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Abstract

In the present paper, by applying anabelian Grothendieck Conjecture-
type results, we prove that the profinite Grothendieck-Teichmüller group
GT satisfies strong indecomposability [i.e., the property that every open
subgroup has no nontrivial product decomposition]. This gives an affir-
mative answer to an open problem — which naturally arises in the context
of a famous open problem concerning the comparison of Gal(Q/Q) and
GT — posed in a first author’s previous work.
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Introduction

Let us recall that the [profinite] Grothendieck-Teichmüller group GT has
been considered to be a combinatorial approximation of the absolute Galois
group GQ of the field of rational numbers Q [cf. Definition 3.1; Remark 3.1.2;
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[3]; [5]; [6]; [7], Introduction]. Indeed, the natural faithful outer actions of GQ
and GT on the étale fundamental group of the projective line minus the three
points 0, 1, ∞, over the algebraic closure Q of Q determine the inclusion

GQ ⊆ GT,

and there exists a famous open question concerning this inclusion [cf. [20], §1.4]:

Question 1: Is the natural inclusion GQ ⊆ GT bijective?

With regard to Question 1, in the authors’ knowledge, there is no [strong] ev-
idence to believe that the inclusion GQ ⊆ GT is bijective. Here, we note that
André defined a p-adic avatar GTp of GT and formulated a p-adic analogue of
Question 1 by using his theory of tempered fundamental groups [cf. [1], [2]]. In
this local setting, the second author constructed a natural splitting GTp ↠ GQp

of the inclusion GQp
⊆ GTp — where GQp

denotes the absolute Galois group
of the field of p-adic numbers [cf. [22], Corollary B]. It seems to the authors
that the existence of such a splitting may be regarded as a strong evidence to
believe that the inclusion GQp ⊆ GTp is bijective. However, the construction
of the splitting GTp ↠ GQp heavily depends on a certain rigidity of tempered
fundamental groups [cf. [22], Theorem C]. Thus, at the time of writing the
present paper, the authors do not regard the existence of the splitting in the
local setting as an evidence to believe that the inclusion GQ ⊆ GT is bijective.

Since Question 1 is far-reaching, the following question has been considered
to be important in the literatures [cf., e.g., [20], §1.4]:

Question 2: Let P be a group-theoretic property that GQ satisfies.
Then does GT satisfy the property P?

Concerning Question 2, for instance, Lochak-Schneps proved a remarkable result
that the normalizer of a complex conjugation ι ∈ GT coincides with the group
[of order 2] generated by ι [cf. [9], Proposition 4, (ii)]. [Note that the analogous
result for GQ follows from the approximation theorem — cf. [17], Corollary
12.1.4.] On the other hand, the first author posed the following question [cf.
[10], Introduction]:

Question 3: Is GT strongly indecomposable?

[Note that the strong indecomposability of GQ follows from the fact that number
fields are Hilbertian — cf. [4], Proposition 13.4.1; [4], Corollary 13.8.4.] We
remark that the indecomposability of GT follows from Lochak-Schneps’s result
[cf. Remark 3.4.1]. However, this argument does not work for open subgroups
of GT that do not contain ι. In the present paper, we also give a complete
[much more general] affirmative answer to Question 3.

Let K (⊆ Q) be a number field; Z a hyperbolic curve of genus 0 over K.

Write GK
def
= Gal(Q/K); ZQ

def
= Z ×K Q; ΠZQ

for the étale fundamental group

of ZQ [relative to a suitable choice of basepoint];

Out|C|(ΠZQ
) ⊆ Out(ΠZQ

)
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for the subgroup of outer automorphisms of ΠZQ
that induce the identity auto-

morphisms on the set of the conjugacy classes of cuspidal inertia subgroups of
ΠZQ

[i.e., the stabilizer subgroups associated to pro-cusps of the pro-universal

covering of the hyperbolic curve ZQ]. Then the natural outer action of GK on
ΠZQ

determines an injection GK ↪→ Out(ΠZQ
) [cf. [8], Theorem C]. We shall

regard GK as a subgroup of Out(ΠZQ
) via this injection. Recall that, if we take

Z to be the projective line minus the three points 0, 1, ∞, over K, then GT
may be regarded as a closed subgroup of Out|C|(ΠZQ

) [cf. Remark 3.1.1]. Then

our main result is the following [cf. Theorem 3.4]:

Theorem A. Let G ⊆ Out|C|(ΠZQ
) be a closed subgroup such that G contains

an open subgroup of GK . Then G is strongly indecomposable. In particular, the
Grothendieck-Teichmüller group GT is strongly indecomposable.

Note that the first author proved that a pro-l analogue of Theorem A holds
[cf. Remark 3.4.2; [10], Theorem 6.1]. However, the proof heavily depends on

the [easily verified] fact that Zl is indecomposable. In contrast, since Ẑ is de-
composable, a similar argument to the argument applied in the proof of [10],
Theorem 6.1 does not work in our situation. To overcome this difficulty, we
apply [highly nontrivial] Saidi-Tamagawa’s result on the pro-prime-to-p version
of the Grothendieck Conjecture for hyperbolic curves over finite fields of char-
acteristic p [cf. [19], Theorem 1], together with some considerations on “almost
surface groups” [cf. Lemma 2.2].

On the other hand, in our previous work [cf. [12]], we introduced the notion
of the strong internal indecomposability — which is a stronger property than
the strong indecomposability — of profinite groups. Recall that Q is Hilber-
tian. Then it follows from [12], Theorem A, (ii), that GQ is strongly internally
indecomposable. Thus, from the viewpoint of Question 3, it is natural to pose
the following question, which may be regarded as a further generalization of
[the second assertion of] Theorem A:

Question 4: Is GT strongly internally indecomposable?

However, at the time of writing the present paper, the authors do not know
whether the answer to this question is affirmative or not.

The present paper is organized as follows. In §1, we recall some basic defi-
nitions and prove a certain group-theoretic lemma which reduces our problem
concerning full profinite fundamental groups to a problem concerning pro-prime-
to-p fundamental groups. In §2, by applying Grothendieck Conjecture-type re-
sults, we compute various Galois centralizers. In §3, we first recall the definition
of the Grothendieck-Teichmüller group GT. Then we apply results obtained in
§1, §2 to prove that GT is strongly indecomposable [cf. Theorem A].

Notations and Conventions

Numbers: The notation Primes will be used to denote the set of prime num-
bers. The notation Q will be used to denote the field of rational numbers. The
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notation Z will be used to denote the ring of integers. The notation Ẑ will
be used to denote the profinite completion of the underlying additive group of
Z. The notation Z≥1 will be used to denote the set of positive integers. We
shall refer to a finite extension field of Q as a number field. If p is a prime
number, then the notation Zp will be used to denote the ring of p-adic integers;
the notation Fp will be used to denote the finite field of cardinality p. If A is
a commutative ring, then the notation A× will be used to denote the group of
units of A.

Fields: Let F be a perfect field; F an algebraic closure of F . Then we shall

write char(F ) for the characteristic of F ; GF
def
= Gal(F/F ).

Schemes: Let S be a scheme. Then we shall write Aut(S) for the group
of automorphisms of S. Let K be a field; K ⊆ L a field extension; X an
algebraic variety [i.e., a separated, of finite type, and geometrically integral

scheme] over K. Then we shall write XL
def
= X ×K L; AutK(X) for the group

of automorphisms of X over K; P1
K for the projective line over K.

Profinite groups: Let Σ ⊆ Primes be a nonempty subset of prime numbers;
G a profinite group. Then we shall write GΣ for the maximal pro-Σ quotient
of G; Aut(G) for the group of automorphisms of G [in the category of profinite
groups], Inn(G) ⊆ Aut(G) for the group of inner automorphisms of G, and

Out(G)
def
= Aut(G)/Inn(G). If p is a prime number, then we shall also write

Gp def
= G{p}; G(p)′ def

= GPrimes\{p}.
Suppose that G is topologically finitely generated. Then G admits a basis

of characteristic open subgroups [cf. [18], Proposition 2.5.1, (b)], which thus
induces a profinite topology on the groups Aut(G) and Out(G).

Fundamental groups: Let S be a connected locally Noetherian scheme. Then
we shall write ΠS for the étale fundamental group of S, relative to a suitable
choice of basepoint. [Note that, for any field F , ΠSpec(F )

∼= GF .]

1 Preliminaries

In the present section, we recall some basic definitions and prove a certain
group-theoretic lemma [cf. Lemma 1.4] which will be applied in §3.

First, we recall basic notions concerning profinite groups.

Definition 1.1 ([15], Notations and Conventions; [15], Definition 3.1). Let G
be a profinite group; H ⊆ G a closed subgroup of G.

(i) We shall write ZG(H) for the centralizer of H in G, i.e., the closed sub-

group {g ∈ G | ghg−1 = h for any h ∈ H}; Z(G)
def
= ZG(G); NG(H) for

the normalizer of H in G, i.e., the closed subgroup {g ∈ G | gHg−1 = H}.
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(ii) We shall say that G is slim if ZG(U) = {1} for every open subgroup U of
G.

(iii) We shall say that G is decomposable if there exist nontrivial normal closed
subgroups H1 ⊆ G and H2 ⊆ G such that G = H1 × H2. We shall say
that G is indecomposable if G is not decomposable. We shall say that G is
strongly indecomposable if every open subgroup of G is indecomposable.

Definition 1.2 ([14], Definition 1.1, (iii)). Let G, Q be profinite groups; q :
G ↠ Q an epimorphism [in the category of profinite groups]; p a prime number;
Σ ⊆ Primes a nonempty subset of prime numbers. Then we shall say that Q is
an almost pro-Σ-maximal quotient of G if there exists a normal open subgroup
N ⊆ G such that Ker(q) coincides with the kernel of the natural surjection
N ↠ NΣ. If Σ = {p}, then we shall also say that Q is an almost pro-p-maximal
quotient of G.

Next, we prove a certain group-theoretic lemma which will be applied in §3.

Lemma 1.3. Let G be a profinite group; {Gi}i∈I a directed subset of the set of
characteristic open subgroups of G — where j ≥ i ⇔ Gj ⊆ Gi — such that∩

i∈I

Gi = {1}.

Write ϕi : Out(G)→ Out(G/Gi) for the natural homomorphism. Then∩
i∈I

Ker(ϕi) = {1}.

Proof. Let σ ∈
∩

i∈I Ker(ϕi) (⊆ Out(G)) be an element; σ̃ ∈ Aut(G) a lifting
of σ ∈ Out(G). For each i ∈ I, write σ̃i ∈ Aut(G/Gi) for the automorphism
induced by σ̃. Then since σ ∈ Ker(ϕi), it holds that σ̃i is an inner automorphism.
Let γi ∈ G/Gi be an element which determines the inner automorphism σ̃i.
Write

Ci
def
= γi · Z(G/Gi) ⊆ G/Gi.

Here, we note that, if i1 ≥ i2 (i1, i2 ∈ I), then the natural surjection G/Gi1 ↠
G/Gi2 induces a map Ci1 → Ci2 . Observe that since Ci (i ∈ I) is a finite
nonempty set, the inverse limit lim←−i∈I

Ci is nonempty. Let

γ ∈ lim←−
i∈I

Ci (⊆ lim←−
i∈I

G/Gi = G)

[cf. [18], Corollary 1.1.6] be an element. Then it follows immediately from the
various definitions involved that σ̃ is an inner automorphism determined by γ.
This completes the proof of Lemma 1.3.
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Lemma 1.4. Let G be a topologically finitely generated profinite group; S ⊆
Primes a finite subset. Then the natural homomorphism

Out(G) −→
∏

p∈Primes\S

Out(G(p)′)

is injective.

Proof. Since G is topologically finitely generated, there exists a directed subset
{Gi}i∈I of the set of characteristic open subgroups of G — where j ≥ i ⇔
Gj ⊆ Gi — such that ∩

i∈I

Gi = {1}

[cf. [18], Proposition 2.5.1, (b)]. Fix such a family. For each i ∈ I, let pi ∈
Primes \ S be such that pi does not divide the order of the finite group G/Gi.
Then the natural surjection G ↠ G/Gi factors through the natural surjection
G ↠ G(pi)

′
. Thus, Lemma 1.4 follows immediately from Lemma 1.3.

Next, we recall basic notions related to hyperbolic curves.

Definition 1.5 ([15], Definition 2.1).

(i) Let k be a field; k an algebraic closure of k; X a smooth curve [i.e.,
a one-dimensional, smooth, separated, of finite type, and geometrically
connected scheme] over k. Write Xk for the smooth compactification of

Xk over k. Then we shall say that X is a smooth curve of type (g, r) over k
if the genus of Xk is g, and the cardinality of the underlying set of Xk \Xk

is r. If X is a smooth curve of type (g, r) over k, and 2g− 2+ r > 0, then
we shall say that X is a hyperbolic curve over k.

(ii) Let n ∈ Z≥1 be an element; k a field; X a hyperbolic curve over k. Write

Xn
def
= X×n \ (

∪
1≤i<j≤n

∆i,j),

where X×n denotes the fiber product of n copies of X over k; ∆i,j denotes
the diagonal divisor of X×n associated to the i-th and j-th components.
We shall refer to Xn as the n-th configuration space associated to X.

The following notations will be used in §2, §3.

Definition 1.6. Let k be a field; k an algebraic closure of k; Z an algebraic
variety over k. Then we have an exact sequence of profinite groups

1 −→ ΠZk
−→ ΠZ −→ Gk −→ 1.
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We shall write ρZ : Gk → Out(ΠZk
) for the outer representation determined

by the above exact sequence. Let Σ ⊆ Primes be a nonempty subset of prime
numbers. Then we shall write

ρΣZ : Gk → Out(ΠΣ
Zk

)

for the outer representation induced by ρZ ;

Π
[Σ]
Z

def
= ΠZ/Ker(ΠZk

↠ ΠΣ
Zk

).

Let p be a prime number. If Σ = {p} (respectively, Σ = Primes \ {p}), then we

shall also write ρpZ
def
= ρΣZ ; Π

[p]
Z

def
= Π

[Σ]
Z (respectively, ρ

(p)′

Z
def
= ρΣZ ; Π

[p]′

Z
def
= Π

[Σ]
Z ).

2 Computations of various Galois centralizers

In the present section, by applying Grothendieck Conjecture-type results,
we compute various Galois centralizers. These computations will be applied in
§3.

Definition 2.1. Let k be an algebraically closed field; Σ ⊆ Primes a nonempty
subset of prime numbers such that char(k) /∈ Σ; Z a hyperbolic curve over k; Q
an almost pro-Σ maximal quotient of ΠZ . Then we shall write

Out|C|(Q) ⊆ Out(Q)

for the subgroup of outer automorphisms of Q that induce the identity auto-
morphisms on the set of the conjugacy classes of cuspidal inertia subgroups of
Q, where the cuspidal inertia subgroups of Q may be defined as the images of
the cuspidal inertia subgroups of ΠZ via the natural surjection ΠZ ↠ Q.

Next, we observe the following applications [cf. Lemmas 2.2, 2.3, 2.4] of
highly nontrivial Grothendieck Conjecture-type results [cf. [13], Theorem A;
[19], Theorem 1]:

Lemma 2.2. Let l be a prime number; n ∈ Z≥1; K ⊆ Q a number field;
Z ⊆ P1

K\{0, 1,∞} an open subscheme obtained by forming the complement of
a finite subset of K-rational points of P1

K\{0, 1,∞}. [In particular, Z is a
hyperbolic curve of genus 0 over K.] Write (P1

Q ⊇) YQ → ZQ (⊆ P1
Q) for the

finite étale Galois covering of ZQ of degree n determined by t 7→ tn;

Q
def
= ΠZQ

/Ker(ΠYQ
↠ Πl

YQ
); ρ : GK → Out(Q)

for the homomorphism induced by the outer representation GK ⊆ Out|C|(ΠZQ
)

[where we regard GK as a subgroup of Out|C|(ΠZQ
) via the natural outer action

of GK on ΠZQ
— cf. [8], Theorem C]. Then

ZOut|C|(Q)(Im(ρ)) = {1}.
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Proof. Let σ ∈ ZOut|C|(Q)(Im(ρ)) be an element. Recall that

• σ induces the identity automorphism on the set of the conjugacy classes
of cuspidal inertia subgroups [which are pro-cyclic subgroups] of Q;

• the normal open subgroup ΠYQ
⊆ ΠZQ

[determined by the finite étale Ga-

lois covering YQ → ZQ] may be characterized as the normal open subgroup
topologically generated by the cuspidal inertia subgroups of ΠZQ

that is

not associated to the cusps 0,∞, and the [unique] closed subgroups of the
cuspidal inertia subgroups of ΠZQ

associated to the cusps 0, ∞, of index
n.

Thus, any lifting ∈ Aut(Q) of σ induces an automorphism of Πl
YQ
. Let σ̃ ∈

Aut(Q) be a lifting of σ such that the automorphism σ̃|Πl
YQ
∈ Aut(Πl

YQ
) induced

by σ̃ preserves the Πl
YQ
-conjugacy class of cuspidal inertia subgroups of Πl

YQ

associated to the cusp 1. Here, we note that since σ̃ preserves the Q-conjugacy
class of cuspidal inertia subgroups of Q associated to the cusp 0 (respectively,
∞), and the finite étale Galois covering YQ → ZQ is totally ramified over the

cusp 0 (respectively, ∞), it holds that σ̃|Πl
YQ

preserves the Πl
YQ
-conjugacy class

of cuspidal inertia subgroups of Πl
YQ

associated to the cusp 0 (respectively, ∞).

Write
σY : Πl

YQ

∼→ Πl
YQ

for the outer automorphism determined by σ̃|Πl
YQ
∈ Aut(Πl

YQ
). Observe that

since the outer action of GK , together with σY , on Πl
YQ

preserves the Πl
YQ
-

conjugacy class of cuspidal inertia subgroups of Πl
YQ

associated to the cusp 1,

it follows from our assumption that σ ∈ ZOut|C|(Q)(Im(ρ)) that σY commutes

with the outer action of GK on Πl
YQ
. Then it follows from the Grothendieck

Conjecture [cf. [13], Theorem A] that σY arises from a unique isomorphism
f : YQ

∼→ YQ of schemes over Q. Note that since σ̃|Πl
YQ

induces the identity

automorphism on the set of the Πl
YQ
-conjugacy classes of cuspidal inertia sub-

groups of Πl
YQ

associated to the cusps 0, 1,∞, it holds that f induces the identity

automorphism on the subset {0, 1,∞} ⊆ P1
Q. In particular, we conclude that

f is the identity automorphism, hence that σY is the identity outer automor-
phism. Recall that the automorphism σ̃|Πl

YQ
∈ Aut(Πl

YQ
) is the restriction of

σ̃ ∈ Aut(Q). Thus, since Q is slim [cf. [15], Proposition 1.4], it follows from
[10], Lemma 1.6, that σ̃ is an inner automorphism, hence that σ is the identity
outer automorphism. This completes the proof of Lemma 2.2.

Lemma 2.3. Let p be a prime number; Σ ⊆ Primes a nonempty subset of prime
numbers such that p ̸∈ Σ; k a finite field of characteristic p. In the notation of
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Definition 1.6, suppose that Z is a hyperbolic curve of genus 0 over k such that

all cusps of Z are k-rational. Write ρ
def
= ρΣZ . Then the following hold:

(i) Suppose that Σ = Primes\{p}. Then the natural homomorphism Aut(Zk)→
Out(ΠΣ

Zk
) determines an isomorphism

Aut(Zk)
∼→ ZOut(ΠΣ

Z
k
)(ρ(Gk)).

(ii) Let l be a prime number ̸= p. Suppose that Σ = {l} or Σ = Primes \ {p}.
Then, if we write χΣ : Out|C|(ΠΣ

Zk
) → (ẐΣ)× for the pro-Σ cyclotomic

character [which is obtained by considering the actions on the cuspidal
inertia subgroups of ΠΣ

Zk
], then the natural composite

ZOut|C|(ΠΣ
Z
k
)(ρ(Gk)) ⊆ Out|C|(ΠΣ

Zk
)

χΣ−→ (ẐΣ)×

is injective.

Proof. First, we verify assertion (i). Write OutGk
(Π

[p]′

Z ) for the group of Π
(p)′

Zk
-

outer automorphisms of Π
[p]′

Z that lie over Gk [cf. Definition 1.6]. Then since

Π
(p)′

Zk
is center-free [cf. [15], Proposition 1.4], it is well-known that the natural

homomorphism

OutGk
(Π

[p]′

Z )→ Z
Out(Π

(p)′
Z
k

)
(ρ(Gk))

is an isomorphism [cf. [21], Lemma 7.1]. On the other hand, since Gk is abelian,
it follows immediately from [19], Theorem 1, together with the definition of

OutGk
(Π

[p]′

Z ), that

Aut(Zk/Z)
∼→ OutGk

(Π
[p]′

Z ),

where Aut(Zk/Z) ⊆ Aut(Zk) denotes the subgroup consisting of automorphisms
of Zk that induce automorphisms of Z compatible with the natural morphism
Zk → Z.

Next, we verify the following assertion:

Claim 2.3.A: The inclusion Aut(Zk/Z) ⊆ Aut(Zk) is bijective.

Indeed, let α ∈ Aut(Zk) be an element; σ ∈ Gk (↪→ Aut(Zk)). Then since Gk

is abelian, it follows that

γ
def
= σ ◦ α ◦ σ−1 ◦ α−1 ∈ Autk(Zk).

Next, we note that γ induces the identity automorphism on the set of cusps of
Zk. Thus, we conclude that γ = 1, hence that α induces a unique automorphism
∈ Aut(Z) compatible with the natural morphism Zk → Z. This completes the
proof of Claim 2.3.A.
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Thus, by applying Claim 2.3.A, we obtain a natural isomorphism

ϕ : Aut(Zk)
∼→ Z

Out(Π
(p)′
Z
k

)
(ρ(Gk)).

This completes the proof of assertion (i).
Next, we verify assertion (ii). If Σ = {l}, then the desired conclusion fol-

lows immediately from the latter half of the proof of [16], Proposition 2.2.4.
Thus, we may assume without loss of generality that Σ = Primes \ {p}. Write

Aut|C|(Zk) ⊆ Aut(Zk) for the subgroup of automorphisms of Zk that induce

the identity automorphisms on the set of cusps of Zk; χ
′ def
= χPrimes\{p}. Then

ϕ induces a composite

Aut|C|(Zk)
∼→ Z

Out|C|(Π
(p)′
Z
k

)
(ρ(Gk)) ⊆ Out|C|(Π

(p)′

Zk
)

χ′

−→ (Ẑ(p)′)×.

Observe that this composite factors as the composite of the natural injec-
tion Aut|C|(Zk) ↪→ GFp with the pro-prime-to-p cyclotomic character GFp ↪→
(Ẑ(p)′)×. Thus, we conclude that the natural composite

Z
Out|C|(Π

(p)′
Z
k

)
(ρ(Gk)) ⊆ Out|C|(Π

(p)′

Zk
)

χ′

−→ (Ẑ(p)′)×

is injective. This completes the proof of assertion (ii), hence of Lemma 2.3.

Remark 2.3.1. It is natural to pose the following question:

Question: In the notation of Lemma 2.3, (i), (ii), can the assump-
tions on the subset of prime numbers Σ ⊆ Primes be dropped?

However, at the time of writing the present paper, the authors do not know
whether the answer to this question is affirmative or not.

Lemma 2.4. Let l be a prime number; K ⊆ Q a number field. In the notation
of Definition 1.6, suppose that k = K, and Z is a hyperbolic curve over K.

Write ρ
def
= ρlZ . Then Im(ρ) is nonabelian.

Proof. Let us recall that, since K is l-cyclotomically full, it holds that Im(ρ) is
infinite [cf. [10], Definition 4.1; [10], Lemma 4.2, (iv)]. Suppose that Im(ρ) is
abelian. Then since Im(ρ) ⊆ ZOut(Πl

ZQ
)(Im(ρ)), the centralizer ZOut(Πl

ZQ
)(Im(ρ))

is infinite. However, since AutK(Z) is finite, this contradicts the Grothendieck
Conjecture for hyperbolic curves over number fields [cf. [13], Theorem A]. Thus,
we conclude that Im(ρ) is nonabelian. This completes the proof of Lemma
2.4.
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3 Strong indecomposability of GT

In the present section, we prove that the Grothendieck-Teichmüller group
GT is strongly indecomposable. This gives a complete affirmative solution to
the problem posed by the first author of the present paper in [10], Introduction.

First, we begin by recalling the definition of GT.

Definition 3.1. Write X
def
= P1

Q\{0, 1,∞}; X2 for the second configuration

space associated to X; pi : ΠX2
→ ΠX for the outer surjection induced by the

i-th projection X2 → X, where i = 1, 2. Then we shall denote

OutFC(ΠX2
) ⊆ Out(ΠX2

)

by the subgroup of outer automorphisms σ ∈ Out(ΠX2) such that, for i = 1, 2,

• σ(Ker(pi)) = Ker(pi);

• σ induces a permutation on the set of the conjugacy classes of cuspidal
inertia subgroups of Ker(pi), where we note that Ker(pi) may be naturally
identified with the étale fundamental group of a hyperbolic curve of type
(0, 4) over Q. [Recall that the cuspidal inertia subgroups of the étale
fundamental group of this hyperbolic curve may be defined as the stabilizer
subgroups associated to pro-cusps of the pro-universal covering of the
hyperbolic curve.]

Recall that X2
∼→ M0,5, where M0,5 denotes the moduli stack over Q of hy-

perbolic curves of type (0, 5). Then we have a natural action of the symmetric
group S5 on X2 by permuting ordered marked points. This action determines
an inclusion S5 ⊆ Out(ΠX2). Then we shall write

GT
def
= OutFC(ΠX2

) ∩ ZOut(ΠX2
)(S5) (⊆ Out(ΠX2

)).

We shall refer to GT as the Grothendieck-Teichmüller group. Since the natural
homomorphism OutFC(ΠX2) → Out(ΠX) induced by p1 is injective [cf. [8],
Theorem B], GT may be regarded as a closed subgroup of Out(ΠX).

Remark 3.1.1. In the notation of Definitions 2.1, 3.1, we note that since the
symmetric group S3 is center-free, it follows immediately from the various def-
initions involved that GT ⊆ Out|C|(ΠX).

Remark 3.1.2. The Grothendieck-Teichmüller group GT was originally intro-
duced by V.G. Drinfeld [cf. [3]]. Let us note that, a priori, the original defini-
tion is different from the above definition. However, it follows from a remark-
able theorem proved by Harbater-Schneps [cf. [6]] that these two definitions are
equivalent. Moreover, it follows from [7], Theorem C, that

Out(ΠX2
) = GT×S5.
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Remark 3.1.3. Let us observe that there exists a natural homomorphism GQ →
GT. Note that it follows from Belyi’s theorem that this homomorphism deter-
mines an injection

GQ ⊆ GT.

With regard to the above inclusion, let us recall the following famous open
question [cf. [20], §1.4]:

Question: Is the inclusion GQ ⊆ GT bijective?

From the viewpoint of this question, the comparison of group-theoretic proper-
ties of GQ and GT has been considered to be important.

Lemma 3.2. Let l be a prime number; K ⊆ Q a number field. In the notation
of Definition 1.6, suppose that k = K, and Z is a hyperbolic curve of genus 0
over K. Write

ρl : Out|C|(ΠZQ
)→ Out|C|(Πl

ZQ
)

for the natural homomorphism. Let

G ⊆ Out|C|(ΠZQ
) (⊆ Out(ΠZQ

))

be a closed subgroup such that

• G contains an open subgroup of GK , where we regard GK as a subgroup
of Out(ΠZQ

) via the natural outer action of GK on ΠZQ
[cf. [8], Theorem

C];

• there exist normal closed subgroups G1 ⊆ G and G2 ⊆ G such that G =
G1 ×G2.

Then ρl(G1) = {1} or ρl(G2) = {1}.

Proof. First, by replacing K by a finite extension of K, we may assume without
loss of generality that GK ⊆ G. Let p be a maximal ideal of the ring of integers
of K such that

• the characteristic of the residue field at p is not equal to l, and

• Z has good reduction at p;

F ∈ GK (⊆ G) a lifting of the Frobenius element at p. We shall write,

• for each i = 1, 2, pri : G ↠ Gi for the natural projection;

• I ⊆ GK for the closed subgroup topologically generated by F , where we
note that I is isomorphic to Ẑ;

• I1
def
= pr1(I)× {1} ⊆ G1 ×G2 = G, I2

def
= {1} × pr2(I) ⊆ G1 ×G2 = G.
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Here, we note that, since I is abelian, it holds that

I ⊆ I1 × I2 ⊆ ZG(I),

hence that
ρl(I) ⊆ ρl(I1) · ρl(I2) ⊆ Zρl(G)(ρl(I)).

Thus, since Z has good reduction at p, it follows immediately from Lemma 2.3,
(ii), together with the theory of specialization isomorphism, that we have the
composite of natural injections

ρl(I) ⊆ ρl(I1) · ρl(I2) ⊆ Zρl(G)(ρl(I)) ⊆ ZOut|C|(Πl
ZQ

)(ρl(I)) ↪→ Z×
l .

Note that since ρl(I) is infinite [cf. [10], Lemma 4.2, (iv)], it holds that ρl(I1)
is infinite, or ρl(I2) is infinite. We may assume without loss of generality that

ρl(I1) is infinite.

Observe that every infinite closed subgroup of Z×
l is an open subgroup. In

particular, ρl(I1)∩ ρl(I) ⊆ ρl(I) is an open subgroup. Then since G2 ⊆ ZG(I1),
there exists an open subgroup †I ⊆ I such that

ρl(G2) ⊆ ZOut|C|(Πl
ZQ

)(ρl(
†I)) ↪→ Z×

l

[cf. Lemma 2.3, (ii)].
Suppose that ρl(G2) is infinite. Then since ρl(I) ⊆ ZOut|C|(Πl

ZQ
)(ρl(

†I)) (↪→

Z×
l ), it holds that ρl(G2) ∩ ρl(I) ⊆ ρl(I) is an open subgroup. On the other

hand, since G1 ⊆ ZG(G2), there exists an open subgroup ‡I ⊆ †I (⊆ I) such
that

ρl(G1) ⊆ ZOut|C|(Πl
ZQ

)(ρl(
‡I)) ↪→ Z×

l

[cf. Lemma 2.3, (ii)]. In particular, the closed subgroups

ρl(GK) ⊆ ρl(G) = ρl(G1) · ρl(G2) ⊆ ZOut|C|(Πl
ZQ

)(ρl(
‡I)) ↪→ Z×

l

are abelian. This contradicts Lemma 2.4. Thus, we conclude that ρl(G2) is
finite. Then there exists a finite extension L (⊆ Q) of K such that ρl(G2) ⊆
ZOut(Πl

ZQ
)(ρl(GL)). Thus, since ρl(G2) induces the identity automorphism on

the set of the conjugacy classes of cuspidal inertia subgroups of Πl
ZQ

, it follows

immediately from [13], Theorem A, that ρl(G2) = {1}. This completes the
proof of Lemma 3.2.

Definition 3.3. Let G be a profinite group; Π a topologically finitely generated
profinite group; G→ Out(Π) a continuous homomorphism. Then we shall write

Π
out
⋊ G

for the profinite group obtained by pulling-back the continuous homomorphism
G→ Out(Π) via the natural surjection Aut(Π) ↠ Out(Π).
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Theorem 3.4. Let K ⊆ Q be a number field; Z a hyperbolic curve of genus 0
over K;

G ⊆ Out|C|(ΠZQ
) (⊆ Out(ΠZQ

))

a closed subgroup such that G contains an open subgroup of GK , where we
regard GK as a subgroup of Out(ΠZQ

) via the natural outer action of GK on

ΠZQ
[cf. [8], Theorem C]. Then G is strongly indecomposable. In particular,

the Grothendieck-Teichmüller group GT is strongly indecomposable [cf. Remark
3.1.1].

Proof. First, since every open subgroup of G contains an open subgroup of
GK , it suffices to prove that G is indecomposable. Next, by replacing K by a
finite extension of K, we may assume without loss of generality that GK ⊆ G,
and all cusps of Z are K-rational. Moreover, we may assume without loss of
generality that Z is an open subscheme of P1

K\{0, 1,∞} obtained by forming
the complement of a finite subset of K-rational points of P1

K\{0, 1,∞}.
Suppose that there exist normal closed subgroups G1 ⊆ G and G2 ⊆ G such

that
G = G1 ×G2.

We shall write,

• for each i = 1, 2, pri : G ↠ Gi for the natural projection;

• for each n ∈ Z≥1, (P1
Q ⊇)

nYQ → ZQ (⊆ P1
Q) for the finite étale Galois

covering of ZQ of degree n determined by t 7→ tn;

• for each l ∈ Primes, Qn,l
def
= ΠZQ

/Ker(ΠnYQ
→ Πl

nYQ
);

• ρn,l : Out|C|(ΠZQ
)→ Out|C|(Qn,l) for the natural homomorphism [cf. the

second bullet in the proof of Lemma 2.2]; ρl
def
= ρ1,l.

Note that 1YQ = ZQ, and Q1,l = Πl
ZQ

.

Next, by applying Lemma 3.2, we have the following assertion:

Claim 3.4.A: Let l ∈ Primes be an element. Then ρl(G1) = {1} or
ρl(G2) = {1}.

Next, we verify the following assertion:

Claim 3.4.B: Let n ∈ Z≥1 be an element; l ∈ Primes such that
ρl(G1) = {1}. Then ρn,l(G1) = {1}.

Indeed, let H ⊆ G, H1 ⊆ G1, and H2 ⊆ G2 be normal open subgroups such
that

• H = H1 ×H2;

• there exists an injection H ↪→ Out|C|(ΠnYQ
);
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• there exists an injection ΠnYQ

out
⋊ H ↪→ ΠZQ

out
⋊ G that is compatible with

the inclusions between respective subgroups ΠnYQ
⊆ ΠZQ

and quotients
H ⊆ G.

[Note that the existence of such normal open subgroups H ⊆ G, H1 ⊆ G1, and
H2 ⊆ G2 follows from a similar argument to the argument applied in the proof
of [22], Lemma 1.2.] Then it follows immediately from Lemma 3.2, together
with [15], Proposition 1.4, that ρn,l(H1) = {1} or ρn,l(H2) = {1}. Suppose

that ρn,l(H2) = {1}. Here, we note that since Ql
n,l

∼→ Πl
ZQ

, it holds that ρl

factors as the composite of ρn,l with the natural homomorphism Out|C|(Qn,l)→
Out|C|(Πl

ZQ
). In particular, ρl(H2) = {1}. Then our assumption that ρl(G1) =

{1} implies that ρl(G1 × H2) = {1}, hence that ρl(GK) ⊆ ρl(G) is finite.
This is a contradiction [cf. [10], Lemma 4.2, (iv)]. Thus, we conclude that
ρn,l(H1) = {1}, hence that ρn,l(G1) is finite. In particular, there exists a finite
extension L (⊆ Q) of K such that ρn,l(G1) ⊆ ZOut|C|(Qn,l)

(ρn,l(GL)). Finally, it

follows immediately from Lemma 2.2 that ρn,l(G1) = {1}. This completes the
proof of Claim 3.4.B.

Write χ : Out|C|(ΠZQ
)→ Ẑ× for the cyclotomic character [which is obtained

by considering the actions on the cuspidal inertia subgroups of ΠZQ
]. Then it

follows immediately from Claims 3.4.A, 3.4.B, that χ(G1) = {1} or χ(G2) = {1}.
In particular, we may assume without loss of generality that

χ(G1) = {1}.

For each p ∈ Primes, write

ρ(p)
′
: Out(ΠZQ

)→ Out(Π
(p)′

ZQ
)

for the natural homomorphism.
Next, we verify the following assertion:

Claim 3.4.C: There exists a finite subset S ⊆ Primes such that, for
each p ∈ Primes \ S, it holds that ρ(p)′(G1) = {1}.

Indeed, let p be a maximal ideal of the ring of integers of K such that Z has
good reduction at p; F ∈ GK ⊆ G a lifting of the Frobenius element at p. Write
p ∈ Primes for the characteristic of the residue field at p; I ⊆ GK for the closed

subgroup topologically generated by F ; I1
def
= pr1(I)× {1}; I2

def
= {1} × pr2(I).

Then since I is abelian, it holds that

I ⊆ I1 × I2 ⊆ ZG(I).

Then it follows immediately from Lemma 2.3, (ii), together with the theory
of specialization isomorphism, that our assumption that χ(I1) ⊆ χ(G1) = {1}
implies that ρ(p)

′
(I1) = {1}. In particular, ρ(p)

′
(I) ⊆ ρ(p)

′
(I2). Thus, since

χ(G1) = {1}, and G1 ⊆ ZG(I2), we conclude from Lemma 2.3, (ii), that
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ρ(p)
′
(G1) = {1}. Observe that there exists a finite subset S ⊆ Primes such

that Z has good reduction at any maximal ideal of the ring of integers of K
that lies over a prime number ∈ Primes \ S. Thus, we obtain the desired con-
clusion. This completes the proof of Claim 3.4.C.

Finally, by applying Claim 3.4.C and Lemma 1.4, we conclude thatG1 = {1},
hence that G is indecomposable. This completes the proof of Theorem 3.4.

Remark 3.4.1. Let ι ∈ GQ ⊆ GT be a complex conjugation; H ⊆ GT a closed
subgroup such that H contains a GT-conjugate of ι. Then

H is indecomposable.

Indeed, suppose that there exist normal closed subgroups H1 ⊆ H and H2 ⊆ H
such that

H = H1 ×H2.

By replacing H by a suitable GT-conjugate of H, we may assume without loss
of generality that ι ∈ H. Then there exist 2-torsion elements ι1 ∈ H1 ⊆ H and
ι2 ∈ H2 ⊆ H such that ι = ι1 · ι2. Note that ι1 and ι2 commute with ι. Recall
that

⟨ι⟩ = NGT(⟨ι⟩),
where ⟨ι⟩ denotes the closed subgroup generated by ι [cf. [9], Proposition 4, (ii)].
Thus, since ι ̸= 1, we conclude that ι1 = ι or ι2 = ι. In the case where ι1 = ι
(respectively, ι2 = ι), since ι1 (respectively, ι2) commutes with H2 (respectively,
H1), and ⟨ι⟩ = NGT(⟨ι⟩), it holds that H2 = {1} (respectively, H1 = {1}).

Remark 3.4.2. Let l be a prime number. In light of Lemma 2.3, (ii), it follows
from a similar argument to the argument applied in the proof of [10], Theorem
6.1, that the pro-l analogue of Theorem 3.4 also holds. Thus, it is natural to
pose the following question:

Question: More generally, for each nonempty subset of prime num-
bers Σ ⊆ Primes, does the pro-Σ analogue of Theorem 3.4 hold?

However, at the time of writing the present paper, the authors do not know
whether the answer to this question is affirmative or not.

Remark 3.4.3. In our previous work [cf. [12]], we introduced the notion of
the strong internal indecomposability of profinite groups. We shall say that
a profinite group G is strongly internally indecomposable if, for every open
subgroup U ⊆ G and every nontrivial normal closed subgroup J ⊆ U , the
centralizer of J in U is trivial [cf. [12], Definition 1.1, (vi); [12], Proposition
1.2]. Note that strongly internally indecomposable profinite groups are slim
[cf. [12], Remark 1.1.1] and strongly indecomposable [cf. [12], Remark 1.1.2,
(ii)]. Here, observe that since Q is Hilbertian [cf. [4], Proposition 13.4.1], GQ
is strongly internally indecomposable [cf. [12], Theorem A, (ii)]. Thus, it is
natural to pose the following question:
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Question: Is the Grothendieck-Teichmüller group GT strongly in-
ternally indecomposable?

However, at the time of writing the present paper, the authors do not know
whether the answer to this question is affirmative or not.

Corollary 3.5. In the notation of Theorem 3.4, ΠZQ

out
⋊ G is strongly indecom-

posable.

Proof. First, since ΠZQ
is center-free [cf. [15], Proposition 1.4], we have an exact

sequence of profinite groups

1 −→ ΠZQ
−→ ΠZQ

out
⋊ G −→ G −→ 1.

Next, since G contains an open subgroup of GK , it follows immediately from
the Grothendieck Conjecture for hyperbolic curves over number fields [cf. [13],

Theorem A; [21], Theorem 0.4] that G (⊆ Out|C|(ΠZQ
)) is slim. Thus, since

G is infinite, we conclude from Theorem 3.4, together with [10], Proposition

1.8, (i); [15], Proposition 1.4; [15], Proposition 3.2, that ΠZQ

out
⋊ G is strongly

indecomposable. This completes the proof of Corollary 3.5.
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[2] Y. André, On a geometric description of Gal(Qp/Qp) and a p-adic avatar
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