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Characterizations of Ptime

-

® Explicit characterization of Ptime functions:

f € FP <= dTuring Machine M
M is P-clocked and M computes f

o -
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Characterizations of Ptime

-

® Explicit characterization of Ptime functions:

f € FP <= dTuring Machine M
M is P-clocked and M computes f

® Implicit characterizations of Ptime functions:
» Replace Turing Machines with higher model of computation

» Replace P-clocked with structural/logical conditions

feFP «— dPROGM
M satisfies COND and M computes f

o -
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Characterizations of Ptime

-

® Implicit characterizations of Ptime functions:

feFP «— dPROGM
M satisfies COND and M computes f

® Various approaches:

PROG COND
Primitive Recursion Safety (Bellantoni-Cook, Leivant, ...)
Term Rewriting PO + Quasi-Interpretation | (Marion-Moyen, Bonfante, ...)
System T Safe-Linear Types (Hofmann, Schwichtenberg. . .)
Proof Nets LLL/LAL Types (Girard, Asperti, ...)
System F DLAL Types (Baillot-T. LICS04)

—
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Complexity Verification

-

® In complexity verification, more relevant is

o -
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Complexity Verification

-

® In complexity verification, more relevant is

® Explicit characterization of Ptime programs:

M € P-PROG <= ddegree n V inputw

M (w) terminates in time O(|w|™)

o -
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Complexity Verification

-

® In complexity verification, more relevant is

® Explicit characterization of Ptime programs:

M € P-PROG <= ddegree n V inputw

M (w) terminates in time O(|w|™)

® P-PROG is Xs-complete!

o -
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Complexity Verification

In complexity verification, more relevant is

Explicit characterization of Ptime programs:

M € P-PROG <= ddegree n V inputw

M (w) terminates in time O(|w|™)

P-PROG is Ya-complete!

Impossible to characterize by, e.g., a “natural” type system
(which is usually >24).

-
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Complexity Verification

- .

® Nevertheless, ICC is useful to provide a good approximation of
P-PROG:

M € P-PROG <«— M satisfies COND

® To be practically useful,
o PROG must be a natural, expressive model of computation.
o COND must admit many algorithms.
» Complexity of COND is in question.

o -
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In ThisTalk
f ® PROG = System F: T

o reference system for studying polymorphic functional
programming languages

o various data types are uniformly definable

o -
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In ThisTalk
f ® PROG = System F: T

o reference system for studying polymorphic functional
programming languages
o various data types are uniformly definable
® COND = Dual Light Affine Logic (DLAL)

o A refinement of Light Linear Logic. A type system for
System F lambda terms that ensures Ptime normalization.

o -
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Iln This Talk
-

f ® PROG = System F:
o reference system for studying polymorphic functional
programming languages
o various data types are uniformly definable
® COND = Dual Light Affine Logic (DLAL)
o A refinement of Light Linear Logic. A type system for
System F lambda terms that ensures Ptime normalization.
® Main Result: Given a system F term M, it is decidable in Ptime
whether M is typable in DLAL.
o Typing guarantees that M works in Ptime.
o The algorithm is already implemented.

o -
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Outline

Background: System F
From Linear Logic to DLAL
Main Result

Proof Idea
Example/Implementation

Conclusion

-
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Background: System F typing

- .

® Types of System F:
T.U:=a|T —U|Va.T
® (Explicitly-typed) terms of system F:
ZCT ()\QZT.MU)T_)U ((MT—>U)NT)U
(Aa. MUYl (MYeUyT)UIT/e]

with condition: in Aa.MY, a may not occur freely in the types of
free term variables of M (the eigenvariable condition).

o -
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Linear Logic

-

® Decomposition of A — B into !A —o B.

o -
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Linear Logic

-

® Decomposition of A — B into !A —o B.

® t:A-—oBusesdataa: A exactly once.

o -
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Linear Logic

-

® Decomposition of A — Binto !A —o B.
® t:A-—oBusesdataa: A exactly once.

® ¢ :!'A can be duplicated.

dup 'A—o!AR!A

o -
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Linear Logic

-

® Decomposition of A — B into !A —o B.
® t:A-—oBusesdataa: A exactly once.

® o :!'A can be duplicated.
dup 'A—o!AR!A
® Modality ! is S4.

Linear Logic = linear lambda calculus +

duplication controlled by S4-modality.

o -
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Light Linear Logic
=

® Change the modality from S4 to K-bounded monotone one.

A—-oB-—-oC A-—-oB
§A —0 §B —o gC |A—o!B 1A —§A

Light Linear Logic ~ linear lambda calculus +

K-bounded monotone duplication.

o -
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Light Linear Logic
=

® Change the modality from S4 to K-bounded monotone one.

A—-oB-—-o(C A—oB
§A —0 §B —o gC |A—o!B 1A —§A

Light Linear Logic ~ linear lambda calculus +
K-bounded monotone duplication.
® Why is § a K-modality?
o It enforces a stratified structure on proofs.
o Layers are strictly separated:

§A A0 A §4 Fo§84A
L o It allows “layer-by-layer normalization” J
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Light Linear Logic
-

®» Why isn't! a K-modality?

t:A-—o0A-o0A

t 1A—olAd—old  (\z.txx)"a —* exponentially many a’s
Ax.trx :1A—olA
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Light Linear Logic

- .

®» Why isn’t ! a K-modality?
o If it were, iteration would cause exponential blow-up at one
layer
t:A—o0A-—o0A

t 1A—olAd—old  (\z.txx)"a —* exponentially many a’s
Ax.trx :1A—olA

o -
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Light Linear Logic

- .

®» Why isn't! a K-modality?
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o -

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic — p.11/3
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- .

®» Why isn't! a K-modality?
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t 1A—olAd—old  (\z.txx)"a —* exponentially many a’s
Ax.trx :1A—olA

® With ! non-K, the blow-up is at most quadratic.

® Main Property: Proof net = of depth d normalizes in |7r|2d steps.
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Light Linear Logic
- o

®» Why isn't! a K-modality?
o If it were, iteration would cause exponential blow-up at one
layer
t:A—o0A-—o0A
tJA—olA—-olA
Ax.trx JA—olA

(Az.txx)"a —* exponentially many a’s

® With ! non-K, the blow-up is at most quadratic.

® Main Property: Proof net = of depth d normalizes in |7r|2d steps.

® Light Affine Logic (Asperti 98): (Intuitionistic) LLL with full
weakening.

o -
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Difficulty of LLL/LAL

- .

® |ambda terms typable in LLL/LAL do not normalize in Ptime by
S-reduction.

f:A=o!B a:A dup(fa) — (fa, fa)
fa:'B
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Difficulty of LLL/LAL
=

f ® |ambda terms typable in LLL/LAL do not normalize in Ptime by
S-reduction.

J:AOB a: A dup(fa) — (fa. fa)
fa:'B

® Terms of type !B are sharable, but not all of them are
duplicable.
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Difficulty of LLL/LAL
=

® |ambda terms typable in LLL/LAL do not normalize in Ptime by
S-reduction.

-

f:A=o!B a:A dup(fa) — (fa, fa)
fa:'B

® Terms of type !B are sharable, but not all of them are
duplicable.

® )-calculus confuses them. So it leads to bad exponential
blow-up by S-reduction.

o -
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Difficulty of LLL/LAL
=

Lambda terms typable in LLL/LAL do not normalize in Ptime by
S-reduction.

f:A=o!B a:A dup(fa) — (fa, fa)
fa:'B

Terms of type !B are sharable, but not all of them are
duplicable.

A-calculus confuses them. So it leads to bad exponential
blow-up by S-reduction.

Two solutions:

-
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® |ambda terms typable in LLL/LAL do not normalize in Ptime by
S-reduction.

f:A=o!B a:A dup(fa) — (fa, fa)
fa:'B

® Terms of type !B are sharable, but not all of them are
duplicable.

® )-calculus confuses them. So it leads to bad exponential
blow-up by S-reduction.

® Two solutions:

» Use a syntax with explicit sharing mechanism
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Difficulty of LLL/LAL
=

® |ambda terms typable in LLL/LAL do not normalize in Ptime by
S-reduction.

f:A=o!B a:A dup(fa) — (fa, fa)
fa:'B

® Terms of type !B are sharable, but not all of them are
duplicable.

® )-calculus confuses them. So it leads to bad exponential
blow-up by S-reduction.

® Two solutions:

» Use a syntax with explicit sharing mechanism
o Fobid A—-o!B.

o -
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Difficulty of LLL/LAL

- .

® Typability in (propositional) LAL is decidable (Baillot 02), but is
extremely complicated, because of types like

81561115 . . - §14
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Difficulty of LLL/LAL

- .

® Typability in (propositional) LAL is decidable (Baillot 02), but is
extremely complicated, because of types like

81561115 . . - §14

® Type inference involves solving word-constraints over {!,§}*.
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Difficulty of LLL/LAL

- .

® Typability in (propositional) LAL is decidable (Baillot 02), but is
extremely complicated, because of types like

81561115 . . - §14

® Type inference involves solving word-constraints over {!,§}*.

® Solution: Forbid §!A.
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°

Difficulty of LLL/LAL
-

Typability in (propositional) LAL is decidable (Baillot 02), but is
extremely complicated, because of types like

81561115 . . - §14

Type inference involves solving word-constraints over {!, §}*.

Solution: Forbid §! A.

Then, types look like §---§A or !§---§A. Thus type inference
boils down to solving (boolean and) integer-constraints.

-
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°

Difficulty of LLL/LAL
-

Typability in (propositional) LAL is decidable (Baillot 02), but is
extremely complicated, because of types like

81561115 . . - §14

Type inference involves solving word-constraints over {!,§}*.
Solution: Forbid §!A.

Then, types look like §---§A or !§---§A. Thus type inference
boils down to solving (boolean and) integer-constraints.

We also forbid Va.! A.

-
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°

Difficulty of LLL/LAL
-

Typability in (propositional) LAL is decidable (Baillot 02), but is
extremely complicated, because of types like

§16811G ... 814
Type inference involves solving word-constraints over {!,§}".

Solution: Forbid §! A.

Then, types look like §---§A or !§---§A. Thus type inference
boils down to solving (boolean and) integer-constraints.

We also forbid Va.! A.

l'iIsonly used as 'A — B.

-
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°

°

Difficulty of LLL/LAL
-

Typability in (propositional) LAL is decidable (Baillot 02), but is
extremely complicated, because of types like

81561115 . . - §14

Type inference involves solving word-constraints over {!,§}*.
Solution: Forbid §!A.

Then, types look like §---§A or !§---§A. Thus type inference
boils down to solving (boolean and) integer-constraints.

We also forbid Va.! A.
l'iIsonly used as !A —o B.

Then why don’t you come backto A = B ? — DLAL.

-
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® DLAL seen as a refined type system for system F terms.
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Dual Light AffineLogic
-

® DLAL seen as a refined type system for system F terms.

® Types of DLAL:
A B:=a|A—-B|A= B|§A|Va.A
® The erasure map (.) to System F types:

(54" =A", (A—-B) =(A=B) =A" = B".

o -
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Dual Light AffineLogic
-

® DLAL seen as a refined type system for system F terms.

® Types of DLAL:
A B:=a|A—-B|A= B|§A|Va.A
® The erasure map (.) to System F types:
A" =A", (A—oB)"  =(A=B) =A" — B".

® AisadecorationofasystemFtype T if A~ =T.

o -
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Dual Light AffineLogic
-

DLAL seen as a refined type system for system F terms.

Types of DLAL:
A B:=a|A—-B|A= B|§A|Va.A
The erasure map (.)~ to System F types:
A" =A", (A—oB)"  =(A=B) =A" — B".

AIls a decoration of asystem Ftype T if A= =T.

Judgements: of the form I';A + M : A, where M is a system F
term, I' contains non-linear variables, and A linear variables.

-
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Dual Light AffineLogic

-

= = (Id)
A AR 24 LA
I';Ai,z:A+-M: B

' Aq Fxd M:A—oB
'i,z: A;A1+M:B
I':Ai1FXxxd .M:A=B

';A{FM:A
I',I'9; A1, A0 M : A

I'yxy:B1,...,zn: Bph FM: A

(— )

(=1

(Weak)

I';AtFM:A—-oB IT'9;AsFN: A

ey :§B1,...,xn : §Bp F M : §A

' AtHFM:A
I''; At FAa.M :Va.A

(Vi) ()

—o e
I',I'o;A1,A2F(M N): B ( )
r'v;A{\-rM:A= B ;Z:CFN:A(:>e)
I'y,z:C;A1 (M N): B
Ao t AT A M : B
at -2 Gt (Cntr)

x:AT1; A1 - Mlx/x1,x/x2] : B
I'; AtFN:§A T'ogsx:8A, A2 - M : B
I'y,T2;A1,A2 - M[N/z] : B

I'; At M :Va.A

(§e)

(Ve)
Fl;Al FMB~ :A[B/a]

-
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Dual Light AffineLogic

-

A AR 24 LA

(1d)

I';Ai,z:A+-M: B

(— )

' Aq Fxd M:A—oB
'i,z: A;A1+M:B

(=1

I':Ai1FXxxd .M:A=B

';A{FM:A

I',I'9; A1, A0 M : A

(Weak)

I'yxy:B1,...,zn: Bph FM: A

I';AtFM:A—-oB IT'9;AsFN: A

ey :§B1,...,xn : §Bp F M : §A

' AtHFM:A
I''; At FAa.M :Va.A

(Vi) ()

—o e
I',I'o;A1,A2F(M N): B ( )
r'v;A{\-rM:A= B ;z:CI—N:A(:>e)
I'y,z:C;A1 (M N): B
Ao t AT A M B
. = St (Cntr)

x:AT1;A1 - M[x/x1,2/x2] : B
I'; AtFN:§A T'ogsx:8A, A2 - M : B
I'y,T2;A1,A2 - M[N/z] : B

I'; At M :Va.A

(§e)

(Ve)
Fl;Al FMB~ :A[B/a]

-
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Dual Light AffineLogic
-

- - (Id)
A AR 24 LA

AL,z AFM: B (—o i) M;A1FM:A—-oB To;AsF-N: A

A~ (—e)
';:AiHXxe* M:A—oB I',I'o;A1,A2F(M N): B
Mhye: A/ - M: B - ;A1 FM:A=B ;2:CFN:A
_ (=1) (:>e)
I':A1FXed .M:A=B I',z:C;A1(MN):B
';AiEM:A Aot AT A HM: B
St (Weak) - 2 Sl (Cntr)
I',To; A1, Aa - M: A x:AT1; A1 F Mlx/x1,x/x2] : B
I'x1 : B1,...,zn : B FM: A ) I'';At N :§A Fg;:p:§A,A2|—M:B(§e)
|
I'ey :8B1,...,zn : §By F M : §A 8 I'y,T2;A1,A2 - M[N/z] : B
;A HFM:A _ I'; At M :Va.A
—— (Vi) (%) (V e)

Fl;All—Aa.M:\V/Oz.A Fl;All—MB_ :A[B/a]

(—o 7) (resp. (= ¢)) corresponds to abstraction on a linear
(resp. non-linear) variable,

-
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Dual Light AffineLogic
-

- - (Id)
A AR 24 LA

[;A1,2: AFM: B (—o i) M;A1FM:A—-oB To;AsF-N: A

_ — €
F';A R zd M:A—-B I',T2;A1,A2 - (M N): B (o)
tpe:AdEM:B LiMbM:A=>B j2:CEN:A
;A1 FXzd .M:A=B I',z:C;A1+-(MN):B
';AiEM:A (Weak) x1:Ax2: A I'y; A M : B Cntr)
I',To; A1, Aa - M: A x:AT1; A1 F Mlx/x1,x/x2] : B
I'x1 : B1,...,zn : B FM: A _ I'';At N :§A Fg;x:§A,A2|—M:B(§e)
|
I'ey :8B1,...,zn : §By F M : §A (8 I'y,T2;A1,A2 - M[N/z] : B
: : I';A1HFM:Va.A
;A HFM:A i) () 1; A1 « ¥ €)

Fl;All—Aa.M:\V/Oz.A Fl;All—MB_ :A[B/a]

an argument N of a term M of type A = B must have at
Most one occurrence z of free variable, which is linear.

-
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Dual Light AffineLogic
- —

= = (d)
A AR 24 LA
[;A1,2: AFM: B (—o i) ;A1 FM:A—B I‘Q;AQI—N:A( )
F';A R zd M:A—-B I'1,T2;A1,A2 (M N): B
tpe:AdEM:B LMk M:A=B ;2:CHEN:A
;A1 FXzd .M:A=B I',z:C;A1 (M N):B
Pl;Al FM:A (Weak) I ZA,CBQ . A,Pl;Al FM:B (Cntr)
I',To; A1, Aa - M: A x:AT1; A1 F Mlx/x1,x/x2] : B
121 :B1,...,en:Bpo FM: A 5 ) I'';AtHN:§A Fg;x:§A,A2|—M:B(§e)
|
Iz :8B1,...,2n : §Bp F M : §A 3 I'y,T2;A1,A2 - M[N/z] : B
: : I';A1HFM:Va.A
;A HFM:A i) () 15 A1 « ¥ €)

Fl;All—Aa.M:\V/Oz.A Fl;All—MB_ :A[B/a]

the rule (§ 1) allows to turn linear variables (in I') into
non-linear ones.

o -
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Dual Light AffineLogic

= = (Id)
A AR 24 LA
I';Ai,z:A-M: B

I'; Aq Fxxd M:A—oB
I',z: A;A1+M:B
;A1 FXzd .M:A=B

';A{FM:A
I',I'9; A1, A0 M : A

I'yx1:B1,...,xn : Bh FM: A

(— )

(=1

(Weak)

-

';AtFM:A—-oB I'95;AsFN: A

I'ey :§B1,...,xn : §Bp F M : §A

' AtHFM:A
I''; At FAa.M :Va.A

(Vi) ()

(—oe)
', To; A1, A2 (M N): B

'sAtFM:A= B ;z:CFHFN:A
I'y,z:C;A1+(M N):B
x1: A,z AT ;A1 HFM: B
z:AT1;A1 - Mlz/x1,x/x2] : B
I'; AtEFN:§A T'ogsx:8A, A2 M : B
I'y,I'2;A1,A2 - M[N/z] : B
I'; A1 M :Va.A

(=

(Cntr)

(§ €

(Ve)
Fl;Al FMB™ : A[B/Oz]

-
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Dual Light AffineLogic
- —

= = (d)
A AR 24 LA
[;A1,2: AFM: B (—o i) ;A1 FM:A—B I‘Q;AQI—N:A( )
F';A R zd M:A—-B I',T2;A1,A2 - (M N): B
tpe:AdEM:B LydbM:A=B ;2:CHN:A o
;A1 FXzd .M:A=B I',2:C;A1F(MN):B |
Pl;Al FM:A (Weak) I :A,ZBQ . A,Pl;Al FM:B (Cntr)
I',To; A1, Aa - M: A x:AT1; A1 F Mlx/x1,x/x2] : B
I'x1 : B1,...,zn : B F M : A - I'is; A1t EFN:GA Fg;ac:§A,A2|—M:B(§e
I
Iz :8B1,...,2n : §Bp F M : §A (8 I'y,T2;A1,A2 - M[N/z] : B
Fi;AMFM:A v (s I'; At M :Va.A v ¢)
|
Fl;All—Aa.M:VOz.A( )() Fl;All—MB_:A[B/a]

Depth d of a derivation D: maximal number of (§ 1) and r.h.s.
premises of (= e) in a branch of D.

o -
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Datatypesin DLAL
f ® Data types in DLAL: T

N = Va.(a—oa)=§a—a)
W = Va(a—a)=(a—oa)=§a—a)
L(A) = Va.(A—oa—oa)=§la—a)

Inhabitants:

[%
|

Aa A fe7e . f(f(fx)) : N
10 = AaAf(SX_)a.Aff_)a.)\ZCa.fo(fl(f()il?)) W

® These are decorations of system F data types.

o -
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Examples of terms

N = Va.(a— a) = §(a— «a)

add = I Im.Aarfdr.(na f(mafz)) : N-—-oN-—-oN
mult = An.m.(m(N — N) (add n)) 0 . N =N —§N
square ; N — §°N

-
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Example 1: reverse
fa reverse function on binary lists T

MW . AB.AsoP 7B NsiB=B (1 (B — B))
AaP 7B \zP . (a)(s0)x
AaP 7B B (a)(si)x (A z®.2)3 W — W

This term is well-typed in F and typable in DLAL with type: W PLAL _o (yy DLAL

o -
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Example 2: insertion sort
fassume given T

comp: A® A—o A® A, with (comp a1 az) — a1 ® a2 if a1 < a9

as? @ aq ifa2 §a1

® insertion function:
we define it by iteration ontype B = A — (a0 —o «):

idea:
insert (o' ::l,a) = letcomp a a’bea; ® azin
ay :: insert(l,a2)
insert(nil, a) = a:nil

o -
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Example 2: insertion sort

assume given

comp: A® A—o A® A, with (comp a1 az) — a1 ® a2 if a1 < a9

as? @ aq ifa2 §a1

® insertion function:
we define it by iteration ontype B = A — (a0 —o «):
stept: A— B — B andbase u : B given by
t = dadfBd4.
letcomp a a’ be a1 ® asin
Az®.(sB a1 (faz 2)*)* :A—oB—oB

v = Mat.(sP a) : B

observe that both have 1 occurrence of free variable: sZ.
(so t can be used as argument of non-linear application)
then:

insert = LA agA.

AadsB.((Itu)ag) : L(A) — §A —o L(A)

o -
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Example 2. insertion sort (continued)

- .

® sorting:
insert : L(A) — §A — L(A) has been defined.
insert’ : §A —o L(A) —o L(A)
then

sort = NG (Linsert’ nil) : L(§A) —o §L(A).

o -
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Relationship with LAL
=

® Clearly, DLAL C LAL. Do we lose anything?



Relationship with LAL
=

® Clearly, DLAL C LAL. Do we lose anything?
® Not at all. LAL is encodable in DLAL by:

(1A)* =Va.(A®* = a) o«

As a consequence,
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Relationship with LAL
=

® Clearly, DLAL C LAL. Do we lose anything?
® Not at all. LAL is encodable in DLAL by:

(1A)* =Va.(A®* = a) o«

As a consequence,

® Theorem (Extensional Ptime Completeness): If a function
f:{0,1}* — {0,1}* is computable in polynomial time, then
there exists a system F term M and an integer d such that
FprarL M : W — §4W and M computes f.

o -
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Ptime Strong Nor malization

- .

® Theorem (Ptime strong normalization): Let M be a system F
term which has a typing derivation D of depth d in DLAL. Then
M normalizes in:

s at most |M|>* B-reduction steps
o andintime O(|M|2d+2) on a Turing machine.

This result holds for any reduction strategy.

o -
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Ptime Strong Nor malization

-

® Theorem (Ptime strong normalization): Let M be a system F T

term which has a typing derivation D of depth d in DLAL. Then
M normalizes in:

s at most |M|>* B-reduction steps
o andintime O(|M|2d+2) on a Turing machine.

This result holds for any reduction strategy.

® Entails that every program of type W —o §¢WW works in Ptime.

o -
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Main Result

-

® DLAL typing problem: Given a closed term M™* of system F,
determine if there exists a decoration A of 7' such that
|_DLAL M . A

o -

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic — p.23/3



Main Result
-

® DLAL typing problem: Given a closed term M™* of system F,
determine if there exists a decoration A of 7' such that
|_DLAL M . A

® Theorem: It can be solved in polynomial time.
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Main Result
-

® DLAL typing problem: Given a closed term M™* of system F,
determine if there exists a decoration A of 7' such that
|_DLAL M . A

® Theorem: It can be solved in polynomial time.

o Negative aspect: big gap between Ptime and >,. DLAL
captures only those programs which are very easily seen to
be Ptime.

o -
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Main Result

-

® DLAL typing problem: Given a closed term M™* of system F,
determine if there exists a decoration A of 7" such that
Fprar M A.

® Theorem: It can be solved in polynomial time.

o Negative aspect: big gap between Ptime and >,. DLAL
captures only those programs which are very easily seen to
be Ptime.

o Positive aspect: Still useful as a first quick check.

o -
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Methodology for DLAL typing

- -

#® Typing in DLAL = Decorating system F terms with ! and § boxes



Methodology for DLAL typing

- -

#® Typing in DLAL = Decorating system F terms with ! and § boxes

® Naive tactics
1. Put! where sharing takes place.

2. Place ! and § boxes
(with opening doors § and closing doors §)
whenever neccesary.

3. Update types. Go to 2.

o -
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Methodology for DLAL typing

- -

#® Typing in DLAL = Decorating system F terms with ! and § boxes

® Naive tactics
1. Put! where sharing takes place.

2. Place ! and § boxes
(with opening doors § and closing doors §)
whenever neccesary.

3. Update types. Go to 2.
® 2 is very difficult. Infinitely many ways to place boxes.

® Instead, we place only opening doors § and closing doors §.
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°

Methodology for DLAL typing
B

Typing in DLAL = Decorating system F terms with ! and § boxes

Naive tactics
1. Put! where sharing takes place.

2. Place ! and § boxes
(with opening doors § and closing doors §)
whenever neccesary.

3. Update types. Go to 2.
2 is very difficult. Infinitely many ways to place boxes.
Instead, we place only opening doors § and closing doors §.

Fundamental observation: if on every path from A\x to x the

doors are well-bracketed (and ...), then boxes can be rebuilt
around the doors. J
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Methodology for DLAL typing

- .

» Main Lemmas:

1. Term M is typable in DLAL <= one can insert doors into
M in such a way that it is locally well-typed and doors are
well-bracketed (and ...)
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Methodology for DLAL typing
f ® Main Lemmas: T

1. Term M is typable in DLAL <= one can insert doors into
M in such a way that it is locally well-typed and doors are
well-bracketed (and ...)

2. Local well-typedness and well-bracketedness can be
expressed by a set of boolean and integer constraints.

o -

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic — p.25/3



Methodology for DLAL typing
f ® Main Lemmas: T

1. Term M is typable in DLAL <= one can insert doors into
M in such a way that it is locally well-typed and doors are
well-bracketed (and ...)

2. Local well-typedness and well-bracketedness can be
expressed by a set of boolean and integer constraints.
® For 2, replace sequences 3 - - - § of actual doors with formal
Integer parameters n.
® n > (0 stands for g...§ (n times)

s n < 0 stands for §...§ (n times)

o -
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Methodology for DLAL typing

- .

» Main Lemmas:

1. Term M is typable in DLAL <= one can insert doors into
M in such a way that it is locally well-typed and doors are
well-bracketed (and ...)

2. Local well-typedness and well-bracketedness can be
expressed by a set of boolean and integer constraints.
® For 2, replace sequences 3 - - - § of actual doors with formal
Integer parameters n.
® n > (0 stands for g...§ (n times)

s n < 0 stands for §...§ (n times)

® We also use formal boolean parameters to distinguish ! from §.

o -
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Example
M= (Ag“ 7% (g9 (g 2%))\y*.2% :«

M = nl[(nz)\go‘%a.ng;(nélg n6(n5g n7fca))) HS()‘ya'n9za)]

-
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Example

=

M = ny[(ngAg® 7% ng(ngg ng(nsg nyx®))) ng(Ay*.ngz")]
boxing conditions:

p
nj

AVARY,

ni + no

ni + nz + ng + ng + nry bracketing (x)

'V

ni + ng

$ ni + ng + ng bracketing (z)

'V

ns

A-scope (g1)

ng + ng

'V

ns + ng

I
O O O O O o o o o

ns + ng + ns A-scope (92)

-
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Example

M = nl[(nz)\go‘%a.ng;(nélg n6(n5g n7fca))) HS()‘ya'n9za)]
p-types:
g :§brmi(§Prmag —o fMaq) g ghatag
Y : §b5,m5a E §b67m6a

Local typing conditions:

)

ngz< : ng +mg >0
ng(/\yo‘.ngzo‘) : ns 2 0
[(n2Ag® 7 *.ng(ngg ng(nsg nyx®))) ng(Ay*.ngz%)] : mnz =0,m; = ng, mz = ms,

m3 = ng + mg, bz = by

. (g has 2 occurrences) by =1
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Example

- .

M = nl[(nz)\ga_}a.ng( na(n5g n733a))) HS()‘ya'n9za)]
p-types:

qg: §b1,m1(§b2,m2a — §M3q) g §b4,m4a

Y : §b5,m5a Py §b67m6a

Bang conditions:
)

b =1=Dbyg =1

b1 =1=bg=1
. b1 =1=ng >1

o -
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-

Example

=

M = ny[(ngAg® 7% ng(ngg ng(nsg nyx®))) ng(Ay*.ngz")]
p-types:
qg: §b1,m1(§b2,m2a o §m3a) T §b4,m4a
Y : §b5,m5a Py §b67m6a
Boolean constraints:

Const?(M) = {by=1, (ba=1=byg=1),b; =0,
(b1=1$b6=1), b2 = bs, b2=b4}

Minimal solution °:
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Example

- .

M = nl[(nz)\go‘_}a.ng(nllg na(n5g n7fca))) n8()‘ya'n9za)]
p-types:

qg: §b1,m1(§b2,m2a — §M3q) g §b4,m4a

Y : §b5,m5a Py §b67m6a

The linear system has solutions. One of them gives:

g:!(a—oa) x:8a

- v B
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| mplementation

=

Written in (functional) OCAML,; uses an external LP solver
(GLPSOL).

Input: F typed lambda-term.

Successive phases:

1. parsing

2. constraints generation

3. boolean constraints resolution

4. linear constraints printing, and passing to the solver.
Current version downloadable from
http://www-lipn.univ-parisl3.fr/“atassi/

-
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°

°

Conclusion

=

DLAL is a variant of LLL suitable for A-calculus typing.
An efficient type decoration algorithm for DLAL.
An implementation in CAML.

W.r.t other ICC systems (like TRS): modest intensional
expressivity (fewer algorithms), but efficient checking
procedure.

Related project: NO-CoST project (New Tools for Complexity:
Semantics and Types): 2005-2008 (ANR).
http://www-lipn.univ-paris13.fr/nocost/

-
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