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The stream goes down a mountain rapidly
Even if it runs into a rock

And Is forced to divide into two
They will join together in the end.

Sutoku-in (1119 — 1164)
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M otivation

-

® Algebraization of logical concepts
Formula +— Element of Algebra

Logic oy Variety

Provability +— Validity
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M otivation

-

® Algebraization of logical concepts
Formula +— Element of Algebra

Logic oy Variety
Provability +— Validity

® Algebraization of logical properties
Local deduction — Congruence Extension

Interpolation b Amalgamation
Disjunction property
® Algebraization of proof theoretic methods?
Maehara’s Methods = ?7?7?

L Cut-free Proof Analyses +~ 7?77 J
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M otivation

-

® Cut elimination admits algebraic proof (Okada,
Belardinelli-Jipsen-Ono)
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M otivation
L o

® Cut elimination admits algebraic proof (Okada,
Belardinelli-Jipsen-Ono)

® What about consequences of cut-elimination, such as
Interpolation and Disjunction Property?
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Plan

-

® We focuson FLe
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® Discuss two particular proof theoretic methods:
» Maehara’s method for interpolation
o Cut-free proof analysis for disjunction property
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Plan
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® We focuson FLe T

® Discuss two particular proof theoretic methods:
» Maehara’s method for interpolation
o Cut-free proof analysis for disjunction property

o (Maximova's variable separation principle)

® Rework these methods in a more general setting (residuated
frames). It results in
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® Discuss two particular proof theoretic methods:
» Maehara’s method for interpolation
o Cut-free proof analysis for disjunction property

o (Maximova's variable separation principle)

® Rework these methods in a more general setting (residuated
frames). It results in

o algebraic uniform proof of IP and AP
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Plan
-

® We focuson FLe T

® Discuss two particular proof theoretic methods:
» Maehara’s method for interpolation
o Cut-free proof analysis for disjunction property

o (Maximova's variable separation principle)

® Rework these methods in a more general setting (residuated
frames). It results in

o algebraic uniform proof of IP and AP

» algebraic uniform proof of DP and an algebraic
counterpart of DJP
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Seguent calculusfor FLe

- .

® ['m(X): the set of FLe-formulae over the variables X
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Sequent calculusfor FLe

- .

® ['m(X): the set of FLe-formulae over the variables X

® ['m*(X): the free commutative monoid generated by Fm(X).
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Sequent calculusfor FLe

- .

® Fm(X): the set of FLe-formulae over the variables X
® ['m*(X): the free commutative monoid generated by Fm(X).

® Sequents:I'= awithT € Fm*(X), a € Fm(X).
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Sequent calculusfor FLe

- .

® Fm(X): the set of FLe-formulae over the variables X

® ['m*(X): the free commutative monoid generated by Fm(X).
® Sequents:I'= awithT € Fm*(X), a € Fm(X).
o

Fm"(X): the setof contexts I', _,A = «
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Sequent calculusfor FLe

=

Fm(X): the set of FLe-formulae over the variables X
Fm*(X): the free commutative monoid generated by F'm(X).
Sequents: I' = awithT € Fm*(X), a € Fm(X).
Fm"(X): the setof contexts I', _,A = «
A sequent I', >, A = « can be (not uniguely) written as

> =>C

with C = (T', _, A = «).
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Sequent calculusfor FLe

=

Fm/(X): the set of FLe-formulae over the variables X
Fm*(X): the free commutative monoid generated by F'm(X).
Sequents: I' = awithT € Fm*(X), a € Fm(X).

Fm"(X): the setof contexts I', _,A = «

A sequent I', >, A = « can be (not uniguely) written as
= C
with C' = (I', _, A = «).
= gives rise to a residuated structure:

NI,

0 ILA = o

s =5 CL T .

IH=C [H) _] JAIST, 13/03/07 — p.6/3;



Sequent calculusfor FLe

-

® Inference rules of FLe

I' > a—f I'Na— 3 =C
'=a I'=>p0 a, = C
I' == aAp a1 Nagy = C
I' 2 a1 Vas aVp=C

® WriteI' =f e CifI' = Cis provable.
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| nter polation Property

- .

® Craig Interpolation: Let ¢ € Fm(X) and ¢y € Fm(Y'). If
¢ =fFLe ¢, then thereis i € Fm(X NY') such that

¢ =rLet and i =fLe.
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| nter polation Property

- .

® Craig Interpolation: Let ¢ € Fm(X) and ¢y € Fm(Y'). If
¢ =fFLe ¢, then thereis i € Fm(X NY') such that

¢ =rLet and i =fLe.

® Step 1. Show that FL e satisfies the Subformula Property.
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| nter polation Property

=

Craig Interpolation: Let ¢ € Fm(X) and ¥ € Fm(Y). If
¢ =fFLe ¢, then thereis i € Fm(X NY') such that

¢ =rLet and i =fLe.

Step 1: Show that FL e satisfies the Subformula Property.

Step 2: Prove Maehara’s Lemma: LetT" € (Fm(X)U Fm(Y))*
and a € Fm(X)U Fm(Y) and Suppose I' =f_e a. Then,
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| nter polation Property

Craig Interpolation: Let ¢ € Fm(X) and ¥ € Fm(Y). If T
¢ =fFLe ¢, then thereis i € Fm(X NY') such that

¢ =rLet and i =fLe.

Step 1: Show that FL e satisfies the Subformula Property.
Step 2: Prove Maehara’s Lemma: LetT" € (Fm(X)U Fm(Y))*
and a € Fm(X)U Fm(Y) and Suppose I' =f_e a. Then,

forany A € Fm*(X) and C' € Fm*™(Y') such that
M= a)=(A = C),thereisi € Fm(X NY) such
that

A Spletr and 1 Sge C.

The same holds with X and Y exchanged. J
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Maehara's Lemma Rephrased
B

f ® From relation =g e, define a new relation =, between
(Fm(X)UFm(Y))* and (Fm(X)U Fm(Y)):
I' = o (I' maeharaly implies «) iff
forany A € Fm*(X) and C' € Fm*™(Y') such that
(T'=a)=(A = C),thereisi € Fm(X NY) such
that
A Spletr and 1 Sge C.

The same holds with X and Y exchanged.

® Maehara’s Lemma: the new relation =, Is preserved under
the rules of FL e (including cut).
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Maehara's Lemma Rephrased
B

|7 ® Proof of IP: If ¢ =fLe ¥ With ¢ € Fm(X) and v € Fm(Y),
SFP implies that it has a derivation only using formulas in

Fm(X)U Fm(Y).
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SFP implies that it has a derivation only using formulas in
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Maehara's Lemma Rephrased

|7 ® Proof of IP: If ¢ =fLe ¥ With ¢ € Fm(X) and v € Fm(Y), T
SFP implies that it has a derivation only using formulas in
Fm(X)U Fm(Y).

® By Maehara's Lemma, ¢ =/ .

® Thereisi e Fm(X NY)suchthat ¢ =f eiand i =rLe .

o -

JAIST, 13/03/07 — p.10/3:



°

Maehara's Lemma Rephrased
B

Proof of IP: If ¢ =FLe ¢ With ¢ € Fm/(X) and ¢ € Fm(Y),
SFP implies that it has a derivation only using formulas in

Fm(X)U Fm(Y).
By Maehara’s Lemma, ¢ = 1.
Thereisi € Fm(X NY) such that ¢ =fLe? and i =fLe .

To prove IP, cut-elimination is not needed. Subformula
property is enough (because =), Is preserved by cut).
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°

Maehara's Lemma Rephrased
B

Proof of IP: If ¢ =FLe ¢ With ¢ € Fm/(X) and ¢ € Fm(Y),
SFP implies that it has a derivation only using formulas in
Fm(X)U Fm(Y).

By Maehara’s Lemma, ¢ =, .
Thereisi € Fm(X NY) such that ¢ =fLe? and i =fLe .

To prove IP, cut-elimination is not needed. Subformula
property is enough (because =), Is preserved by cut).

Subformula property is much easier to prove than
cut-elimination when using algebraic methods.
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Simple Residuated Frame

Q" = Q* X Q. (e,a) € Q™ is written as a.
A simple residuated frame W = (@, C): C is a relation
between (Q* and (Q°" such that

ry C (2,0) <=y C (xz,a)

forany z,y € Q* and (z,a) € Q™.

[ can be generated from its restriction to Q* x @) by
residuation.

(Q*,Q°°", C) is a residuate frame in Nick’s sense.
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Simple Residuated Frame

- .

® Example 1 (sequent calculus): (F'm(X), =FLe ) IS a simple
frame.

® Example 2 (the dual frame): If A = (A, A,V,-,—,1)is a
commutative residuated lattice, then A, = (A,C) is a simple

residuated frame, where C is generated by
a1,...,ap, Cb<=ay1---a, <a b.
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From Framesto Algebras

- .

® letW = (Q,C) be asimple residuated frame. For any
X CQR*and U C Q°",

X = {ue@Q"WVWreX(xCu)}
UY = {zeQ"NVueU(xCu)}
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From Framesto Algebras

- .

® letW = (Q,C) be asimple residuated frame. For any
X CQR*and U C Q°",

X = {ue@Q"WVWreX(xCu)}
UY = {ze€e@Q@NVueU(zCu)}

® W, denotes the set of all closed subsets X = X< of Q*.
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From Framesto Algebras

- .

® letW = (Q,C) be asimple residuated frame. For any
X CQR*and U C Q°",
X = {ue@Q"WVWreX(xCu)}
UY = {ze€e@Q@NVueU(zCu)}

® W, denotes the set of all closed subsets X = X< of Q*.

® Proposition: If W = (@, C) is a simple frame, then
R(W) = (W,,N,U,,e,, — {€},) is a commutative residuated
lattice.
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From Framesto Algebras

=

Let W = (@, C) be a simple residuated frame. For any
X CQR*and U C Q°",

X = {ue@Q"WVWreX(xCu)}
UY = {ze€e@Q@NVueU(zCu)}

W., denotes the set of all closed subsets X = X>< of Q*.

Proposition: If W = (@, C) is a simple frame, then
R(W) = (W,,N,U,,e,, — {€},) is a commutative residuated
lattice.

The dual algebra W of W: the least subalgebra of R(W)
containing {a<|a € Q}.
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Fundamental Theorem

- .

® Let Q be a partial algebra in the language of residuated
lattices.
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Fundamental Theorem
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® Let Q be a partial algebra in the language of residuated
lattices.

® A simple Gentzen frame over Q is (@, C) such that @ is the
underlying set of Q, and C is preserved under the rules of
FLe.

o -

JAIST, 13/03/07 — p.14/3;



Fundamental Theorem

- .

® Let Q be a partial algebra in the language of residuated
lattices.

® A simple Gentzen frame over Q is (@, C) such that @ is the
underlying set of Q, and C is preserved under the rules of
FLe.

® Fundamental Theorem 1 (BOJ, Galatos-Jipsen): If W is a
simple Gentzen frame, then (-)¥: Q — WT is a
homomorphism. Moreover, if C Is antisymmetric on () x @,
then (-)< is an embedding.
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Fundamental Theorem

=

Let Q be a partial algebra in the language of residuated
lattices.

A simple Gentzen frame over Q is (Q, C) such that @ is the
underlying set of Q, and C is preserved under the rules of
FLe.

Fundamental Theorem 1 (BOJ, Galatos-Jipsen): If W is a
simple Gentzen frame, then (-)¥: Q — WT is a
homomorphism. Moreover, if C Is antisymmetric on () x @,
then (-)< is an embedding.

Corollay: If A is a commutative residuated lattice, then
Ax=(A)T.

-
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Gentzen Rules

r_a alC u
al a riu

ar C b rCa bCu
rCa—b x(a—b)Cu

rCa xCb a; u
rCaAb (a1 Nag) Cu

x C a; aC_u b u

rC a1 Va aVblCu
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Maehara’'s Lemma Revisited
-, o

Instead of working on the concrete
(Fm(X NY),=re) (Fm(X),=re (Fm(Y),=rFLe),
we consider in general
Wyis=(A,Ca) Wp=(B,Cg) Wec=(C,Co)
such that A C BN C and
rau<—rlLpu<—TLcu

forany x € A* and u € A",
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Maehara's Lemma Revisited

- .

® Define W), = (BUC, ) where Cjy is generated by
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Maehara’'s Lemma Revisited

-

® Define W), = (BUC, ) where Cjy is generated by

x T aiff
forany y € B* and u € C°°™ such that yu = (z, a),
there is © € A such that

yCpiandi Co u.

The same holds with B and C' exchanged.

o -
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Maehara’'s Lemma Revisited

- .

® Define W), = (BUC, ) where Cjy is generated by

x T aiff
forany y € B* and u € C°°™ such that yu = (z, a),
there is © € A such that

yCpiandi Co u.

The same holds with B and C' exchanged.

® Maehara’'s Lemma (Frame Version): If Wp and W are
simple Gentzen frames, so is W,.
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Maehara’'s Lemma Revisited

-

® Define W), = (BUC, ) where Cjy is generated by

x T aiff
forany y € B* and u € C°°™ such that yu = (z, a),
there is © € A such that

yCpiandi Co u.

The same holds with B and C' exchanged.

® Maehara’'s Lemma (Frame Version): If Wp and W are
simple Gentzen frames, so is W,.

® Lemma: If Cp and C are antisymmetric, SO IS C

o -

JAIST, 13/03/07 — p.17/3:



Maehara’'s Lemma Revisited

- .

® Define W), = (BUC, ) where Cjy is generated by

x T aiff
forany y € B* and u € C°°™ such that yu = (z, a),
there is © € A such that

yCpiandi Co u.

The same holds with B and C' exchanged.

® Maehara’'s Lemma (Frame Version): If Wp and W are
simple Gentzen frames, so is W,.

® Lemma: If Cp and C are antisymmetric, SO IS C

® Corollary: ()9 :BUC — W7, is a homomorphism.
L Moreover, if Cp and C¢ are antisymmetric, (-)< is an J
em bEdd I ng . JAIST, 13/03/07 — p.17/3:



Algebraic Proof of Interpolation

- .

® Take W4 = (Fm(X M Y), =>|:|_e) Wpg = (Fm(X), iFLe) and
W = (Fm(Y), iFLe)-

o -
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Algebraic Proof of Interpolation
- o

® Take W4 = (Fm(X M Y), :>|:|_e) Wpg = (Fm(X), =>|:|_e) and
W = (Fm(Y), :>|:|_e).

® W7 is a commutative residuated lattice and
()9 : Fm(X)U Fm(Y) — W7, is a homomorphism.
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Algebraic Proof of Interpolation

Take W4 = (Fm(X NY),=fFLe) Wp = (Fm(X),=FLe) and T
W = (Fm(Y), :>|:|_e).

W7, is a commutative residuated lattice and
()9 : Fm(X)U Fm(Y) — W7, is a homomorphism.

Let p € Fm(X)and ¢ € Fm(Y). If ¢ =FLe ¥, then

Wi Eod=19
Wi ()Y Ee=v
¢~ C -
¢ € P
¢Cpm Y

-
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Algebraic Proof of Interpolation

® Take W,y = (Fm(X M Y), :>|:|_e) Wpg = (Fm(X), =>|:|_e) and T
W = (Fm(Y), :>|:|_e).

® W7 is a commutative residuated lattice and
()9 : Fm(X)U Fm(Y) — W7, is a homomorphism.

® letpe Fm(X)andy € Fm(Y). If ¢ =fLe ¢, then

Wi Eod=19
Wi ()Y Ee=v
¢~ C -
¢ € P
¢Cpm Y

L ® Thereisie Fm(X NY)suchthat ¢ =f eiandi =p e . J
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Direct Proof of Amalgamation

- .

® Let A, B and C be commutative residuated lattices such that
A is a subalgebra of both B and C.

o -
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Direct Proof of Amalgamation

=

|7 ® Let A, B and C be commutative residuated lattices such that
A is a subalgebra of both B and C.

® Take Wy =A,, W =B, and W =C,. Then W}, isa
commutative residuated lattice and ()Y : BUC — W7 is an
embedding (since W g and W are antisymmetric).

o -
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Direct Proof of Amalgamation
-

Let A, B and C be commutative residuated lattices such that
A is a subalgebra of both B and C.

Take W4 = A,, W =B, and W = C,. Then W7, is a
commutative residuated lattice and ()Y : BUC — W7 is an
embedding (since W g and W are antisymmetric).

We thus have two embeddings

:B—)W}\t[

<
B
()g - C —)W;\r/[

and cleary aj; = aJ forany a € A.

-
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Generalizing Amalgamation

=

Square diagramatic properties: Amalgamation, Congruence
Extension, Transferrable Injection ...

One can uniformly prove them for the variety of commutative
residuated lattices.

Let A, B and C be commutative residuated lattices and
f:A— Bandg: A — Chomomorphisms. (BN C = ()

-

JAIST, 13/03/07 — p.20/3:



Generalizing Amalgamation

- .

® From the simple Genzen frames B, and C_, define
Wy = (BUC, I:M) by
x T alff
for y € B* and u € C'°°" such that yu = (x, a), there is
1 € A such that

yCs f(i) and g(i) Cc u.

The same holds with B and C exchanged.

® Generalized Maehara’'s Lemma: W, is a simple Genzen
frame.

® Corollary: ()9 :BUC — W7, is a homomorphism.

o -
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Generalizing Amalgamation

=

Hence we have homomorphisms
h:B— W,
kE:C— W]D
Moreover, f(a)9 = g(a)< forany a € A,i.e., ho f =kog.

Lemmas:
1. If fisinjective, sois k.

2. If fIs surjective, so Is k.

A uniform proof of Tl, CEP and AP for commutative residuated
lattices.

Proposition: In general, g(ker f) = (ker k) Ng(A).

-
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Digunction Property

- .

® Disjunction Property: If =f e ¢ V 1), then either =g e ¢ OF
=FLe V.
® Proof:
o Step 1: Prove cut-elimination

o Step 2: Show Disjunction Lemma: If = o Vv 3 Is cut-free
provable, either = « or = 3 is cut-free provable.

o -
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°

Digunction Lemma Rephr ased
B

We need to consider meta-disjunction on r.h.s. So consider
pairs of formulas F'm x F'm. Write o & (3 for
(a, B) € Fm x Fm.

From relation =g ¢, define a new relation = p between F'm*
and (L x L).
I' =p a® g iff the following hold:

If I' = () either =gLe o OF =FLe 5.
Otherwise I' = e a V B.

I' =flea+— 1T =pada
I'=pa®dfB—1 =fFeaVpy

Disjunction Lemma: = p is preserved by the rules of FLe
other than cut. J
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Digunction Lemma Rephr ased
-

A less-simple frame (Q, Q’,C): C is a relation between Q* an

(Q, Q)™ = Q* x Q' such that
ry C (2,a) <=y C (v2,a).

It is simple in case Q = Q'.

Given a less-simple frame W, the completion R(W) is
defined as before. It is a commutative residuated lattice.

Let Q be a partial algebra in the language of residuated
lattices. A less-simple cut-free Gentzen frame over Q Is
(Q,Q’,C) such that @ is the underlying set of Q, Q can be
embedded into Q" and C is preserved under the rules of FLe
other than cut.

-
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Fundamntal Theorem
-

f ® Fundamental Theorem 2 (BJO, GJ): If W is a simple Gentzen
frame over Q, then (1)< : Q — R(W) is a quasi
homomorphism: for any a,b € Q, x € {A,V,-,—}, and any
ac X Cad,beY CbT,

axbe X spuw)Y C (axb)”.

Moreover, if C is antisymmetric on Q x @, then (-)< is injective
(quasi-embedding).

o -
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Disunction Lemma Revisited

- .

® Let W be a simple Genzen fram over (). The quasi-dual
algebra W+ of W is the subalgebra of R(W) with the
underlying set

{X|X isclosed and a € X C a for some a € Q}.

® If C is antisymmetric, the quasi-embedding (-)< can be
reversed. Namely, there is a surjiective homomorphism
f:WTT — Qgivenby f(X)=aifaec X Ca”.

o -
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Disunction Lemma Revisited

=

Given a simple Gentzen frame W = (Q,C) over a
commutative residuated lattice Q, build a less-simple frame
Wp =(Q,Q x Q,Cp) where Cp is generated by
rCpa®db<—
If x = ceithere C a oreC b. Otherwise x C a V b.

Disjunction Lemma (Frame Version): Wp is a cut-free Genzen
frame.

Corollary: (-)<: Q — W£T is a quasi-homomorphism.

Lemma: Let X,Y € WA such thata € X C o< and
beY C Y. Ifng\/WyY,thene[aorel:b.
Moreover, if C is antisymmetric, there is a surjective
- R Vs
homomorphism f: W7 — Q. If1 < X \/Wbi——l— Y, then J
€ |: f(X) Or € |: f(Y) JAIST, 13/03/07 — p.28/3:



Algebraic Proof of Digunction Property
B o

® From (F'm,=-FLe) CONStruct Wp.

® If=ped Ve, then Wi v = ¢ Ve with valuation v given by
v(p) =p~.
® Since ¢ € v(¢) C P and ¢ € v(¢) C Y, we have =f ¢ ¢ Or

=FLe .

o -

JAIST, 13/03/07 — p.29/3:



Algebraic counterpart of DP
- o

® Theorem: For any substructural logic L, the following are
equivalent.

1. L satisfies the Disjunction Property

2. Forany A € V(L), thereis D € V(L) and a surjective
homomorphism f : D — A such that 1 <p a VvV b implies

1 <A f(a) or 1l <A f(b)

® Proof of condition 2 for FLe: Just take A, as W and construct
Wh.

o -

JAIST, 13/03/07 — p.30/3:



Conclusion and Future Work

- .

® In proof theory, one typically proves some property P for all
provable sequents.
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In proof theory, one typically proves some property P for all
provable sequents.

® Instead, one can define a new relation = p» based on P and
show that = p is preserved by inference rules.

#® Residuated frames are flexible enough to capture this
situation. It is useful to extract the common part between an
algebraic proof of P and a direct proof of the corresponding
algebraic property.

® Future Work

o (Maximova’s Variable Separation Principle)
o Application to other logics.

o General theory to translate proof theoretic arguments to
arguments on frames. ST 190307 p U3
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