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Abstract

We consider the problem of establishing a relationship betwtwo interpretations of
base type terms of &-calculus extended with algebraic operations. We showttieat
given relationship holds if it satisfies a set of natural dbods. We apply this result
to 1) comparing two monadic semantics related by a strongachomorphism, and 2)
comparing two monadic semantics of fresh name creatiomk’Staew name creation
monad [32], and the global counter monad. We also consigesdime problem, re-
lating semantics of computationafects, in the presence of recursive functions. We
apply this additional by extending the previous monad mismtcomparison result to
the recursive case.

Keywords: logical relation, monad, fibration, computationéieets, T T-lifting,
algebraic operation, generiffect, fresh name creation

1. Introduction

Suppose that two monadic semantigs A, are given to a call-by-value functional
language, and each semantiis (i = 1, 2) interprets a base tygeby a setA;b and
computational fects by a monad’ over the categonpet After comparing these
semantics, we find a relationshifb € A;b x A;b between base type values, and also a
relationshipCb € T1A;b x ToAzb between base type computations. We then consider
the following problem:

For any well-typed termx; : by,.... %, : by v M : band §,w) € Vh
(L <i<n),dowe havefiy [M] (v, ...,Vn), Az [M] (W, ..., W,)) € Cb?

We name this problem ttegfect simulation problemit subsumes various natural ques-
tions that arise when we have two monadic semantics of abgalialue functional
language. For instance,

e The standard interpretation of a functional language withoadeterministic
choice operatoor is given by the monadic semantig® employing the pow-
erset monad. On the other hand, we can use the list monad tgpltee nonde-
terministic choices made by programs; let us call the mansginantics using
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the list monadA,. These semantics interpret the same program in tfereint
ways:

A lor(2,3)+or(3,4)] = {4,5,6}, Azlor(2,3)+or(3,4)] =¢5,6,4,5)

From this, we expect that for all base type progrem A; [M] is the set of
occurrences of elements in the i@ [M]).

e From a monadic semanticd of a language by a monat, we can build an-
other monadic semantic8cps of the same language by thentinuation monad
(- > TR = TR The latter semantics is call&lPS semanticsin [3], Fil-
inski formally established a relationship between monagimantics and CPS
semantics.

e The main theme of the recent work [6] by Filinski is theet simulation prob-
lem; there, some relationships between two monadic seosantia functional
language with recursive types and computatiofigas are studied.

We tackle the ffect simulation problem under the situation where 1) the tional
language is the simply typegi-calculus with products, sumsffect-free constants
andalgebraic operation$28], and 2) the underlying category of a semantics is a bi-
cartesian closed category with a strong monad.

The main theorem (Theorem 7) of this paper givestA@ant conditions to answer
positively to the &ect simulation problem; the answer to thEeet simulation problem
is “yes” if I) the producty; x r2 of the monad units map the values relatedvbtp the
pure computations related 63 I) V is closed under theffect-free constants and Ill)
C is closed under the algebraic operations in Agealculus. The point of the main
theorem is the generality: it holds with any monad, algebogieration and relatiox
andC.

The main theorem is helpful for establishing relationshigisveen various monadic
semantics of call-by-value functional languages. Secidshows a general compari-
son theorem of two monadic semantics related by strong mmeaphisms. This result
subsumes the comparison of the list monad and the powersetdrior nondetermin-
ism, and Filinski’s result comparing monadic semantics @R$ semantics. Section
11 compares two interpretations of new name creation: Stagme creation monad
[32], and a global state monad.

Synopsis.Section 2 presents the syntax of thgcalculus extended with algebraic
operations. After introducing some category-theoreticoepts used in this paper in
Section 3, Section 4 gives the categorical semantics of#fvalculus. Section 5 illus-
trates thegffect simulation problerm a set-theoretic setting. To generalise the problem
to a categorical settings, Section 6 introduces the fibmaticategory theory, which
provides a concept of predicates on objects in a categocyioBer generalises the set-
theoretic &ect simulation problem tdibrational gfect property problemand states
the main theorem (Theorem 7) that give$igient conditions to answer positively to
the fibrational &ect property problem. Our proof hinges on a constructiorogf-I
cal relations for monads, and in this paper we employ a tegtencalledcategorical
TT-lifting [14], which is a semantic formulation of theapfrog methodhtroduced by



Lindley and Stark [18, 19]. Section 8 reviews the categdrica-lifting, then gives
a characterisation of when the logical relations for moramsstructed byr T-lifting
are closed under a given set of algebraic operations. $e2i®mthe proof of Theorem
7. Section 10 and 11 applies Theorem 7 to establish reldtipadetween monadic
semantics of tha(X)-calculus. In Section 12 thefect simulation problem is consid-
ered under the presence of recursive functions. In Sec8aa the conclusion of this
paper and a comparison with related works.

This article is the journal version of [16]. We extend alggbroperations to have
both an arity and ao-arity (which is aparameter typén [29, 30]). We also correct the
mistake in the interpretation of the recursive functiomtgrf x . M in [16]; the correct
one is presented as equation (7).

Preliminary. Vector notation, such ax, abbreviates a sequence. .., X,. The length
of the sequence is written By|.

2. The A¢.-Calculus with Algebraic Operations

We adopt the simply-typedt-calculus with &ect-free constants and algebraic op-
erations as an idealised call-by-value functional langudg Section 12 we add the
recursive function termgf x . M to theA.-calculus.

Let B be a set of base types. We uséand its variants) to range ovBr We define
the set TypB) of types by the following BNF:

Typ(B) > p =D l_](p,---,p)l ]_[(p,---,p)lp=>p-

We write 1 for[](), andn(n € N) for [[(1, ..., 1). Binary products and binary sums are
denoted by the usual infix operatotand+. We define the subset GTyRY < Typ(B)
of ground types by

GTyp®)>8:=bl [ [6....8)1 | |6...-.5).
Definition 1. A Ac-signatureX is a tuple
¥ =(B,K,0,ar,car: KuO — GTyp(B))

whereB is a set of base type& andO are respectively disjoint sets of symbols for
effect-free constants and algebraic operationsgamhdcar are respectively functions
giving input and output types tdfect-free constant symbols, and arities and co-arities
to algebraic operation symbols.

In this paper, we usually consider a single signafuiia a discussion. We thus use
B, K, O, ar, car to refer to each component of the signattiria the context. We some-
times declare a.-signatureX by the following notation:

S=(B, K={.k:f—f...0, O={..00:6—5..)



The declared signature is such that the set of base tyfgaisd the other components
are given by
K={..k...} s O={..05..4 ar(k) =i, car(k) = g, ar(oj) = ¢j, car(oj) = 5.
Let X be ad¢-signature. We define the computational lambda calcid(®). The
set of raw terms is defined by the following BNF:
M = X|kM[o,M[(M,....,M) |7 M|
GtMI6(M,Xx:p. M,....,x:p. M)|AX:p. M| MM
wherek, o ranges ovekK, O respectively. The type system &f(X) extends the one for

the simply typed lambda calculus with products and sumsdsge[22]). The typing
rules fork M ando, M are:

'+ M:ar(k) '+ M : (ar(0) = p) x car(0)
'+ k M: car(k), F'ro,M:p

The following inference for a4, 1)-ary algebraic operationm
rrM:B=p
'ro,M:p
is the syntactic sugar for the following derivation:
r-M:B=p I'r():1

reMQ):B=p)x1
I'ro,(M,():p

It is also convenient to treat an,(l)-ary algebraic operation in the generalised sense
as a simpla-ary algebraic operation. The inference:
'rMi:p ... THFMy:ip
I'ro,(Myg,...,Mp) :p

is the syntactic sugar for the following derivation:

I'rMi:p I'rMy:p
Lx:nx:1rMiip ... IxXinX:1rMy:p

OLX:NES(X i 1. Mg,...,. % 1. Mp) i p
FrAX:N.6(X 1. My,..., % 1. Mp:Ni=p T+(:1
Fr@Ax:n.6(xx1:1.Mg,....%:1.Mp),0)):("=p)x1

FEOp(AX:M. (XXt 1. M1,..., % 1. Mp),(0) :p

3. Categorical Preliminary

We regard every set as a discrete category. Whisa category, by € C we mean
thatl is an object inC. We fix a distinguished elementand let{x} be the terminal
object (denoted by 1) iGet



A bi-cartesian closed (bi-CC) structumn a categonyC consists of a terminal ob-
ject1, aninitial object 0, and an assignment of a binary pev@d < J, (-, -) 3, (w113, (T2)1.3),
a binary coproduct (+ J, [-, 1.3, (t2)1.3, (¢2)1.5) and an exponential (= J, 4, 5(-), €M )
to eachl,J € C. We usually omit annotating objects on the components & ®i-
structures. In this paper we defindaCCCto be a pair of a categorg and a bi-CC
structure onC. We write | : | — 1 (7 : 0 — 1) for the uniqgue morphism to the
terminal (resp. from the initial) object. The inverse of tharying operaton(-) is
given byA~1(f) = evo (f x id). We fix a method to extend the terminal (initial) object
and the binary (co)product to finite (co)products.

LetF : C — D be a functor between bi-CC@5andD. The functorF preserves
finite productsif l¢; : F1 — 1 andl,y = (Fry,Frp) @ F(I xJ) — FI x FJ are
isomorphisms. The functdr strictly preserves the bi-CC structuie! 1,1, ; and 2o :

0 - FOandmj = [Fu,Fep] @ FI + FJ — F(I + J) are the identity morphisms,
and moreoven, ; = A(F(eV) o |f=l>J,|) :F(l = J) —» (FI = FJ)is also the identity
morphism. One can easily show tHatstrictly preserves the bi-CC structure if and
only if F commutes with the components of the bi-CC structure, than®bjects:

F1=1 F0=0, FIOJ)=FIOF) (Oe{x+=})
and on morphisms:
F(f,o)=<Ff,Fg), F[f.g]=[Ff Fgl, F((f))=a(Ff),

Fly =lri, F2 =%, Fm=m, Fu=4, FEey=ev (i=12).

Let C be a bi-CCC. Astrong monad/~ on C is a pair of a monadT(, n, ) and a
natural transformatio6 5 : | x TJ — T(I x J) calledstrengthsuch that

Oixak

IxTI 2o TAx1)  (IxI)xTK T((1 x J) x K)

\ \LT”Z \LaSSOQJ,TK T(aSSOQ.lK)l
2

T I x (IxTK) — | x T(I x K) — T(I x (I x K))
%03k 01,9xk
| |
I xJ—2e | xTJ | x T2 = IxTJ
_ 019 Ty lé’u
T(1 x J) T XTI =T x ) 55~ T(1 x )

here assqgk : (I x J) x K — | x (J x K) is the associativity morphism. We call the
following functionKleisli lifting associated to the mon&d

(-)*:CU,TY->C(TLTI), fF=pujoTH.

Let 7 = (T.n,u,60) be a strong monad o€. In [28, 29], Plotkin and Power
presented two forms of the operations that manipulate ctéatipnal dfects: generic
effectsandalgebraic operationsLet D,C € C. A (D, C)-ary generic gfectfor 7 is



just a morphisne : C —» TDin C. Next, a O, C)-ary algebraic operatiorfor 7 is a
natural transformation
a:D=>T)->(C=TI)

such that the following diagrams commute (Proposition @])f2

5 D
|x(D:TJ)i>D:|xTJi”>DzT(IxJ) Do T2 —4 DTl

Ix(C=>TJ)—>C=>IxTJCTm>C=>T(IxJ) C:TZI?JC:TI

st

here, sf; : I x (K = J) — (K = | x J) is the morphism defined by|st = A(I x
evo assogk=yk). We callD andC thearity and theco-arity of «, respectively. The
terminology “co-arity” represents the variance that is dtipgosite of an arity; in [29,
30] parameter typés also used. We write Alg(, D, C) for the collection of D, C)-ary
algebraic operations fof. The definition of algebraic operations with respect to a
pair of objects is due to [29], and generalises the arity fratural numbers [28]. An
n-ary algebraic operatiom(e N) bijectively corresponds to 4 [}, 1, 1)-ary algebraic
operation.

We review the correspondence between gendfiects and algebraic operations
studied in [29]. We introduce some auxiliary functions amarpiisms. The function

sw? 1 C(1,d= K) > C(3 1 = K), sw'(f) = A7(F) o (m2, 1))

swaps the order of arguments of a morphism. Doing this twietdy the original
morphism, that is, spi(sw);’(f)) = f. Next, the function

nmj: (C(|,J) - (C(l,| = J), nm j = /l(f 071'2)

converts a given morphisth: | — Jto a point (which we call in this paper itameg
in | = J. This function is bijective. The morphism

Ki;:(1=T) > (TI=TJ), Ki;=2evobora)
internalises the Kleisli lifting. By swapping its argumgnive obtain
ol Tl ((1=TY=TI, o ?=sw; (K7 ),

which corresponds to thH@nd operator in Haskell.
The correspondence between genefieas and algebraic operations is given by
the following assignment:

Aop’” : C(C,TD) — Alg(7,D,C), Aop’ (&) = sweP=T (0L o €).
It has the inverse Géf: Alg(7", D,C) — C(C, T D) given by

Gef” () = nmchp(ep o Nmp 1o (D))



Let7” = (T',7, ', 8) be another strong monad @h A strong monad morphism
from 7~ to 7 is a natural transformatiop : T1 — T’I such that

6
| ——=TI T2| - T I XTI —2=T(I % J)
>\ l)’l Tml l)’l IXle l)’li
|
Tl T == T ——=TI I xT'J——=T'(I xJ)
e | 6’I.J

It determines the following function Alg( D, C) : Alg(7",D,C) — Alg(7’, D, C):

Alg(y, D,C)(@) = Aop” (yp o Gef’ (a)).

4. The Semantics of thel.-Calculus

In this paper we consider the semantics of Ag&)-calculus in a bi-CCC with a
strong monad.

Definition 2. A bi-cartesian closed(X)-structureis a tupleA = (C, 7, A, a) where
C is a bi-CCC,7 is a strong monad off, A is a functor of typeB — C; before
continuing further, we extend to the functorA[[-] : GTyp(B) — C by

El El
Al = A|[[B]=]]ats1. | 1#)]-=][A1e.
i=1 i=1

Continuation of the definition is as followsa assigns to eack € K a morphism
a(k) : Afar(k)] — Alcar(k)], and to eaclo € O an algebraic operatioa(o) ¢
Alg(7", Alar(0)], A [car(o)]).

In this definition, we require th&t hasall exponentials, but this requirementis stronger
than what is needed to interpret thgX)-calculus. In fact it is sfiicient forC to have
Kleisli exponentialswhich are representations 6f— x 1,TJ) : C°°? — Set[25].
The reason for this requirement is a technical one: at thimmem we do not know
how to perform thecategorical T T-lifting [14] over the categories with only Kleisli
exponentials. Still, many natural concrete semantics ®@fiffX)-calculus are covered
by bi-cartesian closed.(Z)-structures. Below, we simply usig(Z)-structure to mean
a bi-cartesian closed.(X)-structure.

We write Ay x A, for the evidentd(X)-structure such that its category is given
by the product of the categories 8f; and A,. Eachac(X)-structureA determines a
natural interpretatiotAl [-] of well-typed A.(X)-terms in the category oft (see e.g.
[2]). Effect-free constants and algebraic operations are intexgbest follows:

ALKM)]
Ao, )]

T(a(k) o ALMI
(1 (@(0) A" © AIMI



5. Effect Simulation Problem

The main problem we consider is tBfect simulation problemWe first introduce
a set-theoretic version of it. L& be al.-signhature andA; and A, be A(X)-structures
overSet A simulationbetweenA; andA; is a pair ¥, C) whereV andC areB-indexed
families of binary relations such thatb ¢ A; [b]l x A, [b] andCb C T1A; [b] x
ToA [[b]l. The dfect simulation problem is the following:

Suppose that a simulatioV,C) betweenA; andA; is given. Then for
any well-typedic(Z)-termx; : by,.... X, : by + M : band {,w) € Vb
(1 <i <n), do we havefd; [M] (V), A2 [M] (W)) € Cb?

Example 1. Let T be alc-signature such th@ = {null : 0 — 1, or: 2 — 1}; we
leave the seB of base types and of effect-free constant symbols unspecified because
they are irrelevant in this example. These algebraic ojpermenable the following
inferences (see Section 2):

'rMi:p THM2:p
Frnull,):p  Tror(My,Mp):p .

We regard them as the primitives for nondeterministic cotatin.

The standard semantics of thgX)-calculus is given by tha.(X)-structureA; =
(Set 7p, A, a1), whereT, is the finite powerset monad, : B — Setis any functor,
anda; assigns a function to eaclffect-free constant symbé&le K and the following
algebraic operations taull andor:

ag(null)i (f)(+) =0, ay(or)i(f)() = fea()) U f(ea(+)).

On the other hand, we may represent nondeterministic chbigénite lists instead
of finite sets. This representation corresponds to the seesaf thel(X)-calculus by
the A¢(X)-structureA, = (Set Tm, A, &), whereTr, is the free monoid monad, arad
is the assignment such that(k) = a;(k) for all k € K, and it assigns the following
algebraic operations taull andor:

a(null)i (f)(x) =€, a(on)i(f)(x) = fa(+)) - ().

We expect that for any well-typed.(X)-termx; : by,..., % : by + M : band
v; € Aby, the denotatiotA; [M] (v1, ..., V) gives the set of possible return values listed
up in A2 [M] (va, ..., Vn). Thatis, we expect that the answer to tlkeet simulation
problem with the simulation\{ C) defined below is yedranges oveB).

Vb = {(v,v)|veAb}
Cb {(X,1) € To(Ab) X Tm(Ab) | X = the set of elements in.

6. Fibrations for Logical Relations

We consider the general situation where the underlyinggoaies ofA.-structures
are general bi-CCCs. To formulate the concept of a relateswéen two objects from



different categories, we first formulate the concept of a présliméer an object in an
arbitrary category in terms dibrational category theorythen derive the concept of a
relation as a predicate over a product category.

We give a brief definition of fibrations and related concepeg [12] for the full
details. Letp : E — C be a functor. We call its domairit] total category We say
thatX € E is above le C if pX = I, and similarly for morphisms. Thigbre category
overl € Cis the subcategor, of E consisting of objects aboves C and morphisms
above igl.

We next assume that is faithful. Then each fibre categofi is a preorder. In
this situation, we regard the objects abdwaes predicates oh andE, as the preorder
of predicates orl. We now introduce a notation frequently used in this paper F
X,Y € Eandf : pX — pY, we definef : XY to be the following proposition:

If X > Y. p(f) = f.

Its intuitive meaning is “thef-image of any element satisfying satisfiesy”. When
f : XY holds, the morphisnfi that exists abové is unique. We call it thavitnessof
f : X5Y. We note thaX < Y holds in the fibre preorddf, if and only ifid, : X > Y.

Definition 3. A partial order bifibration with fibrewise small products a faithful
functorp : E — C such that:

(Partial Order) Each fibre category is a partial order.

(Fibration) * Foranyl € C,Y € Eandf : | — pY, there existX € E abovel such
that f : XY and the following property holds: for arg/e E andg : pZ — I,
fog:Z->Yimpliesg: Z5X.

This property andk, being a partial order imply that is unique; hence we write
f*Y for X, andfY for the witness of : f*Y->Y. Furthermore, forany : | — J
in C, the mappingr € E; — f*Y € E, extends to a functof* : E; — E,;. We
call it theinverse image functofalong f). Intuitively, f*Y corresponds to the
predicatgi € I | f(i) € Y} onl.

(Bi-) Each inverse image functdr has a left adjoint called thdirect image functor
(along f), denoted byf.. Intuitively, for X € Eandf : pX —» JinC, f.X
corresponds to the predicdtgx) | x € X} on J.

(Fibrewise Small Products) Each fibre category has small products, denoteg\by
and the inverse image functors (necessarily) preserve.them

We show a couple of properties of partial order bifibratipnsE — C with fibrewise
small products.

Lemmal. Forany YZ € E, | € C and morphismspZ—g> I . pY in C, we
have fog:Z>5Y < g:Z-> f*Y.

1This definition of fibration exploits the assumption tids faithful. The concept of a fibration is defined
differently for an arbitrary functor [12, Definition 1.1.3].



Proor. ( = ) Immediate from the definition of partial order bifibratiofk=) As
f:f*Y S5 Y, wehavef og:Z5Y.

By letting pZ = | andg = id;, we obtainf : Z>Y <= Z < f*Y as a corollary
of this lemma. Note that in the fibration: Pred — Set, this property translates to
“the f-image of elements satisfying satisfiesy iff X is a subset of the inverse image
f-1Y.” We also obtaing o f)* = f* o g*, because for alt, Y € E, we have

Z<(gof)Y & gof:ZY < f:Z50gY < Z<(g),

hence by letting be @ o f)*Y andf*(g*Y) we obtain the equation.

Lemma?2. Forany YZ € E, | € C and morphismspZ—g> I _r pY in C, we
have fog:Z>5Y < g: f.Z>Y.

Proor. Immediate from the assumption thiatis the left adjoint tof *.

Lemma 3. Forany f: | — Jin C and a set-indexed familyY;}ica of objects inEj;,
we havgVie A. f: X5Y) & f: X5 Aica Vi

Proor. We use Lemma 1 and the preservation\oby the inverse image functdr.

VieA.f: XY, & VieA.X<fY,

— Xs/\f*Yi:f*[/\Yi]
ieA ieA
= f:xs/\vi.

ieA

In the categorical semantics of type theories and progragtanguages, the con-
cept of a logical relation for a type constructor, such asra eua function space, is
often provided by the categorical structure correspontiiriy such as a coproduct or
an exponential, in the categofyof predicates, and moreover the corresponding cat-
egorical structure istrictly preservedoy a functorp : E — C. This is the central
observation in [20, 23], and Hermida showed that a bi-CCc#itine on the total cat-
egoryE of a fibrationp : E — C can be constructed whamis a (bi)fibration with
certain structures [11].

When solving the #ect simulation problem, we will use logical relations foogs
ucts, sums and arrow types. We thus consider the fibrationseuotal categories have
bi-CC structures that are strictly preserved by the fibretioe call thenfibrations
for logical relationsin this paper.

Definition 4. A fibration for logical relationsover a bi-CCCC is a partial order bi-
fiborationp : E — C with fibrewise small productssuch thatk is a bi-CCC andp
strictly preserves the bi-CC structure.

2We actually only use fibrewise products up to the cardinalftg setB of base types.
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Notational convention: we write the components of the bigbd@cture orE with dots
ontop, likel,!,0,? X, (-,-), 7ti, +, [, -], i, =, €V, A(-).

In [12, Section 9.2], constructing a bi-CC structure on thialtcategory of a fi-
bration is discussed. The following theorem summariseseleant constructions
presented there into one:

Proposition 4. LetC be a bi-CCC and p E — C be a partial order bifibration such
that each fibre partial order categof; is a bi-CCC with small products, every rein-
dexing functor f (strictly) preserves the bi-CC structure, and p has simptapcts,
that is, the inverse image functor along the first projectiqn | x J — | has a right
adjointV, ; : E;«; — E, satisfying Beck-Chevalley condition. Then p is a fibratmm f
logical relations.

Proor. We write (T, A, L, V, D) for the bi-CC structure on each fibre category. We
define the bi-CC structure dias follows:

1

= T
O = 1o

XXY = mXAryY

X+Y = ().XV (.Y

X=Y = VYpxspypx(mX D evy).

For the verification of the bi-CC structure, consult [12, {8®#T9.2].

Corollary 5. The subobject fibration of the presheaf categitySef over a small
categoryC is a fibration for logical relations.

Proor. The fibration satisfy all the conditions mentioned in Prsifion 4; see [12].

Example 2. [12, Chapter 0] We define the categd®yed by the following data: an
object inPred is a pair ¥, 1) whereX is a subset of, and a morphism fromX, )

to (Y, J) is a functionf : | — J such that for any € X, f(i) € Y. This category is
isomorphic to the category of subobjectsSeft[12, Section1.3]. We now consider the
functorr : Pred — Setdefined byr(X,1) = | andx(f) = f. This is faithful, and
the fibre categoryred, is isomorphic to the poset !(22). One can easily check that
the following gives the inverse image functor along a fumeti : | — J and its left
adjoint, the direct image functor:

(LI =UxI O e YLD £(X 1) = ((f(X) [ xe X}, J).

Finally, every fibre category has small products given byitiersection. Therefore
is a partial order bifibration with fibrewise small products.

From Corollary 5, we obtain the bi-CC structure oPeed that is strictly preserved
by 7; see also [12, Exercise 9.2.1]. The object part of the bi-€Qcture is given as

11



follows:

1 = (L1

0 = (0,0)
XDx(Y.J) = ({vimV) e Xm(v) € Y}, 1 x J)
XD+ = (¥ IxeXjufnl)lye YLl +J)
X D=L = ((flvxeX. f(X) e VYLl = ).

To summariser is a fibration for logical relations.

A useful construction of fibrations for logical relations by pullback (change-of-
baseg along finite-product preserving functors. In this papeg, specify the pullback
(F*E, F*p, g) of a faithful functorp : E — C alongF : B — C (see diagram below)

FE—>E

F*pl lp

B—F>C

by the following data: an object iR*E is a pair K, 1) such thatX € E,| € B andX

is aboveF1, and a morphism fromX, 1) to (Y, J) is a morphismf : I — J such that
Ff: X Y. The functorF*p sends X, I) to I, andf to itself, whileq sends X, 1) to

X andf to its witnessf. We note thaF*p is again faithful, and the fibre category of
(F*E), is isomorphic tdEg, .

Proposition 6. Let B, C be bi-CCCs, p. E — C be a fibration for logical relations
and F: B — C be a finite-product preserving functor. Therig=: F*'E — B is a
fibration for logical relations.

Proor. The following gives the inverse image functor and the diierage functor
alongf: 1 - JinB:

£V, 3) = (FY, ), £OGT) = (EX ).

Each fibre categoryH*[E), has small products as it is isomorphic to the partial order
categoryEg,. We only present the object part of the bi-CC structurB 1.

i = ()l

0 = (('r0).0.0)
XD%M) = (*(XxY).1xJ)
XDV = MX+Y),1+J)
XN=(J) = (M(X=Y),1=)

Here,l, m n are the canonical morphisms from Section 3.
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Example 3. Three more examples are depicted below.

SubS¢C) — Pred BRel — Pred Kg —— Sub([B, Sef)
pl (1) lﬂ Pl 2 Lﬂ pt (3) l
C W Set Sef — Set C —F> [B’ Set]

1. Thesubscong23] over a bi-CCCC is the categorpubSdcC) at the vertex of the
pullback ofr : Pred — Setalong the global element funct@(1, -) : C — Set
The legp : SubScC) — C is a fibration for logical relations.

2. We pullbackr along the binary product functor : Sef — Set The category
BRel at the vertex of the pullback is explicitly described asdalé: an object is
atuple K I,1”) whereX c | x I’, and a morphism fromX, I, 1") to (Y, J, J) is a
pair (f,g) of functionsf : | - Jandg: I’ —» J suchthatf xg: X > Y. The
leg p : BRel — Set is a fibration for logical relations.

3. By pulling back the subobiject fibration of a presheaf catgglong a finite-
product preserving functdt : C — [B, Sef, we obtain a fibratiorp : K —» C
for logical relations. This construction will be employed$ection 10 and 11.
An object inKg is a pair ¥, I) of an objectl in C and a subpresheaf of FlI,
and a morphisni : (X,1) — (Y, J) in K is aC-morphism such tha& f : X5Y;
this is equivalent to that for ariy € B andx € XH, Ff(x) € YH.

The object part of the bi-CC structure &% is given as follows (here we use a
meta-lambda notationH € B . {...} to define the presheaves on objects):

1 = (AHeB.{x},1)
0 = (AHeB.0,0)

X Dx(Y,J) = (AHeB.{v|Fry(v) € XH,Fra(v) € YH}, | x J)
XD+ = (AHeB.{Fu(v)|ve XHYU{Fwu(v)|ve YH}, I +J)
XN=>(J) = (AHeB.{f|YH €B,h:H—>H,xeXH .

FEeVw o (20w (F(I = D(h)(f),x) e YH}, T = J).

This bi-CC structure is a general form of Kripke logical teas with varying
arity [13].

7. Fibrational Effect Property Problem

Having abstracted the concept of a predicate in terms otiimal category theory,
we consider thébrational gfect property problemwhich subsumes thefect simula-
tion problem. LetA = (C, 7, A, a) be ai(X)-structure ang : E — C be a fibration
for logical relations. ApropertyoverA is a pair ¥, C) of functorsV,C : B — E such
thatpoV = Aandpo C = T o A that is, for anyb € B, Vbis aboveAbandCbis
aboveT (Ab). The fibrational &ect property problem is:

Suppose that a property,(C) overA is given. Then does any well-typed
Ac(X)-termxq 1 by, ..., % 1 by - M : b satisfyA[M] : ]’Iin:th - Cbh?
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We then define thébrational gfect simulation problerbetween twolc(Z)-structures
A1 and A to be the fibrational fect property problem ovefl; x A,. We also call
the property overA; x A, simulationbetweenA; andA,. The set-theoreticfiect
simulation problem in the beginning of Section 5 ugesBRel — Sef in Example 3
as the fibration for logical relations.

The choice of a fibration for logical relations depends orpttoperty we would like
to establish on the semantics.R{X). For instance, when the property is parametrised
by a categoryB, the concept of a predicate with which we can naturally esptie
property would be provided by the pullback calculated infagpée 3-3. This is indeed
the case when comparing two monadic semantics oftb@lculus in Section 11. At
this moment, however, there seems no general guidelinéhfursing the fibration for
logical relations.

When a property\(,C) is given, we extend/ to the functor of typeV[-] :
GTyp(B) — E in the same way as we did in Definition 2. We note that for all
p € GTyp(B), Vo] is aboveA [o].

Theorem 7. LetX be adc-signature,A = (C, 7, A, a) be ai.(X)-structure, p: E —» C
be a fibration for logical relations angV, C) be a property overA. If the property
satisfies the following three conditions:

(I) forallb e B,nap: Vb Cb,
(C1) forallk € K, a(k) : ‘V[ar(k)] = V [car(k)], and
(C2) forall o € O and be B, a0)ap : (V [ar(0)] = Cb) = (V [car(o)] = Ch),

then the answer of thefect property problem for.(Z) is yes: for all well-typedi(Z)-
term g : by,..., % 1 by F M : b, we haveA [M] : []i_,Vh = Cb.

Our proof of this theorem hinges on the technique catigégorical T T-lifting [14],
which is a semantic formulation of Lindley and Stark’s leagfmethod [18, 19]. After
reviewing this technique in the next section, we prove Theor in Section 9.

8. Categorical TT-Lifting

Let C be a bi-CCCJ be a strong monad ovét andp : E — C be a fibration
for logical relations. We formulate the concept of a logication for7” as a strong
monad7 = (T, n, i, 6) overE such that

P(TA) =T(PA. Pix =7Tpx.  Pitx = Hpx.  Pdxy = Gpxpy-

We call sucty™ alifting of 7.

The main technical tool we use is tlwategorical TT-lifting in [14], which we
review below. It is a method to construct a liftingdf and it requires as a parameter a
pairR = (R, S) of functorsR: A - C,S: A — EfromasetA suchthal cR= poS.

In other words, the parameter is a family of objel§Ri, Si)}ica such thatSiis above
T(Ri). TheTT-lifting of 7 with respect tR is defined as follows. LeX € E be above
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| € C. We first defineX™™® ¢ E aboveT | to be the inverse image oK(= Si) = Si
alongo "

YTTA) oo >(X='>SD='>Si E

TI——— (I = T(Ri)) = T(Ri) C

O_'T,Ri
|
We then defind X by the following fibrewise product:
TX=/\XT0. (1)
ieA

Proposition 8 ([14]). Let X Y € E.

1. For all morphism f inC, f : X 5 Y implies Tf: TX 5 TY.

2. We haveypx : X 5 TX,upx : TTX 5 TX andfpxpy : XX TY 5 T(XXY).

From Proposition 8-1, for a morphisi: X - Yin E, we defineTf to be the witness
of T(pf) : TX 5 TY. We similarly define morphismsy; jix, 6xy in E to be the
witnesses of the statements in Proposition 8-2. The fa¢tgha faithful andT is a

monad implies immediately that all the monad laws holdTfor

Proposition 9 ([14]). The assignment X TX defined by(1) uniquely extends to a
lifting 7 = (T, n, 1, 6) of 7.

Below we show some properties ab@uthat are essential to our proof of Theorem
7. The first proposition gives a fiicient condition forT X to be included irS i.

Proposition 10. For any i A and X< E above Rie C, ngi : X->SiimpliesT X < Si.

Prook. As TX = Aica TTTOX, it is sufficient to showTTT®X < Si. Let us write
n : X — Sifor the witness ofjr; : X = Si. Then inE we obtain a morphism

o (X=8)=S) éwlid.nme)ol)
- 5

(X2 S)=Si

TTT(i)X
which is aboveevo (id, nm(ri)o!) o ;"' = idrri. ThereforeTTTOX < Si,

The next theorem characterises when we can lift algebraicatipny generic &ects
for 7 to the T T-lifted monad7 .

Theorem 11. Let p: E — C be a fibration for logical relations]” be a strong monad
onCandR = (R: A - C,S: A - E) be a parameter forr T-lifting. For any
D,C € E anda € Alg(7, pD, pC), the following are equivalent.

1. Foralli e A, agi: (D= Si) - (C= S)).

2. Gef (@) :C 5> TD.
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3. There is an algebraic operatioa € Alg(7, D,C) such thatax is aboveapx
(sucha is unique from the faithfulness of p).
4. Porall X e E, apx : (D=TX) > (C=>TX).

This theorem says that in order to check that an algebraitpe has a lifting (The-
orem 11-3), or the corresponding generfteet is related by (Theorem 11-2), it is
necessary and fiicient to check that the paramet&; §) of the TT-lifting is closed
under algebraicféects (Theorem 11-1).

Proor. First, asp strictly preserves the bi-CC structure afds a lifting of 7, we have

p(sw(f)) = sw(pf), p(nm(f)) = nm(pf), p(AoP’ ()x) = Aop” (PE)px.
(1 < 2)We have:
VieA.agi:(D=Si)->(C=S))
Vi eA.o-ZI’DRioGefr(a) :C5((D=Si= Sj

Vie A.Gef’ (@) : C 5 (o75)" (D=S) > S)

Gef (a): C - A(a’g,»fi)*((o = Si) = Sj)

ieA

— Gef (e):C>TD.
(2 = 3)Leté: C — TDin E be the witness of Géf(a) : C > TD. Then we have
p(Aop” (€)x) = Aop” (Gef” (@))px = @px, meaning that Aop(€) is the one in question.
(3 = 4)Immediate. (4= 2) Letap be the witness afp : (D=TD)->(C=TD).
Then the morphism ng%-rD(dD onmp 1p(7p)) : C = TDInE is above Gef ().

111

9. The Proof of Theorem 7

We are ready to prove Theorem 7. We considerthelifting of 7~ with the pair
R=(A:B— C,C: B - E) of functors from the seB of base types as the parameter.
From Proposition 8, we obtain a strong morfadverE which is a lifting of 7. We
now define an assignmeats follows:

1. For eackk € K, we definea(k) to be the witness a(k) : V [ar(K)]—>V [car(K)]

that exists from the assumption (C1).

2. For eacto € O, we definea(o) to be the uniqueY [ar(0)],V [car(o)])-ary

algebraic operation for” abovea(o) that exists from the assumption (C2) and
Theorem 11-3.

Therefore the tuple) = (E, 7V, ) is a1.(Z)-structure. Asp preserves all relevant
categorical structures, induction on terms shows thatlfevell-typed A.(X)-termx; :
P1,---> %0 - pn F M I p, we have

Cn o
AL : [ [ VIl =TVl
its witness isV [M]. Particularly, when all types are base types, we obtain
Cn _
AIMI : [ | Vb5 T(Vb) <Chb,

The last inequality is from the assumption (I) and PropositiO.
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10. Hfect Simulation by a Monad Morphism
Monadic semantics are often relateddtsong monad morphisms

Definition 5. Let X be adc-signature,A; = (C, 71, A, a) be ad(X)-structure 7> be

a strong monad off andy : 71 — 72 be a strong monad morphism. We define the
imageof A; alongy to be thel (X)-structureyA; = (C, T2, A, y(a)), wherey(a) is the
following assignment:

y(@)(k)
¥(2)(0)
Theorem 12. Let X be aAc-signhature A = (C, 71, A, a) be ad(X)-structure, 7> be

a strong monad o andy : 71 — 7> be a strong monad morphism. Then for any
well-typedi(X)-term x : by, ..., %, : bh v M : b, we haveyap o A[M] = (yA) [M].

ak) (keK)
Alg(y, Alar(o)], Al[car(o))(a(0)) (o€ O).

Proor. We assume that is small without loss of generality; if not, we confine our-
selves to a small full subcategory©@fthat contain#\b, 1, 0 and is closed undey, +, =
,T1, Ta.

We pullback the subobject fibratidub([C°P, Sef) — [C°P, Sef along the finite-
product preserving functdd : C2 — [C°P, Sef defined byD(l, J) = yI x yJ; here
y : C — [C°P, Sef is the yoneda embedding.

K — Sub([C°P, Sef)

|

C? —5 = [C°P.Sef

From Proposition 6, the leg: K — C? in the above diagram is a fibration for logical
relations. An objectirK is a triple X, 1,1”) wherel, 1’ € C andX is a subpresheaf of
yl x ylI’. A morphism from K, 1,1”) to (Y, J, J’) is a pair ,g) of f : | —» Jandg:

I” = Jin C such that for anH € C and k1, x2) € XH, we have € o X;,go xp) € YH.
The exponential ik is given as follows (see Example 3-3):

XLIN=>(Y.JJY) = (AHeC.{(f,g)eCH,l = )xCH,I" = T)]|
YH € C,h:H — H,(x,y) € XH".
(evo(f oh,x),evo(gohy)) e YH],
I=J1'=17)

We define a simulation C) betweenA andy.A by

Vb= (1H € C. {(f, f) € C(H, Ab) x C(H, Ab) | f : H — Ab}, Ab, Ab)
Cb=(H € C . {(f,yap o ) € C(H, T1(Ab)) x C(H, To(Ab) | f : H — T1(Ab)},
T1(Ab), T2(Ab)).
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They are objects ik, and satisfy (I) and (C1). For (C2), below we &t ar(o) and
¢ = car(0). We define an auxiliary obje€@d € K by
Cd=(H e C . {(f,yaay o T) € C(H, ToA[d]) x C(H, T2 A[d]) |
f:H - TiALd]), TiALdD, ToALd]).
We easily see that for any € Alg(7-, A [[d] , A [cl), we have
(Gef" (@), yapq) © Gef"*(a)) : VIc] - Cd.
We next show (below annotations of objects are omitted)
(ev™ o (61),eV? o (62)) : (V[d] = Cb) x Cd = Ch. )
Here ()% is the Kleisli lifting of 75 (i = 1, 2). This is sificient to derive (C2), because
(ev™ o 61,ev? 0 6,) : (V[d] = Cb) x Cd - Cb
& (7,722 - Cd 5 ((V [d] = Cb) = Cb)
= (07" o Gef" (@), 072 P 0 y 0 Gef'*(a)) : V[c] - ((V[d] = Ch) = Ch)
& (@an, Alg(y, Ald], Alch)(@)ab) : (Vd] = Cb) = (Vcl = Cb).
By unfolding definitions, (2) becomes the following progasi: for anyH € C, f; :
H - (Ald] = Ti1Ab),f, : H - (A[d] = T,Ab) andx : H — T1A[d], the
equation
yoe\ﬁ1091o(f1,x)=e\f20920<f2,)/OX) (3
holds under the following assumption:
YH e C,h:H - H,y: H — A[d] .evo(f,oh,y) =y oevo (f; oh,y).
We thus prove this proposition. By instantiating the abossuaption withH’ =
Hx A[d], h =1,y = m, we obtainf, = (A[d]] = vy) o f;. Thus the right hand side
of (3) is equal teev* o 65 o (A [d] = ¥) x ¥) o {f1, X), which is equal to the left hand
side of (3). Therefore (2) is proved.
Example 4. (Continued from Example 1) There is a strong monad morphisrom
Tm to Tp mapping a list € Tyl to the sety () € Tyl of elements occurring ih
FurthermoreA; is the image ofA, alongy. Thus from Theorem 12, for any well-

typedic(Z)-termxy : by, ..., %, : by + M : band values; € Ab, A, [M] (V) is the set
of elements occurring it [M] (V).

Example 5. Let A = (C, T, A, a) be al.(X)-structure, an®R € C. We writeCTR for
the continuation monagdwhose functor part is given by-(= TR) = TR[2]. The
morphismo-lT’R Tl - (( = TR = TR) is actually a strong monad morphism from
7 to CTR. Therefore from Theorem 12, for any well-typ@gX)-termxy : by, ..., X, :
b, + M : b, we have

oo AM] = o"RA[M].
The right hand side of this equation is tB®S semanticE3] of 1.(X), while the left
hand side roughly corresponds to the mapping Ak . K*(A [M] p). This equation is
indeed thenonadic congruence resyil] at base types. The above equation takes alge-
braic operations into account, and holds in any bi-CCC wilreng monad, including
freely generated ones.
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Ar A
C [I,Sef Set
T T1F = colimge F(=+ Q) Tol=N=1xN
A Ainam= N : | — Set Anam= N
=] at =1 o _Jae (=)
a | @eanan={ 2 020 Taearn={ 2 (70
See (4) below ax(v) = Afx. f()(x+ 1)

Table 1: Definition of twor-calculus structures

11. Comparing Two Monadic Semantics of the-Calculus

We fix a countably infinite set including the unique elemenf 1 € Set and call
the elements in this infinite seames We definel to be the category whose objects
are finite subsets of names and whose morphisms are injedi@ween them.

Dynamic name creation, such as the one insthmalculus, is often categorically
modelled in the presheaf category ovgB2, 33]. On the other hand, in practical im-
plementations of programming languages, names are repeglsiey natural numbers,
and dynamic name creation is implemented by a hidden glahadter that keeps track
of the next fresh name. In this section, we consider Starkalculus[32] and discuss
an dfect simulation problem between presheaf semantics andlgtobinter semantics
of name creation.

Thev-calculus is specified by th&-signature

¥ =({nam, K={eq:namxnam— 1+1}, O={v:nam- 1}).

The base type nam is fommesthe dfect-free constareq is for checking name equal-
ity, and the algebraic operationis to allocate a fresh name and bind itxolike the
one inn-calculus. Ther-calculus is then defined to bie(X). Below we call al(X)-
structure av-calculus structureWe abbreviate(Ax : nam. M) to v(x.M).

In Table 1 we present twe-calculus structures for which we consider afeet
simulation problem. The-calculus structureA; extracts the ingredients that are used
in the categorical semantics of thesalculus in [32]. The monad; is Stark’sdynamic
name creation monad

T1FP = colimge F(P+ Q) ={(Q,X) | Qe l,xe F(P+ Q)}/ ~

where~ is the equivalence relation defined by, &) ~ (R,y) if there areS € | and
two injectionsl : Q — S,m: R— S such that(P + 1)(X) = F(P + m)(y). The object
for the name type is the inclusion functr: | < Set This is the standard choice
for representing names. We note tiiaNP ~ P + 1. Therefore we redefing; to be
the monad that is naturally isomorphic to the origifialand behaves as the functor
P — P+ 1 when applied tdiN.

We give exponentials in [Sef in the standard way:

(F = G)P=1]I,Sel(yP x F,G).
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The behaviour of the name equality predicate at a finit€$ggiven in Table 1; there,
i andj are elements iP. The algebraic operatiam (v) for name creation is defined by
(belowF €[I,Sef,P el andg € (N = T1F)P):

(al(v))F . (N = TlF) - T1F
(al(V)F)p . [I,Sel](ny N, T]_F) - T1FP
(a1(v)F)r(B) = [1 + Q, F(assoc)y)]- : T.FP (4)

In the right hand side of the defining equationegfv), Q € | andy € F((P + 1) + Q)
are components of a pai€(y) in the equivalence clagd,1(t1, t2()) € T1F(P + 1),
and assoc :R+ 1)+ Q — P+ (1 + Q) is the associativity morphism for the disjoint
union.

Thev-calculus structureA; is a semantic analogue of the dynamic name creation
by a global state. We note that the interpretatin[—] is not sound with respect to
thev-calculus axioms in [32].

We compare the denotation of a well-typedtalculus termx; : nam..., X, :
nam+ M : nam in each-calculus structure. Suppose tipatames have been allocated,
and some of them are supplied to the free variabléd.oThenM returns either one of
the allocated names passed toxd; . . ., x,, or M allocates a new name and returns it.
This behaviour is expressedidirently in each-calculus structure:

e (in A;) Let P be the finite set consisting @fallocated names. We feexhames
i1,...,in € Pto the free variables df1. WhenM returns a previously allocated

name, the denotatiofl; [M]p (—i>) € TiNP = P + 1 is (i) with somei € P.
Otherwise M returns a new name and the denotation(s).

e (in Ay) Natural numbers 0..,p — 1 correspond to the allocated names. We
thus feed O< iy...ih < p— 1 to the free variables dfi. The global counter
pointing to the next fresh name is nqw so the name thatl returns is given
byi = m (A2 [M] (—i>)(p)). WhenM returns an allocated name0i < p - 1;
otherwisei > p. In fact, this behaviour oM remains the same even when the
counter is increased from Therefore wherM returns an allocated nanngfor

anyk > p we haver; (A2 [M] (—i))(k)) = i; otherwise for anyk > p we have
—
m (A [MT (1)(K) > k.
Based on this analysis, we establish a correspondencedretive denotation dfl in
eachv-calculus structure. As names are representfidrently in each structure, this
relationship is parametrised by bijective correspondgebetween allocated names and

natural numbers. Below, for a finite d&twe define # to be its cardinality, an@ to be
{0,...,#P-1} whenP % 0; otherwisd). A name enumeratiois a bijections : P — P.

Theorem 13. Let % : nam..., %, : ham+ M : nambe av-calculus term. For any
finite set P, element,i...,i, € P and a name enumeration: P — P, either

o there is some § P such thatA; [M1p (1) = u(j) andry(Az [M] (o(7))(K) =
o()) forallk > #P, or

o AL [MIp(7) = t2(x) andme (A2 [MT ((7))(K)) > k for all k > #P.
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The rest of this section is the proof of this theorem. We aoiesta suitable fibration
for logical relations overl| Sefl x Set, and give a simulation\ C) between#; and
A, that implies the goal of the theorem. We then check that isfsa¢ (1), (C1) and
(C2).

We first define the categofy of hame enumerations by the following data: an
object is a name enumeration, and a morphisn{ioc : P - P) - (r: Q - Q) is a
(necessarily unique) injectidn: P — Q such thatr = roh. We note thaE is actually
equivalent to N, <). We writerr : E — | for the functor defined by(o: P - P) = P
andn(f) = f.

We next pullback the subobiject fibrati®@ub([E, Sef) — [E, Sef along the fol-
lowing finite-product preserving funct@ : [I, Sef x Set— [E, Sef:

D(F, 1) = (F ox) x Al;
hereA : Set— [E, Sef is the diagonal functor.
ERel Sub([E, Sef)

| |

[I,Sef x Set—D> [E, Sef

We obtain the fibratiom : ERel — [I, Sef x Setfor logical relations by Proposition
6. The explicit definition oERel is the following: an object is a tripleX( F, I) where
F € [I,Sef, | € SetandX assigns a binary relatioko- € FP x | to each name
enumerationr : P — P. This assignmenX satisfies: forany : o — rand ,y) €
Xor, we have Ehx y) € Xr. A morphism from K, F, 1) to (Y, G, J) is a pair ¢, f) such
thatg : F — Gis a morphisminlg,Sef, f : | — Jis a function and for any name
enumerationr : P — P and ,y) € Xo, we have ¢p(X), f(y)) € Yo

We give a simulation\{, C) betweenA; andA, that entails Theorem 13. We define
two binary relationsXo- andYo for each name enumeration: P — P by

Xo
Yo

{(i,o0() ePxPlieP}
{(ta(i), f) e TINPXToN i € PAVK > #P .y 0 f(K) = o(i)} U
{(ta(x), ) e TINPX ToN | YKk > #P . 11 0 f(K) > k.

Proposition 14. The pair VC : {nam — ERel of functors defined by
V(nam)= (X, N,N), C(nam)= (Y, T:N, T>N)
forms a simulatior{V, C) betweenA; and As.

Proor. What we actually check here is théfnam) andC(nam) belong tdERel. The
case ofV(nam) is easy, so we move on to the cas€@fam). Leto : P - P,7: Q —

Q be name enumerations,: o — 7 be a morphism irE and , f) € Yo. We show
(h+ 1)), f) € Y.

e Casex = (1(i) with somei € P such thatr; o f(k) = o(i) for all k > #P. Then for
allk > #Q > #P, we haver; o f(k) = (i) = 7(h(i)). Therefore {1(h(i)), f) € Yz.
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e Casex = 1p(x) andVk > #P . 71 o f(k) > k. Then we have {(+ 1)(t2()), f) =
(c2(%), T), and this is included iYT as #Q > #P.

We then prove the following Proposition, from which we imrisdly obtain Theorem
13 by Theorem 7.

Proposition 15. The simulatior(V, C) defined in Proposition 14 satisfies (l), (C1) and
(C2).

Proor. We omit the proof of ¥, C) satisfying (I) and (C1). Below we show that it
satisfies (C2). As there is only one base type nam and oneralgedperationv, it
sufices to proved;(v)n, a2(v)n) : (V(nam)= C(nam))- C(nam).

We first calculate/(nam)= C(nam). Itis a triple Z N = Ti:N,N = T,N) such
thatZ assigns the following binary relation to each name enurizerat: P — P:

Zo = {(B,f)e(N=TiN)Px(N= T2N)|
V7:Q - Q, h:o—1,xe Q. Bolr(h), x), f(r(x))) € Y7}.

Lemma 16. Leth: (o : P - P) - (r: Q — Q) be a morphism i, (8, f) € Zo- and
x € Q\Im(h). Then we have o

((Th, X + 1)Bpa(ea, t2(+))), F(7(x))) € Y7
here xe Q is identified as a morphism:xL — Qin|.

Proor. From the definition oz, we have gg(h, X), f(r(X))) € Yr. As x € Q\Im(h),
[h,X]: P+ 1 — Qis aninjection, and from the naturality 8f

PP+ 1) x(P+1) L (P+1)+1

([h,XIO)X[h,X]l J{[h,x]+1

|(P,Q)><QT>Q+1

we obtainBq(h. X) = ([h. X] + 1)(Bp+1(u1. t2(+)))-

Leto: P — Pand @, f) € Zo. We show (&1(v)n)r(B), a2(v)n(F)) € Yo. The first
component of this pair can be computed by the auxiliary fiongtp : (P+1)+1 — P+1
defined by

Lp(X) = { u(i)  (x=u(u()).ieP)

12(x)  (otherwise)

Then @ (V)n)p(B) = up(Bps1(t1, t2(+))). Thus the goal is rewritten to

(up(Bra(u, 2(+))), Ak f(K)(k+ 1)) € Yo, ()

and we prove it by the case analysisgm; (¢1, t2(x)).

22



e EitherBp,1(t1, t2(*)) = t2(*) or Bpy1(e1, t2(*)) = t1(t2(%)). In these cases, the value
of up(Bp+1(t1, t2(*))) is t2(*). The goal (5) now becomes:

Vk > #P . mi(F(K)(k+ 1)) = k.

Letk > #P. We take a finite se)’ containingk — #P + 1 elements, and &) be
P+ Q,7:Q — Qbe an extension af to Q, andx € Q' be an element such
thatr(x) = k = #Q — 1. The left injection; : P — Qs a morphism fromr to 7
in E, andx ¢ Im(cq).

We instantiate Lemma 16 with : o — 7, (8, f) andx, and obtain{(x), f(K)) €
Yr. There are then two sub-cases:

— Sub-cas@p1(t1, t2(*)) = wo(x). From the definition ofYr, we obtain: for
anyk’ > #Q, my(f(K)(k')) = k. We instantiatk’ with #Q = k + 1, and
obtainm (f(k)(k+ 1)) > k+ 1>k

— Sub-cas@p,1(t1, t2(*)) = t1(e2(x)). From the definition ofYr, we obtain:
forany k' > #Q, m1(f(K)(k')) = k. By lettingk’ = k + 1, we obtain
mi(f(K)(k+ 1)) = k.

o Bpi1(t1, t2(*)) = ta(ea(i)) for somei € P. The value ofup(Bp.1(t1, t2(*))) is t1(i).
The goal (5) now becomes

vk > #P . i (F(K)(k + 1)) = o(i).

We takeQ’, Q, 7, x as before; sowehav®@ = P+ Q,#Q =k+ 1,1 0 > 7
andx ¢ Im(cq).

We instantiate Lemma 16 with : o — 7, (8, f) andx, and obtain (i), f(k)) €
Y, thatis, for anyk’ > #Q, m1(f(K)(K')) = 7(ca(i)) = o (i). By lettingk’ = k+1 =
#Q, we obtainr(f(K)(k + 1)) = o (i).

The advantage of the proof method by the-lifting is that, although the actual
contents off Xis unclear, it gives a well-defined logical relation for themad7™ that is
suficient to establish a relationship between two monadic s&osanf al.-calculus.
The TT-lifting also reduces the problem to its essence: the ctoguoperty of the
simulation under the algebraic operations in the calcuadving the éect simulation
problem without ther T-lifting would require hand-crafting a suitable logicalaton,
but doing so would quickly becomefiitult, as the concept of the predicate is involved
and the simulation relation we would like to establish istiavial.

12. ExtendingA.(X) with Recursive Functions

We next add the recursive function tegrhix. M to A¢(Z). This term creates a closure
that may recursively call itself insidé; its typing rule is

If:poox:prM:o
F'rufxM:p—-o
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We call the extended calculud ().

We consider the féect property problem for the class @f-structures where the
underlying category is enriched owe€PO, the category ofu-complete partial orders
(which may not have least elements) and continuous furstietween them.

An wCPO-enriched bi-CCGs a bi-CCCC such that each homset is@a€PO, and
the composition, tupling-, -), cotupling [; -] and curryingA(-) of the bi-CC structure
on C are all monotone and continuous. We wiiig for the underlying ordinary bi-
CCC ofC (that is, we forget theyCPO-structure on each homset).

Let C be anwCPO-enriched bi-CCC. Apseudo-lifting strong monaaverC is an
ordinary strong mona#d™ overCy such that it has an (@)-ary algebraic operatiolbt,
and its componertit; € C(0 = TI,1 = TI) =~ C(1,T1) at objectl € C is the least
morphism. We writeL, : 1 — T1 for the morphism corresponding bty via the above
bijection. We note that Géf(bt) = 1oandl, = T? o L.

Definition 6. An wCPO-enrichedi (X)-structure is a tuple, 7, A, @) such thatC is
anwCPO-enriched bi-CCCYT is a pseudo-lifting monad ovét and Co, 7, A, a) is a
Ac(X)-structure.

Let A = (C,7T, A a) be anwCPO-enrichedi(Z)-structure. We define the fixpoint
operator fix : C(T1,T1) - C(1, T1) restricted tol | by

fix, (f) = |i| f0o 1. (6)
i=0

This satisfies the axioms of theniform T -fixpoint operatoby Simpson and Plotkin
[31]. AsC is a hi-CCC, we can parametrise it as]ﬁx(C(J xTLTI) - C(JTI); see
[10] for the detalil.

Hasegawa and Kakutani axiomatise the behaviour of the seeufunction term
ufx. Min call-by-value functional languages astable uniform call-by-value fixpoint
operator[10]. They bijectively corresponds to uniforfifixpoint operators. Therefore
fix gives adequate semantics to the recursive function term:

. _ AT :
ACrufxM:p=o] =noalo flxﬂ[[pﬂ(r]](ﬂ[[/lx. M] o id x al). (7
The right hand side is the expansion of the stable uniformlgavalue fixpoint op-
erator derived from the uniform-fixpoint operator (6). The morphismial: T(I =
TJ) — (I = TJ)is the canonical -algebra structure ovér= T J, and it is defined
by

hered; ; : T1x J — T(I x J) is the symmetric version of the strengify.
Next, letp : E — Cq be a fibration for logical relations. We formulate the coricep
of admissible predicates in the fibrational setting.

Definition 7. We callX € E aboveT | € Co admissibléf 1) Lpx : 15 X and 2) for all
Y € E andw-chainf; e C(pY, pX) such thatf; : Y - X, we have |2, fi : Y > X.
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Theorem 17. Let ¥ be a signature, A = (C, 7, A, a) be anwCPO-enrichedA(X)-
structure, p: E — Cq be a fibration for logical relations anV, C) be a property over
A. If the property satisfies the conditions (I), (C1) and (G2Fheorem 7 and

(A) forallb e B, Cbis admissible,

then the answer of theffect property problem fonﬂX(Z)_ is yes: for all well-typed
AEX(E)-term % :by,....% by M: b, we haveA [M] : ]’IirLth - Cb.

Proor. From the same argumentas the proof of Theorem 7, We obfia{@pstructure
YV = (E,7,V,a). To prove the basic lemma, it 8ices to show that for anX € E,
f: TX-5 TXimplies fixf : 1 - T X. Let f be such a morphism. Then

(A) = VbeB..la:15Cb
& VXeE.Llp:15TX
—  VYXeE,ieN.fVo1,x:15TX
= VbeB,XeE,ieN.a-Z)’(Abof(i)oJ_px:i%((xﬁCb)_%Cb)
& VYbeB XeE,ieN. nm*l(a;f;*bo f0 o 1,x): (X=Cb) 5 Ch.

SinceCbis admissible, we have
| [nm o700 19 0 15x) = (o o fix f) : (X = Ch) 5 Cb.
i=0

From this, we obtain fik : 1 5 T X.

Lemma 18. LetC be anwCPO-enriched bi-CCC773 be a pseudo-lifting strong monad
overC, 7> be a strong monad ovét, andy : 71 — 7> be a strong monad morphism.
ThenT is also a pseudo-lifting strong monad ovér

Proor. Letbt € Alg(77,0, 1) be the algebraic operation that exists from the definition
of the pseudo-lifting strong monad, and,}, : 1 — T3l be the least morphism corre-
sponding to the componebt;. We show that each componentaf = Alg(y, 0, 1)(bt)

is the least morphism. Let us write §); : 1 — Tl for the morphism corresponding to
the componertit|. Then we have

(L2)i = T22 0 Gef?(bt') = T2? o yo o (L2)o = 31 © (L1)i.
We show that (), is the least morphism. Let: 1 — Tl be any morphism. Then

X=(u2)i oym o )T 0 X = (2)i 0 ¥T,1 © (L)1,
(2)1 © y1,1 © Ta((m72)1) o (L)1 = (L2)i.
Theorem 19. Let A = (C, 71, A, a) be anwCPO-enrichedA.(X)-structure, 7> be a

strong monad ove€ andy : 71 — 72 be a strong monad morphism. Then for any
well-typedtfX (Z)-term » : by, ..., %, : by F M : b, we haveyapo A[M] = (yA) [M].
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Proor. The proofis the same as that of Theorem 12. To apply Theovgihsiffices to
check that the property satisfies 1) for anp € B, ((_L1)ab, (L2)ap) : 1—>Cband 2) for
anyb € B, (X1, J) € K andw-chains of morphism$ : | - T;Abandg; : J - T,Ab
in C such that §i, gi) : (X, 1,J) > Cb, we have [ [I°, fi, L2, 9) : (X,1,J) > Cb. 1) is
immediate. 2) LeH € C and @, b) € XH. First, we havey o b = yap o fi o afor any
natural number. From the continuity of the composition €f, we obtain

(Dgi]°b= |i|(9i ob) = D(YAbO fioa) =7Ab°[|i| fi]oa-
i=0 i=0

i=0 i=0

From this, we obtain[(|%, fi, | [72o i) : (X, I,J) - Ch.

13. Related Work

Filinski is one of the pioneers in logical relations for mdsd4], and developed
various techniques to establish relationships betweerastos of higher-order lan-
guages with ffects [3-7]. In [7, Proposition 3.7] three methods to corittogical
relations for monads are mentioned: 1) WHeis a monad constructed from the stan-
dard type constructors, such as state monad and continuatimad, then define a
logical relationT for T in the same way a¥ is constructed. 2) For a logical relation
T for a monadT and a strong monad morphism: S — T, the inverse image” T
is a logical relation foiS. 3) For a family of logical relation3; for a monadT, the
intersection\; T; is again a logical relation foF.

The categoricat T-lifting is technically a particular combination of the rhets 1-

3 above (in fibrational category theory). However, what i& aboutT T-lifting is that

we usethe simulatiory property we would like to establish on computationgiéets

to define the logical relatiofi. This idea is a secret recipe in the proofs of various
results by the precursors of categoritat-lifting, such as biorthogonality [9, 21, 26],
TT-closure [27] and leapfrog method [18, 19]; see also [15].

Under the presence of parametric polymorphism, MggelbedgSimpson give a
uniform method to lift the computation type constructor biaary relations [24]. Al-
though this lifting is computed inside a logic for paramepolymorphism, it seems to
share the basic idea withT-lifting. In a recent work [1], Atkey et al. study the induc-
tion principle for the inductive types involving computatial éfects. They consider
a lifting of monads to the total category of a general typeotietic fibration using the
direct image functors and comprehension. This technigbased on the method to
lift endofunctors across fibrations [8].

Larrecq et al. propose a method to lift a monad®to the category of subscones
over C using mono-factorisation systems [17]. They also discusslaional lifting
of monads, and demonstrate that various notions of logedations for monads are
derivable by their method. We look at how their method lifth@nad7” on Setto the
one onPred, the trivial subscone ov&et Their method yields the monad on Pred
whose functor part is given by(X, 1) = (Im(T), T1); here: : X < | is the inclusion
function and ImT) is the image off« : TX — TI. For instance, the lifting, of the
powerset monad, is given by‘fp(x, 1) = (TpX Tpl).
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However, simply lifting the monad by their method is ifistient to solve general
effect property problems. Consider thréesignatures, X,, X3 whose algebraic op-
erations are declared in the middle of Table 2. We restreEfit{)-structureA; from
Example 1 to each;, and call the resulting¢(Z;)-structureB;. We also define a prop-
erty (Vi,Ci) over8; by Vib = Ab (b € B) and the defining equations on the right of
Table 2. We note that the answer of théeet property problem with respect to each
(Vi,Ci) is yes. Let us see what happens if we @igen the proof of Theorem 7 instead

Sig. | Algebraic Operations Property b € B)

T, | 0=0 Cib = ({{x} | x € Ab}, T,Ab)

¥, | O={null:0— 1} Czb = ({{x} | x € Ab} U {0}, TpAb)
Y3 | O=f{or:2— 1} Csb = ({v|v C Ab,v # 0}, T,Ab)

Table 2: Hrect Property Problems

of the TT-lifting of 7. As ‘f’p admits the lifting ofbothalgebraic operationa; (null)
anday (or), we can successfully construein the proof of the theorem. Unfortunately,
we fail at the very last stefi Vb= TyAb & Cib.

In the case of the lifting of monads along Pred — Set, their method yields the
monad lifting that admits the lifting adll (11, 1, 1)-algebraic operation aﬂ(?:ll, 1)-
algebraic operation. On the other hand, the property we avithe to establish on the
computational ffects caused by.(X)-programs may not always be closed under every
such algebraic operation, as we have seen in the above exarttplemains to be
seen whether lifting by factorisation systems can be uséerdntly to solve theféect
problem in general.

The advantage of logical relations for monadstby-lifting is that it does not limit
the form of simulatiory property we would like to establish on computation@itets.
Furthermore, Theorem 11 gives a good characterisation efivefigebraic operations
are related by the logical relations given oy -lifting. On the other hand, it is rather
difficult to check whether non-algebraic operations that mdatpiwwomputational ef-
fects, such as Felleisentoperator, are related by the logical relations givenriy
lifting; this shall be discussed in a separate paper. Extgnalir results with recursive
types and handlers for algebraitezts [30] is also a future work.
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