Categorical Approach to Logic Lecture 1

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University

Category

A category C consists of:

- a class or set \mathbb{C}_0 of objects,
- a class or set \mathbb{C}_1 of morphisms,
- mappings dom, cod: $\mathbb{C}_1 \to \mathbb{C}_0$ giving a domain and codomain to each morphism,
- $id: \mathbb{C}_0 \to \mathbb{C}_1$ giving the identity to each object,
- $-\circ -: \{(g, f) \mid \text{dom}(g) = \text{cod}(f)\} \rightarrow \mathbb{C}_1 \text{ called composition.}$

Category

We stop to introduce some notations:

$$\begin{split} &I \in \mathbb{C} \quad ... \quad I \in \mathbb{C}_1 \\ &f \colon I \to J \quad ... \quad dom(f) = I \wedge cod(f) = J \\ &\mathbb{C}(I,J) \quad ... \quad \{f \in \mathbb{C}_1 \, | \, f \colon I \to J \} \end{split}$$

We proceed the definition of category: the above data satisfy

$$\begin{split} & \operatorname{id}_I \colon I \to I \\ & f \colon I \to J \land g \colon J \to K \Rightarrow g \circ f \colon I \to K \\ & f \circ \operatorname{id}_I = \operatorname{id}_J \circ f = f \quad (f \colon I \to J) \\ & (h \circ g) \circ f = h \circ (g \circ f) \quad (f \colon I \to J, g \colon J \to K, h \colon K \to L) \end{split}$$

Examples of Categories

\square	$I \in \mathbb{C}$	$\mathbb{C}(I,J)$
Set	set	functions
Rel	set	binary relations
Mon	monoid	monoid homomorphisms
Vect	vector space	linear functions
Pre	preorder	monotone functions
Top	topological space	continuous functions
Cat	small categorie	functors
\mathbb{C}^{op}	I	$\mathbb{C}(J,I)$
$\mathbb{C}_1 \times \mathbb{C}_2$	(I_1,I_2) with $I_{\mathfrak{i}}\!\in\!\mathbb{C}_{\mathfrak{i}}$	$\mathbb{C}_1(\mathbf{I}_1,\mathbf{J}_1) \times \mathbb{C}_2(\mathbf{I}_2,\mathbf{J}_2)$

Examples of Categories

A category generated from a single mathematical object:

• For a monoid $(M, 1, \cdot)$, define $\mathbb{C}_0 = \{*\}$ and $\mathbb{C}_1 = M$ with

$$id_* = 1$$
, $g \circ f = g \cdot f$.

We obtain a category $C(M, 1, \cdot)$.

• For a preorder (P, \leq) , define $\mathbb{C}_0 = P$ and $\mathbb{C}_1 = \leq$ with

$$id_{I} = (I, I), (J, K) \circ (I, J) = (I, K).$$

We obtain a category $C(P, \leq)$.

Below we treat preordered sets / posets as categories.

Size of Categories

We say that a category \mathbb{C} is:

- small if \mathbb{C}_1 is a set (hence \mathbb{C}_0 is also a set).
- locally small if every $\mathbb{C}(I, J)$ is a set.
- thin if every $\mathbb{C}(I, J)$ has cardinality at most 1.

Proposition 1. Thin small categories bijectively correspond to preorders.

Set, Rel, Mon, Vect, Pre, Top are all locally small.

Isomorphism

A morphism $g: J \rightarrow I$ is an inverse of $f: I \rightarrow J$ if

$$g \circ f = id_I$$
, $f \circ g = id_J$.

Proposition 2. If $f: I \rightarrow J$ has an inverse, it is unique.

A morphism $f: I \rightarrow J$ is an isomorphism if f has an inverse.

Two objects $I, J \in \mathbb{C}$ are isomorphic $(I \cong J)$ if there exists an isomorphism $f: I \to J$.

Slogan in category theory: isomorphic objects are the same.

Terminal Object in a Category

A terminal object in \mathbb{C} consists of:

- 1. $T \in \mathbb{C}$.
- 2. $!_I: I \rightarrow T$ for every $I \in \mathbb{C}$.

They satisfy: $\mathbb{C}(I,T) = \{!_I\}.$

Lemma 3. $id_T = !_T$.

Proposition 4. If (T, !) and (T', !') are terminal objects in \mathbb{C} , then $T \cong T'$.

• Any one-point set with the trivial structure on it is a terminal object in Set, Mon, Vect, Pre, Top. In Rel, \emptyset is.

Binary Product on a Category

A binary product on $\mathbb C$ consists of $(I_1, I_2 \in \mathbb C)$:

- 1. (Binary) Product object $I_1 \times I_2 \in \mathbb{C}$,
- 2. Tuple $\langle -, \rangle_{J}^{I_1, I_2}$: $\mathbb{C}(J, I_1) \times \mathbb{C}(J, I_2) \to \mathbb{C}(J, I_1 \times I_2)$,
- 3. Projections $\pi_1^{I_1,I_2}: I_1 \times I_2 \rightarrow I_1$ and $\pi_2^{I_1,I_2}: I_1 \times I_2 \rightarrow I_2$.

They satisfy (we omit object annotations):

$$\langle \mathsf{f}_1, \mathsf{f}_2 \rangle \circ \mathsf{h} = \langle \mathsf{f}_1 \circ \mathsf{h}, \mathsf{f}_2 \circ \mathsf{h} \rangle$$
 $\pi_{\mathsf{i}} \circ \langle \mathsf{f}_1, \mathsf{f}_2 \rangle = \mathsf{f}_{\mathsf{i}}$
 $\langle \pi_1, \pi_2 \rangle = \mathsf{id}.$

Binary Product on a Category

The tuple is actually a bijection:

$$\langle -, - \rangle_{\mathsf{J}}^{\mathsf{I}_1, \mathsf{I}_2} \colon \mathbb{C}(\mathsf{J}, \mathsf{I}_1) \times \mathbb{C}(\mathsf{J}, \mathsf{I}_2) \cong \mathbb{C}(\mathsf{J}, \mathsf{I}_1 \times \mathsf{I}_2).$$

Two binary products on $\mathbb C$ give isomorphic product objects:

Proposition 5. If $(-\times -, \langle -, - \rangle, \pi_1, \pi_2)$ and $(-\times' -, \langle -, - \rangle', \pi_1', \pi_2')$ are binary products on \mathbb{C} , then $I_1 \times I_2 \cong I_1 \times' I_2$.

Proof. We obtain $\mathbb{C}(J, I_1 \times I_2) \cong \mathbb{C}(J, I_1 \times' I_2)$. Then let $J = I_1 \times I_2$ and $J = I_1 \times' I_2$ and trace $\mathrm{id}_{I_1 \times I_2}$ and $\mathrm{id}_{I_1 \times' I_2}$.

Finite / Small Products on a Category

We extend the definition of binary products to \mathfrak{n} -ary / setindexed products (What is 0-ary product?).

Finite products on $\mathbb C$ consists of $\mathfrak n$ -ary products for all $\mathfrak n \in \mathbb N$. (We assume that 1-ary product satisfy $\prod (I) = I$).

From a terminal object and a binary product on \mathbb{C} , we can construct finite products on \mathbb{C} :

$$\prod (I_1,...,I_n) = (...(I_1 \times I_2) \times I_3...) \times I_n.$$

Small products on $\mathbb C$ consists of I-ary products for all $I \in \operatorname{Set}$.

• Set, Rel, Mon, Vect, Pre, Top, Cat have small products.

Finite / Small Products on a Category

In a category \mathbb{C} with finite products, we can consider algebraic structures determined by finite-arity operations and equational axioms, such as monoids, groups, rings, vector spaces, etc.

• A monoid in \mathbb{C} with finite products consists of $M \in \mathbb{C}$, $e: 1 \rightarrow M$, $m: M^2 \rightarrow M$ such that

$$\begin{split} m \circ \langle \mathrm{id}_M, e \circ !_M \rangle &= \mathrm{id}_M \\ m \circ \langle e \circ !_M, \mathrm{id}_M \rangle &= \mathrm{id}_M \\ m \circ \langle m \circ \langle \pi_1^{M^3}, \pi_2^{M^3} \rangle, \pi_3^{M^3} \rangle &= m \circ \langle \pi_1^{M^3}, m \circ \langle \pi_2^{M^3}, \pi_3^{M^3} \rangle \rangle. \end{split}$$

Binary Coproduct on a Category

... is a product on \mathbb{C}^{op} . It consists of $(I_1, I_2 \in \mathbb{C})$:

- 1. (Binary) Coproduct object $I_1 + I_2 \in \mathbb{C}$,
- 2. Cotuple $[-,-]_J^{I_1,I_2}$: $\mathbb{C}(I_1,J) \times \mathbb{C}(I_2,J) \to \mathbb{C}(I_1+I_2,J)$,
- 3. Injections $\iota_1^{I_1,I_2}:I_1\to I_1+I_2$ and $\iota_2^{I_1,I_2}:I_2\to I_1+I_2$.

They satisfy (we omit object annotations):

$$h \circ [f_1, f_2] = [h \circ f_1, h \circ f_2]$$

 $[f_1, f_2] \circ \iota_i = f_i$
 $[\iota_1, \iota_2] = id.$

Finite / Small Coproducts on a Category

Cotuple is also a bijection:

$$[-,-]_J^{I_1,I_2}$$
: $\mathbb{C}(I_1,J) \times \mathbb{C}(I_2,J) \cong \mathbb{C}(I_1+I_2,J)$

n-ary / small coproducts are defined similarly.

- Rel, Mon, Vect, Pre, Top, Cat have small coproducts.
- On Set, disjoint union gives small coproducts:

$$\coprod \{I_{\lambda}\}_{\lambda \in \Lambda} = \{(\lambda, x) \mid \lambda \in \Lambda, x \in I_{\lambda}\}$$

 On Grp (the category of groups and group homs) the free product of groups give small coproducts.

Exponential on a Category with a Binary Product

An exponential on a category $\mathbb C$ with a binary product consists of $(I_1, I_2 \in \mathbb C)$:

- 1. Exponential object $I_1 \Rightarrow I_2 \in \mathbb{C}$,
- 2. Currying $\lambda_J^{I_1,I_2}$: $\mathbb{C}(J \times I_1,I_2) \to \mathbb{C}(J,I_1 \Rightarrow I_2)$,
- 3. Evaluation $ev^{I_1,I_2}: I_1 \Rightarrow I_2 \times I_1 \rightarrow I_2$.

They satisfy (below $f \times I_1 = \langle f \circ \pi_1, \pi_2 \rangle$):

$$\lambda(f) \circ g = \lambda(f \circ g \times I_1)$$
 $ev \circ \lambda(f) \times I_1 = f$
 $\lambda(ev) = id.$

Exponential on a Category with a Binary Product

Currying is a bijection:

$$\lambda_J^{I_1,I_2}$$
: $\mathbb{C}(J \times I_1, I_2) \cong \mathbb{C}(J, I_1 \Rightarrow I_2)$.

Two exponentials on $\mathbb C$ give isomorphic exponential objects.

- On Set, $Set(I_1, I_2)$ gives an exponential.
- On Pre , $(\operatorname{Pre}(I_1, I_2), \leqslant')$ gives an exponential, where \leqslant' is the pointwise order of monotone functions.
- On Cat, functor category gives an exponential.
- Rel, Mon, Vect, Top do not have exponentials.

(Bi-) Cartesian Closed Category

A category \mathbb{C} with finite products and an exponential is called a cartesian closed category (CCC).

A category $\mathbb C$ with finite products, finite coproducts and an exponential is called a bi-cartesian closed category (bi-CCC).

A poset C equipped with finite products, finite coproducts and an exponential is called a Heyting algebra.

$$\frac{J\leqslant I_1...J\leqslant I_n}{J\leqslant\bigwedge\ (I_1,...,I_n)} \quad \frac{I_1\leqslant J...I_n\leqslant J}{\bigvee\ (I_1,...,I_n)\leqslant J} \quad \frac{I\wedge J\leqslant K}{I\leqslant J\Rightarrow K}$$

Every bi-CCC is Distributive

Proposition 6. In any bi-CCC, the following is an isomorphism.

$$[\iota_1 \times J, ..., \iota_n \times J] : \coprod (I_1, ..., I_n) \times J \to \coprod (I_1 \times J, ..., I_n \times J)$$

The category with finite products and finite coproducts such that the above morphism is an isomorphism is called distributive.

Corollary 7. Every bi-CCC is distributive.

Corollary 8. Every Heyting algebra is a distributive lattice.

Categorical Approach to Logic Lecture 2

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University

Simply Typed Lambda Calculus

We introduce the simply typed lambda calculus (STLC) and the $\beta\eta$ -equational theory on it, and relate it to bi-CCCs.

STLC extends the propositional fragment of NJ with a syntactic representation of proofs (called λ -term):

$$\frac{\vdots}{\Gamma \vdash \tau} \Rightarrow \frac{\vdots}{\Gamma \vdash M : \tau}.$$

The $\beta\eta$ -equational theory extends the proof reduction \triangleright of NJ to reflect the equality of computational contents of λ -terms / proofs.

Simply Typed Lambda Calculus

We assume:

variables
$$x, y, z, ... \in Var$$
 (countably infinite) base types $b, ... \in B$

We define the set Typ(B) of types by

$$\tau ::= b \mid \bigwedge (\tau, ..., \tau) \mid \bigvee (\tau, ..., \tau) \mid \tau \Rightarrow \tau.$$

We define a context to be a finite sequence

$$\chi_1$$
: τ_1 , ..., χ_n : τ_n

of variable-type pairs such that variables are all different.

Simply Typed Lambda Calculus

We define λ -terms by

This way of annotating types is non-standard!

Pros: we can easily recover the types lost by elimination rules.

Bound / Free Variables and Substitution

The λ -terms of the form:

$$(\lambda x.M)$$
 or $\delta(...,x^{\tau}.M,...)$

binds any free occurrence of x in M.

 λ -terms are identified up to the renaming of bound variables.

M[N/x] is the λ -term obtained by substituting every free occurrence of x in M with N.

Before the substitution, we rename bound variables of M as necessary to avoid the capture of free variables in N.

Typing Rules

We inductively define a ternaly relation $\Gamma \vdash M : \tau$ by

$$\frac{\Gamma_{i} = \chi : \tau}{\Gamma \vdash \chi : \tau} \quad \frac{\Gamma \vdash M_{1} : \tau_{1} \quad \cdots \quad \Gamma \vdash M_{n} : \tau_{n}}{\Gamma \vdash (M_{1}, ..., M_{n}) : \bigwedge (\tau_{1}, ..., \tau_{n})} \quad \frac{\Gamma \vdash M : \bigwedge (\tau_{1}, ..., \tau_{n})}{\Gamma \vdash \pi_{i}^{\tau_{1}, ..., \tau_{n}}(M) : \tau_{i}}$$

$$\frac{\Gamma \vdash M : \tau_{i}}{\Gamma \vdash \iota_{i}(M) : \bigvee (\tau_{1}, ..., \tau_{n})}$$

$$\frac{\Gamma \vdash M \colon \bigvee \ (\tau_1, ..., \tau_n) \quad \Gamma, x_1 \colon \tau_1 \vdash M_1 \colon \sigma \quad \cdots \quad \Gamma, x_n \colon \tau_n \vdash M_n \colon \sigma}{\Gamma \vdash \delta(M, x_1^{\tau_1}.M_1, ..., x_n^{\tau_n}.M_n) \colon \sigma}$$

$$\frac{\Gamma, x \colon \tau \vdash M \colon \sigma}{\Gamma \vdash (\lambda x . M) \colon \tau \Rightarrow \sigma} \quad \frac{\Gamma \vdash M \colon \tau \Rightarrow \sigma \quad \Gamma \vdash N \colon \tau}{\Gamma \vdash (M \, N)^\tau \colon \sigma}$$

Typing Rules

Typing rules correspond to NJ:

$$\frac{\Gamma_{\!\!i} \!=\! \tau}{\Gamma \!\vdash \tau} \quad \frac{\Gamma \!\vdash \tau_1 \quad \Gamma \!\vdash \tau_n}{\Gamma \!\vdash \bigwedge \left(\tau_1, ..., \tau_n\right)} \quad \frac{\Gamma \!\vdash \bigwedge \left(\tau_1, ..., \tau_n\right)}{\Gamma \!\vdash \tau_i}$$

$$\frac{\Gamma \vdash \tau_i}{\Gamma \vdash \bigvee \ (\tau_1,...,\tau_n)} \quad \frac{\Gamma \vdash \bigvee \ (\tau_1,...,\tau_n) \quad \Gamma,\tau_1 \vdash \sigma \cdots \Gamma,\tau_n \vdash \sigma}{\Gamma \vdash \sigma}$$

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \Rightarrow \sigma} \quad \frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \sigma}$$

Typing Rules

Lemma 1. $\Gamma, x: \tau \vdash M: \sigma \text{ and } \Gamma \vdash N: \tau \text{ implies } \Gamma \vdash M[N/x]: \sigma.$

Lemma 2. Each triple $\Gamma \vdash M: \tau$ is derived in a unique way.

βη-Equational Theory on STLC

The $\beta\eta$ -equational theory equates the λ -terms that have equal computational contents.

The theory inductively defines a relation:

$$\Gamma \vdash M = N : \tau$$

It subsumes the proof reduction relation of NJ:

$$\Pi \frac{\vdots}{\Gamma \vdash \varphi} \quad \rhd \quad \Pi' \frac{\vdots}{\Gamma \vdash \varphi}$$

Every $\{(M, N) | \Gamma \vdash M = N : \tau\}$ is designed to be an equivalence relation on $\{M | \Gamma \vdash M : \tau\}$.

βη-Equational Theory on STLC

1. Equivalence relation

$$\frac{\Gamma\vdash N=M:\tau}{\Gamma\vdash M=N:\tau} \quad \frac{\Gamma\vdash M=N:\tau}{\Gamma\vdash M=M:\tau} \quad \frac{\Gamma\vdash M=N:\tau}{\Gamma\vdash M=L:\tau}$$

2. Congruence

$$\begin{split} \frac{\Gamma \vdash M_1 = N_1 : \tau_1 \quad \Gamma \vdash M_n = N_n : \tau_n}{\Gamma \vdash (M_1, ..., M_n) = (N_1, ..., N_n) : \bigwedge \ (t_1, ..., \tau_n)} \\ \frac{\Gamma \vdash M = N : \ \bigwedge \ (\tau_1, ..., \tau_n)}{\Gamma \vdash \pi_i(M) = \pi_i(N) : \tau_i} \end{split}$$

etc.

βη-Equational Theory on STLC (\land , \Rightarrow)

3. $\beta\eta$ -equational axioms.

$$\frac{\Gamma \vdash M_1: \tau_1, ..., \Gamma \vdash M_n: \tau_n}{\Gamma \vdash \pi_i^{\tau_1, ..., \tau_n}(M_1, ..., M_n) = M_i: \tau_i}$$

$$\frac{\Gamma \vdash M \colon \bigwedge \ (\tau_1,...,\tau_n)}{\Gamma \vdash (\pi_1^{\tau_1,...,\tau_n}(M),...,\pi_n^{\tau_1,...,\tau_n}(M)) = M \colon \bigwedge \ (\tau_1,...,\tau_n)}$$

$$\frac{\Gamma, x: \tau \vdash M: \sigma \quad \Gamma \vdash N: \tau}{\Gamma \vdash ((\lambda x.M)N)^{\tau} = M[N/x]: \sigma} \quad \frac{\Gamma \vdash M: \tau \Rightarrow \sigma}{\Gamma \vdash (\lambda x.(Mx)^{\tau}) = M: \tau \Rightarrow \sigma}$$

βη-Equational Theory on STLC (\lor)

$$\frac{\Gamma \vdash N \colon \tau_i \quad \Gamma, x_1 \colon \tau_1 \vdash M_1 \colon \sigma \quad ... \quad \Gamma, x_n \colon \tau_n \vdash M_n \colon \sigma}{\Gamma \vdash \delta(\iota_i(N), ..., x_i^{\tau_i}.M_i, ...) = M_i[N/x] \colon \sigma}$$

$$\frac{\Gamma \vdash M \colon \bigvee \ (\tau_1,...,\tau_n)}{\Gamma \vdash \delta(M,...,x_i^{\tau_i}.\iota_i(x_i),...) = M \colon \bigvee \ (\tau_1,...,\tau_n)}$$

4. Commuting Conversion

$$\frac{\Gamma, x: \sigma \vdash N: \rho, \quad \Gamma \vdash M: \bigvee (\tau_1, ..., \tau_n), \quad \Gamma, x_i: \tau_i \vdash M_i: \sigma}{\Gamma \vdash N[\delta(M, ..., x_i^{\tau_i}.M_i, ...)/x] = \delta(M, ..., x_i^{\tau_i}.N[M_i/x], ...): \rho}$$

Interpreting STLC in a bi-CCC

Let \mathbb{C} be a bi-CCC.

We interpret types and terms of STLC by means of mathematical (categorical) structures.

- A type τ is interpreted as an object $\llbracket \tau \rrbracket \in \mathbb{C}$.
- A judgement x₁: τ₁, ..., xₙ: τₙ ⊢ M: τ is interpreted as a morphism

$$\prod \ (\llbracket \tau_1 \rrbracket, ..., \llbracket \tau_n \rrbracket) \to \llbracket \tau \rrbracket.$$

Interpreting Types

Fix an assignment of $[\![b]\!]_0 \in \mathbb{C}$ to each $b \in B$.

We extend it to an assignment of $\llbracket \tau \rrbracket \in \mathbb{C}$ to each $\tau \in \text{Typ}(B)$:

We further extend it to contexts:

$$[\![x_1:\tau_1,...,x_n:\tau_n]\!] = \prod ([\![\tau_1]\!],...,[\![\tau_n]\!]).$$

Interpreting Judgements (\land, \Rightarrow)

Following the unique derivation of $\Gamma \vdash M : \tau$, we construct a morphism $\llbracket M \rrbracket_{\tau}^{\Gamma} : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$ as follows:

$$\frac{\Gamma_i = (x, \tau)}{\pi_i : \llbracket \Gamma \rrbracket \to \llbracket \tau_i \rrbracket}$$

$$\frac{f_1: \llbracket\Gamma\rrbracket \to \llbracket\tau_1\rrbracket \quad f_n: \llbracket\Gamma\rrbracket \to \llbracket\tau_n\rrbracket}{\langle f_1, ..., f_n \rangle : \llbracket\Gamma\rrbracket \to \llbracket\bigwedge \ (\tau_1, ..., \tau_n)\rrbracket}, \qquad \frac{f: \llbracket\Gamma\rrbracket \to \llbracket\bigwedge \ (\tau_1, ..., \tau_n)\rrbracket}{\pi_i \circ f: \llbracket\Gamma\rrbracket \to \llbracket\tau_i\rrbracket}$$

$$\frac{f \colon \llbracket \Gamma, x \colon \tau \rrbracket \to \llbracket \sigma \rrbracket}{\lambda(f \circ \alpha) \colon \llbracket \Gamma \rrbracket \to \llbracket \tau \Rightarrow s \rrbracket} \quad \frac{f \colon \llbracket \Gamma \rrbracket \to \llbracket \tau \Rightarrow \sigma \rrbracket \quad g \colon \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket}{\operatorname{ev} \circ \langle f, g \rangle \colon \llbracket \Gamma \rrbracket \to \llbracket \sigma \rrbracket}$$

Here $\alpha: \llbracket \Gamma \rrbracket \times \llbracket \tau \rrbracket \to \llbracket \Gamma, \chi: \tau \rrbracket$ is an iso.

Interpreting Judgements (V)

$$\frac{f \colon \llbracket \Gamma \rrbracket \to \llbracket \tau_i \rrbracket}{\iota_i \circ f \colon \llbracket \Gamma \rrbracket \to \llbracket \bigvee \ (\tau_1,...,\tau_n) \rrbracket}$$

$$\frac{f \colon \llbracket \Gamma \rrbracket \to \llbracket \bigvee \ (\tau_1,...,\tau_n) \rrbracket \quad \llbracket g_i \rrbracket \colon \llbracket \Gamma, x_i \colon \tau_i \rrbracket \to \llbracket \sigma \rrbracket}{[g_1,...,g_n] \circ d \circ \langle \operatorname{id}_{\llbracket \Gamma \rrbracket}, f \rangle \colon \llbracket \Gamma \rrbracket \to \llbracket \sigma \rrbracket}$$

The composite is the following diagram:

$$\llbracket \Gamma \rrbracket \to \llbracket \Gamma \rrbracket \times \llbracket \bigvee (\tau_1,...,\tau_n) \rrbracket \to \coprod \llbracket \Gamma, x_i \colon \tau_i \rrbracket \to \llbracket \sigma \rrbracket.$$

Soundnes and Completeness

Theorem 3. Suppose $\Gamma \vdash M: \tau$ and $\Gamma \vdash N: \tau$. TFAE:

- 1. $\Gamma \vdash M = N : \tau$.
- 2. For any bi-CCC $\mathbb C$ and an assignment $\llbracket \rrbracket_0$ of an $\mathbb C$ -object to each $b \in B$, the induced $\llbracket \rrbracket$ satisfies

$$\llbracket M \rrbracket_{\tau}^{\Gamma} = \llbracket N \rrbracket_{\tau}^{\Gamma} : \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket.$$

Souneness $(1\Rightarrow 2)$ is easy. The converse is in the next slide.

Completeness

Fix a distinguished $\Box \in Var$. We define the category ΛB by

$$\Lambda B_0 = \operatorname{Typ}(B), \quad \Lambda B(\tau, \sigma) = \{M^= | \Box : \tau \vdash M : \sigma\}.$$

Here, $M^=$ is the equivalence class of M by $\{(M, N) | \Box : \tau \vdash M = N : \sigma\}$. The composition is substitution: $N^= \circ M^= = (N[M/\Box]^=)$.

Proposition 4. AB is a bi-CCC.

(Sketch of $2\Rightarrow 1$) Let $\Gamma=x_1:\tau_1,...,x_n:\tau_n$. Show that the interpretation in ΛB with $[\![b]\!]_0=b$ satisfies $[\![M]\!]_\sigma^\Gamma=(M[\pi_i\Box/x_i])^=$. Then

$$\begin{split} \llbracket M \rrbracket_{\sigma}^{\Gamma} &= \llbracket N \rrbracket_{\sigma}^{\Gamma} \ \Rightarrow \ \Box \colon \bigwedge (\tau_{1},...,\tau_{n}) \vdash M[\pi_{i}\Box/x_{i}] = N[\pi_{i}\Box/x_{i}] \colon \sigma \\ &\Rightarrow \ \Gamma \vdash M = N \colon \sigma. \end{split}$$

Categorical Approach to Logic Lecture 3

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University

Functor

A functor F from \mathbb{C} to \mathbb{D} (F: $\mathbb{C} \to \mathbb{D}$) consists of:

- 1. A mapping $F_0: \mathbb{C}_0 \to \mathbb{D}_0$
- 2. A mapping $F_1: \mathbb{C}_1 \to \mathbb{D}_1$.

Both are written F for simplicity. They satisfy:

$$f: I \to J \Rightarrow Ff: FI \to FJ$$
, $F(id_I) = id_{FI}$, $F(g \circ f) = Fg \circ Ff$.

Thus F₁ can be restricted to

$$F_{I,J}: \mathbb{C}(I,J) \to \mathbb{D}(FI,FJ).$$

Examples of Functors

Forgetful functor U: Mon, Vect, Top, Pre → Set

Free construction F: Set \rightarrow Mon, Vect

Functors Eq, Ch: Set \rightarrow Pre:

$$Eq I = (I, \{(i, i) | i \in I\}), Ch I = (I, I \times I).$$

Functors D, iD: Set \rightarrow Top:

$$DI = (I, 2^{I}), iD = (I, \{\emptyset, I\}).$$

The Category of Small Categories

For $F: \mathbb{C} \to \mathbb{D}$ and $G: \mathbb{D} \to \mathbb{E}$, we define $G \circ F: \mathbb{C} \to \mathbb{E}$ by

$$(G \circ F)_0 I = G_0(F_0 I), \quad (G \circ F)_1 f = G_1(F_1 f).$$

This is indeed a functor. We define the category Cat by

$$\operatorname{Cat}_0 = \{ \text{small cats.} \} \quad \operatorname{Cat}(\mathbb{C}, \mathbb{D}) = \{ F: \mathbb{C} \to \mathbb{D} \text{ functor} \}.$$

Some related functors:

- $C: \operatorname{Pre}, \operatorname{Mon} \to \operatorname{Cat}$.
- Obj: Cat \rightarrow Set mapping $\mathbb C$ to $\mathbb C_0$.

Adjunction

An adjunction consists of the following data:

- 1. Functors L: $\mathbb{C} \to \mathbb{D}$ and R: $\mathbb{D} \to \mathbb{C}$.
- 2. A bijection for each $I \in \mathbb{C}$, $J \in \mathbb{D}$:

$$\varphi_{I,J}$$
: $\mathbb{D}(LI,J) \cong \mathbb{C}(I,RJ)$

They satisfy:

$$\varphi(h \circ g \circ Lf) = Rh \circ \varphi(g) \circ f.$$

The notation for an adjunction is $(L, R, \varphi) : \mathbb{C} \to \mathbb{D}$.

Adjunction

 $L \dashv R \dots \exists \phi.(L, R, \phi) : \mathbb{C} \to \mathbb{D}$ is an adjunction

L: $\mathbb{C} \to \mathbb{D}$ is a left adjoint ... $\exists R: \mathbb{D} \to \mathbb{C}.L \dashv R$

 $R: \mathbb{D} \to \mathbb{C}$ is a right adjoint ... $\exists L: \mathbb{C} \to \mathbb{D}.L \dashv R$

 $\eta_I = \phi(\mathrm{id}_{LI}) \colon I \to RLI \dots \text{ the unit of } (L, R, \phi) \colon \mathbb{C} \to \mathbb{D}$

 $\varepsilon_I = \phi^{-1}(\mathrm{id}_{RI}) \colon LRI \to I \dots \text{ the counit of } (L,R,\phi) \colon \mathbb{C} \to \mathbb{D}$

Lemma 1. If (L, R, φ) and (L, R', φ') are adjunctions then for every $I \in \mathbb{D}$, $RI \cong R'I$ and this isomorphism is natural on I.

Representation of $\mathbb{D}(L-,I)$

Let $I \in \mathbb{D}$ and $L: \mathbb{C} \to \mathbb{D}$.

A representation of $\mathbb{D}(L-,I)$ consists of:

- 1. Representing object $R \in \mathbb{C}$,
- 2. Counit $\varepsilon: LR \to I$.

They satisfy: the following is a bijection for all $J \in \mathbb{C}$.

$$\varepsilon \circ L -: \mathbb{C}(J, R) \to \mathbb{D}(LJ, I)$$

Representation of $\mathbb{D}(L-,I)$ with Inverse

Let $I \in \mathbb{D}$ and $L: \mathbb{C} \to \mathbb{D}$.

A representation of $\mathbb{D}(L-,I)$ with inverse consists of:

- 1. Representing object $R \in \mathbb{C}$,
- 2. A mapping $\varphi_J: \mathbb{D}(LJ, I) \to \mathbb{C}(J, R)$,
- 3. Counit $\varepsilon: LR \to I$.

They satisfy:

$$\varphi_{J}(f \circ Lg) = \varphi_{K}(f) \circ g, \quad \varepsilon \circ L(\varphi_{J}(f)) = f, \quad \varphi_{R}(\varepsilon) = id_{R}.$$

(this is a local terminology in this document)

Universal Arrow

Let $I \in \mathbb{D}$ and $L: \mathbb{C} \to \mathbb{D}$.

A universal arrow from L to I consists of:

- 1. $R \in \mathbb{C}$,
- 2. $\varepsilon: LR \rightarrow I$.

They satisfy: for all $J \in \mathbb{C}$ and $f: LJ \to I$, there exists a unique $m: J \to R$ such that $\varepsilon \circ Lm = f$.

Representation of $\mathbb{D}(L-,I)\cong$ Universal Arrow

Theorem 2. Let $I \in \mathbb{D}$ and $L: \mathbb{C} \to \mathbb{D}$. There is a bijective correspondence between:

- 1. A representation (R, ε) of $\mathbb{D}(L-, I)$.
- 2. A representation $(R, \varphi, \varepsilon)$ of $\mathbb{D}(L-, I)$ with inv.
- 3. A universal arrow (R, ε) from L to I.

Representation of $\mathbb{C}(I, R -) \cong$ Universal Arrow

Let $I \in \mathbb{C}$ and $R: \mathbb{D} \to \mathbb{C}$. A pair $(L \in \mathbb{D}, \eta: I \to RL)$ is:

- 1. a representation of $\mathbb{C}(I, R -)$ if $R \circ \eta \colon \mathbb{D}(L, J) \to \mathbb{C}(I, R J)$ is a bijection for every $J \in \mathbb{D}$.
- 2. a universal arrow from I to R if for every $J \in \mathbb{D}$ and $f: I \to RJ$, there exists a unique $m: L \to J$ such that $Rm \circ \eta = f$.

Theorem 3. Representations of $\mathbb{C}(I, R -)$ bijectively correspond to universal arrows from I to R.

Adjunction = Representations of all $\mathbb{D}(L-,I)$

Theorem 4. Let $L: \mathbb{C} \to \mathbb{D}$. There is a bijective correspondence between:

- 1. An assignment of a representation $(RI, \varphi, \epsilon^I)$ of $\mathbb{D}(L I)$ with inv. to each $I \in \mathbb{D}$.
- *2.* An adjunction (L, R, φ) : $\mathbb{C} \to \mathbb{D}$.

A Binary Product on \mathbb{C} = Reps. of all $\mathbb{C}^2(\Delta -, I)$

Define $\Delta: \mathbb{C} \to \mathbb{C}^2$ by $\Delta I = (I, I)$ and $\Delta f = (f, f)$.

Suppose that C has a binary product. Then every

$$(I_1 \times I_2, \langle -, - \rangle^{I_1, I_2}, (\pi_1^{I_1, I_2}, \pi_2^{I_1, I_2}))$$

is a representation of $\mathbb{C}^2(\Delta -, (I_1, I_2))$ with inv.

Theorem 5. A binary product on $\mathbb C$ is exactly an assignment of a representation of $\mathbb C^2(\Delta-,\mathrm I)$ (with inv.) to each $\mathrm I\in\mathbb C^2$.

Theorem 6. A binary product on $\mathbb C$ bijectively corresponds to an adjunction $(\Delta, \times, \varphi) \colon \mathbb C \to \mathbb D$.

The Adjunction $-\times I \dashv I \Rightarrow -$

Suppose that $\mathbb C$ has a binary product $\times : \mathbb C^2 \to \mathbb C$ and an exponential. Every $I \in \mathbb C$ determines $- \times I : \mathbb C \to \mathbb C$. Then

$$(I_1 \Rightarrow I_2, \lambda^{I_1,I_2}, ev^{I_1,I_2})$$

is exactly a representation of $\mathbb{D}(-\times I_1, I_2)$ with inv.

Theorem 7. Let \mathbb{C} be a category with a binary product. An exponential on \mathbb{C} is exactly an assignment of a representation of $\mathbb{D}(-\times I_1, I_2)$ (with inv.) to each $I_1, I_2 \in \mathbb{C}$.

Theorem 8. An exponential on $\mathbb C$ consists of an adjunction $(-\times I, I \Rightarrow -, \lambda^I): \mathbb C \to \mathbb C$ for every $I \in \mathbb C$.

Strict Map of Adjunction

Let $(L, R, \varphi) : \mathbb{C} \to \mathbb{D}$ and $(L', R', \varphi') : \mathbb{C}' \to \mathbb{D}'$ be adjunctions. A strict map of adjunctions consists of

1. $F: \mathbb{C} \to \mathbb{C}'$ and $G: \mathbb{D} \to \mathbb{D}'$

such that

$$G \circ L = L' \circ F$$
, $F \circ R = R' \circ G$, $F \varphi(f) = \varphi'(G f)$.

Strict Preservation of bi-CC structure

Let \mathbb{C}, \mathbb{D} be bi-CCCs. We say that $F: \mathbb{C} \to \mathbb{D}$ strictly preserves the bi-CC structure if the following are strict map of adjunctions.

$$(\mathsf{F},\mathsf{F}^{\mathsf{n}})\colon \left(\Delta^{\mathbb{C}},\;\prod\;\mathbb{C},\,\varphi^{\mathbb{C}}\right) \to \left(\Delta^{\mathbb{D}},\;\prod\;\mathbb{D},\,\varphi^{\mathbb{D}}\right)$$

$$(\mathsf{F}^{\mathsf{n}},\mathsf{F})\colon \big(\coprod{}^{\mathbb{C}},\Delta^{\mathbb{C}},\phi^{\mathbb{C}}\big) \to \big(\coprod{}^{\mathbb{D}},\Delta^{\mathbb{D}},\phi^{\mathbb{D}}\big)$$

$$(\mathsf{F},\mathsf{F}):(-\times\mathsf{I},\mathsf{I}\Rightarrow-,\lambda^{\mathsf{I}})\to(-\times\mathsf{F}\,\mathsf{I},\mathsf{F}\,\mathsf{I}\Rightarrow-,\lambda^{\mathsf{F}\,\mathsf{I}})\quad (\mathsf{I}\in\mathbb{C})$$

Another way to put this: F commutes with \prod , \coprod , \Rightarrow .

The Category of bi-CCCs

We define biCCCat by

 $(biCCCat)_0 = {\mathbb{C} \text{ small bi-CCC}}$ $biCCCat(\mathbb{C}, \mathbb{D}) = {F: \mathbb{C} \to \mathbb{D} \text{ strictly preserve bi-CC struct.}}$

We write $Obj: biCCCat \rightarrow Set$ extracting the object part.

For instance, $\Lambda B \in biCCCat$, and $Obj(\Lambda B) = Typ(B)$.

Universal Property of AB

Let $\mathbb{C} \in \mathrm{biCCCat}$ and $\llbracket - \rrbracket_0 : B \to \mathrm{Obj}(\mathbb{C})$. We write $\llbracket - \rrbracket$ for the interpretation of the STLC over B obtained from $\llbracket - \rrbracket_0$.

- 1. $\llbracket \rrbracket$ extends to a morphism in $biCCCat(\Lambda B, \mathbb{C})$.
- **2.** $\mathrm{Obj}(\llbracket \rrbracket) \circ \eta_B : B \hookrightarrow \mathrm{Typ} B \to \mathrm{Obj}(\mathbb{C}) = \llbracket \rrbracket_0.$
- 3. If $F: \Lambda B \to \mathbb{C}$ satisfies $Obj(F) \circ \eta_B = \llbracket \rrbracket_0$, then $F = \llbracket \rrbracket$.

Thus $(\Lambda B, \eta_B: B \hookrightarrow \operatorname{Typ}(B))$ is a universal arrow from B to Obj .

Theorem 9. We have $\Lambda \dashv Obj$.

STLC over B / $\beta\eta$ -equality = free bi-CCC over B

Universal Property of AB

Though we characterised Λ as a left adjoint to $\mathrm{Obj}\colon\mathrm{biCCCat}\to\mathrm{Set},\ (\Lambda B,\,\eta_B\colon B\hookrightarrow\mathrm{Typ}(B))$ satisfies the universal property for large bi-CCCs as well.

Theorem 10. For any bi-CCC \mathbb{C} and an assignment of $\llbracket b \rrbracket_0 \in \mathbb{C}$ to each $b \in B$, $\llbracket - \rrbracket : AB \to \mathbb{C}$ is the unique functor that strictly preserves the bi-CC structure and that satisfies $\llbracket b \rrbracket = \llbracket b \rrbracket_0$.

Categorical Approach to Logic Lecture 4

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University

Intuitionistic First-Order Predicate Logic NJ

Each NJ is built on a language Σ , Π : $\mathbb{N} \to \mathrm{Set}$:

- Σn ... the set of n-ary function symbols
- Πn ... the set of n-ary predicate symbols

For instance, the NJ built on the language

$$\Sigma 0 = \{z\}, \quad \Sigma 1 = \{s\}, \quad \Pi 2 = \{\leqslant\}, \quad \text{otherwise } \Sigma n = \Pi n = \emptyset$$

can be used to talk about natural numbers and their inequality.

Intuitionistic First-Order Predicate Logic NJ

The NJ over a language $L = (\Sigma, \Pi)$ specifies three concepts:

- 1. (L-)Terms $x_1, ..., x_l \vdash t$.
- 2. (L-)Formulas $x_1, ..., x_l \vdash \varphi$.
- 3. Sequents $x_1, ..., x_l | \varphi_1, ..., \varphi_m \Rightarrow \varphi$.

The leading part $x_1, ..., x_l$ (context) is a finite sequence of distinct variables.

Contexts are ranged over by Δ .

$NJ^{\Sigma,\Pi}$

Terms

$$\frac{\Delta_i = x}{\Delta \vdash x} \quad \frac{\Delta \vdash t_1 \quad \cdots \quad \Delta \vdash t_n \quad f \in \Sigma n}{\Delta \vdash f(t_1, ..., t_n)}$$

Formulas

$$\frac{\Delta \vdash t_1 \quad \cdots \quad \Delta \vdash t_n \quad p \in \Pi n}{\Delta \vdash p(t_1, ..., t_n)} \quad \frac{\Delta, x \vdash \phi}{\Delta \vdash \forall x. \phi} \quad \frac{\Delta, x \vdash \phi}{\Delta \vdash \exists x. \phi}$$

and the rules for \bigwedge , \bigvee , \Rightarrow .

$NJ^{\Sigma,\Pi}$

Inference Rules ($\Gamma = \varphi_1, ..., \varphi_n$)

$$\frac{\Delta, x | \Gamma \Rightarrow \phi \quad \Delta \vdash \phi_1 \quad \dots \quad \Delta \vdash \phi_n}{\Delta | \Gamma \Rightarrow \forall x. \phi} \quad \frac{\Delta | \Gamma \Rightarrow \forall x. \phi \quad \Delta \vdash t}{\Delta | \Gamma \Rightarrow \phi[t/x]}$$

$$\frac{\Delta |\Gamma \Rightarrow \phi[t/x]}{\Delta |\Gamma \Rightarrow \exists x. \phi} \quad \frac{\Delta |\Gamma \Rightarrow \exists x. \phi \quad \Delta, x|\Gamma, \phi \Rightarrow \phi' \quad \Delta \vdash \phi'}{\Delta |\Gamma \Rightarrow \forall x. \phi}$$

(red part: eigenvariable condition)

and the rules for \bigwedge , \bigvee , \Rightarrow .

Lawvere's Hyperdoctrine

$$|-| \circ p \colon \mathbb{B}^{op} \to \operatorname{Mod}_{\mathsf{L}} \to \operatorname{Cat}$$

- Mod_{L} is the category of models of propositional L-logic.
- \bullet \mathbb{B} is the category interpreting terms / substitutions.
- p assigns to $I \in \mathbb{B}$ the poset pI of predicates over I, which has the structure of L-model.
- p captures the situation that term substitutions contravariantly act on predicates.
- |-|∘p satisfy certain properties for modelling universal / existensial quantification.

Hyperdoctrine for NJ

We employ $|-|: \text{Heyt} \rightarrow \text{Cat}$ for hyperdoctrines for NJ.

Definition 1. A hyperdctorine for NJ consists of:

- 1. a category \mathbb{B} with finite products,
- 2. a functor $p: \mathbb{B}^{op} \to \text{Heyt.}$

They satisfy:

- 1. for each projection $\pi_1^{I,J}$: $I \times J \to I$ in \mathbb{B} , $|\mathfrak{p}\pi_1^{I,J}|$: $|\mathfrak{p}I| \to |\mathfrak{p}(I \times J)|$ has the left adjoint $\exists^{I,J}$ and right adjoint $\forall^{I,J}$,
- 2. these adjoints satisfy Beck-Chevalley condition.

Example: Powerset Hyperdoctrine

We define 2^- : Set^{op} \rightarrow Heyt by

$$I \mapsto (2^{I}, \subseteq), \quad (f: I \mapsto J) \mapsto (f^{-1}: 2^{J} \to 2^{I}).$$

Theorem 2. The above functor is a hyperdctorine for NJ.

The left / right adjoints $\exists^{I,J} \dashv |2^{\pi_1^{I,J}}| \dashv \forall^{I,J}$ are

$$\forall^{I,J}X = \{i \in I \mid \forall j.(i,j) \in X\}, \quad \exists^{I,J}X = \{i \in I \mid \exists j.(i,j) \in X\}.$$

Example: Heyting-Valued Hyperdoctrine

Let H be a complete Heyting algebra (cHA). The set of functions $I \Rightarrow H$ is also a cHA by the pointwise $\bigwedge, \bigvee, \Rightarrow$.

We define $-\Rightarrow H: Set^{op} \rightarrow Heyt$ by

$$I \mapsto I \Rightarrow H$$
, $(f: I \to J) \mapsto (-\circ f: J \Rightarrow H \to I \Rightarrow H)$.

Theorem 3. The above functor is a hyperdctorine for NJ.

The left / right adjoints $\exists^{I,J} \dashv |\pi_1^{I,J} \Rightarrow H| \dashv \forall^{I,J}$ are

$$(\forall^{I,J}X)(i) = \bigwedge_{j \in J} X(i,j), \quad (\exists^{I,J}X)(i) = \bigvee_{j \in J} X(i,j).$$

Base category of Hyperdoctrine of $NJ^{\Sigma,\Pi}$

We fix an enumeration $v_1, ..., v_l, ...$ of variables.

Define \mathbb{B}_{Σ} by:

$$(\mathbb{B}_{\Sigma})_0 = \mathbb{N}, \quad \mathbb{B}_{\Sigma}(\mathfrak{l}, \mathfrak{m}) = \{(\mathfrak{t}_1, ..., \mathfrak{t}_{\mathfrak{m}}) \mid \Delta_{\mathfrak{l}} \vdash \mathfrak{t}_{\mathfrak{i}}\}$$

$$id_l = (v_1, ..., v_l), \quad (s_1, ..., s_n) \circ (t_1, ..., t_m) = (s_1[t_i/v_i], ..., s_n[t_i/v_i])$$

For $t: l \rightarrow m$, we write t^* for the substitution

$$-[t_1/v_1,...,t_m/v_m]$$

to terms / formulas.

Proposition 4. \mathbb{B}_{Σ} has finite products.

Some Lemmas

For any $f: l \to m$ in \mathbb{B}_{Σ} ,

- 1. $\Delta_{\mathfrak{m}} \vdash \varphi$ implies $\Delta_{\mathfrak{l}} \vdash \mathfrak{t}^* \varphi$.
- 2. $\Delta_{\mathfrak{m}} | \phi \Rightarrow \phi' \text{ implies } \Delta_{\mathfrak{l}} | \mathfrak{t}^* \phi \Rightarrow \mathfrak{t}^* \phi'.$
- 3. t^* commutes with \bigwedge , \bigvee , \rightarrow , that is,

$$\begin{array}{lll} t^*\big(\bigwedge (\phi_1,...,\phi_l)\big) &=& \bigwedge (t^*\phi_1,...,t^*\phi_l) \\ t^*\big(\bigvee (\phi_1,...,\phi_l)\big) &=& \bigvee (t^*\phi_1,...,t^*\phi_l) \\ t^*(\phi_1\to\phi_2) &=& t^*\phi_1\to t^*\phi_2. \end{array}$$

Functor of Hyperdoctrine of $\mathrm{NJ}^{\Sigma,\Pi}$

For $l \in \mathbb{B}_{\Sigma}$, define $q_{\Sigma,\Pi}l$ by

$$q_{\Sigma,\Pi}l = (\{\phi \mid \Delta_l \vdash \phi\}, \quad \{(\phi, \phi') \mid \Delta_l \mid \phi \vdash \phi'\}).$$

We write \lesssim_l for the preorder part of $q_{\Sigma,\Pi}l$.

Proposition 5. Each $q_{\Sigma,\Pi}l$ is a bi-cartesian closed preorder.

For $t: l \to m$ in \mathbb{B}_{Σ} , define $q_{\Sigma,\Pi}t: q_{\Sigma,\Pi}m \to q_{\Sigma,\Pi}l$ by

$$q_{\Sigma,\Pi}t(\varphi)=t^*\varphi.$$

Proposition 6. Each $q_{\Sigma,\Pi}t$ is a functor that strictly preserves the bi-cartesian closed structure.

Functor of Hyperdoctrine of $\mathrm{NJ}^{\Sigma,\Pi}$

The quotient of $q_{\Sigma,\Pi}l$ by $\lesssim_l \cap \gtrsim_l$ is a Heyting algebra, say $p_{\Sigma,\Pi}l$.

Theorem 7. The assignment $l \mapsto p_{\Sigma,\Pi} l$ extends to a functor

$$\mathfrak{p}_{\Sigma,\Pi}: \mathbb{B}^{\mathrm{op}}_{\Sigma} \to \mathrm{Heyt}.$$

Below we identify a formula $\Delta_l \vdash \varphi$ and its equivalence class by $\lesssim_l \cap \gtrsim_l$.

We often write p for $p_{\Sigma,\Pi}$.

Adjoints of Hyperdoctrine of $NJ^{\Sigma,\Pi}$

The projection $\pi_1^{l,m}$ in \mathbb{B}_{Σ} is $(\nu_1,...,\nu_l)$.

$$|p\pi_1^{l,m}|:|p\,l|\to |p(l+m)|, \quad |p\pi_1^{l,m}|(\phi)=(\pi_1^{l,m})^*\phi=\phi.$$

In $NJ^{\Sigma,\Pi}$ we have

$$egin{array}{lll} \Delta_{\mathrm{l}} & | \, \phi dash orall
u_{\mathrm{l}+1}. \phi' \; \Leftrightarrow \; \Delta_{\mathrm{l}+1} \, | \, \phi = | \mathfrak{p} \pi_{\mathrm{l}}^{\mathrm{l},\mathrm{l}} | (\phi) dash \phi' \ \Delta_{\mathrm{l}} \, | \, \exists
u_{\mathrm{l}+1}. \phi dash \phi' \; \Leftrightarrow \; \Delta_{\mathrm{l}+1} \, | \, \phi dash \phi' = | \mathfrak{p} \pi_{\mathrm{l}}^{\mathrm{l},\mathrm{l}} | (\phi') \ \end{array}$$

Corollary 8.
$$(\exists v_{l+1}. -) \dashv |p\pi_1^{l,1}| \dashv (\forall v_{l+1}. -)$$
.

Universal / existential quantification $\Leftrightarrow R / L$ adjoint of $p(\pi)$

Beck-Chevalley Condition

The right adjoint $\forall^{I,J}$ of $|p\pi_1^{I,J}|: |pI| \to |p(I \times J)|$ satisfies Beck-Chevalley condition if for any $f: I \to K$,

$$|\mathfrak{p} f| \circ \forall^{K,J} = \forall^{I,J} \circ |\mathfrak{p} (f \times J)|.$$

Similarly, the left adjoint $\exists^{I,J}$ of $|p\pi_1^{I,J}|:|pI| \to |p(I \times J)|$ satisfies Beck-Chevalley condition if for any $f:I \to K$,

$$|pf| \circ \exists^{K,J} = \exists^{I,J} \circ |p(f \times J)|.$$

Beck-Chevalley ⇔ Quantifier commutes with substitution

(They are a special version of a more general BC condition.)

Beck-Chevalley Condition

For $t = (t_1, ..., t_m): l \rightarrow m \text{ in } \mathbb{B}_{\Sigma}$,

$$t \times 1 = (t_1, ..., t_m, v_{l+1}), \quad |p(t \times 1)|(\phi) = \phi[t_i/v_i, v_{l+1}/v_{m+1}].$$

Theorem 9. $\forall v_{m+1}$. — and $\exists v_{m+1}$. — satisfy Beck-Chevalley conditions.

For any $t: l \to m$ in \mathbb{B}_{Σ} ,

$$\begin{split} |p\,t| \circ (\forall \nu_{m+1}.-)(\phi) &= (\forall \nu_{m+1}.\phi)[t_i/\nu_i] \\ &= (\forall \nu_{l+1}.\phi[\nu_{l+1}/\nu_{m+1}])[t_i/\nu_i] \\ &= (\forall \nu_{l+1}.\phi[t_i/\nu_i,\nu_{l+1}/\nu_{m+1}]) \\ &= (\forall \nu_{l+1}.-) \circ |p(t\times 1)|(\phi). \end{split}$$

The Hyperdoctrine of $\mathrm{NJ}^{\Sigma,\Pi}$

Theorem 10. The functor $\mathfrak{p}_{\Sigma,\Pi} \colon \mathbb{B}_{\Sigma}^{\mathrm{op}} \to \mathrm{Heyt}$ constructed from $\mathrm{NJ}^{\Sigma,\Pi}$ is a hyperdctorine for NJ.

Structure of NJ

Hyperdoctrines for NJ captures the structures that are common among all NJs.

Each $NJ^{\Sigma,\Pi}$ is interpreted using a Σ , Π -structure.

Definition 11. Let $p: \mathbb{B}^{op} \to \operatorname{Heyt}$ be a hyperdoctrine for NJ. A Σ , Π -structure in p consists of

- 1. a universe $U \in \mathbb{B}$,
- 2. a morphism $[\![f]\!]: U^n \rightarrow U$ for every $f \in \Sigma n$,
- 3. an object $[p] \in p(U^n)$ for every $p \in \Pi n$.

Interpretation of $\mathrm{NJ}^{\Sigma,\Pi}$

The following is the principle of the interpretation of $NJ^{\Sigma,\Pi}$:

$$\begin{split} x_1, \cdots, x_l \vdash t & \dots & \llbracket t \rrbracket \colon U^l \to U \\ x_1, \cdots, x_l \vdash \phi & \dots & \llbracket \phi \rrbracket \in \mathfrak{p} \, U^l \\ x_1, \dots, x_l \mid \phi_1, \dots, \phi_m \Rightarrow \phi & \dots & \bigwedge \left(\llbracket \phi_1 \rrbracket, \dots, \llbracket \phi_m \rrbracket \right) \leqslant \llbracket \phi \rrbracket & \left(\mathfrak{p} \, U^l \right). \end{split}$$

Question 12. Fill out the detail of the interpretation.

Soundness and Completeness

Theorem 13. Let Δ be a context and $\Delta \vdash \varphi_1, ..., \varphi_n, \varphi$ be formulas in $NJ^{\Sigma,\Pi}$. TFAE:

- 1. $\Delta | \varphi_1, ..., \varphi_n \Rightarrow \varphi$.
- 2. For any hyperdoctrine $p: \mathbb{B}^{op} \to \operatorname{Heyt}$ for NJ and Σ , Π structure $(U, [\![-]\!])$, the following holds in $\mathfrak{p}(U^{|\Delta|})$:

Proof. (1 \Rightarrow 2) Easy. (2 \Rightarrow 1) Use the hyperdoctrine $p_{\Sigma,\Pi}$ and the canonical Σ , Π -structure in this hyperdoctrine.