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短歌 (A Short Song)

瀬をはやみ　岩にせかるる　滝川の

　われてもすえに　あはんとぞおもふ

祟徳院

The stream goes down a mountain rapidly
Even if it runs into a rock
And is forced to divide into two
They will join together in the end.

Sutoku-in (1119 – 1164)
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Motivation

Algebraization of logical concepts

Formula �� Element of Algebra

Logic �� Variety

Provability �� Validity
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Motivation

Algebraization of logical concepts

Formula �� Element of Algebra

Logic �� Variety

Provability �� Validity

Algebraization of logical properties

Local deduction �� Congruence Extension

Interpolation �� Amalgamation

Disjunction property �� ...

Algebraization of proof theoretic methods?

Maehara’s Methods �� ???

Cut-free Proof Analyses �� ???
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Motivation

Cut elimination admits algebraic proof (Okada,

Belardinelli-Jipsen-Ono)
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Motivation

Cut elimination admits algebraic proof (Okada,

Belardinelli-Jipsen-Ono)

What about consequences of cut-elimination, such as

Interpolation and Disjunction Property?
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Plan

We focus on FLe
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Plan

We focus on FLe

Discuss two particular proof theoretic methods:

Maehara’s method for interpolation

Cut-free proof analysis for disjunction property

(Maximova’s variable separation principle)

Rework these methods in a more general setting (residuated

frames). It results in

algebraic uniform proof of IP and AP

algebraic uniform proof of DP and an algebraic

counterpart of DJP

JAIST, 13/03/07 – p.5/31



Sequent calculus for FLe

�����: the set of FLe-formulae over the variables �
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Sequent calculus for FLe

�����: the set of FLe-formulae over the variables �

������: the free commutative monoid generated by �����.

Sequents: �� � with � � ������, � � �����.

��������: the set of contexts �� ��� �

A sequent ������ � can be (not uniquely) written as

� �� �

with � � ��� ��� ��.

�� gives rise to a residuated structure:

��� �� � � �������� �

� � �� �	 ��


� � �� �	�� 
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Sequent calculus for FLe

Inference rules of FLe

� �� �

� �� � � �� �

� �� �

��� �� �

� �� �� �

� �� � � �� �

�� �� � �� �

� �� � � �� �

� �� � � �

�� �� �

�� � �� �� �

� �� ��

� �� �� � ��

� �� � � �� �

� � � �� �

Write � ��FLe � if � �� � is provable.
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Interpolation Property

Craig Interpolation: Let � � ����� and 	 � ���
 �. If

��FLe 	, then there is � � ���� � 
 � such that

��FLe � and ��FLe 	�
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Interpolation Property

Craig Interpolation: Let � � ����� and 	 � ���
 �. If

��FLe 	, then there is � � ���� � 
 � such that

��FLe � and ��FLe 	�

Step 1: Show that FLe satisfies the Subformula Property.
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Interpolation Property

Craig Interpolation: Let � � ����� and 	 � ���
 �. If

��FLe 	, then there is � � ���� � 
 � such that

��FLe � and ��FLe 	�

Step 1: Show that FLe satisfies the Subformula Property.

Step 2: Prove Maehara’s Lemma: Let � � ������	���
 ���

and � � ����� 	 ���
 � and Suppose ��FLe �. Then,

for any � � ������ and � � ������
 � such that

��� �� � �� �� ��, there is � � ���� � 
 � such

that
� ��FLe � and � ��FLe ��

The same holds with � and 
 exchanged.
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Maehara’s Lemma Rephrased

From relation �FLe, define a new relation �� between

������ 	 ���
 ��� and ������ 	 ���
 ��:

��� � (� maeharaly implies �) iff

for any � � ������ and � � ������
 � such that

��� �� � �� �� ��, there is � � ���� � 
 � such

that

� ��FLe � and � ��FLe ��

The same holds with � and 
 exchanged.

Maehara’s Lemma: the new relation �� is preserved under

the rules of FLe (including cut).
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Maehara’s Lemma Rephrased

Proof of IP: If ��FLe 	 with � � ����� and 	 � ���
 �,

SFP implies that it has a derivation only using formulas in

����� 	 ���
 �.
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Maehara’s Lemma Rephrased

Proof of IP: If ��FLe 	 with � � ����� and 	 � ���
 �,

SFP implies that it has a derivation only using formulas in

����� 	 ���
 �.

By Maehara’s Lemma, ��� 	.

There is � � ���� � 
 � such that ��FLe � and ��FLe 	.

To prove IP, cut-elimination is not needed. Subformula

property is enough (because �� is preserved by cut).

Subformula property is much easier to prove than

cut-elimination when using algebraic methods.
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Simple Residuated Frame

��� � � 
. ��� �� � ��� is written as �.

A simple residuated frame� � ����: � is a relation

between � and ��� such that

�� � ��� ���� � � ���� ��

for any �� � � � and ��� �� � ���.

� can be generated from its restriction to � 
 by

residuation.

��� ������ is a residuate frame in Nick’s sense.
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Simple Residuated Frame

Example 1 (sequent calculus): ������� ��FLe � is a simple

frame.

Example 2 (the dual frame): If � � ������� ���� �� is a

commutative residuated lattice, then �� � ����� is a simple

residuated frame, where � is generated by

��� � � � � �� � ��� �� � � � �� � �.
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From Frames to Algebras

Let� � ���� be a simple residuated frame. For any

� � � and � � ���,

�� � �� � ������ � ��� � ���

�� � �� � ���� � ��� � ���
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From Frames to Algebras

Let� � ���� be a simple residuated frame. For any

� � � and � � ���,

�� � �� � ������ � ��� � ���

�� � �� � ���� � ��� � ���

�� denotes the set of all closed subsets � � ��� of �.

Proposition: If� � ���� is a simple frame, then

���� � ��� ���	� � �� ��� ����� is a commutative residuated

lattice.

The dual algebra�� of�: the least subalgebra of ����

containing ����� � �.
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Fundamental Theorem

Let � be a partial algebra in the language of residuated

lattices.
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Let � be a partial algebra in the language of residuated

lattices.

A simple Gentzen frame over � is ���� such that  is the

underlying set of �, and � is preserved under the rules of

FLe.
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Fundamental Theorem

Let � be a partial algebra in the language of residuated

lattices.

A simple Gentzen frame over � is ���� such that  is the

underlying set of �, and � is preserved under the rules of

FLe.

Fundamental Theorem 1 (BOJ, Galatos-Jipsen): If� is a

simple Gentzen frame, then ���� � � ���� is a

homomorphism. Moreover, if � is antisymmetric on 
,

then ���� is an embedding.

Corollay: If � is a commutative residuated lattice, then

� �� ����
�.
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Gentzen Rules

� � �

� � � � � �

� � �

�� � �

� � �� �

� � � � � �

���� �� � �

� � � � � �

� � � � �

�� � �

��� � ��� � �

� � ��

� � �� � ��

� � � � � �

� � � � �
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Maehara’s Lemma Revisited

Instead of working on the concrete

����� � 
 ���FLe� ��������FLe� ����
 ���FLe��

we consider in general

�� � ������ �� � ������ �	 � ����	�

such that � � � � � and

� �� ��� � �� ��� � �	 �

for any � � �� and � � ����.
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Maehara’s Lemma Revisited

Define�� � �� 	 ���� � where �� is generated by
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Maehara’s Lemma Revisited

Define�� � �� 	 ���� � where �� is generated by

� �� � iff

for any � � �� and � � ���� such that �� � ��� ��,

there is � � � such that

� �� � and � �	 ��

The same holds with � and � exchanged.

Maehara’s Lemma (Frame Version): If�� and�	 are

simple Gentzen frames, so is�� .

Lemma: If �� and �	 are antisymmetric, so is ��

Corollary: ���� � � 	� ����
� is a homomorphism.

Moreover, if �� and �	 are antisymmetric, ���� is an

embedding.
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Algebraic Proof of Interpolation

Take�� � ����� � 
 ���FLe��� � ��������FLe� and

�	 � ����
 ���FLe�.

JAIST, 13/03/07 – p.18/31



Algebraic Proof of Interpolation

Take�� � ����� � 
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Algebraic Proof of Interpolation

Take�� � ����� � 
 ���FLe��� � ��������FLe� and

�	 � ����
 ���FLe�.

��
� is a commutative residuated lattice and

���� � ����� 	 ���
 � ����
� is a homomorphism.

Let � � ����� and 	 � ���
 �. If ��FLe 	, then

��
� �� �� 	

��
� � ���

� �� �� 	

�� � 	�

� � 	�

� �� 	
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Algebraic Proof of Interpolation

Take�� � ����� � 
 ���FLe��� � ��������FLe� and

�	 � ����
 ���FLe�.

��
� is a commutative residuated lattice and

���� � ����� 	 ���
 � ����
� is a homomorphism.

Let � � ����� and 	 � ���
 �. If ��FLe 	, then

��
� �� �� 	

��
� � ���

� �� �� 	

�� � 	�

� � 	�

� �� 	

There is � � ���� � 
 � such that ��FLe � and ��FLe 	.
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Direct Proof of Amalgamation

Let �, � and � be commutative residuated lattices such that

� is a subalgebra of both � and �.
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Direct Proof of Amalgamation

Let �, � and � be commutative residuated lattices such that

� is a subalgebra of both � and �.

Take�� � ��,�� � �� and�	 � ��. Then��
� is a

commutative residuated lattice and ���� � �	� ����
� is an

embedding (since�� and�	 are antisymmetric).

We thus have two embeddings

����� � � ����
�

����	 � � ����
�

and cleary ��� � ��	 for any � � �.
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Generalizing Amalgamation

Square diagramatic properties: Amalgamation, Congruence

Extension, Transferrable Injection . . .

One can uniformly prove them for the variety of commutative

residuated lattices.

Let �, � and � be commutative residuated lattices and

� � � �� � and � � � �� � homomorphisms. (� �� � �)
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Generalizing Amalgamation

From the simple Genzen frames �� and ��, define

�� � �� 	 ���� � by

� �� � iff

for � � �� and � � ���� such that �� � ��� ��, there is

� � � such that

� �� ���� and ���� �� ��

The same holds with � and � exchanged.

Generalized Maehara’s Lemma: �� is a simple Genzen

frame.

Corollary: ���� � � 	� ����
� is a homomorphism.
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Generalizing Amalgamation

Hence we have homomorphisms

� � � ����
�

� � � ����
�

Moreover, ����� � ����� for any � � �, i.e., � Æ � � � Æ �.

Lemma:

1. If � is injective, so is �.

2. If � is surjective, so is �.

A uniform proof of TI, CEP and AP for commutative residuated

lattices.

Proposition: In general, ����� �� � ���� �� � ����.
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Disjunction Property

Disjunction Property: If �FLe � � 	, then either �FLe � or

�FLe 	.

Proof:

Step 1: Prove cut-elimination

Step 2: Show Disjunction Lemma: If � � � � is cut-free

provable, either � � or � � is cut-free provable.

JAIST, 13/03/07 – p.23/31



Disjunction Lemma Rephrased

We need to consider meta-disjunction on r.h.s. So consider

pairs of formulas ��
 ��. Write �� � for

��� �� � ��
 ��.

From relation �FLe, define a new relation �
 between ���

and ��
 ��.

��
 �� � iff the following hold:

If � � � either �FLe � or �FLe �.

Otherwise ��FLe � � �.

��FLe ��� ��
 �� �

��
 �� � �� ��FLe � � �

Disjunction Lemma: �
 is preserved by the rules of FLe

other than cut.
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Disjunction Lemma Rephrased

A less-simple frame ������: � is a relation between � and

������� � � 
� such that

�� � ��� ���� � � ���� ���

It is simple in case  � �.

Given a less-simple frame�, the completion ���� is

defined as before. It is a commutative residuated lattice.

Let � be a partial algebra in the language of residuated

lattices. A less-simple cut-free Gentzen frame over � is

������ such that  is the underlying set of �,  can be

embedded into � and � is preserved under the rules of FLe

other than cut.
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Fundamntal Theorem

Fundamental Theorem 2 (BJO, GJ): If� is a simple Gentzen

frame over �, then ���� � � �� ���� is a quasi

homomorphism: for any �� � � , � � ����� ����, and any

� � � � ��, � � 
 � ��,

� � � � � ���� � 
 � �� � ����

Moreover, if � is antisymmetric on 
, then ���� is injective

(quasi-embedding).
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Disjunction Lemma Revisited

Let be a simple Genzen fram over . The quasi-dual

algebra �� of is the subalgebra of !� � with the

underlying set

���� is closed and � � � � �� for some � � ��

If � is antisymmetric, the quasi-embedding ���� can be

reversed. Namely, there is a surjiective homomorphism

� ���� �� � given by ���� � � if � � � � ��.
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Disjunction Lemma Revisited

Given a simple Gentzen frame� � ���� over a

commutative residuated lattice �, build a less-simple frame

�
 � ��
��
� where �
 is generated by

� �
 �� ���

If � � � either � � � or � � �. Otherwise � � � � �.

Disjunction Lemma (Frame Version):  
 is a cut-free Genzen

frame.

Corollary: ���� � � �����

 is a quasi-homomorphism.

Lemma: Let ��
 � ��

 such that � � � � �� and

� � 
 � ��. If �  � ����

�


 , then � � � or � � �.

Moreover, if � is antisymmetric, there is a surjective

homomorphism � � ��

 �� . If �  � ����

�


 , then

� � ���� or � � ��
 �. JAIST, 13/03/07 – p.28/31



Algebraic Proof of Disjunction Property

From �����FLe� construct�
.

If �FLe � � 	, then���

 � " �� � � 	 with valuation " given by

"�#� � #�.

Since � � "��� � �� and 	 � "��� � 	�, we have �FLe � or

�FLe 	.
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Algebraic counterpart of DP

Theorem: For any substructural logic �, the following are

equivalent.

1. � satisfies the Disjunction Property

2. For any � � ����, there is 	 � ���� and a surjective

homomorphism � � 	 �� � such that � � � � � implies

� � ���� or � � ����.

Proof of condition 2 for FLe: Just take �� as and construct

 
.
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Conclusion and Future Work

In proof theory, one typically proves some property � for all

provable sequents.
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In proof theory, one typically proves some property � for all

provable sequents.

Instead, one can define a new relation � based on � and

show that � is preserved by inference rules.

Residuated frames are flexible enough to capture this

situation. It is useful to extract the common part between an

algebraic proof of � and a direct proof of the corresponding

algebraic property.

Future Work

(Maximova’s Variable Separation Principle)

Application to other logics.

General theory to translate proof theoretic arguments to

arguments on frames. JAIST, 13/03/07 – p.31/31
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