
Verification of Ptime Reducibility
for System F terms

Via Dual Light Affine Logic

Kazushige Terui

National Institute of Informatics, Japan

joint work with

Vincent Atassi� Patrick Baillot

LIPN CNRS University Paris 13
Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.1/32

Characterizations of Ptime

Explicit characterization of Ptime functions:

� � �� �� � Turing Machine �

� is P-clocked and � computes �

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.2/32

Characterizations of Ptime

Explicit characterization of Ptime functions:

� � �� �� � Turing Machine �

� is P-clocked and � computes �

Implicit characterizations of Ptime functions:

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.2/32

Characterizations of Ptime

Explicit characterization of Ptime functions:

� � �� �� � Turing Machine �

� is P-clocked and � computes �

Implicit characterizations of Ptime functions:

Replace Turing Machines with higher model of computation

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.2/32

Characterizations of Ptime

Explicit characterization of Ptime functions:

� � �� �� � Turing Machine �

� is P-clocked and � computes �

Implicit characterizations of Ptime functions:

Replace Turing Machines with higher model of computation

Replace P-clocked with structural/logical conditions

� � �� �� � ���� �

� satisfies 	�
� and � computes �

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.2/32

Characterizations of Ptime

Implicit characterizations of Ptime functions:

� � �� �� � ���� �

� satisfies 	�
� and � computes �

Various approaches:

���� ����

Primitive Recursion Safety (Bellantoni-Cook, Leivant, . . .)

Term Rewriting PO + Quasi-Interpretation (Marion-Moyen, Bonfante, . . .)

System T Safe-Linear Types (Hofmann, Schwichtenberg. . .)

Proof Nets LLL/LAL Types (Girard, Asperti, . . .)

System F DLAL Types (Baillot-T. LICS04)

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.3/32

Complexity Verification

In complexity verification, more relevant is

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.4/32

Complexity Verification

In complexity verification, more relevant is

Explicit characterization of Ptime programs:

� � �-���� �� � degree � � input �

���� terminates in time �����

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.4/32

Complexity Verification

In complexity verification, more relevant is

Explicit characterization of Ptime programs:

� � �-���� �� � degree � � input �

���� terminates in time �����

�-���� is ��-complete!

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.4/32

Complexity Verification

In complexity verification, more relevant is

Explicit characterization of Ptime programs:

� � �-���� �� � degree � � input �

���� terminates in time �����

�-���� is ��-complete!

Impossible to characterize by, e.g., a “natural” type system

(which is usually ��).

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.4/32

Complexity Verification

Nevertheless, ICC is useful to provide a good approximation of

�-����:

� � �-���� �� � satisfies 	�
�

To be practically useful,

���� must be a natural, expressive model of computation.

	�
� must admit many algorithms.

Complexity of 	�
� is in question.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.5/32

In This Talk

���� = System F:

reference system for studying polymorphic functional

programming languages

various data types are uniformly definable

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.6/32

In This Talk

���� = System F:

reference system for studying polymorphic functional

programming languages

various data types are uniformly definable

	�
� = Dual Light Affine Logic (DLAL)

A refinement of Light Linear Logic. A type system for

System F lambda terms that ensures Ptime normalization.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.6/32

In This Talk

���� = System F:

reference system for studying polymorphic functional

programming languages

various data types are uniformly definable

	�
� = Dual Light Affine Logic (DLAL)

A refinement of Light Linear Logic. A type system for

System F lambda terms that ensures Ptime normalization.

Main Result: Given a system F term � , it is decidable in Ptime

whether � is typable in DLAL.

Typing guarantees that � works in Ptime.

The algorithm is already implemented.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.6/32

Outline

Background: System F

From Linear Logic to DLAL

Main Result

Proof Idea

Example/Implementation

Conclusion

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.7/32

Background: System F typing

Types of System F:

��� ��� 	 � � � �	
�
(Explicitly-typed) terms of system F:

�� ����
�� ���� ������ �� ��

��	
�� ����� ������� �� �� �����

with condition: in �	
�� , 	 may not occur freely in the types of

free term variables of � (the eigenvariable condition).

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.8/32

Linear Logic

Decomposition of � � � into ���Æ�.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.9/32

Linear Logic

Decomposition of � � � into ���Æ�.

� � ��Æ� uses data � � � exactly once.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.9/32

Linear Logic

Decomposition of � � � into ���Æ�.

� � ��Æ� uses data � � � exactly once.

� ��� can be duplicated.

��� ����Æ�����

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.9/32

Linear Logic

Decomposition of � � � into ���Æ�.

� � ��Æ� uses data � � � exactly once.

� ��� can be duplicated.

��� ����Æ�����

Modality � is S4.

Linear Logic � linear lambda calculus +

duplication controlled by S4-modality.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.9/32

Light Linear Logic

Change the modality from S4 to K-bounded monotone one.

��Æ� �Æ �

���Æ �� �Æ ��

��Æ�

���Æ�� ���Æ ��

Light Linear Logic � linear lambda calculus +

K-bounded monotone duplication.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.10/32

Light Linear Logic

Change the modality from S4 to K-bounded monotone one.

��Æ� �Æ �

���Æ �� �Æ ��

��Æ�

���Æ�� ���Æ ��

Light Linear Logic � linear lambda calculus +

K-bounded monotone duplication.

Why is § a K-modality?

It enforces a stratified structure on proofs.

Layers are strictly separated:
�� ��Æ� �� ��Æ ���

It allows “layer-by-layer normalization”

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.10/32

Light Linear Logic

Why isn’t ! a K-modality?

� � ��Æ��Æ�

� ����Æ���Æ��

��
��� ����Æ��

���
������ ��� exponentially many �’s

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.11/32

Light Linear Logic

Why isn’t ! a K-modality?

If it were, iteration would cause exponential blow-up at one

layer

� � ��Æ��Æ�

� ����Æ���Æ��

��
��� ����Æ��

���
������ ��� exponentially many �’s

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.11/32

Light Linear Logic

Why isn’t ! a K-modality?

If it were, iteration would cause exponential blow-up at one

layer

� � ��Æ��Æ�

� ����Æ���Æ��

��
��� ����Æ��

���
������ ��� exponentially many �’s

With ! non-K, the blow-up is at most quadratic.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.11/32

Light Linear Logic

Why isn’t ! a K-modality?

If it were, iteration would cause exponential blow-up at one

layer

� � ��Æ��Æ�

� ����Æ���Æ��

��
��� ����Æ��

���
������ ��� exponentially many �’s

With ! non-K, the blow-up is at most quadratic.

Main Property: Proof net � of depth � normalizes in ��
�

steps.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.11/32

Light Linear Logic

Why isn’t ! a K-modality?

If it were, iteration would cause exponential blow-up at one

layer

� � ��Æ��Æ�

� ����Æ���Æ��

��
��� ����Æ��

���
������ ��� exponentially many �’s

With ! non-K, the blow-up is at most quadratic.

Main Property: Proof net � of depth � normalizes in ��
�

steps.

Light Affine Logic (Asperti 98): (Intuitionistic) LLL with full

weakening.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.11/32

Difficulty of LLL/LAL

Lambda terms typable in LLL/LAL do not normalize in Ptime by

�-reduction.

� � ��Æ�� � � �

�� ���

������� �� ���� ���

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.12/32

Difficulty of LLL/LAL

Lambda terms typable in LLL/LAL do not normalize in Ptime by

�-reduction.

� � ��Æ�� � � �

�� ���

������� �� ���� ���

Terms of type �� are sharable, but not all of them are

duplicable.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.12/32

Difficulty of LLL/LAL

Lambda terms typable in LLL/LAL do not normalize in Ptime by

�-reduction.

� � ��Æ�� � � �

�� ���

������� �� ���� ���

Terms of type �� are sharable, but not all of them are

duplicable.

�-calculus confuses them. So it leads to bad exponential

blow-up by �-reduction.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.12/32

Difficulty of LLL/LAL

Lambda terms typable in LLL/LAL do not normalize in Ptime by

�-reduction.

� � ��Æ�� � � �

�� ���

������� �� ���� ���

Terms of type �� are sharable, but not all of them are

duplicable.

�-calculus confuses them. So it leads to bad exponential

blow-up by �-reduction.

Two solutions:

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.12/32

Difficulty of LLL/LAL

Lambda terms typable in LLL/LAL do not normalize in Ptime by

�-reduction.

� � ��Æ�� � � �

�� ���

������� �� ���� ���

Terms of type �� are sharable, but not all of them are

duplicable.

�-calculus confuses them. So it leads to bad exponential

blow-up by �-reduction.

Two solutions:

Use a syntax with explicit sharing mechanism

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.12/32

Difficulty of LLL/LAL

Lambda terms typable in LLL/LAL do not normalize in Ptime by

�-reduction.

� � ��Æ�� � � �

�� ���

������� �� ���� ���

Terms of type �� are sharable, but not all of them are

duplicable.

�-calculus confuses them. So it leads to bad exponential

blow-up by �-reduction.

Two solutions:

Use a syntax with explicit sharing mechanism

Fobid ��Æ��.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.12/32

Difficulty of LLL/LAL

Typability in (propositional) LAL is decidable (Baillot 02), but is

extremely complicated, because of types like

�������� � � � ���

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.13/32

Difficulty of LLL/LAL

Typability in (propositional) LAL is decidable (Baillot 02), but is

extremely complicated, because of types like

�������� � � � ���

Type inference involves solving word-constraints over ��� ���.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.13/32

Difficulty of LLL/LAL

Typability in (propositional) LAL is decidable (Baillot 02), but is

extremely complicated, because of types like

�������� � � � ���

Type inference involves solving word-constraints over ��� ���.

Solution: Forbid ���.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.13/32

Difficulty of LLL/LAL

Typability in (propositional) LAL is decidable (Baillot 02), but is

extremely complicated, because of types like

�������� � � � ���

Type inference involves solving word-constraints over ��� ���.

Solution: Forbid ���.

Then, types look like � � � � �� or �� � � � ��. Thus type inference

boils down to solving (boolean and) integer-constraints.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.13/32

Difficulty of LLL/LAL

Typability in (propositional) LAL is decidable (Baillot 02), but is

extremely complicated, because of types like

�������� � � � ���

Type inference involves solving word-constraints over ��� ���.

Solution: Forbid ���.

Then, types look like � � � � �� or �� � � � ��. Thus type inference

boils down to solving (boolean and) integer-constraints.

We also forbid �	
��.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.13/32

Difficulty of LLL/LAL

Typability in (propositional) LAL is decidable (Baillot 02), but is

extremely complicated, because of types like

�������� � � � ���

Type inference involves solving word-constraints over ��� ���.

Solution: Forbid ���.

Then, types look like � � � � �� or �� � � � ��. Thus type inference

boils down to solving (boolean and) integer-constraints.

We also forbid �	
��.

! is only used as ���Æ�.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.13/32

Difficulty of LLL/LAL

Typability in (propositional) LAL is decidable (Baillot 02), but is

extremely complicated, because of types like

�������� � � � ���

Type inference involves solving word-constraints over ��� ���.

Solution: Forbid ���.

Then, types look like � � � � �� or �� � � � ��. Thus type inference

boils down to solving (boolean and) integer-constraints.

We also forbid �	
��.

! is only used as ���Æ�.

Then why don’t you come back to � � � ? — DLAL.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.13/32

Dual Light Affine Logic

DLAL seen as a refined type system for system F terms.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.14/32

Dual Light Affine Logic

DLAL seen as a refined type system for system F terms.

Types of DLAL:

��� ��� 	 �� � � � � �� �	
�

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.14/32

Dual Light Affine Logic

DLAL seen as a refined type system for system F terms.

Types of DLAL:

��� ��� 	 �� � � � � �� �	
�

The erasure map �
�� to System F types:

����� � ��� ��� ��� � �� � ��� � �� � ��

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.14/32

Dual Light Affine Logic

DLAL seen as a refined type system for system F terms.

Types of DLAL:

��� ��� 	 �� � � � � �� �	
�

The erasure map �
�� to System F types:

����� � ��� ��� ��� � �� � ��� � �� � ��

� is a decoration of a system F type � if �� � � .

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.14/32

Dual Light Affine Logic

DLAL seen as a refined type system for system F terms.

Types of DLAL:

��� ��� 	 �� � � � � �� �	
�

The erasure map �
�� to System F types:

����� � ��� ��� ��� � �� � ��� � �� � ��

� is a decoration of a system F type � if �� � � .

Judgements: of the form �	
 � � � �, where � is a system F

term, � contains non-linear variables, and
 linear variables.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.14/32

Dual Light Affine Logic

���
�

� � � ��
�

� �

(Id)

�����	 � � � �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � ����� � � �

��	�����	�� � 	

 � �

(� e)

��	 � � ���� �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � � � � � � � �

��	 � � ���� � 	

 � �

(� e)

����� �
 � �

��	�����	�� �
 � �

(Weak)

�� � �	�� � �	����� �
 � �

� � �	����� �
 �����	 ����� � �

(Cntr)

� �	 �� � ��	 � � � 	 �� � �� �
 � �

�� �� � ���	 � � � 	 �� � ��� �
 � ��

(� i)
����� � � �� ���� � ��	�� �
 � �

��	�����	�� �
 ���� � �

(� e)

����� �
 � �

����� � ���
 � ����

(� i) (*)

����� �
 � ����

����� �
�� � ������

(� e)

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.15/32

Dual Light Affine Logic

���
�

� � � ��
�

� �

(Id)

�����	 � � � �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � ����� � � �

��	�����	�� � 	

 � �

(� e)

��	 � � ���� �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � � � � � � � �

��	 � � ���� � 	

 � �

(� e)

����� �
 � �

��	�����	�� �
 � �

(Weak)

�� � �	�� � �	����� �
 � �

� � �	����� �
 �����	 ����� � �

(Cntr)

� �	 �� � ��	 � � � 	 �� � �� �
 � �

�� �� � ���	 � � � 	 �� � ��� �
 � ��

(� i)
����� � � �� ���� � ��	�� �
 � �

��	�����	�� �
 ���� � �

(� e)

����� �
 � �

����� � ���
 � ����

(� i) (*)

����� �
 � ����

����� �
�� � ������

(� e)

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.15/32

Dual Light Affine Logic

���
�

� � � ��
�

� �

(Id)

�����	 � � � �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � ����� � � �

��	�����	�� � 	

 � �

(� e)

��	 � � ���� �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � � � � � � � �

��	 � � ���� � 	

 � �

(� e)

����� �
 � �

��	�����	�� �
 � �

(Weak)

�� � �	 �� � �	��� �� �
 � �

� � �	����� �
 �����	 ����� � �

(Cntr)

� �	 �� � ��	 � � � 	 �� � �� �
 � �

�� �� � ���	 � � � 	 �� � ��� �
 � ��

(� i)
����� � � �� ���� � ��	�� �
 � �

��	�����	�� �
 ���� � �

(� e)

����� �
 � �

����� � ���
 � ����

(� i) (*)

����� �
 � ����

����� �
�� � ������

(� e)

�� �� (resp. �� ��) corresponds to abstraction on a linear
(resp. non-linear) variable,

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.15/32

Dual Light Affine Logic

���
�

� � � ��
�

� �

(Id)

�����	 � � � �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � ����� � � �

��	�����	�� � 	

 � �

(� e)

��	 � � ���� �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � � � � � � � �

��	 � � ���� � 	

 � �

(� e)

����� �
 � �

��	�����	�� �
 � �

(Weak)

�� � �	 �� � �	��� �� �
 � �

� � �	����� �
 �����	 ����� � �

(Cntr)

� �	 �� � ��	 � � � 	 �� � �� �
 � �

�� �� � ���	 � � � 	 �� � ��� �
 � ��

(� i)
����� � � �� ���� � ��	�� �
 � �

��	�����	�� �
 ���� � �

(� e)

����� �
 � �

����� � ���
 � ����

(� i) (*)

����� �
 � ����

����� �
�� � ������

(� e)

an argument � of a term � of type �� � must have at
most one occurrence � of free variable, which is linear.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.15/32

Dual Light Affine Logic

���
�

� � � ��
�

� �

(Id)

�����	 � � � �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � ����� � � �

��	�����	�� � 	

 � �

(� e)

��	 � � ���� �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � � � � � � � �

��	 � � ���� � 	

 � �

(� e)

����� �
 � �

��	�����	�� �
 � �

(Weak)

�� � �	�� � �	����� �
 � �

� � �	����� �
 �����	 ����� � �

(Cntr)

��	 �� � ��	 � � � 	 �� � �� �
 � �

���� � ���	 � � � 	 �� � ��� �
 � ��

(� i)
����� � � �� ���� � ��	�� �
 � �

��	�����	�� �
 ���� � �

(� e)

����� �
 � �

����� � ���
 � ����

(� i) (*)

����� �
 � ����

����� �
�� � ������

(� e)

the rule (� i) allows to turn linear variables (in �) into
non-linear ones.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.15/32

Dual Light Affine Logic

���
�

� � � ��
�

� �

(Id)

�����	 � � � �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � ����� � � �

��	�����	�� � 	

 � �

(� e)

��	 � � ���� �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � � � � � � � �

��	 � � ���� � 	

 � �

(� e

����� �
 � �

��	�����	�� �
 � �

(Weak)

�� � �	 �� � �	����� �
 � �

� � �	����� �
 �����	 ����� � �

(Cntr)

� �	 �� � ��	 � � � 	 �� � �� �
 � �

�� �� � ���	 � � � 	 �� � ��� �
 � ��

(� i)
����� � � �� ���� � ��	�� �
 � �

��	�����	�� �
 ���� � �

(� e

����� �
 � �

����� � ���
 � ����

(� i) (*)

��� �� �
 � ����

����� �
�� � ������

(� e)

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.15/32

Dual Light Affine Logic

���
�

� � � ��
�

� �

(Id)

�����	 � � � �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � ����� � � �

��	�����	�� � 	

 � �

(� e)

��	 � � ���� �
 � �

����� � ���
�

�
 � �� �

(� i) ����� �
 � �� � � � � � � � �

��	 � � ���� � 	

 � �

(� e)

����� �
 � �

��	�����	�� �
 � �

(Weak)

�� � �	 �� � �	��� �� �
 � �

� � �	����� �
 �����	 ����� � �

(Cntr)

� �	 �� � ��	 � � � 	 �� � �� �
 � �

�� �� � ���	 � � � 	 �� � ��� �
 � ��

(� i)
����� � � �� ��� � � ��	�� �
 � �

��	�����	�� �
 ���� � �

(� e)

����� �
 � �

����� � ���
 � ����

(� i) (*)

����� �
 � ����

����� �
�� � ������

(� e)

Depth � of a derivation �: maximal number of (� i) and r.h.s.
premises of (� e) in a branch of �.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.15/32

Data types in DLAL

Data types in DLAL:

 � �	
�	� 	�� ��	� 	�

� � �	
�	� 	�� �	� 	�� ��	� 	�

���� � �	
��� 	� 	�� ��	� 	�

Inhabitants:

� � �	
�����
���
�������� �

�� � �	�����

�
�����

�
���
����������� � �

These are decorations of system F data types.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.16/32

Examples of terms

 � �	
�	� 	�� ��	� 	�

��� � ��
��
�	
��
��
��	 � ��	 � ��� � � �

���� � ��
��
��� � � ���� ��� � � � � �

������ � � ��

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.17/32

Example 1: reverse

a reverse function on binary lists

��� ���������� ������� �	� 	� � �

����� ���� �	�
	��
�

����� ���� �	�
	��
� 	��������
� � � ��

This term is well-typed in F and typable in DLAL with type: �����

������.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.18/32

Example 2: insertion sort

assume given

���� � ���� ���	 with 	���� �� ��
 �� �� � �� if �� 	 ��

�� � �� if �� 	 ��

insertion function:
we define it by iteration on type � �� 	�� �
:
idea:

������ 	�� �� �	 �
 let ���� � �� be �� � �� in

�� �� ������	�	 ��

������	���	 �
 � �� ���

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.19/32

Example 2: insertion sort

assume given

���� � ���� ���	 with 	���� �� ��
 �� �� � �� if �� 	 ��

�� � �� if �� 	 ��

insertion function:
we define it by iteration on type � �� 	�� �
:
step � � �� �� � and base � � � given by

� ����	����

let ���� � �� be�� � �� in

����	�	 ��� 	� �� �
�
� � �� �� �

� ����	�	 �
 � �

observe that both have 1 occurrence of free variable: �	 .
(so � can be used as argument of non-linear application)
then:

������ ������ ���� �

�����	 �		� � �
 ��
 � �	�
� ��� �	�

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.19/32

Example 2: insertion sort (continued)

sorting:

 ����� � ����� ��� ���� has been defined.

 �����
 � ��� ����� ����

then

�!�� � ���	��

�� �����
 � �� � ������ �����

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.20/32

Relationship with LAL

Clearly, "��� � ���. Do we lose anything?

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.21/32

Relationship with LAL

Clearly, "��� � ���. Do we lose anything?

Not at all. LAL is encodable in DLAL by:

����� � �	
��� � 	��Æ 	

As a consequence,

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.21/32

Relationship with LAL

Clearly, "��� � ���. Do we lose anything?

Not at all. LAL is encodable in DLAL by:

����� � �	
��� � 	��Æ 	

As a consequence,

Theorem (Extensional Ptime Completeness): If a function

� � ��� � � ��� � is computable in polynomial time, then

there exists a system F term � and an integer � such that

�!��� � � � � �"� and � computes � .

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.21/32

Ptime Strong Normalization

Theorem (Ptime strong normalization): Let � be a system F

term which has a typing derivation � of depth � in DLAL. Then

� normalizes in:

at most � �
�

�-reduction steps

and in time ��� �
���
� on a Turing machine.

This result holds for any reduction strategy.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.22/32

Ptime Strong Normalization

Theorem (Ptime strong normalization): Let � be a system F

term which has a typing derivation � of depth � in DLAL. Then

� normalizes in:

at most � �
�

�-reduction steps

and in time ��� �
���
� on a Turing machine.

This result holds for any reduction strategy.

Entails that every program of type � � �"� works in Ptime.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.22/32

Main Result

"��� typing problem: Given a closed term �� of system F,

determine if there exists a decoration � of � such that

�!��� � � �.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.23/32

Main Result

"��� typing problem: Given a closed term �� of system F,

determine if there exists a decoration � of � such that

�!��� � � �.

Theorem: It can be solved in polynomial time.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.23/32

Main Result

"��� typing problem: Given a closed term �� of system F,

determine if there exists a decoration � of � such that

�!��� � � �.

Theorem: It can be solved in polynomial time.

Negative aspect: big gap between Ptime and ��. DLAL

captures only those programs which are very easily seen to

be Ptime.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.23/32

Main Result

"��� typing problem: Given a closed term �� of system F,

determine if there exists a decoration � of � such that

�!��� � � �.

Theorem: It can be solved in polynomial time.

Negative aspect: big gap between Ptime and ��. DLAL

captures only those programs which are very easily seen to

be Ptime.

Positive aspect: Still useful as a first quick check.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.23/32

Methodology for DLAL typing

Typing in DLAL = Decorating system F terms with � and � boxes

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.24/32

Methodology for DLAL typing

Typing in DLAL = Decorating system F terms with � and � boxes

Naive tactics

1. Put � where sharing takes place.

2. Place � and � boxes

(with opening doors � and closing doors ��)

whenever neccesary.

3. Update types. Go to 2.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.24/32

Methodology for DLAL typing

Typing in DLAL = Decorating system F terms with � and � boxes

Naive tactics

1. Put � where sharing takes place.

2. Place � and � boxes

(with opening doors � and closing doors ��)

whenever neccesary.

3. Update types. Go to 2.

2 is very difficult. Infinitely many ways to place boxes.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.24/32

Methodology for DLAL typing

Typing in DLAL = Decorating system F terms with � and � boxes

Naive tactics

1. Put � where sharing takes place.

2. Place � and � boxes

(with opening doors � and closing doors ��)

whenever neccesary.

3. Update types. Go to 2.

2 is very difficult. Infinitely many ways to place boxes.

Instead, we place only opening doors � and closing doors ��.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.24/32

Methodology for DLAL typing

Typing in DLAL = Decorating system F terms with � and � boxes

Naive tactics

1. Put � where sharing takes place.

2. Place � and � boxes

(with opening doors � and closing doors ��)

whenever neccesary.

3. Update types. Go to 2.

2 is very difficult. Infinitely many ways to place boxes.

Instead, we place only opening doors � and closing doors ��.

Fundamental observation: if on every path from �� to � the

doors are well-bracketed (and ...), then boxes can be rebuilt

around the doors.
Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.24/32

Methodology for DLAL typing

Main Lemmas:

1. Term � is typable in DLAL �� one can insert doors into

� in such a way that it is locally well-typed and doors are

well-bracketed (and ...)

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.25/32

Methodology for DLAL typing

Main Lemmas:

1. Term � is typable in DLAL �� one can insert doors into

� in such a way that it is locally well-typed and doors are

well-bracketed (and ...)

2. Local well-typedness and well-bracketedness can be

expressed by a set of boolean and integer constraints.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.25/32

Methodology for DLAL typing

Main Lemmas:

1. Term � is typable in DLAL �� one can insert doors into

� in such a way that it is locally well-typed and doors are

well-bracketed (and ...)

2. Local well-typedness and well-bracketedness can be

expressed by a set of boolean and integer constraints.

For 2, replace sequences � � � � � of actual doors with formal

integer parameters �.

� # � stands for �

 � (� times)

� $ � stands for ��

�� (� times)

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.25/32

Methodology for DLAL typing

Main Lemmas:

1. Term � is typable in DLAL �� one can insert doors into

� in such a way that it is locally well-typed and doors are

well-bracketed (and ...)

2. Local well-typedness and well-bracketedness can be

expressed by a set of boolean and integer constraints.

For 2, replace sequences � � � � � of actual doors with formal

integer parameters �.

� # � stands for �

 � (� times)

� $ � stands for ��

�� (� times)

We also use formal boolean parameters to distinguish � from �.

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.25/32

Example

� � ��%���
�% �% ������&�
'� � 	

� � �������%���
�����% �����% ���
���� ����&�
�	'
���

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.26/32

Example

� � �������%���
�����% �����% ���
���� ����&�
�	'
���

boxing conditions:

���������������������
��������������������

� � �

� �
� � �

� �
� �
� �
� �
� � bracketing (�)

� �
� � �

� �
� �
� � bracketing (�)

� � �

� �
� � �-scope (#�)

� �
� � �

� �
� �
	 � �-scope (#�)

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.26/32

Example

� � �������%���
�����% �����% ���
���� ����&�
�	'
���

p-types:

% � ���	������	��	� ���	� � � ���	��	

& � ��		�		 ' � ���	��	

Local typing conditions:

������������
�����������

��� �
� ��� � �

�	�$��
���
 �
� � �

�	
��#����
�	
�#
�	
	#
���

�	�$��
���
� �
� �	��
�	�� �		

��
� ���	�� �	

� � �

(# has 2 occurrences) �� �

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.27/32

Example

� � �������%���
�����% �����% ���
���� ����&�
�	'
���

p-types:

% � ���	������	��	� ���	� � � ���	��	

& � ��		�		 ' � ���	��	

Bang conditions: ������������
�����������

�� �� �� �

�� �

�� �� �� �

�� ��
� � �

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.28/32

Example

� � �������%���
�����% �����% ���
���� ����&�
�	'
���

p-types:

% � ���	������	��	� ���	� � � ���	��	

& � ��		�		 ' � ���	��	

Boolean constraints:

�����

	

 �� �	 	�� �� �� �
	�� �	

	�� �� �� �
	 �� �		 �� ���

Minimal solution %
:

�� �� �	 �� �� �	 ��

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.29/32

Example

� � �������%���
�����% �����% ���
���� ����&�
�	'
���

p-types:

% � ���	������	��	� ���	� � � ���	��	

& � ��		�		 ' � ���	��	

The linear system has solutions. One of them gives:

% � ��	� 	� � � �	

& � 	 ' � �	

� � ��%
� � ��% ���% ������ ���&
��'� � �	

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.30/32

Implementation

Written in (functional) OCAML; uses an external LP solver

(GLPSOL).

Input: F typed lambda-term.

Successive phases:

1. parsing

2. constraints generation

3. boolean constraints resolution

4. linear constraints printing, and passing to the solver.

Current version downloadable from

http://www-lipn.univ-paris13.fr/˜atassi/

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.31/32

Conclusion

DLAL is a variant of LLL suitable for �-calculus typing.

An efficient type decoration algorithm for DLAL.

An implementation in CAML.

W.r.t other ICC systems (like TRS): modest intensional

expressivity (fewer algorithms), but efficient checking

procedure.

Related project: NO-CoST project (New Tools for Complexity:

Semantics and Types): 2005-2008 (ANR).

http://www-lipn.univ-paris13.fr/nocost/

Verification of Ptime Reducibilityfor System F termsVia Dual Light Affine Logic – p.32/32

	Characterizations of Ptime
	Characterizations of Ptime
	Complexity Verification
	Complexity Verification
	In This Talk
	Outline
	Background: System F typing
	Linear Logic
	Light Linear Logic
	Light Linear Logic
	Difficulty of LLL/LAL
	Difficulty of LLL/LAL
	Dual Light Affine Logic
	Dual Light Affine Logic
	Data types in DLAL
	Examples of terms
	Example 1: reverse
	Example 2: insertion sort
	Example 2: insertion sort (continued)
	Relationship with LAL
	Ptime Strong Normalization
	Main Result
	Methodology for DLAL typing
	Methodology for DLAL typing
	Example
	Example
	Example
	Example
	Example
	Implementation
	Conclusion

