�

= (λ−1(a(o)A~ρ�))
# ◦ A ~M�
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5. Effect Simulation Problem

The main problem we consider is theeffect simulation problem. We first introduce
a set-theoretic version of it. LetΣ be aλc-signature andA1 andA2 beλc(Σ)-structures
overSet. A simulationbetweenA1 andA2 is a pair (V,C) whereV andC areB-indexed
families of binary relations such thatVb ⊆ A1 ~b� × A2 ~b� andCb ⊆ T1A1 ~b� ×
T2A2 ~b�. The effect simulation problem is the following:

Suppose that a simulation (V,C) betweenA1 andA2 is given. Then for
any well-typedλc(Σ)-term x1 : b1, . . . , xn : bn ⊢ M : b and (vi ,wi) ∈ Vbi

(1 ≤ i ≤ n), do we have (A1 ~M� (−→v ),A2 ~M� (−→w)) ∈ Cb?

Example 1. Let Σ be aλc-signature such thatO = {null : 0 → 1, or : 2 → 1}; we
leave the setB of base types andK of effect-free constant symbols unspecified because
they are irrelevant in this example. These algebraic operations enable the following
inferences (see Section 2):

Γ ⊢ nullρ() : ρ
Γ ⊢ M1 : ρ Γ ⊢ M2 : ρ
Γ ⊢ orρ(M1,M2) : ρ .

We regard them as the primitives for nondeterministic computation.
The standard semantics of theλc(Σ)-calculus is given by theλc(Σ)-structureA1 =

(Set,Tp,A, a1), whereTp is the finite powerset monad,A : B → Set is any functor,
anda1 assigns a function to each effect-free constant symbolk ∈ K and the following
algebraic operations tonull andor:

a1(null)I ( f )(∗) = ∅, a1(or)I ( f )(∗) = f (ι1(∗)) ∪ f (ι2(∗)).

On the other hand, we may represent nondeterministic choices by finite lists instead
of finite sets. This representation corresponds to the semantics of theλc(Σ)-calculus by
theλc(Σ)-structureA2 = (Set,Tm,A, a2), whereTm is the free monoid monad, anda2

is the assignment such thata2(k) = a1(k) for all k ∈ K, and it assigns the following
algebraic operations tonull andor:

a2(null)I ( f )(∗) = ǫ, a2(or)I ( f )(∗) = f (ι1(∗)) · f (ι2(∗)).

We expect that for any well-typedλc(Σ)-term x1 : b1, . . . , xn : bn ⊢ M : b and
vi ∈ Abi, the denotationA1 ~M� (v1, . . . , vn) gives the set of possible return values listed
up inA2 ~M� (v1, . . . , vn). That is, we expect that the answer to the effect simulation
problem with the simulation (V,C) defined below is yes (b ranges overB).

Vb = {(v, v) | v ∈ Ab}

Cb = {(X, l) ∈ Tp(Ab) × Tm(Ab) | X = the set of elements inl}.

6. Fibrations for Logical Relations

We consider the general situation where the underlying categories ofλc-structures
are general bi-CCCs. To formulate the concept of a relation between two objects from
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different categories, we first formulate the concept of a predicate over an object in an
arbitrary category in terms offibrational category theory, then derive the concept of a
relation as a predicate over a product category.

We give a brief definition of fibrations and related concepts;see [12] for the full
details. Letp : E → C be a functor. We call its domain (E) total category. We say
thatX ∈ E is above I∈ C if pX = I , and similarly for morphisms. Thefibre category
overI ∈ C is the subcategoryEI of E consisting of objects aboveI ∈ C and morphisms
above idI .

We next assume thatp is faithful. Then each fibre categoryEI is a preorder. In
this situation, we regard the objects aboveI as predicates onI , andEI as the preorder
of predicates onI . We now introduce a notation frequently used in this paper. For
X,Y ∈ E and f : pX→ pY, we definef : X→̇Y to be the following proposition:

∃ ḟ : X→ Y . p( ḟ ) = f .

Its intuitive meaning is “thef -image of any element satisfyingX satisfiesY”. When
f : X→̇Y holds, the morphisṁf that exists abovef is unique. We call it thewitnessof
f : X→̇Y. We note thatX ≤ Y holds in the fibre preorderEI if and only if idI : X →̇ Y.

Definition 3. A partial order bifibration with fibrewise small productsis a faithful
functorp : E→ C such that:

(Partial Order) Each fibre category is a partial order.

(Fibration) 1 For anyI ∈ C, Y ∈ E and f : I → pY, there existsX ∈ E aboveI such
that f : X→̇Y and the following property holds: for anyZ ∈ E andg : pZ→ I ,
f ◦ g : Z→̇Y impliesg : Z→̇X.

This property andEI being a partial order imply thatX is unique; hence we write
f ∗Y for X, and f Y for the witness off : f ∗Y→̇Y. Furthermore, for anyf : I → J
in C, the mappingY ∈ EJ 7→ f ∗Y ∈ EI extends to a functorf ∗ : EJ → EI . We
call it the inverse image functor(along f ). Intuitively, f ∗Y corresponds to the
predicate{i ∈ I | f (i) ∈ Y} on I .

(Bi–) Each inverse image functorf ∗ has a left adjoint called thedirect image functor
(along f ), denoted byf∗. Intuitively, for X ∈ E and f : pX → J in C, f∗X
corresponds to the predicate{ f (x) | x ∈ X} on J.

(Fibrewise Small Products) Each fibre category has small products, denoted by
∧

,
and the inverse image functors (necessarily) preserve them.

We show a couple of properties of partial order bifibrationsp : E → C with fibrewise
small products.

Lemma 1. For any Y,Z ∈ E, I ∈ C and morphismspZ
g

// I
f

// pY in C, we
have f◦ g : Z →̇ Y ⇐⇒ g : Z →̇ f ∗Y.

1This definition of fibration exploits the assumption thatp is faithful. The concept of a fibration is defined
differently for an arbitrary functor [12, Definition 1.1.3].
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P. ( =⇒ ) Immediate from the definition of partial order bifibration.(⇐=) As
f : f ∗Y →̇ Y, we havef ◦ g : Z →̇ Y.

By letting pZ = I andg = idI , we obtainf : Z →̇ Y ⇐⇒ Z ≤ f ∗Y as a corollary
of this lemma. Note that in the fibrationπ : Pred → Set, this property translates to
“the f -image of elements satisfyingX satisfiesY iff X is a subset of the inverse image
f −1Y.” We also obtain (g ◦ f )∗ = f ∗ ◦ g∗, because for allZ,Y ∈ E, we have

Z ≤ (g ◦ f )∗Y ⇐⇒ g ◦ f : Z →̇ Y ⇐⇒ f : Z →̇ g∗Y ⇐⇒ Z ≤ f ∗(g∗Y),

hence by lettingZ be (g ◦ f )∗Y and f ∗(g∗Y) we obtain the equation.

Lemma 2. For any Y,Z ∈ E, I ∈ C and morphismspZ
g

// I
f

// pY in C, we
have f◦ g : Z →̇ Y ⇐⇒ g : f∗Z →̇ Y.

P. Immediate from the assumption thatf∗ is the left adjoint tof ∗.

Lemma 3. For any f : I → J in C and a set-indexed family{Yi}i∈Λ of objects inEJ,
we have(∀i ∈ Λ . f : X →̇ Yi) ⇐⇒ f : X →̇

∧

i∈Λ Yi .

P. We use Lemma 1 and the preservation of
∧

by the inverse image functorf ∗.

∀i ∈ Λ . f : X →̇ Yi ⇐⇒ ∀i ∈ Λ . X ≤ f ∗Yi

⇐⇒ X ≤
∧

i∈Λ

f ∗Yi = f ∗




∧

i∈Λ

Yi





⇐⇒ f : X →̇
∧

i∈Λ

Yi .

In the categorical semantics of type theories and programming languages, the con-
cept of a logical relation for a type constructor, such as a sum or a function space, is
often provided by the categorical structure correspondingto it, such as a coproduct or
an exponential, in the categoryE of predicates, and moreover the corresponding cat-
egorical structure isstrictly preservedby a functorp : E → C. This is the central
observation in [20, 23], and Hermida showed that a bi-CC structure on the total cat-
egoryE of a fibrationp : E → C can be constructed whenp is a (bi)fibration with
certain structures [11].

When solving the effect simulation problem, we will use logical relations for prod-
ucts, sums and arrow types. We thus consider the fibrations whose total categories have
bi-CC structures that are strictly preserved by the fibrations. We call themfibrations
for logical relationsin this paper.

Definition 4. A fibration for logical relationsover a bi-CCCC is a partial order bi-
fibration p : E → C with fibrewise small products2 such thatE is a bi-CCC andp
strictly preserves the bi-CC structure.

2We actually only use fibrewise products up to the cardinalityof a setB of base types.
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Notational convention: we write the components of the bi-CCstructure onE with dots
on top, like1̇, !̇, 0̇, ?̇, ×̇, 〈̇-, -〉̇, π̇i, +̇, [̇-, -]̇, ι̇i, ⇒̇, ėv, λ̇(-).

In [12, Section 9.2], constructing a bi-CC structure on the total category of a fi-
bration is discussed. The following theorem summarises therelevant constructions
presented there into one:

Proposition 4. Let C be a bi-CCC and p: E → C be a partial order bifibration such
that each fibre partial order categoryEI is a bi-CCC with small products, every rein-
dexing functor f∗ (strictly) preserves the bi-CC structure, and p has simple products,
that is, the inverse image functor along the first projectionπ1 : I × J → I has a right
adjoint∀I ,J : EI×J → EI satisfying Beck-Chevalley condition. Then p is a fibration for
logical relations.

P. We write (⊤,∧,⊥,∨,⊃) for the bi-CC structure on each fibre category. We
define the bi-CC structure onE as follows:

1̇ = ⊤1

0̇ = ⊥0

X ×̇ Y = π∗1X ∧ π∗2Y

X +̇ Y = (ι1)∗X ∨ (ι2)∗Y

X ⇒̇ Y = ∀pX⇒pY,pX(π∗2X ⊃ ev∗Y).

For the verification of the bi-CC structure, consult [12, Section 9.2].

Corollary 5. The subobject fibration of the presheaf category[C,Set] over a small
categoryC is a fibration for logical relations.

P. The fibration satisfy all the conditions mentioned in Proposition 4; see [12].

Example 2. [12, Chapter 0] We define the categoryPred by the following data: an
object inPred is a pair (X, I ) whereX is a subset ofI , and a morphism from (X, I )
to (Y, J) is a function f : I → J such that for anyi ∈ X, f (i) ∈ Y. This category is
isomorphic to the category of subobjects ofSet [12, Section1.3]. We now consider the
functorπ : Pred → Set defined byπ(X, I ) = I andπ( f ) = f . This is faithful, and
the fibre categoryPredI is isomorphic to the poset (2I ,⊆). One can easily check that
the following gives the inverse image functor along a function f : I → J and its left
adjoint, the direct image functor:

f ∗(Y, J) = ({x | f (x) ∈ Y}, I ) f∗(X, I ) = ({ f (x) | x ∈ X}, J).

Finally, every fibre category has small products given by theintersection. Thereforeπ
is a partial order bifibration with fibrewise small products.

From Corollary 5, we obtain the bi-CC structure overPred that is strictly preserved
by π; see also [12, Exercise 9.2.1]. The object part of the bi-CC structure is given as
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follows:

1̇ = (1, 1)

0̇ = (0, 0)

(X, I ) ×̇ (Y, J) = ({v | π1(v) ∈ X, π2(v) ∈ Y}, I × J)

(X, I ) +̇ (Y, J) = ({ι1(x) | x ∈ X} ∪ {ι2(y) | y ∈ Y}, I + J)

(X, I ) ⇒̇ (Y, J) = ({ f | ∀x ∈ X . f (x) ∈ Y}, I ⇒ J).

To summarise,π is a fibration for logical relations.

A useful construction of fibrations for logical relations isby pullback (change-of-
base) along finite-product preserving functors. In this paper, we specify the pullback
(F∗E, F∗p, q) of a faithful functorp : E→ C alongF : B→ C (see diagram below)

F∗E
q

//

F∗p

��

E

p

��

B
F

// C

by the following data: an object inF∗E is a pair (X, I ) such thatX ∈ E, I ∈ B andX
is aboveFI , and a morphism from (X, I ) to (Y, J) is a morphismf : I → J such that
F f : X →̇ Y. The functorF∗p sends (X, I ) to I , and f to itself, whileq sends (X, I ) to
X and f to its witnessḟ . We note thatF∗p is again faithful, and the fibre category of
(F∗E)I is isomorphic toEFI .

Proposition 6. Let B,C be bi-CCCs, p: E → C be a fibration for logical relations
and F : B → C be a finite-product preserving functor. Then F∗p : F∗E → B is a
fibration for logical relations.

P. The following gives the inverse image functor and the direct image functor
along f : I → J in B:

f ∗(Y, J) = ( f ∗Y, J), f∗(X, I ) = ( f∗X, I ).

Each fibre category (F∗E)I has small products as it is isomorphic to the partial order
categoryEFI . We only present the object part of the bi-CC structure inF∗E.

1̈ = ((!F1)∗1̇, 1)

0̈ = ((!F0)∗0̇, 0)

(X, I ) ×̈ (Y, J) = (l∗(X ×̇ Y), I × J)

(X, I ) +̈ (Y, J) = (m∗(X +̇ Y), I + J)

(X, I ) ⇒̈ (Y, J) = (n∗(X ⇒̇ Y), I ⇒ J)

Here,l,m, n are the canonical morphisms from Section 3.

12



Example 3. Three more examples are depicted below.

SubSc(C)

(1)p

��

// Pred

π

��

BRel

(2)p

��

// Pred

π

��

KF
//

p

��

(3)

Sub([B,Set])

��

C
C(1,−)

// Set Set2 ×
// Set C

F
// [B,Set]

1. Thesubscone[23] over a bi-CCCC is the categorySubSc(C) at the vertex of the
pullback ofπ : Pred→ Setalong the global element functorC(1,−) : C→ Set.
The legp : SubSc(C)→ C is a fibration for logical relations.

2. We pullbackπ along the binary product functor× : Set2 → Set. The category
BRel at the vertex of the pullback is explicitly described as follows: an object is
a tuple (X, I , I ′) whereX ⊆ I × I ′, and a morphism from (X, I , I ′) to (Y, J, J′) is a
pair (f , g) of functions f : I → J andg : I ′ → J′ such thatf × g : X →̇ Y. The
leg p : BRel→ Set2 is a fibration for logical relations.

3. By pulling back the subobject fibration of a presheaf category along a finite-
product preserving functorF : C → [B,Set], we obtain a fibrationp : KF → C
for logical relations. This construction will be employed in Section 10 and 11.
An object inKF is a pair (X, I ) of an objectI in C and a subpresheafX of FI ,
and a morphismf : (X, I )→ (Y, J) in KF is aC-morphism such thatF f : X→̇Y;
this is equivalent to that for anyH ∈ B andx ∈ XH, F f (x) ∈ YH.
The object part of the bi-CC structure onKF is given as follows (here we use a
meta-lambda notationλH ∈ B . {...} to define the presheaves on objects):

1̇ = (λH ∈ B . {∗}, 1)

0̇ = (λH ∈ B . ∅, 0)

(X, I ) ×̇ (Y, J) = (λH ∈ B . {v | Fπ1(v) ∈ XH, Fπ2(v) ∈ YH}, I × J)

(X, I ) +̇ (Y, J) = (λH ∈ B . {Fι1(v) | v ∈ XH} ∪ {Fι2(v) | v ∈ YH}, I + J)

(X, I ) ⇒̇ (Y, J) = (λH ∈ B . { f | ∀H′ ∈ B, h : H → H′, x ∈ XH′ .

F(ev)H′ ◦ (l−1
I⇒J,I )H′(F(I ⇒ J)(h)( f ), x) ∈ YH′}, I ⇒ J).

This bi-CC structure is a general form of Kripke logical relations with varying
arity [13].

7. Fibrational Effect Property Problem

Having abstracted the concept of a predicate in terms of fibrational category theory,
we consider thefibrational effect property problem, which subsumes the effect simula-
tion problem. LetA = (C,T ,A, a) be aλc(Σ)-structure andp : E → C be a fibration
for logical relations. ApropertyoverA is a pair (V,C) of functorsV,C : B→ E such
that p ◦ V = A and p ◦ C = T ◦ A, that is, for anyb ∈ B, Vb is aboveAb andCb is
aboveT(Ab). The fibrational effect property problem is:

Suppose that a property (V,C) overA is given. Then does any well-typed
λc(Σ)-termx1 : b1, . . . , xn : bn ⊢ M : b satisfyA ~M� : ˙∏n

i=1Vbi →̇Cb?
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We then define thefibrational effect simulation problembetween twoλc(Σ)-structures
A1 andA2 to be the fibrational effect property problem overA1 × A2. We also call
the property overA1 × A2 simulationbetweenA1 andA2. The set-theoretic effect
simulation problem in the beginning of Section 5 usesq : BRel→ Set2 in Example 3
as the fibration for logical relations.

The choice of a fibration for logical relations depends on theproperty we would like
to establish on the semantics ofλc(Σ). For instance, when the property is parametrised
by a categoryB, the concept of a predicate with which we can naturally express the
property would be provided by the pullback calculated in Example 3-3. This is indeed
the case when comparing two monadic semantics of theν-calculus in Section 11. At
this moment, however, there seems no general guideline for choosing the fibration for
logical relations.

When a property (V,C) is given, we extendV to the functor of typeV ~−� :
GTyp(B) → E in the same way as we did in Definition 2. We note that for all
ρ ∈ GTyp(B),V

�

ρ
�

is aboveA
�

ρ
�

.

Theorem 7. LetΣ be aλc-signature,A = (C,T ,A, a) be aλc(Σ)-structure, p: E→ C
be a fibration for logical relations and(V,C) be a property overA. If the property
satisfies the following three conditions:

(I) for all b ∈ B,ηAb : Vb→̇Cb,

(C1) for all k ∈ K, a(k) : V ~ar(k)� →̇ V ~car(k)�, and

(C2) for all o ∈ O and b∈ B, a(o)Ab : (V ~ar(o)� ⇒̇Cb) →̇ (V ~car(o)� ⇒̇Cb),

then the answer of the effect property problem forλc(Σ) is yes: for all well-typedλc(Σ)-
term x1 : b1, . . . , xn : bn ⊢ M : b, we haveA ~M� : ˙∏n

i=1Vbi →̇Cb.

Our proof of this theorem hinges on the technique calledcategorical⊤⊤-lifting [14],
which is a semantic formulation of Lindley and Stark’s leapfrog method [18, 19]. After
reviewing this technique in the next section, we prove Theorem 7 in Section 9.

8. Categorical⊤⊤-Lifting

Let C be a bi-CCC,T be a strong monad overC and p : E → C be a fibration
for logical relations. We formulate the concept of a logicalrelation forT as a strong
monadṪ = (Ṫ, η̇, µ̇, θ̇) overE such that

p(ṪA) = T(pA), pη̇X = ηpX, pµ̇X = µpX, pθ̇X,Y = θpX,pY.

We call suchṪ a lifting of T .
The main technical tool we use is thecategorical⊤⊤-lifting in [14], which we

review below. It is a method to construct a lifting ofT , and it requires as a parameter a
pairR = (R,S) of functorsR : Λ→ C,S : Λ→ E from a setΛ such thatT ◦R= p◦S.
In other words, the parameter is a family of objects{(Ri,S i)}i∈Λ such thatS i is above
T(Ri). The⊤⊤-lifting of T with respect toR is defined as follows. LetX ∈ E be above
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I ∈ C. We first defineX⊤⊤(i) ∈ E aboveT I to be the inverse image of (X ⇒̇ S i) ⇒̇ S i
alongσT ,Ri

I :

X⊤⊤(i) // (X ⇒̇ S i) ⇒̇ S i E

p

��

T I
σ
T ,Ri
I

// (I ⇒ T(Ri))⇒ T(Ri) C

We then definėT X by the following fibrewise product:

Ṫ X =
∧

i∈Λ

X⊤⊤(i). (1)

Proposition 8 ([14]). Let X,Y ∈ E.

1. For all morphism f inC, f : X →̇ Y implies T f: Ṫ X →̇ ṪY.
2. We haveηpX : X →̇ Ṫ X,µpX : ṪṪ X →̇ Ṫ X andθpX,pY : X ×̇ ṪY→̇ Ṫ(X ×̇ Y).

From Proposition 8-1, for a morphisṁf : X→ Y in E, we defineṪ ḟ to be the witness
of T(pḟ ) : Ṫ X →̇ ṪY. We similarly define morphisms ˙ηX, µ̇X, θ̇X,Y in E to be the
witnesses of the statements in Proposition 8-2. The fact that p is faithful andT is a
monad implies immediately that all the monad laws hold forṪ.

Proposition 9 ([14]). The assignment X7→ Ṫ X defined by(1) uniquely extends to a
lifting Ṫ = (Ṫ, η̇, µ̇, θ̇) ofT .

Below we show some properties aboutṪ that are essential to our proof of Theorem
7. The first proposition gives a sufficient condition forṪ X to be included inS i.

Proposition 10. For any i ∈ Λ and X∈ E above Ri∈ C, ηRi : X→̇S i impliesṪ X ≤ S i.

P. As Ṫ X =
∧

i∈Λ T⊤⊤(i)X, it is sufficient to showT⊤⊤(i)X ≤ S i. Let us write
η̇ : X→ S i for the witness ofηRi : X →̇ S i. Then inE we obtain a morphism

T⊤⊤(i)X
σ
T ,Ri
Ri ((X⇒̇S i)⇒̇S i)

// (X ⇒̇ S i) ⇒̇ S i
ėv◦〈̇id,nm(η̇)◦!̇〉̇

// S i

which is aboveev◦ 〈id, nm(ηRi)◦!〉 ◦ σ
T ,Ri
Ri = idTRi. ThereforeT⊤⊤(i)X ≤ S i.

The next theorem characterises when we can lift algebraic operations/ generic effects
for T to the⊤⊤-lifted monadṪ .

Theorem 11. Let p : E→ C be a fibration for logical relations,T be a strong monad
on C andR = (R : Λ → C,S : Λ → E) be a parameter for⊤⊤-lifting. For any
D,C ∈ E andα ∈ Alg(T , pD, pC), the following are equivalent.

1. For all i ∈ Λ, αRi : (D ⇒̇ S i) →̇ (C ⇒̇ S i).
2. GefT (α) : C →̇ Ṫ D.
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3. There is an algebraic operatioṅα ∈ Alg(Ṫ ,D,C) such thatα̇X is aboveαpX

(suchα̇ is unique from the faithfulness of p).
4. For all X ∈ E, αpX : (D ⇒̇ Ṫ X) →̇ (C ⇒̇ Ṫ X).

This theorem says that in order to check that an algebraic operation has a lifting (The-
orem 11-3), or the corresponding generic effect is related bẏT (Theorem 11-2), it is
necessary and sufficient to check that the parameter (R,S) of the⊤⊤-lifting is closed
under algebraic effects (Theorem 11-1).

P. First, asp strictly preserves the bi-CC structure andṪ is a lifting ofT , we have

p(sw(f )) = sw(p f), p(nm(f )) = nm(p f), p(AopṪ (e)X) = AopT (pe)pX.

(1 ⇐⇒ 2) We have:

∀i ∈ Λ . αRi : (D ⇒̇ S i) →̇ (C ⇒̇ S i)

⇐⇒ ∀i ∈ Λ . σT ,Ri
pD ◦GefT (α) : C →̇ ((D ⇒̇ S i) ⇒̇ S i)

⇐⇒ ∀i ∈ Λ . GefT (α) : C →̇ (σT ,Ri
pD )∗((D ⇒̇ S i) ⇒̇ S i)

⇐⇒ GefT (α) : C →̇
∧

i∈Λ

(σT ,Ri
pD )∗((D ⇒̇ S i) ⇒̇ S i)

⇐⇒ GefT (α) : C →̇ Ṫ D.

(2 =⇒ 3) Let ė : C → Ṫ D in E be the witness of GefT (α) : C →̇ Ṫ D. Then we have
p(AopṪ (ė)X) = AopT (GefT (α))pX = αpX, meaning that AopṪ (ė) is the one in question.
(3 =⇒ 4) Immediate. (4=⇒ 2) Letα̇D be the witness ofαpD : (D⇒̇Ṫ D)→̇(C⇒̇Ṫ D).
Then the morphism nm−1

C,ṪD
(α̇D ◦ nmD,ṪD(η̇D)) : C →̇ Ṫ D in E is above GefT (α).

9. The Proof of Theorem 7

We are ready to prove Theorem 7. We consider the⊤⊤-lifting of T with the pair
R = (A : B→ C,C : B→ E) of functors from the setB of base types as the parameter.
From Proposition 8, we obtain a strong monadṪ overE which is a lifting ofT . We
now define an assignment ˙a as follows:

1. For eachk ∈ K, we define ˙a(k) to be the witness ofa(k) : V ~ar(k)�→̇V ~car(k)�
that exists from the assumption (C1).

2. For eacho ∈ O, we define ˙a(o) to be the unique (V ~ar(o)� ,V ~car(o)�)-ary
algebraic operation foṙT abovea(o) that exists from the assumption (C2) and
Theorem 11-3.

Therefore the tupleV = (E, Ṫ ,V, ȧ) is aλc(Σ)-structure. Asp preserves all relevant
categorical structures, induction on terms shows that for all well-typedλc(Σ)-termx1 :
ρ1, . . . , xn : ρn ⊢ M : ρ, we have

A ~M� :
˙∏n

i=1
V

�

ρi
�

→̇ ṪV
�

ρ
�

;

its witness isV ~M�. Particularly, when all types are base types, we obtain

A ~M� :
˙∏n

i=1
Vbi →̇ Ṫ(Vb) ≤ Cb.

The last inequality is from the assumption (I) and Proposition 10.
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10. Effect Simulation by a Monad Morphism

Monadic semantics are often related bystrong monad morphisms.

Definition 5. Let Σ be aλc-signature,A1 = (C,T1,A, a) be aλc(Σ)-structure,T2 be
a strong monad onC andγ : T1 → T2 be a strong monad morphism. We define the
imageofA1 alongγ to be theλc(Σ)-structureγA1 = (C,T2,A, γ(a)), whereγ(a) is the
following assignment:

γ(a)(k) = a(k) (k ∈ K)

γ(a)(o) = Alg(γ,A ~ar(o)� ,A ~car(o)�)(a(o)) (o ∈ O).

Theorem 12. Let Σ be aλc-signature,A = (C,T1,A, a) be aλc(Σ)-structure,T2 be
a strong monad onC andγ : T1 → T2 be a strong monad morphism. Then for any
well-typedλc(Σ)-term x1 : b1, . . . , xn : bn ⊢ M : b, we haveγAb ◦ A ~M� = (γA) ~M� .

P. We assume thatC is small without loss of generality; if not, we confine our-
selves to a small full subcategory ofC that containsAb, 1, 0 and is closed under×,+,⇒
,T1,T2.

We pullback the subobject fibrationSub([Cop,Set]) → [Cop,Set] along the finite-
product preserving functorD : C2 → [Cop,Set] defined byD(I , J) = yI × yJ; here
y : C→ [Cop,Set] is the yoneda embedding.

K

q

��

// Sub([Cop,Set])

��

C2
D

// [Cop,Set]

From Proposition 6, the legq : K → C2 in the above diagram is a fibration for logical
relations. An object inK is a triple (X, I , I ′) whereI , I ′ ∈ C andX is a subpresheaf of
yI × yI ′. A morphism from (X, I , I ′) to (Y, J, J′) is a pair (f , g) of f : I → J andg :
I ′ → J′ in C such that for anyH ∈ C and (x1, x2) ∈ XH, we have (f ◦ x1, g◦ x2) ∈ YH.
The exponential inK is given as follows (see Example 3-3):

(X, I , I ′) ⇒̇ (Y, J, J′) = (λH ∈ C . {( f , g) ∈ C(H, I ⇒ J) × C(H, I ′ ⇒ J′) |

∀H′ ∈ C, h : H′ → H, (x, y) ∈ XH′ .

(ev◦ 〈 f ◦ h, x〉, ev◦ 〈g ◦ h, y〉) ∈ YH′},

I ⇒ J, I ′ ⇒ J′)

We define a simulation (V,C) betweenA andγA by

Vb= (λH ∈ C . {( f , f ) ∈ C(H,Ab) × C(H,Ab) | f : H → Ab},Ab,Ab)

Cb= (λH ∈ C . {( f , γAb ◦ f ) ∈ C(H,T1(Ab)) × C(H,T2(Ab)) | f : H → T1(Ab)},

T1(Ab),T2(Ab)).
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They are objects inK, and satisfy (I) and (C1). For (C2), below we letd = ar(o) and
c = car(o). We define an auxiliary objectCd ∈ K by

Cd = (λH ∈ C . {( f , γA~d� ◦ f ) ∈ C(H,T1A ~d�) × C(H,T2A ~d�) |

f : H → T1A ~d�}, T1A ~d� ,T2A ~d�).

We easily see that for anyα ∈ Alg(T ,A ~d� ,A ~c�), we have

(GefT1(α), γA~d� ◦GefT1(α)) : V ~c� →̇Cd.

We next show (below annotations of objects are omitted)

(ev#1 ◦ (θ1), ev#2 ◦ (θ2)) : (V ~d� ⇒̇Cb) ×̇Cd →̇Cb. (2)

Here (−)#i is the Kleisli lifting ofTi (i = 1, 2). This is sufficient to derive (C2), because

(ev#1 ◦ θ1, ev#2 ◦ θ2) : (V ~d� ⇒̇Cb) ×̇Cd →̇Cb

⇐⇒ (σT1,Ab, σT2,Ab) : Cd→̇ ((V ~d� ⇒̇Cb) ⇒̇Cb)

=⇒ (σT1,Ab ◦GefT1(α), σT2,Ab ◦ γ ◦GefT1(α)) : V ~c� →̇ ((V ~d� ⇒̇Cb) ⇒̇Cb)

⇐⇒ (αAb,Alg(γ,A ~d� ,A ~c�)(α)Ab) : (V ~d� ⇒̇Cb) →̇ (V ~c� ⇒̇Cb).

By unfolding definitions, (2) becomes the following proposition: for anyH ∈ C, f1 :
H → (A ~d� ⇒ T1Ab), f2 : H → (A ~d� ⇒ T2Ab) and x : H → T1A ~d�, the
equation

γ ◦ ev#1 ◦ θ1 ◦ 〈 f1, x〉 = ev#2 ◦ θ2 ◦ 〈 f2, γ ◦ x〉 (3)

holds under the following assumption:

∀H′ ∈ C, h : H′ → H, y : H′ → A ~d� . ev◦ 〈 f2 ◦ h, y〉 = γ ◦ ev◦ 〈 f1 ◦ h, y〉.

We thus prove this proposition. By instantiating the above assumption withH′ =
H ×A ~d� , h = π1, y = π2, we obtainf2 = (A ~d�⇒ γ) ◦ f1. Thus the right hand side
of (3) is equal toev#2 ◦ θ2 ◦ ((A ~d�⇒ γ) × γ) ◦ 〈 f1, x〉, which is equal to the left hand
side of (3). Therefore (2) is proved.

Example 4. (Continued from Example 1) There is a strong monad morphismγ from
Tm to Tp mapping a listl ∈ TmI to the setγI (l) ∈ TpI of elements occurring inl.
FurthermoreA1 is the image ofA2 alongγ. Thus from Theorem 12, for any well-
typedλc(Σ)-termx1 : b1, . . . , xn : bn ⊢ M : b and valuevi ∈ Abi ,A1 ~M� (−→v ) is the set
of elements occurring inA2 ~M� (−→v ).

Example 5. LetA = (C,T ,A, a) be aλc(Σ)-structure, andR ∈ C. We writeCTR for
the continuation monad, whose functor part is given by (− ⇒ TR) ⇒ TR [2]. The
morphismσT ,RI : T I → ((I ⇒ TR) ⇒ TR) is actually a strong monad morphism from
T to CTR. Therefore from Theorem 12, for any well-typedλc(Σ)-termx1 : b1, . . . , xn :
bn ⊢ M : b, we have

σ
T ,R
Ab ◦ A ~M� = σ

T ,RA ~M� .

The right hand side of this equation is theCPS semantics[3] of λc(Σ), while the left
hand side roughly corresponds to the mappingρ 7→ λk . k#(A ~M� ρ). This equation is
indeed themonadic congruence result[3] at base types. The above equation takes alge-
braic operations into account, and holds in any bi-CCC with astrong monad, including
freely generated ones.
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A1 A2

C [I ,Set] Set
T T1F = colimQ∈I F(− + Q) T2I = N⇒ I × N
A A1nam= N : I →֒ Set A2nam= N

a (a1(eq))P(i, j) =

{

ι1(∗) (i = j)
ι2(∗) (i , j)

a2(eq)(i, j) =

{

ι1(∗) (i = j)
ι2(∗) (i , j)

See (4) below a2(ν) = λ f x . f (x)(x+ 1)

Table 1: Definition of twoν-calculus structures

11. Comparing Two Monadic Semantics of theν-Calculus

We fix a countably infinite set including the unique element∗ of 1 ∈ Set, and call
the elements in this infinite setnames. We defineI to be the category whose objects
are finite subsets of names and whose morphisms are injections between them.

Dynamic name creation, such as the one in theπ-calculus, is often categorically
modelled in the presheaf category overI [32, 33]. On the other hand, in practical im-
plementations of programming languages, names are represented by natural numbers,
and dynamic name creation is implemented by a hidden global counter that keeps track
of the next fresh name. In this section, we consider Stark’sν-calculus[32] and discuss
an effect simulation problem between presheaf semantics and global counter semantics
of name creation.

Theν-calculus is specified by theλc-signature

Σ = ({nam}, K = {eq : nam× nam→ 1+ 1}, O = {ν : nam→ 1}).

The base type nam is fornames, the effect-free constanteq is for checking name equal-
ity, and the algebraic operationν is to allocate a fresh name and bind it tox, like the
one inπ-calculus. Theν-calculus is then defined to beλc(Σ). Below we call aλc(Σ)-
structure aν-calculus structure. We abbreviateν(λx : nam. M) to ν(x.M).

In Table 1 we present twoν-calculus structures for which we consider an effect
simulation problem. Theν-calculus structureA1 extracts the ingredients that are used
in the categorical semantics of theν-calculus in [32]. The monadT1 is Stark’sdynamic
name creation monad:

T1FP = colimQ∈I F(P+ Q) = {(Q, x) | Q ∈ I , x ∈ F(P+ Q)}/ ∼

where∼ is the equivalence relation defined by: (Q, x) ∼ (R, y) if there areS ∈ I and
two injectionsl : Q ֌ S,m : R ֌ S such thatF(P+ l)(x) = F(P+m)(y). The object
for the name type is the inclusion functorN : I →֒ Set. This is the standard choice
for representing names. We note thatT1NP ≃ P + 1. Therefore we redefineT1 to be
the monad that is naturally isomorphic to the originalT1 and behaves as the functor
P 7→ P+ 1 when applied toN.

We give exponentials in [I ,Set] in the standard way:

(F ⇒ G)P = [I ,Set](yP× F,G).
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The behaviour of the name equality predicate at a finite setP is given in Table 1; there,
i and j are elements inP. The algebraic operationa1(ν) for name creation is defined by
(belowF ∈ [I ,Set],P ∈ I andβ ∈ (N⇒ T1F)P):

(a1(ν))F : (N⇒ T1F)→ T1F
(a1(ν)F)P : [I ,Set](yP× N,T1F)→ T1FP

(a1(ν)F )P(β) = [1 + Q, F(assoc)(y)]∼ : T1FP (4)

In the right hand side of the defining equation ofa1(ν), Q ∈ I andy ∈ F((P+ 1)+ Q)
are components of a pair (Q, y) in the equivalence classβP+1(ι1, ι2(∗)) ∈ T1F(P + 1),
and assoc : (P+ 1)+ Q → P + (1+ Q) is the associativity morphism for the disjoint
union.

Theν-calculus structureA2 is a semantic analogue of the dynamic name creation
by a global state. We note that the interpretationA2 ~−� is not sound with respect to
theν-calculus axioms in [32].

We compare the denotation of a well-typedν-calculus termx1 : nam, . . . , xn :
nam⊢ M : nam in eachν-calculus structure. Suppose thatp names have been allocated,
and some of them are supplied to the free variables ofM. ThenM returns either one of
the allocated names passed to it:x1, . . . , xn, or M allocates a new name and returns it.
This behaviour is expressed differently in eachν-calculus structure:

• (inA1) Let P be the finite set consisting ofp allocated names. We feedn names
i1, . . . , in ∈ P to the free variables ofM. WhenM returns a previously allocated

name, the denotationA1 ~M�P (
−→
i ) ∈ T1NP = P + 1 is ι1(i) with somei ∈ P.

Otherwise,M returns a new name and the denotation isι2(∗).

• (in A2) Natural numbers 0, . . . , p − 1 correspond to the allocated names. We
thus feed 0≤ i1 . . . in ≤ p − 1 to the free variables ofM. The global counter
pointing to the next fresh name is nowp, so the name thatM returns is given

by i = π1(A2 ~M� (
−→
i )(p)). WhenM returns an allocated name, 0≤ i ≤ p− 1;

otherwisei ≥ p. In fact, this behaviour ofM remains the same even when the
counter is increased fromp. Therefore whenM returns an allocated namei, for

any k ≥ p we haveπ1(A2 ~M� (
−→
i )(k)) = i; otherwise for anyk ≥ p we have

π1(A2 ~M� (
−→
i )(k)) ≥ k.

Based on this analysis, we establish a correspondence between the denotation ofM in
eachν-calculus structure. As names are represented differently in each structure, this
relationship is parametrised by bijective correspondences between allocated names and
natural numbers. Below, for a finite setP, we define #P to be its cardinality, andP to be
{0, . . . , #P−1}whenP , ∅; otherwise∅. A name enumerationis a bijectionσ : P→ P.

Theorem 13. Let x1 : nam, . . . , xn : nam ⊢ M : nambe aν-calculus term. For any
finite set P, element i1, . . . , in ∈ P and a name enumerationσ : P→ P, either

• there is some j∈ P such thatA1 ~M�P (
−→
i ) = ι1( j) andπ1(A2 ~M� (σ(

−→
i ))(k)) =

σ( j) for all k ≥ #P, or

• A1 ~M�P (
−→
i ) = ι2(∗) andπ1(A2 ~M� (σ(

−→
i ))(k)) ≥ k for all k ≥ #P.
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The rest of this section is the proof of this theorem. We construct a suitable fibration
for logical relations over [I ,Set] × Set, and give a simulation (V,C) betweenA1 and
A2 that implies the goal of the theorem. We then check that it satisfies (I), (C1) and
(C2).

We first define the categoryE of name enumerations by the following data: an
object is a name enumeration, and a morphismh : (σ : P → P) → (τ : Q → Q) is a
(necessarily unique) injectionh : P→ Q such thatσ = τ◦h. We note thatE is actually
equivalent to (N,≤). We writeπ : E→ I for the functor defined byπ(σ : P→ P) = P
andπ( f ) = f .

We next pullback the subobject fibrationSub([E,Set]) → [E,Set] along the fol-
lowing finite-product preserving functorD : [I ,Set] × Set→ [E,Set]:

D(F, I ) = (F ◦ π) × ∆I ;

here∆ : Set→ [E,Set] is the diagonal functor.

ERel //

q

��

Sub([E,Set])

��

[I ,Set] × Set
D

// [E,Set]

We obtain the fibrationq : ERel → [I ,Set] × Set for logical relations by Proposition
6. The explicit definition ofERel is the following: an object is a triple (X, F, I ) where
F ∈ [I ,Set], I ∈ Set and X assigns a binary relationXσ ⊆ FP × I to each name
enumerationσ : P→ P. This assignmentX satisfies: for anyh : σ → τ and (x, y) ∈
Xσ, we have (Fhx, y) ∈ Xτ. A morphism from (X, F, I ) to (Y,G, J) is a pair (φ, f ) such
thatφ : F → G is a morphism in [E,Set], f : I → J is a function and for any name
enumerationσ : P→ P and (x, y) ∈ Xσ, we have (φP(x), f (y)) ∈ Yσ.

We give a simulation (V,C) betweenA1 andA2 that entails Theorem 13. We define
two binary relationsXσ andYσ for each name enumerationσ : P→ P by

Xσ = {(i, σ(i)) ∈ P× P | i ∈ P}

Yσ = {(ι1(i), f ) ∈ T1NP× T2N | i ∈ P∧ ∀k ≥ #P . π1 ◦ f (k) = σ(i)} ∪

{(ι2(∗), f ) ∈ T1NP× T2N | ∀k ≥ #P . π1 ◦ f (k) ≥ k}.

Proposition 14. The pair V,C : {nam} → ERel of functors defined by

V(nam)= (X,N,N), C(nam)= (Y,T1N,T2N)

forms a simulation(V,C) betweenA1 andA2.

P. What we actually check here is thatV(nam) andC(nam) belong toERel. The
case ofV(nam) is easy, so we move on to the case ofC(nam). Letσ : P→ P, τ : Q→
Q be name enumerations,h : σ → τ be a morphism inE and (x, f ) ∈ Yσ. We show
((h+ 1)(x), f ) ∈ Yτ.

• Casex = ι1(i) with somei ∈ P such thatπ1 ◦ f (k) = σ(i) for all k ≥ #P. Then for
all k ≥ #Q ≥ #P, we haveπ1◦ f (k) = σ(i) = τ(h(i)). Therefore (ι1(h(i)), f ) ∈ Yτ.
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• Casex = ι2(∗) and∀k ≥ #P . π1 ◦ f (k) ≥ k. Then we have ((h+ 1)(ι2(∗)), f ) =
(ι2(∗), f ), and this is included inYτ as #Q ≥ #P.

We then prove the following Proposition, from which we immediately obtain Theorem
13 by Theorem 7.

Proposition 15. The simulation(V,C) defined in Proposition 14 satisfies (I), (C1) and
(C2).

P. We omit the proof of (V,C) satisfying (I) and (C1). Below we show that it
satisfies (C2). As there is only one base type nam and one algebraic operationν, it
suffices to prove (a1(ν)N, a2(ν)N) : (V(nam)⇒̇C(nam))→̇C(nam).

We first calculateV(nam)⇒̇ C(nam). It is a triple (Z,N ⇒ T1N,N ⇒ T2N) such
thatZ assigns the following binary relation to each name enumerationσ : P→ P:

Zσ = {(β, f ) ∈ (N⇒ T1N)P× (N⇒ T2N) |

∀τ : Q→ Q, h : σ→ τ, x ∈ Q . (βQ(π(h), x), f (τ(x))) ∈ Yτ}.

Lemma 16. Let h : (σ : P→ P)→ (τ : Q→ Q) be a morphism inE, (β, f ) ∈ Zσ and
x ∈ Q\Im(h). Then we have

(([h, x] + 1)(βP+1(ι1, ι2(∗))), f (τ(x))) ∈ Yτ;

here x∈ Q is identified as a morphism x: 1→ Q in I .

P. From the definition ofZ, we have (βQ(h, x), f (τ(x))) ∈ Yτ. As x ∈ Q\Im(h),
[h, x] : P+ 1→ Q is an injection, and from the naturality ofβ:

I (P,P+ 1)× (P+ 1)
βP+1

//

([h,x]◦−)×[h,x]

��

(P+ 1)+ 1

[h,x]+1

��

I (P,Q) × Q
βQ

// Q+ 1

we obtainβQ(h, x) = ([h, x] + 1)(βP+1(ι1, ι2(∗))).

Letσ : P→ P and (β, f ) ∈ Zσ. We show ((a1(ν)N)P(β), a2(ν)N( f )) ∈ Yσ. The first
component of this pair can be computed by the auxiliary functionµP : (P+1)+1→ P+1
defined by

µP(x) =

{

ι1(i) (x = ι1(ι1(i)), i ∈ P)
ι2(∗) (otherwise).

Then (a1(ν)N)P(β) = µP(βP+1(ι1, ι2(∗))). Thus the goal is rewritten to

(µP(βP+1(ι1, ι2(∗))), λk . f (k)(k+ 1)) ∈ Yσ, (5)

and we prove it by the case analysis onβP+1(ι1, ι2(∗)).
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• EitherβP+1(ι1, ι2(∗)) = ι2(∗) orβP+1(ι1, ι2(∗)) = ι1(ι2(∗)). In these cases, the value
of µP(βP+1(ι1, ι2(∗))) is ι2(∗). The goal (5) now becomes:

∀k ≥ #P . π1( f (k)(k+ 1)) ≥ k.

Let k ≥ #P. We take a finite setQ′ containingk− #P+ 1 elements, and letQ be
P + Q′, τ : Q → Q be an extension ofσ to Q, andx ∈ Q′ be an element such
thatτ(x) = k = #Q− 1. The left injectionι1 : P→ Q is a morphism fromσ to τ
in E, andx < Im(ι1).

We instantiate Lemma 16 withι1 : σ→ τ, (β, f ) andx, and obtain (ι2(∗), f (k)) ∈
Yτ. There are then two sub-cases:

– Sub-caseβP+1(ι1, ι2(∗)) = ι2(∗). From the definition ofYτ, we obtain: for
any k′ ≥ #Q, π1( f (k)(k′)) ≥ k′. We instantiatek′ with #Q = k + 1, and
obtainπ1( f (k)(k+ 1)) ≥ k+ 1 ≥ k.

– Sub-caseβP+1(ι1, ι2(∗)) = ι1(ι2(∗)). From the definition ofYτ, we obtain:
for any k′ ≥ #Q, π1( f (k)(k′)) = k. By letting k′ = k + 1, we obtain
π1( f (k)(k+ 1)) = k.

• βP+1(ι1, ι2(∗)) = ι1(ι1(i)) for somei ∈ P. The value ofµP(βP+1(ι1, ι2(∗))) is ι1(i).
The goal (5) now becomes

∀k ≥ #P . π1( f (k)(k+ 1)) = σ(i).

We takeQ′,Q, τ, x as before; so we haveQ = P+ Q′, #Q = k + 1, ι1 : σ → τ
andx < Im(ι1).

We instantiate Lemma 16 withι1 : σ→ τ, (β, f ) andx, and obtain (ι1(i), f (k)) ∈
Yτ, that is, for anyk′ ≥ #Q, π1( f (k)(k′)) = τ(ι1(i)) = σ(i). By lettingk′ = k+1 =
#Q, we obtainπ1( f (k)(k+ 1)) = σ(i).

The advantage of the proof method by the⊤⊤-lifting is that, although the actual
contents ofṪ X is unclear, it gives a well-defined logical relation for the monadT that is
sufficient to establish a relationship between two monadic semantics of aλc-calculus.
The⊤⊤-lifting also reduces the problem to its essence: the closure property of the
simulation under the algebraic operations in the calculus.Solving the effect simulation
problem without the⊤⊤-lifting would require hand-crafting a suitable logical relation,
but doing so would quickly become difficult, as the concept of the predicate is involved
and the simulation relation we would like to establish is non-trivial.

12. Extendingλc(Σ) with Recursive Functions

We next add the recursive function termµ f x.M toλc(Σ). This term creates a closure
that may recursively call itself insideM; its typing rule is

Γ, f : ρ→ σ, x : ρ ⊢ M : σ
Γ ⊢ µ f x.M : ρ→ σ .

23



We call the extended calculusλfix
c (Σ).

We consider the effect property problem for the class ofλc-structures where the
underlying category is enriched overωCPO, the category ofω-complete partial orders
(which may not have least elements) and continuous functions between them.

An ωCPO-enriched bi-CCCis a bi-CCCC such that each homset is anωCPO, and
the composition, tupling〈-, -〉, cotupling [-, -] and curryingλ(-) of the bi-CC structure
on C are all monotone and continuous. We writeC0 for the underlying ordinary bi-
CCC ofC (that is, we forget theωCPO-structure on each homset).

Let C be anωCPO-enriched bi-CCC. Apseudo-lifting strong monadoverC is an
ordinary strong monadT overC0 such that it has an (0, 1)-ary algebraic operationbt,
and its componentbtI ∈ C(0 ⇒ T I, 1 ⇒ T I) ≃ C(1,T I) at objectI ∈ C is the least
morphism. We write⊥I : 1→ T I for the morphism corresponding tobtI via the above
bijection. We note that GefT (bt) = ⊥0 and⊥I = T?I ◦ ⊥0.

Definition 6. An ωCPO-enrichedλc(Σ)-structure is a tuple (C,T ,A, a) such thatC is
anωCPO-enriched bi-CCC,T is a pseudo-lifting monad overC and (C0,T ,A, a) is a
λc(Σ)-structure.

Let A = (C,T ,A, a) be anωCPO-enrichedλc(Σ)-structure. We define the fixpoint
operator fixI : C(T I,T I)→ C(1,T I) restricted toT I by

fix I ( f ) =
∞⊔

i=0

f (i) ◦ ⊥I . (6)

This satisfies the axioms of theuniform T-fixpoint operatorby Simpson and Plotkin
[31]. As C is a bi-CCC, we can parametrise it as fixJ

I : C(J × T I,T I) → C(J,T I); see
[10] for the detail.

Hasegawa and Kakutani axiomatise the behaviour of the recursive function term
µ f x . M in call-by-value functional languages as astable uniform call-by-value fixpoint
operator[10]. They bijectively corresponds to uniformT-fixpoint operators. Therefore
fix gives adequate semantics to the recursive function term:

A
�

Γ ⊢ µ f x.M : ρ⇒ σ
�

= η ◦ al ◦ fixA~Γ�
A~ρ⇒σ�

(A ~λx . M� ◦ id × al). (7)

The right hand side is the expansion of the stable uniform call-by-value fixpoint op-
erator derived from the uniformT-fixpoint operator (6). The morphism alI ,J : T(I ⇒
T J) → (I ⇒ T J) is the canonicalT-algebra structure overI ⇒ T J, and it is defined
by

alI ,J = λ(ev# ◦ θ′I⇒T J,I );

hereθ′I ,J : T I × J→ T(I × J) is the symmetric version of the strengthθI ,J.
Next, letp : E → C0 be a fibration for logical relations. We formulate the concept

of admissible predicates in the fibrational setting.

Definition 7. We callX ∈ E aboveT I ∈ C0 admissibleif 1) ⊥pX : 1̇→̇X and 2) for all
Y ∈ E andω-chain fi ∈ C(pY, pX) such thatfi : Y →̇ X, we have

⊔∞
i=0 fi : Y →̇ X.
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Theorem 17. Let Σ be a signature,A = (C,T ,A, a) be anωCPO-enrichedλc(Σ)-
structure, p: E→ C0 be a fibration for logical relations and(V,C) be a property over
A. If the property satisfies the conditions (I), (C1) and (C2) in Theorem 7 and

(A) for all b ∈ B, Cb is admissible,

then the answer of the effect property problem forλfix
c (Σ) is yes: for all well-typed

λfix
c (Σ)-term x1 : b1, . . . , xn : bn ⊢ M : b, we haveA ~M� : ˙∏n

i=1Vbi →̇Cb.

P. From the same argument as the proof of Theorem 7, We obtain aλc(Σ)-structure
V = (E, Ṫ ,V, ȧ). To prove the basic lemma, it suffices to show that for anyX ∈ E,
f : Ṫ X →̇ Ṫ X implies fixf : 1̇ →̇ Ṫ X. Let f be such a morphism. Then

(A) =⇒ ∀b ∈ B . ⊥Ab : 1̇ →̇Cb

⇐⇒ ∀X ∈ E . ⊥pX : 1̇ →̇ Ṫ X

=⇒ ∀X ∈ E, i ∈ N . f (i) ◦ ⊥pX : 1̇ →̇ Ṫ X

⇐⇒ ∀b ∈ B,X ∈ E, i ∈ N . σT ,Ab
pX ◦ f (i) ◦ ⊥pX : 1̇ →̇ ((X ⇒̇Cb) ⇒̇Cb)

⇐⇒ ∀b ∈ B,X ∈ E, i ∈ N . nm−1(σT ,Ab
pX ◦ f (i) ◦ ⊥pX) : (X ⇒̇Cb) →̇Cb.

SinceCb is admissible, we have

∞⊔

i=0

nm−1(σT ,Ab
pX ◦ f (i) ◦ ⊥pX) = nm−1(σT ,Ab

pX ◦ fix f ) : (X ⇒̇Cb) →̇Cb.

From this, we obtain fixf : 1̇ →̇ Ṫ X.

Lemma 18. LetC be anωCPO-enriched bi-CCC,T1 be a pseudo-lifting strong monad
overC, T2 be a strong monad overC0 andγ : T1→ T2 be a strong monad morphism.
ThenT2 is also a pseudo-lifting strong monad overC.

P. Let bt ∈ Alg(T1, 0, 1) be the algebraic operation that exists from the definition
of the pseudo-lifting strong monad, and (⊥1)I : 1→ T1I be the least morphism corre-
sponding to the componentbtI . We show that each component ofbt′ = Alg(γ, 0, 1)(bt)
is the least morphism. Let us write (⊥2)I : 1→ T2I for the morphism corresponding to
the componentbt′I . Then we have

(⊥2)I = T2?I ◦GefT2(bt′) = T2?I ◦ γ0 ◦ (⊥2)0 = γI ◦ (⊥1)I .

We show that (⊥2)I is the least morphism. Letx : 1→ T2I be any morphism. Then

x = (µ2)I ◦ γT2I ◦ (η1)T2I ◦ x ≥ (µ2)I ◦ γT2I ◦ (⊥1)T2I

= (µ2)I ◦ γT2I ◦ T1((η2)I ) ◦ (⊥1)I = (⊥2)I .

Theorem 19. LetA = (C,T1,A, a) be anωCPO-enrichedλc(Σ)-structure,T2 be a
strong monad overC andγ : T1 → T2 be a strong monad morphism. Then for any
well-typedλfix

c (Σ)-term x1 : b1, . . . , xn : bn ⊢ M : b, we haveγAb◦A ~M� = (γA) ~M�.
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P. The proof is the same as that of Theorem 12. To apply Theorem 17, it suffices to
check that the propertyC satisfies 1) for anyb ∈ B, ((⊥1)Ab, (⊥2)Ab) : 1̇→̇Cband 2) for
anyb ∈ B, (X, I , J) ∈ K andω-chains of morphismsfi : I → T1Ab andgi : J→ T2Ab
in C such that (fi , gi) : (X, I , J) →̇Cb, we have (

⊔∞
i=0 fi ,

⊔∞
i=0 gi) : (X, I , J) →̇Cb. 1) is

immediate. 2) LetH ∈ C and (a, b) ∈ XH. First, we havegi ◦ b = γAb ◦ fi ◦ a for any
natural numberi. From the continuity of the composition ofC, we obtain





∞⊔

i=0

gi



 ◦ b =
∞⊔

i=0

(gi ◦ b) =
∞⊔

i=0

(γAb ◦ fi ◦ a) = γAb ◦





∞⊔

i=0

fi



 ◦ a.

From this, we obtain (
⊔∞

i=0 fi ,
⊔∞

i=0 gi) : (X, I , J) →̇Cb.

13. Related Work

Filinski is one of the pioneers in logical relations for monads [4], and developed
various techniques to establish relationships between semantics of higher-order lan-
guages with effects [3–7]. In [7, Proposition 3.7] three methods to construct logical
relations for monads are mentioned: 1) WhenT is a monad constructed from the stan-
dard type constructors, such as state monad and continuation monad, then define a
logical relationṪ for T in the same way asT is constructed. 2) For a logical relation
Ṫ for a monadT and a strong monad morphismσ : S → T, the inverse imageσ∗Ṫ
is a logical relation forS. 3) For a family of logical relationṡTi for a monadT, the
intersection

∧

i Ṫi is again a logical relation forT.
The categorical⊤⊤-lifting is technically a particular combination of the methods 1–

3 above (in fibrational category theory). However, what is new about⊤⊤-lifting is that
we usethe simulation/ property we would like to establish on computational effects
to define the logical relatioṅT. This idea is a secret recipe in the proofs of various
results by the precursors of categorical⊤⊤-lifting, such as biorthogonality [9, 21, 26],
⊤⊤-closure [27] and leapfrog method [18, 19]; see also [15].

Under the presence of parametric polymorphism, Møgelberg and Simpson give a
uniform method to lift the computation type constructor ! tobinary relations [24]. Al-
though this lifting is computed inside a logic for parametric polymorphism, it seems to
share the basic idea with⊤⊤-lifting. In a recent work [1], Atkey et al. study the induc-
tion principle for the inductive types involving computational effects. They consider
a lifting of monads to the total category of a general type-theoretic fibration using the
direct image functors and comprehension. This technique isbased on the method to
lift endofunctors across fibrations [8].

Larrecq et al. propose a method to lift a monad onC to the category of subscones
over C using mono-factorisation systems [17]. They also discuss arelational lifting
of monads, and demonstrate that various notions of logical relations for monads are
derivable by their method. We look at how their method lifts amonadT on Set to the
one onPred, the trivial subscone overSet. Their method yields the monad̃T onPred
whose functor part is given bỹT(X, I ) = (Im(Tι),T I); hereι : X →֒ I is the inclusion
function and Im(Tι) is the image ofTι : T X→ T I. For instance, the lifting̃Tp of the
powerset monadTp is given byT̃p(X, I ) = (TpX,TpI ).
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However, simply lifting the monad by their method is insufficient to solve general
effect property problems. Consider threeλc-signaturesΣ1,Σ2,Σ3 whose algebraic op-
erations are declared in the middle of Table 2. We restrict theλc(Σ)-structureA1 from
Example 1 to eachΣi , and call the resultingλc(Σi)-structureBi . We also define a prop-
erty (Vi,Ci) overBi by Vib = Ab (b ∈ B) and the defining equations on the right of
Table 2. We note that the answer of the effect property problem with respect to each
(Vi,Ci) is yes. Let us see what happens if we useT̃p in the proof of Theorem 7 instead

Sig. Algebraic Operations Property (b ∈ B)
Σ1 O = ∅ C1b = ({{x} | x ∈ Ab},TpAb)
Σ2 O = {null : 0→ 1} C2b = ({{x} | x ∈ Ab} ∪ {∅},TpAb)
Σ3 O = {or : 2→ 1} C3b = ({v | v ⊆ Ab, v , ∅},TpAb)

Table 2: Effect Property Problems

of the⊤⊤-lifting of Tp. As T̃p admits the lifting ofbothalgebraic operationsa1(null)
anda1(or), we can successfully construct ˙a in the proof of the theorem. Unfortunately,
we fail at the very last step:̃TpVb= TpAb * Cib.

In the case of the lifting of monads alongπ : Pred→ Set, their method yields the
monad lifting that admits the lifting ofall (

∐n
i=1 1, 1)-algebraic operation as (˙∐n

i=11̇, 1̇)-
algebraic operation. On the other hand, the property we would like to establish on the
computational effects caused byλc(Σ)-programs may not always be closed under every
such algebraic operation, as we have seen in the above example. It remains to be
seen whether lifting by factorisation systems can be used differently to solve the effect
problem in general.

The advantage of logical relations for monads by⊤⊤-lifting is that it does not limit
the form of simulation/ property we would like to establish on computational effects.
Furthermore, Theorem 11 gives a good characterisation of when algebraic operations
are related by the logical relations given by⊤⊤-lifting. On the other hand, it is rather
difficult to check whether non-algebraic operations that manipulate computational ef-
fects, such as Felleisen’sC-operator, are related by the logical relations given by⊤⊤-
lifting; this shall be discussed in a separate paper. Extending our results with recursive
types and handlers for algebraic effects [30] is also a future work.
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