Verification of Ptime Reducibility for System F terms Via Dual Light Affine Logic

Kazushige Terui

National Institute of Informatics, Japan

joint work with

Vincent Atassi \otimes Patrick Baillot

LIPN CNRS University Paris 13

Explicit characterization of Ptime functions:

 $f \in \mathbf{FP} \iff \exists \mathsf{Turing Machine } M$

M is **P-clocked** and M computes f

Explicit characterization of Ptime functions:

 $f \in \mathbf{FP} \iff \exists \mathsf{Turing Machine } M$

M is **P-clocked** and M computes f

Implicit characterizations of Ptime functions:

Explicit characterization of Ptime functions:

 $f \in \mathbf{FP} \iff \exists \mathsf{Turing} \mathsf{Machine} M$

M is P-clocked and M computes f

- Implicit characterizations of Ptime functions:
 - Replace Turing Machines with higher model of computation

Explicit characterization of Ptime functions:

 $f \in \mathbf{FP} \iff \exists \mathsf{Turing} \mathsf{Machine} M$

M is **P-clocked** and M computes f

- Implicit characterizations of Ptime functions:
 - Replace Turing Machines with higher model of computation
 - Replace P-clocked with structural/logical conditions

 $f \in \mathbf{FP} \iff \exists \mathcal{PROG} M$

M satisfies \mathcal{COND} and M computes f

Implicit characterizations of Ptime functions:

 $f \in \mathbf{FP} \iff \exists \mathcal{PROG} M$

M satisfies \mathcal{COND} and M computes f

Various approaches:

\mathcal{PROG}	\mathcal{COND}	
Primitive Recursion	Safety	(Bellantoni-Cook, Leivant,)
Term Rewriting	PO + Quasi-Interpretation	(Marion-Moyen, Bonfante,)
System T	Safe-Linear Types	(Hofmann, Schwichtenberg)
Proof Nets	LLL/LAL Types	(Girard, Asperti,)
System F	DLAL Types	(Baillot-T. LICS04)

In complexity verification, more relevant is

- In complexity verification, more relevant is
- Explicit characterization of Ptime programs:

 $M \in \mathbf{P}\text{-}\mathcal{PROG} \iff \exists \text{ degree } n \; \forall \text{ input } w$

M(w) terminates in time $O(|w|^n)$

- In complexity verification, more relevant is
- Explicit characterization of Ptime programs:

 $M \in \mathbf{P}-\mathcal{PROG} \iff \exists \text{ degree } n \forall \text{ input } w$ $M(w) \text{ terminates in time } O(|w|^n)$

• **P**- \mathcal{PROG} is Σ_2 -complete!

- In complexity verification, more relevant is
- Explicit characterization of Ptime programs:

 $M \in \mathbf{P}\text{-}\mathcal{PROG} \iff \exists \text{ degree } n \forall \text{ input } w$

M(w) terminates in time $O(|w|^n)$

- **P**- \mathcal{PROG} is Σ_2 -complete!
- Impossible to characterize by, e.g., a "natural" type system (which is usually Σ_1).

Nevertheless, ICC is useful to provide a good approximation of P-PROG:

 $M \in \mathbf{P} - \mathcal{P} \mathcal{R} \mathcal{O} \mathcal{G} \iff M \text{ satisfies } \mathcal{C} \mathcal{O} \mathcal{N} \mathcal{D}$

- To be practically useful,
 - \mathcal{PROG} must be a natural, expressive model of computation.
 - COND must admit many algorithms.
 - Complexity of COND is in question.

In This Talk

- $\mathcal{PROG} = \text{System F}$:
 - reference system for studying polymorphic functional programming languages
 - various data types are uniformly definable

In This Talk

- **•** $\mathcal{PROG} = \text{System F}$:
 - reference system for studying polymorphic functional programming languages
 - various data types are uniformly definable
- $\mathcal{COND} = \text{Dual Light Affine Logic (DLAL)}$
 - A refinement of Light Linear Logic. A type system for System F lambda terms that ensures Ptime normalization.

In This Talk

- **•** $\mathcal{PROG} = \text{System F}$:
 - reference system for studying polymorphic functional programming languages
 - various data types are uniformly definable
- $\mathcal{COND} = \text{Dual Light Affine Logic (DLAL)}$
 - A refinement of Light Linear Logic. A type system for System F lambda terms that ensures Ptime normalization.
- Main Result: Given a system F term M, it is decidable in Ptime whether M is typable in DLAL.
 - Typing guarantees that M works in Ptime.
 - The algorithm is already implemented.

Outline

- Background: System F
- From Linear Logic to DLAL
- Main Result
- Proof Idea
- Example/Implementation
- Conclusion

Background: System F typing

Types of System F:

$$T, U ::= \alpha \mid T \to U \mid \forall \alpha. T$$

(Explicitly-typed) terms of system F:

$$x^{T} \qquad (\lambda x^{T} . M^{U})^{T \to U} \qquad ((M^{T \to U}) N^{T})^{U}$$
$$(\Lambda \alpha . M^{U})^{\forall \alpha . U} \qquad ((M^{\forall \alpha . U}) T)^{U[T/\alpha]}$$

with condition: in $\Lambda \alpha . M^U$, α may not occur freely in the types of free term variables of M (the eigenvariable condition).

● Decomposition of $A \rightarrow B$ into $!A \multimap B$.

- Decomposition of $A \rightarrow B$ into $!A \multimap B$.
- $t : A \multimap B$ uses data a : A exactly once.

- Decomposition of $A \rightarrow B$ into $!A \multimap B$.
- $t : A \multimap B$ uses data a : A exactly once.
- a : !A can be duplicated.

 $dup: !A {-\!\!\!\circ} !A {\otimes} !A$

- Decomposition of $A \rightarrow B$ into $!A \multimap B$.
- $t: A \multimap B$ uses data a: A exactly once.
- \bullet a :! A can be duplicated.

 $dup: !A \multimap !A \otimes !A$

Modality ! is S4.

Linear Logic \approx linear lambda calculus + duplication controlled by S4-modality.

Change the modality from S4 to K-bounded monotone one.

$$\frac{A \multimap B \multimap C}{\S A \multimap \S B \multimap \S C} \qquad \frac{A \multimap B}{!A \multimap !B} \qquad \frac{A \multimap B}{!A \multimap \$A}$$

Light Linear Logic \approx linear lambda calculus + K-bounded monotone duplication.

Change the modality from S4 to K-bounded monotone one.

$$\frac{A \multimap B \multimap C}{\S A \multimap \S B \multimap \S C} \qquad \frac{A \multimap B}{!A \multimap !B} \qquad \frac{A \multimap B}{!A \multimap \$ A}$$

- Why is § a K-modality?
 - It enforces a stratified structure on proofs.
 - Layers are strictly separated:

 $\S A \not\sim A \qquad \S A \not\sim \S \S A$

It allows "layer-by-layer normalization"

Why isn't ! a K-modality?

$$\frac{\underline{t: A \multimap A \multimap A}}{\underline{t: !A \multimap !A \multimap !A}} \qquad (\lambda x.txx)^n a \longrightarrow^* \text{exponentially many } a's$$

$$\lambda x.txx: !A \multimap !A$$

Why isn't ! a K-modality?

 If it were, iteration would cause exponential blow-up at one layer

$$\frac{t: A \multimap A \multimap A}{t: !A \multimap !A \multimap !A} \qquad (\lambda x.txx)^n a \longrightarrow^* \text{exponentially many } a's$$

$$\lambda x.txx: !A \multimap !A$$

- Why isn't ! a K-modality?
 - If it were, iteration would cause exponential blow-up at one layer

 $\frac{t: A \multimap A \multimap A}{t: !A \multimap !A \multimap !A} \qquad (\lambda x.txx)^n a \longrightarrow^* \text{exponentially many } a's$ $\lambda x.txx: !A \multimap !A$

With ! non-K, the blow-up is at most quadratic.

- Why isn't ! a K-modality?
 - If it were, iteration would cause exponential blow-up at one layer

$$\frac{t: A \multimap A \multimap A}{t: !A \multimap !A \multimap !A} \qquad (\lambda x.txx)^n a \longrightarrow^* \text{exponentially many } a's$$

$$\lambda x.txx: !A \multimap !A$$

- With ! non-K, the blow-up is at most quadratic.
- Main Property: Proof net π of depth d normalizes in $|\pi|^{2^d}$ steps.

- Why isn't ! a K-modality?
 - If it were, iteration would cause exponential blow-up at one layer

 $\frac{t: A \multimap A \multimap A}{t: !A \multimap !A \multimap !A} \qquad (\lambda x.txx)^n a \longrightarrow^* \text{exponentially many } a's$ $\lambda x.txx: !A \multimap !A$

- With ! non-K, the blow-up is at most quadratic.
- Main Property: Proof net π of depth d normalizes in $|\pi|^{2^d}$ steps.
- Light Affine Logic (Asperti 98): (Intuitionistic) LLL with full weakening.

$$\frac{f: A \multimap !B \quad a: A}{fa: !B} \qquad dup(fa) \longrightarrow (fa, fa)$$

• Lambda terms typable in LLL/LAL do not normalize in Ptime by β -reduction.

$$\frac{f: A \multimap !B \quad a: A}{fa: !B} \qquad dup(fa) \longrightarrow (fa, fa)$$

Terms of type !B are sharable, but not all of them are duplicable.

$$\frac{f: A \multimap !B \quad a: A}{fa: !B} \qquad dup(fa) \longrightarrow (fa, fa)$$

- Terms of type !B are sharable, but not all of them are duplicable.
- J-calculus confuses them. So it leads to bad exponential blow-up by β -reduction.

$$\frac{f: A \multimap B \quad a: A}{fa: !B} \qquad dup(fa) \longrightarrow (fa, fa)$$

- Terms of type !B are sharable, but not all of them are duplicable.
- J-calculus confuses them. So it leads to bad exponential blow-up by β -reduction.
- Two solutions:

$$\frac{f: A \multimap !B \quad a: A}{fa: !B} \qquad dup(fa) \longrightarrow (fa, fa)$$

- Terms of type !B are sharable, but not all of them are duplicable.
- J-calculus confuses them. So it leads to bad exponential blow-up by β -reduction.
- Two solutions:
 - Use a syntax with explicit sharing mechanism

$$\frac{f: A \multimap !B \quad a: A}{fa: !B} \qquad dup(fa) \longrightarrow (fa, fa)$$

- Terms of type !B are sharable, but not all of them are duplicable.
- J-calculus confuses them. So it leads to bad exponential blow-up by β -reduction.
- Two solutions:
 - Use a syntax with explicit sharing mechanism
 - Fobid $A \rightarrow !B$.

Typability in (propositional) LAL is decidable (Baillot 02), but is extremely complicated, because of types like

 $\S!\S\$!!!\$ \cdots \S!A$

Typability in (propositional) LAL is decidable (Baillot 02), but is extremely complicated, because of types like

 $\S!\S\$!!!\$ \cdots \$!A$

• Type inference involves solving word-constraints over $\{!, \$\}^*$.

Typability in (propositional) LAL is decidable (Baillot 02), but is extremely complicated, because of types like

 $\S!\S\$!!!\$ \cdots \$!A$

- **•** Type inference involves solving word-constraints over $\{!, \$\}^*$.
- **Solution:** Forbid $\S!A$.
Typability in (propositional) LAL is decidable (Baillot 02), but is extremely complicated, because of types like

 $\S!\S\$!!!\$ \cdots \$!A$

- **•** Type inference involves solving word-constraints over $\{!, \$\}^*$.
- **Solution:** Forbid $\S!A$.
- Then, types look like $\S \cdots \S A$ or $!\S \cdots \S A$. Thus type inference boils down to solving (boolean and) integer-constraints.

Typability in (propositional) LAL is decidable (Baillot 02), but is extremely complicated, because of types like

 $\S!\S\$!!!\$ \cdots \$!A$

- **•** Type inference involves solving word-constraints over $\{!, \$\}^*$.
- **Solution:** Forbid $\S!A$.
- Then, types look like $\S \cdots \S A$ or $! \S \cdots \S A$. Thus type inference boils down to solving (boolean and) integer-constraints.
- Solution We also forbid $\forall \alpha.!A$.

Typability in (propositional) LAL is decidable (Baillot 02), but is extremely complicated, because of types like

 $\S!\S\$!!!\$ \cdots \$!A$

- **•** Type inference involves solving word-constraints over $\{!, \$\}^*$.
- **Solution:** Forbid $\S!A$.
- Then, types look like $\S \cdots \S A$ or $! \S \cdots \S A$. Thus type inference boils down to solving (boolean and) integer-constraints.
- We also forbid $\forall \alpha.!A$.
- I is only used as $!A \multimap B$.

Typability in (propositional) LAL is decidable (Baillot 02), but is extremely complicated, because of types like

 $\S!\S\$!!!\S\cdots \S!A$

- **•** Type inference involves solving word-constraints over $\{!, \$\}^*$.
- **Solution:** Forbid $\S!A$.
- Then, types look like $\S \cdots \S A$ or $!\S \cdots \S A$. Thus type inference boils down to solving (boolean and) integer-constraints.
- We also forbid $\forall \alpha .! A$.
- ! is only used as $!A \multimap B$.
- Then why don't you come back to $A \Rightarrow B ? DLAL$.

DLAL seen as a refined type system for system F terms.

DLAL seen as a refined type system for system F terms.
Types of DLAL:

$$A,B ::= \alpha \mid A \multimap B \mid A \Rightarrow B \mid \S{A} \mid \forall \alpha.A$$

- DLAL seen as a refined type system for system F terms.
- Types of DLAL:

$$A, B ::= \alpha \mid A \multimap B \mid A \Rightarrow B \mid \S A \mid \forall \alpha. A$$

• The erasure map $(.)^-$ to System F types:

$$(\S{A})^- = A^-, \quad (A \multimap B)^- = (A \Rightarrow B)^- = A^- \to B^-$$

DLAL seen as a refined type system for system F terms.
Types of DLAL:

$$A, B ::= \alpha \mid A \multimap B \mid A \Rightarrow B \mid \S A \mid \forall \alpha. A$$

• The erasure map $(.)^-$ to System F types:

$$(\S A)^- = A^-, \quad (A \multimap B)^- = (A \Rightarrow B)^- = A^- \to B^-.$$

• A is a decoration of a system F type T if $A^- = T$.

DLAL seen as a refined type system for system F terms.
Types of DLAL:

$$A, B ::= \alpha \mid A \multimap B \mid A \Rightarrow B \mid \S A \mid \forall \alpha. A$$

• The erasure map $(.)^-$ to System F types:

$$(\S A)^- = A^-, \quad (A \multimap B)^- = (A \Rightarrow B)^- = A^- \to B^-$$

- A is a decoration of a system F type T if $A^- = T$.
- Judgements: of the form $\Gamma; \Delta \vdash M : A$, where M is a system F term, Γ contains non-linear variables, and Δ linear variables.

$$\frac{1}{\left[rac{1}{x^{A^{-}}:A \vdash x^{A^{-}}:A}\right]} (\mathsf{Id})$$

$$\frac{1}{\left[rac{1}{y^{A^{-}}:A \vdash x^{A^{-}}:M:A \to B\right]} (-\circ \mathsf{i})}$$

$$\frac{1}{\left[rac{1}{y^{A^{-}}:A \vdash A \to B\right]} (-\circ \mathsf{i})}$$

$$\frac{1}{\left[rac{1}{y^{A^{-}}:A \to A^{A^{-}}:M:A \Rightarrow B\right]} (\Rightarrow \mathsf{i})}$$

$$\frac{1}{\left[rac{1}{y^{A^{-}}:A \to A^{A^{-}}:M:A \Rightarrow B\right]} (\mathsf{Weak})$$

$$\frac{1}{\left[rac{1}{y^{A^{-}}:A \to A^{A^{-}}:M:A \to B\right]} (\mathsf{Weak})$$

$$\frac{1}{\left[rac{1}{y^{A^{-}}:A \to A^{A^{-}}:A \to B\right]} (\mathsf{Weak})$$

$$\frac{1}{\left[rac{1}{y^{A^{-}}:A \to A^{A^{-}}:A \to B^{A^{-}}:A \to B^{A^{-}}:A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{-}:A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{-}:A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{-}}:A^{A^{-}}:A^{A^{-}}:A^{-}}:A^{A^{-}}:A^{-}:A^{-}}:A^{A^{-}}:A^{-}}:A^{A^{-}}:A^{-}}:A^{A^{-}}:A^{-}}:A^{-}:A^{-}}:A^{-}:A^{-}}:A^{-}:A^{-}}:A^{-}}:A^{-}}:A^{-}:A^{-}}:A^{-}}:A^{-}:A^{-}}:A^{-}:A^{-}}$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash M : A \multimap B \quad \Gamma_{2}; \Delta_{2} \vdash N : A}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash (M N) : B} \quad (\multimap e)$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash M : A \Rightarrow B \quad ; z : C \vdash N : A}{\Gamma_{1}, z : C; \Delta_{1} \vdash (M N) : B} \quad (\Rightarrow e)$$

$$\frac{x_{1} : A, x_{2} : A, \Gamma_{1}; \Delta_{1} \vdash M : B}{x : A, \Gamma_{1}; \Delta_{1} \vdash M [x/x_{1}, x/x_{2}] : B} \quad (Cntr)$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash N : \S A \quad \Gamma_{2}; x : \S A, \Delta_{2} \vdash M : B}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M [N/x] : B} \quad (\S e)$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash M : \forall \alpha.A}{\Gamma_{1}; \Delta_{1} \vdash MB^{-} : A[B/\alpha]} \quad (\forall e)$$

$$\frac{\overline{\Gamma_{1}; \Delta_{1}, x : A \vdash x^{A^{-}} : A}}{\Gamma_{1}; \Delta_{1}, x : A \vdash M : B} (-\circ i) \qquad \underline{\Gamma_{1};} \\
\frac{\Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \multimap B}{\Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \multimap B} (-\circ i) \qquad \underline{\Gamma_{1};} \\
\frac{\Gamma_{1}, x : A; \Delta_{1} \vdash M : B}{\Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \Rightarrow B} (\Rightarrow i) \qquad \underline{\Gamma_{1}} \\
\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A} (Weak) \qquad \overline{x} \\
\frac{; \Gamma, x_{1} : B_{1}, \dots, x_{n} : B_{n} \vdash M : A}{\Gamma; x_{1} : \S B_{1}, \dots, x_{n} : \S B_{n} \vdash M : \S A} (\S i) \qquad \underline{\Gamma_{1}} \\
\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash \Lambda \alpha . M : \forall \alpha . A} (\forall i) (*) \qquad \overline{\Gamma_{1};} \\$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash M : A \multimap B \quad \Gamma_{2}; \Delta_{2} \vdash N : A}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash (M N) : B} \quad (\multimap e)$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash M : A \Rightarrow B \quad ; z : C \vdash N : A}{\Gamma_{1}, z : C; \Delta_{1} \vdash (M N) : B} \quad (\Rightarrow e)$$

$$\frac{x_{1} : A, x_{2} : A, \Gamma_{1}; \Delta_{1} \vdash M : B}{x : A, \Gamma_{1}; \Delta_{1} \vdash M [x/x_{1}, x/x_{2}] : B} \quad (Cntr)$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash N : \S A \quad \Gamma_{2}; x : \S A, \Delta_{2} \vdash M : B}{\Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M [N/x] : B} \quad (\S e)$$

$$\frac{\Gamma_{1}; \Delta_{1} \vdash M : \forall \alpha. A}{\Gamma_{1}; \Delta_{1} \vdash M B^{-} : A[B/\alpha]} \quad (\forall e)$$

$$\begin{array}{c} \hline & \begin{matrix} & \Gamma_{1};\Delta_{1},x:A\vdash M:B \\ \hline & \Gamma_{1};\Delta_{1}\vdash\lambda x^{A^{-}}.M:A\multimap B \\ \hline & \Gamma_{1};\Delta_{1}\vdash\lambda x^{A^{-}}.M:A\multimap B \\ \hline & \Gamma_{1};\Delta_{1}\vdash\lambda x^{A^{-}}.M:A\multimap B \\ \hline & \Gamma_{1};\Delta_{1}\vdash\lambda x^{A^{-}}.M:A \multimap B \\ \hline & \Gamma_{1};\Delta_{1}\vdash\lambda x^{A^{-}}.M:A \Rightarrow B \\ \hline & \Gamma_{1};\Delta_{1}\vdash\lambda x^{A^{-}}.M:A \Rightarrow B \\ \hline & \Gamma_{1};\Delta_{1}\vdashM:A \\ \hline & \Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2}\vdash M:A \\ \hline & \Gamma_{1},\Gamma_{2};\Delta_{1},\Delta_{2}\vdash M:A \\ \hline & \Gamma_{1};\Sigma_{1}:B_{1},\ldots,x_{n}:B_{n}\vdash M:A \\ \hline & \Gamma_{1};\Delta_{1}\vdash M:A \\ \hline & \Pi_{1};\Delta_{1}\vdash M:A \\ \hline & \Pi_{1}\vdash M:A \\ \hline & \Pi_{1};\Delta_{1}\vdash M:A \\ \hline & \Pi_{1}\vdash M:A \\ \hline & \Pi_{1};\Delta_{1}\vdash M:A \\ \hline & \Pi_{1}\vdash M:A \\ \hline & \Pi_{1};\Delta_{1}\vdash M:A \\ \hline & \Pi_{1}\vdash M:A$$

 $(\multimap i)$ (resp. $(\Rightarrow i)$) corresponds to abstraction on a linear (resp. non-linear) variable,

an argument N of a term M of type $A \Rightarrow B$ must have at most one occurrence z of free variable, which is linear.

$$\begin{array}{c} \hline & \left(\mathsf{Id} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1}, x : A \vdash M : B}{\Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \multimap B} \right) \\ \hline & \left(\frac{\Gamma_{1}, x : A; \Delta_{1} \vdash M : B}{\Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \Rightarrow B} \right) \\ \hline & \left(\frac{\Gamma_{1}, x : A; \Delta_{1} \vdash M : B}{\Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \Rightarrow B} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left(\frac{\Gamma_{1}; \Delta_{1} \vdash M : A}{\Gamma_{1}; \Delta_{1} \vdash M : A} \right) \\ \hline & \left($$

the rule (§ i) allows to turn linear variables (in Γ) into non-linear ones.

$$\begin{array}{c} \hline & & \\ \hline & &$$

$$\begin{array}{c} \hline & \begin{matrix} \overline{\chi}^{A^{-}} : A \vdash x^{A^{-}} : A \\ \hline & \Gamma_{1}; \Delta_{1}, x : A \vdash M : B \\ \hline & \Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \multimap B \\ \hline & \Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \multimap B \\ \hline & \Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \Rightarrow B \\ \hline & \Gamma_{1}; \Delta_{1} \vdash \lambda x^{A^{-}} . M : A \Rightarrow B \\ \hline & \Gamma_{1}; \Delta_{1} \vdash M : A \\ \hline & \Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}, \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1}, \Delta_{2} \vdash M : A \\ \hline & \Gamma_{1}; \Gamma_{2}; \Delta_{1} \vdash M : A \\ \hline & \Gamma_{1}; \Delta_{1} \vdash M \\ \hline & \Gamma_{1} \vdash M \\ \hline & \Gamma_{1}; \Delta_{1} \vdash M \\ \hline & \Gamma_{1} \vdash M \\ \hline & \Gamma_{1}; \Delta_{1} \vdash M \\ \hline & \Gamma_{1} \vdash M \\ \hline & \Gamma_{1}; \Delta_{1} \vdash M \\ \hline & \Gamma_{1} \vdash$$

Depth d of a derivation \mathcal{D} : maximal number of (§ i) and r.h.s. premises of (\Rightarrow e) in a branch of \mathcal{D} .

Data types in DLAL

Data types in DLAL:

$$N = \forall \alpha. (\alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha)$$
$$W = \forall \alpha. (\alpha \multimap \alpha) \Rightarrow (\alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha)$$
$$L(A) = \forall \alpha. (A \multimap \alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha)$$

Inhabitants:

$$\underline{3} = \Lambda \alpha . \lambda f^{\alpha \to \alpha} . \lambda x^{\alpha} . f(f(fx)) \qquad : N$$

$$\underline{010} = \Lambda \alpha \lambda f_0^{\alpha \to \alpha} . \lambda f_1^{\alpha \to \alpha} . \lambda x^{\alpha} . f_0(f_1(f_0 x)) : W$$

These are decorations of system F data types.

Examples of terms

$$N \qquad = \quad \forall \alpha. (\alpha \multimap \alpha) \Rightarrow \S(\alpha \multimap \alpha)$$

$$add = \lambda n.\lambda m.\Lambda \alpha.\lambda f.\lambda x.(n\alpha f (m\alpha f x)) : N \multimap N \multimap N$$

$$mult = \lambda n \cdot \lambda m \cdot (m(N \to N) \ (add \ n)) \ \underline{0} \qquad : \qquad N \Rightarrow N \multimap \S N$$

square : $N \multimap \S^2 N$

Example 1: reverse

a reverse function on binary lists

$$\begin{split} \lambda l^{W} \cdot \Lambda \beta \cdot \lambda s o^{\beta \to \beta} \cdot \lambda s i^{\beta \to \beta} \cdot (l \ (\beta \to \beta)) \\ \lambda a^{\beta \to \beta} \cdot \lambda x^{\beta} \cdot (a) (so) x \\ \lambda a^{\beta \to \beta} \cdot \lambda x^{\beta} \cdot (a) (si) x \ (\Lambda \alpha \cdot \lambda z^{\alpha} \cdot z) \beta \quad : W \to W \end{split}$$

This term is well-typed in F and typable in DLAL with type: $W^{DLAL} \rightarrow W^{DLAL}$.

Example 2: insertion sort

assume given

 $comp: A \otimes A \multimap A \otimes A, \text{ with } (comp \ a_1 \ a_2) \longrightarrow a_1 \otimes a_2 \quad \text{ if } a_1 \leq a_2$ $a_2 \otimes a_1 \quad \text{ if } a_2 \leq a_1$

insertion function:

we define it by iteration on type $B = A \multimap (\alpha \multimap \alpha)$: idea:

 $insert (a' ::: l, a) = let comp \ a \ a' be \ a_1 \otimes a_2 in$ $a_1 ::: insert(l, a_2)$ insert(nil, a) = a :: nil

Example 2: insertion sort

assume given

u

$$comp: A \otimes A \multimap A \otimes A, \text{ with } (comp \ a_1 \ a_2) \longrightarrow a_1 \otimes a_2 \quad \text{ if } a_1 \leq a_2$$

 $a_2 \otimes a_1 \quad \text{ if } a_2 \leq a_1$

insertion function:

we define it by iteration on type $B = A \multimap (\alpha \multimap \alpha)$: step $t : A \multimap B \multimap B$ and base u : B given by

$$t = \lambda a^A f^B a'^A.$$

$$\begin{aligned} \operatorname{let} \operatorname{comp} a \ a' \operatorname{be} a_1 \otimes a_2 \operatorname{in} \\ \lambda x^{\alpha} . (s^B \ a_1{}^A \ (f \ a_2 \ x)^{\alpha})^{\alpha} & : A \multimap B \multimap B \\ &= \lambda a^A . (s^B \ a) & : B \end{aligned}$$

observe that both have 1 occurrence of free variable: s^B . (so *t* can be used as argument of non-linear application) then:

insert = $\lambda l^{L(A)} a_0^{\S A}$.

$$\Lambda \alpha . \lambda s^B . ((l \ t \ u) \ a_0) \ : \ L(A) \multimap \S A \multimap L(A)$$

Example 2: insertion sort (continued)

sorting:

 $insert: L(A) \multimap \S A \multimap L(A)$ has been defined. $insert': \S A \multimap L(A) \multimap L(A)$ then

 $sort = \lambda l^{L(\S{A})} . (l insert' nil) : L(\S{A}) \multimap \S{L}(A).$

Relationship with LAL

● Clearly, $DLAL \subseteq LAL$. Do we lose anything?

Relationship with LAL

- Clearly, $DLAL \subseteq LAL$. Do we lose anything?
- Not at all. LAL is encodable in DLAL by:

$$(!A)^{\bullet} = \forall \alpha . (A^{\bullet} \Rightarrow \alpha) \multimap \alpha$$

As a consequence,

Relationship with LAL

- Clearly, $DLAL \subseteq LAL$. Do we lose anything?
- Not at all. LAL is encodable in DLAL by:

$$(!A)^{\bullet} = \forall \alpha. (A^{\bullet} \Rightarrow \alpha) \multimap \alpha$$

As a consequence,

■ Theorem (Extensional Ptime Completeness): If a function $f: \{0,1\}^* \to \{0,1\}^*$ is computable in polynomial time, then there exists a system F term *M* and an integer *d* such that $\vdash_{DLAL} M: W \multimap \S^d W$ and *M* computes *f*.

Ptime Strong Normalization

- Theorem (Ptime strong normalization): Let M be a system F term which has a typing derivation D of depth d in DLAL. Then M normalizes in:
 - at most $|M|^{2^d} \beta$ -reduction steps
 - and in time $O(|M|^{2^{d+2}})$ on a Turing machine.

This result holds for any reduction strategy.

Ptime Strong Normalization

- Theorem (Ptime strong normalization): Let M be a system F term which has a typing derivation D of depth d in DLAL. Then M normalizes in:
 - at most $|M|^{2^d} \beta$ -reduction steps
 - and in time $O(|M|^{2^{d+2}})$ on a Turing machine.

This result holds for any reduction strategy.

• Entails that every program of type $W \multimap \S^d W$ works in Ptime.

■ *DLAL* typing problem: Given a closed term M^T of system F, determine if there exists a decoration A of T such that $\vdash_{DLAL} M : A$.

- *DLAL* typing problem: Given a closed term M^T of system F, determine if there exists a decoration A of T such that $\vdash_{DLAL} M : A$.
- Theorem: It can be solved in polynomial time.

- *DLAL* typing problem: Given a closed term M^T of system F, determine if there exists a decoration A of T such that $\vdash_{DLAL} M : A$.
- Theorem: It can be solved in polynomial time.
 - Negative aspect: big gap between Ptime and Σ_2 . DLAL captures only those programs which are very easily seen to be Ptime.

- *DLAL* typing problem: Given a closed term M^T of system F, determine if there exists a decoration A of T such that $\vdash_{DLAL} M : A$.
- Theorem: It can be solved in polynomial time.
 - Negative aspect: big gap between Ptime and Σ_2 . DLAL captures only those programs which are very easily seen to be Ptime.
 - Positive aspect: Still useful as a first quick check.

J Typing in DLAL = Decorating system F terms with ! and \S boxes

- Typing in DLAL = Decorating system F terms with ! and \S boxes
- Naive tactics
 - 1. Put ! where sharing takes place.
 - 2. Place ! and § boxes
 (with opening doors § and closing doors §)
 whenever neccesary.
 - 3. Update types. Go to 2.

- Typing in DLAL = Decorating system F terms with ! and § boxes
- Naive tactics
 - 1. Put ! where sharing takes place.
 - 2. Place ! and § boxes
 (with opening doors § and closing doors §)
 whenever neccesary.
 - 3. Update types. Go to 2.
- 2 is very difficult. Infinitely many ways to place boxes.

- **•** Typing in DLAL = Decorating system F terms with ! and \S boxes
- Naive tactics
 - 1. Put ! where sharing takes place.
 - 2. Place ! and § boxes
 (with opening doors § and closing doors §)
 whenever neccesary.
 - 3. Update types. Go to 2.
- 2 is very difficult. Infinitely many ways to place boxes.
- Instead, we place only opening doors \S and closing doors $\overline{\S}$.

- Typing in DLAL = Decorating system F terms with ! and § boxes
- Naive tactics
 - 1. Put ! where sharing takes place.
 - 2. Place ! and § boxes (with opening doors § and closing doors $\overline{\S}$) whenever neccesary.
 - 3. Update types. Go to 2.
- 2 is very difficult. Infinitely many ways to place boxes.
- Instead, we place only opening doors \S and closing doors $\overline{\S}$.
- Fundamental observation: if on every path from λx to x the doors are well-bracketed (and ...), then boxes can be rebuilt around the doors.
Main Lemmas:

 Term M is typable in DLAL ⇐⇒ one can insert doors into M in such a way that it is locally well-typed and doors are well-bracketed (and ...)

Main Lemmas:

- 1. Term *M* is typable in DLAL \iff one can insert doors into *M* in such a way that it is locally well-typed and doors are well-bracketed (and ...)
- 2. Local well-typedness and well-bracketedness can be expressed by a set of boolean and integer constraints.

Main Lemmas:

- Term M is typable in DLAL ⇐⇒ one can insert doors into M in such a way that it is locally well-typed and doors are well-bracketed (and ...)
- 2. Local well-typedness and well-bracketedness can be expressed by a set of boolean and integer constraints.
- For 2, replace sequences $\S \cdots \S$ of actual doors with formal integer parameters n.
 - $\mathbf{n} > 0$ stands for $\S \dots \S$ (*n* times)
 - $\mathbf{n} < 0$ stands for $\overline{\S} \dots \overline{\S}$ (*n* times)

Main Lemmas:

- Term M is typable in DLAL ⇐⇒ one can insert doors into M in such a way that it is locally well-typed and doors are well-bracketed (and ...)
- 2. Local well-typedness and well-bracketedness can be expressed by a set of boolean and integer constraints.
- For 2, replace sequences $\S \cdots \S$ of actual doors with formal integer parameters n.
 - $\mathbf{n} > 0$ stands for $\S \dots \S$ (*n* times)
 - $\mathbf{n} < 0$ stands for $\overline{\S} \dots \overline{\S}$ (*n* times)
- We also use formal boolean parameters to distinguish ! from \S .

$$M = (\lambda g^{\alpha \to \alpha} . (g (g x^{\alpha}))) \lambda y^{\alpha} . z^{\alpha} : \alpha$$

$$\overline{M} = \mathbf{n_1}[(\mathbf{n_2}\lambda g^{\alpha \to \alpha}.\mathbf{n_3}(\mathbf{n_4}g \ \mathbf{n_6}(\mathbf{n_5}g \ \mathbf{n_7}x^{\alpha}))) \ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha})]$$

$$\overline{M} = \mathbf{n_1}[(\mathbf{n_2}\lambda g^{\alpha \to \alpha}.\mathbf{n_3}(\mathbf{n_4}g \ \mathbf{n_6}(\mathbf{n_5}g \ \mathbf{n_7}x^{\alpha}))) \ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha})]$$

boxing conditions:

$$\overline{M} = \mathbf{n_1}[(\mathbf{n_2}\lambda g^{\alpha \to \alpha}.\mathbf{n_3}(\mathbf{n_4}g \ \mathbf{n_6}(\mathbf{n_5}g \ \mathbf{n_7}x^{\alpha}))) \ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha})]$$
p-types:

$$g: \S^{\mathbf{b_1}, \mathbf{m_1}}(\S^{\mathbf{b_2}, \mathbf{m_2}} \alpha \multimap \S^{\mathbf{m_3}} \alpha) \qquad x: \S^{\mathbf{b_4}, \mathbf{m_4}} \alpha$$
$$y: \S^{\mathbf{b_5}, \mathbf{m_5}} \alpha \qquad z: \S^{\mathbf{b_6}, \mathbf{m_6}} \alpha$$

Local typing conditions:

 $\begin{array}{lll} \mathbf{n_9}z^{\alpha} & : & \mathbf{n_9} + \mathbf{m_6} \ge 0 \\ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha}) & : & \mathbf{n_8} \ge 0 \\ [(\mathbf{n_2}\lambda g^{\alpha \to \alpha}.\mathbf{n_3}(\mathbf{n_4}g \ \mathbf{n_6}(\mathbf{n_5}g \ \mathbf{n_7}x^{\alpha}))) \ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha})] & : & \mathbf{n_2} = 0, \mathbf{m_1} = \mathbf{n_8}, \mathbf{m_2} = \mathbf{m_5}, \\ & \mathbf{m_3} = \mathbf{n_9} + \mathbf{m_6}, \mathbf{b_2} = \mathbf{b_5} \\ & \cdots \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & &$

$$\overline{M} = \mathbf{n_1}[(\mathbf{n_2}\lambda g^{\alpha \to \alpha}.\mathbf{n_3}(\mathbf{n_4}g \ \mathbf{n_6}(\mathbf{n_5}g \ \mathbf{n_7}x^{\alpha}))) \ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha})]$$
p-types:

$$g: \S^{\mathbf{b_1}, \mathbf{m_1}}(\S^{\mathbf{b_2}, \mathbf{m_2}} \alpha \multimap \S^{\mathbf{m_3}} \alpha) \quad x: \S^{\mathbf{b_4}, \mathbf{m_4}} \alpha$$
$$y: \S^{\mathbf{b_5}, \mathbf{m_5}} \alpha \qquad z: \S^{\mathbf{b_6}, \mathbf{m_6}} \alpha$$

Bang conditions:

$$\mathbf{b_2} = 1 \Rightarrow \mathbf{b_4} = 1$$
$$\mathbf{b_2} = 0$$
$$\mathbf{b_1} = 1 \Rightarrow \mathbf{b_6} = 1$$
$$\mathbf{b_1} = 1 \Rightarrow \mathbf{n_8} \ge 1$$

$$\overline{M} = \mathbf{n_1}[(\mathbf{n_2}\lambda g^{\alpha \to \alpha}.\mathbf{n_3}(\mathbf{n_4}g \ \mathbf{n_6}(\mathbf{n_5}g \ \mathbf{n_7}x^{\alpha}))) \ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha})]$$
p-types:

$$g: \S^{\mathbf{b_1}, \mathbf{m_1}}(\S^{\mathbf{b_2}, \mathbf{m_2}} \alpha \multimap \S^{\mathbf{m_3}} \alpha) \quad x: \S^{\mathbf{b_4}, \mathbf{m_4}} \alpha$$
$$y: \S^{\mathbf{b_5}, \mathbf{m_5}} \alpha \qquad z: \S^{\mathbf{b_6}, \mathbf{m_6}} \alpha$$

Boolean constraints:

$$Const^{b}(\overline{M}) = \{ \mathbf{b_{1}} = 1, (\mathbf{b_{2}} = 1 \Rightarrow \mathbf{b_{4}} = 1), \mathbf{b_{1}} = 0, \\ (\mathbf{b_{1}} = 1 \Rightarrow \mathbf{b_{6}} = 1), \mathbf{b_{2}} = \mathbf{b_{5}}, \mathbf{b_{2}} = \mathbf{b_{4}} \}$$

Minimal solution ψ^{b} :

$$b_1 = b_6 = 1$$
, $b_2 = b_4 = b_5 = 0$.

$$\overline{M} = \mathbf{n_1}[(\mathbf{n_2}\lambda g^{\alpha \to \alpha}.\mathbf{n_3}(\mathbf{n_4}g \ \mathbf{n_6}(\mathbf{n_5}g \ \mathbf{n_7}x^{\alpha}))) \ \mathbf{n_8}(\lambda y^{\alpha}.\mathbf{n_9}z^{\alpha})]$$
p-types:

$$g: \S^{\mathbf{b_1}, \mathbf{m_1}}(\S^{\mathbf{b_2}, \mathbf{m_2}} \alpha \multimap \S^{\mathbf{m_3}} \alpha) \quad x: \S^{\mathbf{b_4}, \mathbf{m_4}} \alpha$$
$$y: \S^{\mathbf{b_5}, \mathbf{m_5}} \alpha \qquad z: \S^{\mathbf{b_6}, \mathbf{m_6}} \alpha$$

The linear system has solutions. One of them gives:

$$g: !(\alpha \multimap \alpha) \quad x: \S lpha \ y: lpha \quad z: !lpha$$

 $\overline{M} = (\lambda g. \S (\overline{\S}g (\overline{\S}g \ \overline{\S}x))) \ \S(\lambda y. \overline{\S}z) : \ \S\alpha$

Implementation

- Written in (functional) OCAML; uses an external LP solver (GLPSOL).
- Input: F typed lambda-term.
- Successive phases:
 - 1. parsing
 - 2. constraints generation
 - 3. boolean constraints resolution
 - 4. linear constraints printing, and passing to the solver.
- Current version downloadable from

http://www-lipn.univ-paris13.fr/~atassi/

Conclusion

- DLAL is a variant of LLL suitable for λ -calculus typing.
- An efficient type decoration algorithm for DLAL.
- An implementation in CAML.
- W.r.t other ICC systems (like TRS): modest intensional expressivity (fewer algorithms), but efficient checking procedure.
- Related project: NO-CoST project (New Tools for Complexity: Semantics and Types): 2005-2008 (ANR). http://www-lipn.univ-paris13.fr/nocost/