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Category

A category C consists of:
e aclass orset C, of objects,
e aclass or set C; of morphisms,

e mappings dom, cod: C; — €, giving a domain and
codomain to each morphism,

e id: Cy— C, giving the identity to each object,

e —o—{(g,f)|dom(g)=cod(f)}— C, called composition.
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Category

We stop to introduce some notations:

leC ... Te(C
f:1—7] ... dom(f)=IAcod(f)=]
C(L]) ... {feC|f:1-=]}

We proceed the definition of category: the above data satisfy

di: I — 1

f.1-JANg J—>K=gof: 1=K

foidi=idjof=f (f:1—1])

(hog)of=ho(gof) (fiI1—=],g]J—=Kh K—L)
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Examples of Categories

C [eC C(1,])

Set set functions

Rel set binary relations

Mon monoid monoid homomorphisms
Vect vector space linear functions

Pre preorder monotone functions

Top topological space | continuous functions
Cat small categorie |functors

Cep | C(J, 1)

C; x Cy <Il, 12) with I[; € C; @1(11, ]1) X @2(12, IQ)




Examples of Categories

A category generated from a single mathematical object:

e Fora monoid (M, 1,-), define Cy= {*} and C, =M with
id,=1, gof=g-f.
We obtain a category C(M, 1, -).
e Forapreorder (P, <), define Cy= P and C; = < with
idi=(1,I), (J,K)o(L,])=(I,K).
We obtain a category C(P, ).

Below we treat preordered sets / posets as categories.
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Size of Categories

We say that a category C is:
e smallif C,is a set (hence C, is also a set).
e locally smallif every C(1,]) is a set.

e thinif every C(I,]) has cardinality at most 1.

Proposition 1. Thin small categories bijectively correspond to
preorders.

Set, Rel, Mon, Vect, Pre, Top are all locally small.
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Isomorphism

A morphism g:J—TIisaninverse of f:1—J if

gof:idl, ng:id].

Proposition 2. If f: 1 — ] has an inverse, it is unique.

A morphism f: I — ] is an isomorphism if f has an inverse.

Two objects I, ] € C are isomorphic (I=]) if there exists an iso-
morphism f: 1 —J.

Slogan in category theory: isomorphic objects are the same.
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Terminal Object in a Category

A terminal object in C consists of:
1. TeC.
2. I I—Tftorevery I eC.
They satisfy: C(I, T) = {!1}.

Lemma 3. idt= .

Proposition 4. If (T,!) and (T',!") are terminal objects in C,
then T T'.

e Any one-point set with the trivial structure on it is a ter-
minal object in Set, Mon, Vect, Pre, Top. In Rel, 0 is.
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Binary Product on a Category

A binary product on C consists of (I, I, € C):
1. (Binary) Product object I, x I, € C,

2. Tuple <—, —>}1’122 (D(I, Il) X (D(], 12) — (D(], Il X IQ),

3. Projections m* I, x I, — I, and my»* I, x I, — L.
They satisfy (we omit object annotations):
<f1,f2> Oh — <f1 Oh, f20h>

7TiO<f1,f2> — fi
(111, ) = id.
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Binary Product on a Category

The tuple is actually a bijection:
(—, —>}1’12: C(],I)) xC(], L) =2 C(],I; x ).
Two binary products on C give isomorphic product objects:

Proposition 5. If (—x—, (—, —), T, ™) and (—x'—, (—, =)', 7,
m5) are binary products on C, then I; x L~ I; x' L.

Proof. We obtain C(],[; x L) @ C(J,I; x'Ly). Thenlet J=1; x I,
and ] =1; x'I, and trace idy, «1, and idy, 1.
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Finite / Small Products on a Category

We extend the definition of binary products to n-ary / set-
indexed products (What is 0-ary product?).

Finite products on C consists of n-ary products for all n € N.
(We assume that 1-ary product satisfy [ (I) =1).

From a terminal object and a binary product on C, we can con-
struct finite products on C:

[] @, ) = ((lix D) x ) x L.

Small products on C consists of I-ary products for all I € Set.

e Set, Rel, Mon, Vect, Pre, Top, Cat have small products.
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Finite / Small Products on a Category

In a category € with finite products, we can consider algebraic
structures determined by finite-arity operations and equational
axioms, such as monoids, groups, rings, vector spaces, etc.

¢ A monoid in € with finite products consists of M € C, e:
1 — M, m: M?— M such that

m o <idM, € o 'M> = ldM
mo <€O !M,idM> = idM
mo (mo (M ) Y = mo (mM mo (', ).
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Binary Coproduct on a Category

... I1s a product on C°P. It consists of (I, I, € C):
1. (Binary) Coproduct object I, + I, € C,

2. Cotuple [—, =] C(1,]) x C(Iy,]) — C(L + Iy, J),

3. Injections " I, = I, + L, and v;»"= I, — I; + L.
They satisfy (we omit object annotations):
hO [fl, fg] — [hO fl, hO fg]

fi,fo)ou = 1
[Ll,tg] — 1d.
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Finite / Small Coproducts on a Category

Cotuple is also a bijection:
[_> _Hl’h: (D<Il> ]> X <D<IQ> ]> = C(Il + IQ) ]>

n-ary / small coproducts are defined similarly.
e Rel, Mon, Vect, Pre, Top, Cat have small coproducts.

e On Set, disjoint union gives small coproducts:

[T (Whea= {0 %) NeA x e}

e On Grp (the category of groups and group homs) the
free product of groups give small coproducts.
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Exponential on a Category with a Binary Product

An exponential on a category € with a binary product consists
of (I, I, € ©):

1. Exponential object I, = I, € C,
2. Currying Aj»= C(J x I, ) — C(J, I, = 1),
3. Evaluation ev'»! Lh=0LxI1— L.

They SatiSfy (below fxI;= <f o 714, 7'[2>):

Af)og = A(fogx1y)
QVO}\(f) X Il = f
Alev) = id.
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Exponential on a Category with a Binary Product

Currying is a bijection:
AP C(Ix I, L) 2 C(, [ = 1),

Two exponentials on € give isomorphic exponential objects.
e On Set, Set(I;, 1) gives an exponential.

e On Pre, (Pre(Iy, I), <) gives an exponential, where <’
IS the pointwise order of monotone functions.

e On Cat, functor category gives an exponential.

e Rel, Mon, Vect, Top do not have exponentials.
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(Bi-) Cartesian Closed Category

A category C with finite products and an exponential is called a
cartesian closed category (CCQ).

A category C with finite products, finite coproducts and an
exponential is called a bi-cartesian closed category (bi-CCC).

A poset C equipped with finite products, finite coproducts and
an exponential is called a Heyting algebra.

J<IL..J<] L<J..In<J  IAJ<K
JSA (Il V(I <] IST=K
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Every bi-CCC is Distributive

Proposition 6. /n any bi-CCC, the following is an isomorphism.

ux ] o [ (T ) x T= [ (i x T, T x )

The category with finite products and finite coproducts such
that the above morphism is an isomorphism is called distribu-
tive.

Corollary 7. Every bi-CCC is distributive.

Corollary 8. Every Heyting algebra is a distributive lattice.
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Simply Typed Lambda Calculus

We introduce the simply typed lambda calculus (STLC) and the
pn-equational theory on it, and relate it to bi-CCCs.

STLC extends the propositional fragment of NJ with a syntactic
representation of proofs (called A-term):

Mt —~ TEM.T

The n-equational theory extends the proof reduction > of NJ
to reflect the equality of computational contents of A-terms /
proofs.



Simply Typed Lambda Calculus

We assume:

variablesx,y, z,... € Var(countably infinite)
base typesb,... € B

We define the set Typ(B) of types by

t=b| A\ (t,..,0\ (t,..,7) |T=T.

We define a context to be a finite sequence

Xl Tl, ...,Xn: Tn

of variable-type pairs such that variables are all different.
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Simply Typed Lambda Calculus

We define A-terms by

M = x
(AL, AE) (M, ...,M) |tD (M)
(VI, VE) (M) [8(M,x". M, ..., x".M)
(=1,=E) (Ax.M) | (MM)"

This way of annotating types is non-standard!

Pros: we can easily recover the types lost by elimination rules.



Bound / Free Variables and Substitution

The A-terms of the form:

(Ax.M) or b6(...,x"M,...)

binds any free occurrence of x in M.
A-terms are identified up to the renaming of bound variables.

M|N /x| is the A-term obtained by substituting every free
occurence of x in M with N.

Before the substitution, we rename bound variables of M as
necessary to avoid the capture of free variables in N.



Typing Rules

We inductively define a ternaly relation T'= M.: T by

r1:X:T r|—M1:T1 N‘Mn:’fn H‘M:/\ <T1,...,Tn>

NEx:t THE(My,...,My): A (T1,..., Tn) 7o ™(M): 14

[+ M:Ti
'+ L1<M>Z \/ <T1, ...,Tn)

rl_ M: \/ (Tl, ...,Tn) r,XlTll_Ml 0) cee r,Xn: Tnl_ Mn: 0}
ME&(M,x[. My, ..., x".My): O

Kx:tHFM:o '-=M:t=0o0c I'FN:7T
'E(Ax.M):1=o0 '-(MN)" o




Typing Rules

Typing rules correspond to NJ:

=1 N'Et ThTn '= A (t1,...,Tn)

[+ '= A (T1,...,Tn) I'ET;
rI_Ti rl_ \/ (T1>--->Tn) r,Tll_G"'r,Tnl_G
M=\ (t1,...,Tn) '~o

NTho FtT=0 TI'FT
TtT=o0 M- o




Typing Rules

Lemma 1.l x: T M: o and ' N: 1 implies TH M|N /x]: o.

Lemma 2. Each triple ' M: T is derived in a unique way.



Bn-Equational Theory on STLC

The [n-equational theory equates the A-terms that have equal
computational contents.

The theory inductively defines a relation:
’EM=N:71

It subsumes the proof reduction relation of NJ:

> ]_[/—

ﬂl“l—cp '

Every {(M,N) |’ M = N: 1} is designed to be an equivalence
relation on {M | M: t}.



Bn-Equational Theory on STLC

1. Equivalence relation

M’-N=M:71 '-M=N:t TT'=N=L~
M’-M=N:Tt I'=M=M:71 ’-M=L:"<

2. Congruence

rl_ Mlz Nl Tl r‘I_ Mn: Nn: Tn
N (Ml, ceny Mn> = <N1, cory Nn)Z /\ <t1, ...,Tn)

M’-M=N: A (11, ..., Tn)
['F ﬂi(M) = 7T1(N)I Ti

etc.
10



Bn-Equational Theory on STLC (A, =)

3. An-equational axioms.

'=Mypty, ..., Mn: th
[ 7gih T“(Ml, ceuy Mn) — M T;

Kx:tHEM:o T'HEN:T '-M:t=o0
NE(Ax.M)N)"=M|[N/x]:0 THAx.(Mx) ) =M:Tt=o0
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Bn-Equational Theory on STLC (V)

I'N=N:t; IxptmiEFMpio .. IxntanEMa o
ME6(w(N), ..., x{"My,...) = My/N/x|: o

[+ 5(M, ...,X-i.Li(Xi), ) = M. \/ <T1, ...,Tn>
4. Commuting Conversion

x:oFN:p, TEM:V (11,...,Tn), xiTukEMio

FENB(M, ..., x{WMy,...) /x] = 8(M, ..., x["N[M;i/x]|,...): p
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Interpreting STLC in a bi-CCC

Let C be a bi-CCC.

We interpret types and terms of STLC by means of mathemat-
ical (categorical) structures.

e Atype tisinterpreted as an object |t] € C.

e A judgement xi: Ty, ..., Xn: T F M: T iS interpreted as a
morphism

IT (%l oo Feal) = [
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Interpreting Types

Fix an assignment of |[b], € C to each b € B.

We extend it to an assignment of [t € C to each T € Typ(B):

_ - b
/\ (T, oo, Tn) || = H [(T1y ey Tn)]
| \/ (Tiyeery ™) | = H (1, eeey Tr) ]

[[T:>G_: = [t] = [o].

We further extend it to contexts:

[xi: T, e s T = [ (1T, oo [en]).
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Interpreting Judgements (A, =)

Following the unique derivation of ' M: T, we construct a mor-
phism [M]": [I] — [t] as follows:

I“i: (X,T)
iz [T — [t
f 1] —[n] fu: [T — [74] f- [ —[A (t1,..., T™n)]
(fr, oo, T [TT—= A (T4, ..., )]’ miof: [ — [

f [T, x:t] — o] f [l —[t=0] g:|[l]—|T1]
A(foa): [I]—[t=5] evo (f,g): [l — [o]

Here a: [ x [t] — [T, x: 7] is an iso.
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Interpreting Judgements (V)

f: [T] — [i]
Liof; [[r]] —> [[\/ (Tl, ...,Tn)]]

f: [[r]] — [[\/ (T1> s Tﬂ)]] [[91]]3 [[r> Xi: Ti]] — [[G]]
(91, ..., gn] 0 d o (idry, ): [T] — [o]

The composite is the following diagram:

M=\ (t,...w)] = || [N x: ] — [o].
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Soundnes and Completeness

Theorem 3. Suppose ' M:t and I'=N:t. TFAE:
1. TEM=N:1.

2. For any bi-CCC C and an assignment [—], of an C-
object to each b € B, the induced |—| satisfies

[M]= [Nz [T — [
Souneness (1=-2) is easy. The converse is in the next slide.
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Completeness

Fix a distinguished [ € Var. We define the category AB by

ABy=Typ(B), AB(t,0)={M~|L0:7M:c}.

Here, M~ is the equivalence class of M by {(M,N) |[Ll:tTF-M =
N: o}. The composition is substitution: N=oM™= (N[M./OJ]7).

Proposition 4. AB is a bi-CCC.

(Sketch of 2=-1) Let I'=x1: T4, ..., Xn: Th. Show that the interpre-
tation in AB with [b],= b satisfies [M]. = (M[m;(d/x])". Then

IMIE=INTE = O: A (t1,..., ) F M[mO/x] = N[mO/xi): 0
= I'FM=N:o.
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Functor

A functor F from C to D (F: C — D) consists of:
1. A mapping Fy: Cy) — Dy
2. A mapping Fi: C; — D;.

Both are written F for simplicity. They satisfy:
f:1—J=Ff:FI—FJ, F(id))=idr, F(gof)=FgoFf.

Thus F; can be restricted to

FL]I (D(I, ]) — ]D(FI, FD
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Examples of Functors

Forgetful functor U: Mon, Vect, Top, Pre — Set
Free construction F: Set — Mon, Vect

Functors Eq, Ch: Set — Pre:
EqI=(L{(,1)|tel}), ChI=(LIxI).
Functors D, iD: Set — Top:

DI=(1,2Y, iD= (L {0,1}).



The Category of Small Categories

For F:C —D and G: D — E, we define GoF: C — IE by
(GoF)I=Gy(Fol), (GoF),f=Gi(Ff).
This is indeed a functor. We define the category Cat by
Cato= {small cats.} Cat(C,D)={F. C— D functor}.

Some related functors:
e C(:Pre, Mon — Cat.

e Obj: Cat — Set mapping C to C,.
4



Adjunction

An adjunction consists of the following data:
1. Functors L. C—D and R: D — C.
2. A bijectionforeach I C, Je D:
¢1y: D(LL,J) =~ C(I,R])
They satisfy:

@(hogolLf)=Rho@(g)of.

The notation for an adjunction is (L, R, ¢): C— D.
5



Adjunction

L4AR ... do.(L,R, @): C— D is an adjunction

L. C— Dis aleft adjoint ... 3R: ID — C.L 4R

R:ID— Cis aright adjoint ... 3L C —D.L 4R

Ni= @(idr): I —RLI ... the unit of (L,R, @): C— D
e;r= @ '(idg1): LRI —1T ... the counit of (L,R, ¢): C — D

Lemma 1. If (L, R, @) and (L, R, @’) are adjunctions then for
every 1€ D, RIZ R']



Representation of D(L —, I)

letleDand L: C — D.

A representation of D(L —, I) consists of:
1. Representing object R € C,
2. Counite:LR— L.

They satisfy: the following is a bijection for all J € C.

eolL—:C(J,R)—D(LJ,I)



Representation of D(L —, I) with Inverse

letIe Dand L: C — D.
A representation of D(L —, I) with inverse consists of:

1. Representing object R € C,
2. A mapping ¢;: D(L], I) — C(J, R),
3. Counit e:LR— L.

They satisty:

(p](fOLg):(pK(f)Og, SOL((p](f)):f) (pR(e):idR-

(this is a local terminology in this document)



Universal Arrow

letleDand L: C — D.

A universal arrow from L to I consists of:
1. Re(,
2. ¢:LR—1I.

They satisty: for all J € C and f: L] — I, there exists a unique m:
] — Rsuchthat eoLm="f.



Representation of D(L —,I) =~ Universal Arrow

Theorem 2. Let 1€ DD and L: C — D. There is a bijective corre-
spondence between:

1. A representation (R,e) of D(L—,1).
2. A representation (R, @, ¢) of D(L —, I) with inv.

3. A universal arrow (R,¢) from L to L.
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Representation of C(I, R — ) = Universal Arrow

letIle Cand R:D — C. Apair (LeD,n:I—RL) is:

1. a representation of C(I,R—) if R—on: D(L,]) — C(I, R])
IS a bijection for every J € D.

2. a universal arrow from [ to Rifforevery JeDD and f: [ —
RJ, there exists a unique m: L — J such that Rmon =".

Theorem 3. Representations of C(1, R — ) bijectively corre-
spond to universal arrows from I to R.
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Adjunction = Representations of all D(L —, I)

Theorem 4. Let L: C — ID. There is a bijective correspondence
between:

1. An assignment of a representation (R1, ¢, ¢') of D(L —,
I) with inv. to each 1€ D.

2. An adjunction (L,R, ¢): C — D.
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A Binary Product on C = Reps. of all C*(A —, 1)

Define A: C — C* by Al=(I,1) and Af = (f, f).
Suppose that C has a binary product. Then every

(Il X IZ) <_> _>h’12> (7-[{1)12> 7-[%1’12))
is a representation of C*(A —, (I, Iy)) with inv.

Theorem 5. A binary product on C is exactly an assignment of
a representation of C*(A —,1) (with inv.) to each 1 C~.

Theorem 6. A binary product on C bijectively corresponds to
an adjunction (A, x, @): C — D.
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The Adjunction — xI 11 = —

Suppose that C has a binary product x: C* — C and an expo-
nential. Every 1 € C determines —xI. C— C. Then

(Il — IQ, }\11’12, th’Iz)
is exactly a representation of D(—x 1y, [;) with inv.

Theorem 7. Let € be a category with a binary product. An
exponential on C is exactly an assignment of a representation
of ]]:)(—Xh, 12) (Wlth inV.) to each Il, I, e C.

Theorem 8. An exponential on C consists of an adjunction (—
xI,1=— ,A): C— C forevery 1 C.
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Strict Map of Adjunction

Let (L, R, ¢): C— D and (L', R, ¢'): C' — D’ be adjunctions. A
strict map of adjunctions consists of

1. FC—C'and G:D—D’
such that

GoL=L'oF, FoR=R'0oG, Fo(f)=¢@/(GT).
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Strict Preservation of bi-CC structure

Let C, D be bi-CCCs. We say that F: C — DD strictly preserves
the bi-CC structure if the following are strict map of adjunc-
tions.

(F, F"): (AT, H € o) — (AP, H D D)
(P (] A% ) = (1] ™A% oP)

(F,F): (—xI,I= — A) = (=xFLLFI=— A" (1)
Another way to put this: F commutes with ], ][, =

16



The Category of bi-CCCs

We define biCCCat by

(biCCCat),= {C small bi-CCC}
biCCCat(C, D) = {F:. C — D strictly preserve bi-CC struct.}

We write Obj: biCCCat — Set extracting the object part.
For instance, AB € biCCCat, and Obj(AB) = Typ(B).

17



Universal Property of AB

Let C € biCCCat and [—],;: B — Obj(C). We write [—] for the
interpretation of the STLC over B obtained from [—].

1. [—] extends to a morphism in biCCCat(AB, C).
2. Obj([]) omg: B— Typ B — Obj(C) = [],,

3. If F: AB — C satisfies Obj(F) ong=[—], then F=[—].

Thus (AB,ng: B<— Typ(B)) is a universal arrow from B to Obj.
Theorem 9. We have A - 0Obj.

STLC over B/ pn-equality = free bi-CCC over B
18



Universal Property of AB

Though we characterised A as a left adjoint to Obj: biCCCat —

Set, (AB, ng: B — Typ(B)) satisfies the universal property for
large bi-CCCs as well.

Theorem 10. For any bi-CCC C and an assignment of |b], €
C to each b € B, |[—|: AB — C is the unique functor that strictly
preserves the bi-CC structure and that satisfies [b]] = [b],.
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Intuitionistic First-Order Predicate Logic NJ

Each NJ is built on a language X, TT: N — Set:
e Xn ...the set of n-ary function symbols
e IIn ... the set of n-ary predicate symbols

For instance, the NJ built on the language
Y0={z}, ZXl={s}, TI2={<}, otherwiseIn=TIn=70

can be used to talk about natural numbers and their inequality.



Intuitionistic First-Order Predicate Logic NJ

The NJ over a language L = (X, IT) specifies three concepis:
1. (L-)Terms x4, ..., x F t.
2. (L-)Formulas x4, ..., x1F .
3. Sequents x4, ...,x1| @1, ..., Pm = @.

The leading part x4, ..., x; (context) is a finite sequence of dis-
tinct variables.

Contexts are ranged over by A.



NJZ,TI

Terms
Ai=x AFty -+ AFt, feXn
A x AF1(ty, ..., th)
Formulas
At -+ ARty pelln AxkEe AxkEo
AFp(ty, ..., th) AFEVYx.0 AFIx.

and the rules for A, \V/,=.



NJ=T

Inference Rules (I'= ¢, ..., ¢x)

AxIT=¢@ AF@ ... AFopn A|l'=Vx.@ AFt

AlT=Vx. AlT= o[t/x]

AlT=olt/x] All=3Ix.0 Ax|ITeo=¢ AF@’
AlT=Ix.@ AlT= ¢’

(red part: eigenvariable condition)

and the rules for A, \V/,=.



Lawvere’s Hyperdoctrine

|—| op: B°? — Mod| — Cat

e Mod; Is the category of models of propositional L-logic.
e B is the category interpreting terms / substitutions.

e p assigns to I € B the poset pI of predicates over I,
which has the structure of L-model.

e p captures the situation that term substitutions con-
travariantly act on predicates.

e |—|op satisfy certain properties for modelling universal /
existensial quantification.
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Hyperdoctrine for NJ

We employ |—|: Heyt — Cat for hyperdoctrines for NJ.

Definition 1. A hyperdctorine for NJ consists of:
1. a category B with finite products,
2. a functor p: B°®» — Heyt.

They satisfy:

1. for each projection m): 1 x | — 1 in B, |pm)|: [pI] —
'p(IxJ)| has the left adjoint 3% and right adjoint v*/,

2. these adjoints satisfy Beck-Chevalley condition.
7



Example: Powerset Hyperdoctrine

We define 27: Set°®? — Heyt by
I— (21, C), (f:I=])— (f 121 =2h),
Theorem 2. The above functor is a hyperdctorine for NJ.

The left / right adjoints 3V H[2™"|4V! are

VWX ={ieI|Vj.(i,5) e X}, IVX={ieI|TF.(4,)) € X}.



Example: Heyting-Valued Hyperdoctrine

Let H be a complete Heyting algebra (cHA). The set of func-
tions I = H is also a cHA by the pointwise A, V/,=-.

We define —=-H: Set°® — Heyt by

[-I=H, (fiI=])—(—ofi]J=H—->I1=H).

Theorem 3. The above functor is a hyperdctorine for NJ.
The left / right adjoints 3V |np) = H| 4V are

(YIX) 1) = A X(E,9), 3X)E) =\ X3{,j).

j€] j€]



Base category of Hyperdoctrine of NJ= !

Ay
We fix an enumeration vy, ..., vy, ... of variables.

Define By by:

(Bg)o=N, Bg(l,m)={(ty,...,tm) |ALFt;}
idi= (vi, ..., ), (81,0, 8n) 0 (L1, .eey tm) = (S1]ti/ Vi, ..., Sn|ti/Vi])
For t: | — m, we write t* for the substitution

_[tl/\)b ceny tm/vm]
to terms / formulas.

Proposition 4. By has finite products.
10



Some Lemmas

For any f:1— min By,
1. A @ implies A -t g.
2. A | o= @ implies Ay |t"o = t*@’.

3. t* commutes with A, \/, —, that is,

(N (01, 00) = N (toy,... o)
t*(\/ (@1,.., Q1)) = \/ (t*@1, ..., t" Q1)

t(@1— @) = tre, — t ..

11



Functor of Hyperdoctrine of NJ> !

For 1 € By, define gs 1l by
drnl=(elAFe),  {(@,0) [A]eFe’}).
We write <, for the preorder part of qx il
Proposition 5. Each qs il is a bi-cartesian closed preorder.
For t:1— m in By, define qs nt: gz Tm — gz il by
dznt(e) =t"o.

Proposition 6. Each qz it is a functor that strictly preserves
the bi-cartesian closed structure.

12



Functor of Hyperdoctrine of NJ> !

The quotient of qs 1l by <N 2, is a Heyting algebra, say ps il
Theorem 7. The assignment 1— ps il extends to a functor

Pz - ]B(;:p — Heyt.

Below we identify a formula A - ¢ and its equivalence class by
SN2

We often write p for ps 1.

13



Adjoints of Hyperdoctrine of NJ=T

The projection 7tp™ in By is (vi, ..., v1).

lLm

P ™ pl — [p(L+m)|,  [prm™|(@) = (™) @ = @.
In NJ>'Twe have

AleEYi.@" & Aug]e=pm!(@)F ¢’
AllFviobE @ & Aot o =prr!|(¢)

Corollary 8. (Fvi.;. — ) H [prh!| A (Vv — ).

Universal / existential quantification < R/ L adjoint of p()
14



Beck-Chevalley Condition

The right adjoint ¥/ of [pm’|: [pI] — |p(I x ]J)| satifies Beck-
Chevalley condition if for any f: I — K,

pfloVhI=Vhlop(f x J)I.

Similarly, the left adjoint 3% of |pm’|: [pI| — |p(I x J)| satifies
Beck-Chevalley condition if for any f: I — K,

pflo3™=3olp(fxJ)|.

Beck-Chevalley < Quantifier commutes with substitution
(They are a special version of a more general BC condition.)
15



Beck-Chevalley Condition

Fort=(t,...,tm): l—=min Bz,
tx1=(ty,...,tm,Vis1), [P(EXD)[(@)=@[ti/Vi,Vise1/Vimii].

Theorem 9. Yv,..,.. — and 3v,,1. — satisfy Beck-Chevalley
conditions.

Forany t: 1 — m in By,

ptlo(VWmit. —)(@) = (VWini1-@)[t/vi]
(VWi 1. @ Vg1 /Vimg] ) [t/ vi)
= (VWi @[ti/vi, vig1/Vimt))
(
:

VWi —)olp(tx 1)|(e).

o



The Hyperdoctrine of NJ> '

Theorem 10. The functor ps n: BY — Heyt constructed from
NJ>" js a hyperdctorine for NJ.
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Structure of NJ

Hyperdoctrines for NJ captures the structures that are common
among all NJs.

Each NJ>'is interpreted using a Z, TT-structure.

Definition 11. Let p: B°® — Heyt be a hyperdoctrine for NJ. A
2, Tl-structure in p consists of

1. auniverse U e B,
2. a morphism [f]: U™ — U for every f € In,

3. an object [p] e p(U™) for every p e TIn.
18



Interpretation of NJ>

The following is the principle of the interpretation of NJ>':

x,xiEt oL [t Ut —=U
X, xiFe ... Jelepu
X1>"°>Xl‘(p1>"°>(pm:>(p /\ <[[(pl]]>>[[(pm]])<[[(p]] (pul)

Question 12. Fill out the detail of the interpretation.
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Soundness and Completeness

Theorem 13. Let A be a context and A+ @y, ..., n, @ be for-
mulas in NJ>"', TFAE:

1. Al@y,..., on= 0.

2. For any hyperdoctrine p: B®® — Heyt for NJ and X, TI-
structure (U, [—]), the following holds in p (U4 :

/\ ([[(pl]]> e [[(pn]]) < [[(P]]

Proof. (1=2) Easy. (2=1) Use the hyperdoctrine ps 1 and the
canonical X, TT-structure in this hyperdoctrine.
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