Residuated Frames: the Join of Proof Theory and Algebra for Substructural Logics

Kazushige Terui National Institute of Informatics

(partly based on ongoing work with N. Galatos)

短歌 (A Short Song)

瀬をはやみ 岩にせかるる 滝川の

われてもすえに あはんとぞおもふ

崇徳院

短歌 (A Short Song)

瀬をはやみ 岩にせかるる 滝川の

われてもすえに あはんとぞおもふ

The stream goes down a mountain rapidly Even if it runs into a rock And is forced to divide into two They will join together in the end.

Sutoku-in (1119 – 1164)

٩	Algebraization of logical concepts					
	Formula	\mapsto	Element of Algebra			
	Logic	\mapsto	Variety			
	Provability	\mapsto	Validity			

٩	Algebraization of logical concepts							
	Formula	⊢→ El	ement	of Algebra				
	Logic	\mapsto	Va	riety				
	Provability	\mapsto	Va	lidity				
_	Algebraization of logical properties							
	Local deduction		\mapsto	Congruence Extension				
	Interpolation		\mapsto	Amalgamation				
	Disjunction	property	$\checkmark \mapsto$					

Algebraization of logical concepts							
Formula	\mapsto	Element	of Algebra				
Logic	\mapsto	Va	ariety				
Provability	\mapsto	Va	alidity				
Algebraizatio	n of <mark>lo</mark>	gical pro	operties				
Local ded	uction	\mapsto	Congruence Extensior	ו			
Interpola	ation	\mapsto	Amalgamation				
Disjunction	proper	⁻ty ⊢→					
	-						

Algebraization of proof theoretic methods?
 Maehara's Methods → ???
 Cut-free Proof Analyses → ???

 Cut elimination admits algebraic proof (Okada, Belardinelli-Jipsen-Ono)

- Cut elimination admits algebraic proof (Okada, Belardinelli-Jipsen-Ono)
- What about consequences of cut-elimination, such as Interpolation and Disjunction Property?

We focus on FLe

- We focus on FLe
- Discuss two particular proof theoretic methods:

- We focus on FLe
- Discuss two particular proof theoretic methods:
 - Maehara's method for interpolation

- We focus on FLe
- Discuss two particular proof theoretic methods:
 - Maehara's method for interpolation
 - Cut-free proof analysis for disjunction property

- We focus on FLe
- Discuss two particular proof theoretic methods:
 - Maehara's method for interpolation
 - Cut-free proof analysis for disjunction property
 - (Maximova's variable separation principle)

- We focus on FLe
- Discuss two particular proof theoretic methods:
 - Maehara's method for interpolation
 - Cut-free proof analysis for disjunction property
 - (Maximova's variable separation principle)
- Rework these methods in a more general setting (residuated frames). It results in

- We focus on FLe
- Discuss two particular proof theoretic methods:
 - Maehara's method for interpolation
 - Cut-free proof analysis for disjunction property
 - (Maximova's variable separation principle)
- Rework these methods in a more general setting (residuated frames). It results in
 - algebraic uniform proof of IP and AP

- We focus on FLe
- Discuss two particular proof theoretic methods:
 - Maehara's method for interpolation
 - Cut-free proof analysis for disjunction property
 - (Maximova's variable separation principle)
- Rework these methods in a more general setting (residuated frames). It results in
 - algebraic uniform proof of IP and AP
 - algebraic uniform proof of DP and an algebraic counterpart of DJP

• Fm(X): the set of FLe-formulae over the variables X

- Fm(X): the set of FLe-formulae over the variables X
- $Fm^*(X)$: the free commutative monoid generated by Fm(X).

- **•** Fm(X): the set of **FLe**-formulae over the variables X
- $Fm^*(X)$: the free commutative monoid generated by Fm(X).
- **Sequents:** $\Gamma \Rightarrow \alpha$ with $\Gamma \in Fm^*(X)$, $\alpha \in Fm(X)$.

- **•** Fm(X): the set of **FLe**-formulae over the variables X
- $Fm^*(X)$: the free commutative monoid generated by Fm(X).
- **Sequents:** $\Gamma \Rightarrow \alpha$ with $\Gamma \in Fm^*(X)$, $\alpha \in Fm(X)$.
- $Fm^{con}(X)$: the set of contexts $\Gamma, _, \Delta \Rightarrow \alpha$

- Fm(X): the set of FLe-formulae over the variables X
- $Fm^*(X)$: the free commutative monoid generated by Fm(X).
- **Sequents:** $\Gamma \Rightarrow \alpha$ with $\Gamma \in Fm^*(X)$, $\alpha \in Fm(X)$.
- **F** $m^{con}(X): the set of contexts <math>\Gamma, _, \Delta \Rightarrow \alpha$
- A sequent $\Gamma, \Sigma, \Delta \Rightarrow \alpha$ can be (not uniquely) written as

 $\Sigma \stackrel{\sim}{\Rightarrow} C$

with $C = (\Gamma, _, \Delta \Rightarrow \alpha)$.

- Fm(X): the set of FLe-formulae over the variables X
- $Fm^*(X)$: the free commutative monoid generated by Fm(X).
- **Sequents:** $\Gamma \Rightarrow \alpha$ with $\Gamma \in Fm^*(X)$, $\alpha \in Fm(X)$.
- $Fm^{con}(X)$: the set of contexts $\Gamma, _, \Delta \Rightarrow \alpha$
- A sequent $\Gamma, \Sigma, \Delta \Rightarrow \alpha$ can be (not uniquely) written as

 $\Sigma \stackrel{\sim}{\Rightarrow} C$

with $C = (\Gamma, _, \Delta \Rightarrow \alpha)$.

 $\mathfrak{s} \quad \tilde{\Rightarrow} \quad \text{gives rise to a residuated structure:}$

$$\Sigma, \Pi \stackrel{\sim}{\Rightarrow} C \equiv \Gamma, \Sigma, \Pi, \Delta \Rightarrow \alpha$$
$$\equiv \Sigma \stackrel{\sim}{\Rightarrow} C[_, \Pi]$$
$$= \Pi \stackrel{\sim}{\Rightarrow} C[\Pi]$$

JAIST, 13/03/07 - p.6/3

Inference rules of FLe

$$\frac{\overline{\alpha \stackrel{\sim}{\Rightarrow} \alpha}}{\overline{\alpha \stackrel{\sim}{\Rightarrow} \alpha}} \qquad \frac{\Gamma \stackrel{\sim}{\Rightarrow} \alpha \quad \alpha \stackrel{\sim}{\Rightarrow} C}{\Gamma \stackrel{\sim}{\Rightarrow} C} \\
\frac{\alpha, \Gamma \stackrel{\sim}{\Rightarrow} \beta}{\overline{\Gamma \stackrel{\sim}{\Rightarrow} \alpha \rightarrow \beta}} \qquad \frac{\Gamma \stackrel{\sim}{\Rightarrow} \alpha \quad \beta \stackrel{\sim}{\Rightarrow} C}{\overline{\Gamma, \alpha \rightarrow \beta \stackrel{\sim}{\Rightarrow} C}} \\
\frac{\Gamma \stackrel{\sim}{\Rightarrow} \alpha \quad \Gamma \stackrel{\sim}{\Rightarrow} \beta}{\Gamma \stackrel{\sim}{\Rightarrow} \alpha \wedge \beta} \qquad \frac{\alpha_i \stackrel{\sim}{\Rightarrow} C}{\alpha_1 \wedge \alpha_2 \stackrel{\sim}{\Rightarrow} C} \\
\frac{\Gamma \stackrel{\sim}{\Rightarrow} \alpha_i}{\overline{\Gamma \stackrel{\sim}{\Rightarrow} \alpha_1 \lor \alpha_2}} \qquad \frac{\alpha \stackrel{\sim}{\Rightarrow} C \quad \beta \stackrel{\sim}{\Rightarrow} C}{\alpha \lor \beta \stackrel{\sim}{\Rightarrow} C}$$

■ Write $\Gamma \stackrel{\sim}{\Rightarrow}_{\mathbf{FLe}} C$ if $\Gamma \stackrel{\sim}{\Rightarrow} C$ is provable.

• Craig Interpolation: Let $\phi \in Fm(X)$ and $\psi \in Fm(Y)$. If $\phi \Rightarrow_{\mathbf{FLe}} \psi$, then there is $i \in Fm(X \cap Y)$ such that

 $\phi \Rightarrow_{\mathbf{FLe}} i \text{ and } i \Rightarrow_{\mathbf{FLe}} \psi.$

• Craig Interpolation: Let $\phi \in Fm(X)$ and $\psi \in Fm(Y)$. If $\phi \Rightarrow_{\mathbf{FLe}} \psi$, then there is $i \in Fm(X \cap Y)$ such that

 $\phi \Rightarrow_{\mathbf{FLe}} i \text{ and } i \Rightarrow_{\mathbf{FLe}} \psi.$

Step 1: Show that FLe satisfies the Subformula Property.

• Craig Interpolation: Let $\phi \in Fm(X)$ and $\psi \in Fm(Y)$. If $\phi \Rightarrow_{\mathbf{FLe}} \psi$, then there is $i \in Fm(X \cap Y)$ such that

$$\phi \Rightarrow_{\mathbf{FLe}} i \text{ and } i \Rightarrow_{\mathbf{FLe}} \psi.$$

- Step 1: Show that FLe satisfies the Subformula Property.
- Step 2: Prove Maehara's Lemma: Let $\Gamma \in (Fm(X) \cup Fm(Y))^*$ and $\alpha \in Fm(X) \cup Fm(Y)$ and Suppose $\Gamma \Rightarrow_{FLe} \alpha$. Then,

• Craig Interpolation: Let $\phi \in Fm(X)$ and $\psi \in Fm(Y)$. If $\phi \Rightarrow_{\mathbf{FLe}} \psi$, then there is $i \in Fm(X \cap Y)$ such that

$$\phi \Rightarrow_{\mathbf{FLe}} i \text{ and } i \Rightarrow_{\mathbf{FLe}} \psi.$$

Step 1: Show that FLe satisfies the Subformula Property.

• Step 2: Prove Maehara's Lemma: Let $\Gamma \in (Fm(X) \cup Fm(Y))^*$ and $\alpha \in Fm(X) \cup Fm(Y)$ and Suppose $\Gamma \Rightarrow_{FLe} \alpha$. Then, for any $\Delta \in Fm^*(X)$ and $C \in Fm^{con}(Y)$ such that $(\Gamma \Rightarrow \alpha) \equiv (\Delta \Rightarrow C)$, there is $i \in Fm(X \cap Y)$ such that

$$\Delta \stackrel{\sim}{\Rightarrow}_{\mathbf{FLe}} i$$
 and $i \stackrel{\sim}{\Rightarrow}_{\mathbf{FLe}} C$.

The same holds with X and Y exchanged.

From relation \Rightarrow_{FLe} , define a new relation \Rightarrow_M between $(Fm(X) \cup Fm(Y))^*$ and $(Fm(X) \cup Fm(Y))$:

 $\Gamma \Rightarrow_M \alpha$ (Γ maeharaly implies α) iff for any $\Delta \in Fm^*(X)$ and $C \in Fm^{con}(Y)$ such that $(\Gamma \Rightarrow \alpha) \equiv (\Delta \Rightarrow C)$, there is $i \in Fm(X \cap Y)$ such that

$$\Delta \stackrel{\sim}{\Rightarrow}_{\mathbf{FLe}} i$$
 and $i \stackrel{\sim}{\Rightarrow}_{\mathbf{FLe}} C$.

The same holds with X and Y exchanged.

■ Maehara's Lemma: the new relation \Rightarrow_M is preserved under the rules of FLe (including cut).

Proof of IP: If $\phi \Rightarrow_{\mathbf{FLe}} \psi$ with $\phi \in Fm(X)$ and $\psi \in Fm(Y)$, SFP implies that it has a derivation only using formulas in $Fm(X) \cup Fm(Y)$.

- Proof of IP: If $\phi \Rightarrow_{FLe} \psi$ with $\phi \in Fm(X)$ and $\psi \in Fm(Y)$, SFP implies that it has a derivation only using formulas in $Fm(X) \cup Fm(Y)$.
- **9** By Maehara's Lemma, $\phi \Rightarrow_M \psi$.

- Proof of IP: If $\phi \Rightarrow_{\mathbf{FLe}} \psi$ with $\phi \in Fm(X)$ and $\psi \in Fm(Y)$, SFP implies that it has a derivation only using formulas in $Fm(X) \cup Fm(Y)$.
- **9** By Maehara's Lemma, $\phi \Rightarrow_M \psi$.
- There is $i \in Fm(X \cap Y)$ such that $\phi \Rightarrow_{FLe} i$ and $i \Rightarrow_{FLe} \psi$.

- Proof of IP: If $\phi \Rightarrow_{FLe} \psi$ with $\phi \in Fm(X)$ and $\psi \in Fm(Y)$, SFP implies that it has a derivation only using formulas in $Fm(X) \cup Fm(Y)$.
- **9** By Maehara's Lemma, $\phi \Rightarrow_M \psi$.
- There is $i \in Fm(X \cap Y)$ such that $\phi \Rightarrow_{FLe} i$ and $i \Rightarrow_{FLe} \psi$.
- To prove IP, cut-elimination is not needed. Subformula property is enough (because \Rightarrow_M is preserved by cut).

- Proof of IP: If $\phi \Rightarrow_{FLe} \psi$ with $\phi \in Fm(X)$ and $\psi \in Fm(Y)$, SFP implies that it has a derivation only using formulas in $Fm(X) \cup Fm(Y)$.
- **9** By Maehara's Lemma, $\phi \Rightarrow_M \psi$.
- There is $i \in Fm(X \cap Y)$ such that $\phi \Rightarrow_{FLe} i$ and $i \Rightarrow_{FLe} \psi$.
- To prove IP, cut-elimination is not needed. Subformula property is enough (because \Rightarrow_M is preserved by cut).
- Subformula property is much easier to prove than cut-elimination when using algebraic methods.

Simple Residuated Frame

•
$$Q^{con} = Q^* \times Q$$
. $(\epsilon, a) \in Q^{con}$ is written as a .

▲ A simple residuated frame W = (Q, □): □ is a relation between Q* and Q^{con} such that

$$xy \sqsubset (z,a) \Longleftrightarrow y \sqsubset (xz,a)$$

for any $x, y \in Q^*$ and $(z, a) \in Q^{con}$.

- (Q^*, Q^{con}, \Box) is a residuate frame in Nick's sense.

Simple Residuated Frame

- Example 1 (sequent calculus): $(Fm(X), \Rightarrow_{FLe})$ is a simple frame.
- Example 2 (the dual frame): If $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1)$ is a commutative residuated lattice, then $\mathbf{A}_+ = (A, \Box)$ is a simple residuated frame, where \Box is generated by

 $a_1,\ldots,a_n\sqsubset b\iff a_1\cdots a_n\leq_{\mathbf{A}} b.$

From Frames to Algebras

Let W = (Q, □) be a simple residuated frame. For any
 $X ⊆ Q^*$ and $U ⊆ Q^{con}$,

$$X^{\triangleright} = \{ u \in Q^{con} | \forall x \in X(x \sqsubset u) \}$$
$$U^{\triangleleft} = \{ x \in Q^* | \forall u \in U(x \sqsubset u) \}$$
From Frames to Algebras

• Let $\mathbf{W} = (Q, \Box)$ be a simple residuated frame. For any $X \subseteq Q^*$ and $U \subseteq Q^{con}$,

$$X^{\triangleright} = \{ u \in Q^{con} | \forall x \in X(x \sqsubset u) \}$$
$$U^{\triangleleft} = \{ x \in Q^* | \forall u \in U(x \sqsubset u) \}$$

• \mathbf{W}_{γ} denotes the set of all closed subsets $X = X^{\triangleright \triangleleft}$ of Q^* .

From Frames to Algebras

▲ Let $W = (Q, \Box)$ be a simple residuated frame. For any $X \subseteq Q^*$ and $U \subseteq Q^{con}$,

$$X^{\triangleright} = \{ u \in Q^{con} | \forall x \in X(x \sqsubset u) \}$$
$$U^{\triangleleft} = \{ x \in Q^* | \forall u \in U(x \sqsubset u) \}$$

- \mathbf{W}_{γ} denotes the set of all closed subsets $X = X^{\triangleright \lhd}$ of Q^* .
- Proposition: If W = (Q, □) is a simple frame, then
 R(W) = (W_γ, ∩, ∪_γ, •_γ, →, {ε}_γ) is a commutative residuated lattice.

From Frames to Algebras

▲ Let $W = (Q, \Box)$ be a simple residuated frame. For any $X \subseteq Q^*$ and $U \subseteq Q^{con}$,

$$X^{\triangleright} = \{ u \in Q^{con} | \forall x \in X(x \sqsubset u) \}$$
$$U^{\triangleleft} = \{ x \in Q^* | \forall u \in U(x \sqsubset u) \}$$

- \mathbf{W}_{γ} denotes the set of all closed subsets $X = X^{\triangleright \triangleleft}$ of Q^* .
- Proposition: If W = (Q, □) is a simple frame, then
 R(W) = (W_γ, ∩, ∪_γ, •_γ, →, {ε}_γ) is a commutative residuated lattice.
- The dual algebra W^+ of W: the least subalgebra of R(W) containing $\{a^{\triangleleft} | a \in Q\}$.

Let Q be a partial algebra in the language of residuated lattices.

- Let Q be a partial algebra in the language of residuated lattices.
- A simple Gentzen frame over Q is (Q, \Box) such that Q is the underlying set of Q, and \Box is preserved under the rules of **FLe**.

- Let Q be a partial algebra in the language of residuated lattices.
- A simple Gentzen frame over Q is (Q, \Box) such that Q is the underlying set of Q, and \Box is preserved under the rules of **FLe**.
- Fundamental Theorem 1 (BOJ, Galatos-Jipsen): If W is a simple Gentzen frame, then (·)[⊲] : Q → W⁺ is a homomorphism. Moreover, if □ is antisymmetric on Q × Q, then (·)[⊲] is an embedding.

- Let Q be a partial algebra in the language of residuated lattices.
- A simple Gentzen frame over Q is (Q, \Box) such that Q is the underlying set of Q, and \Box is preserved under the rules of **FLe**.
- Fundamental Theorem 1 (BOJ, Galatos-Jipsen): If W is a simple Gentzen frame, then (·)[⊲] : Q → W⁺ is a homomorphism. Moreover, if □ is antisymmetric on Q × Q, then (·)[⊲] is an embedding.
- Corollay: If A is a commutative residuated lattice, then $A \cong (A_+)^+.$

Gentzen Rules

$\overline{a \sqsubset a}$	$\frac{x \sqsubset a a \sqsubset u}{x \sqsubset u}$
$\frac{ax \sqsubseteq b}{x \sqsubset a \to b}$	$\frac{x \sqsubset a b \sqsubset u}{x(a \to b) \sqsubset u}$
$\frac{x \sqsubset a x \sqsubset b}{x \sqsubset a \land b}$	$\frac{a_i \sqsubset u}{(a_1 \land a_2) \sqsubset u}$
$\frac{x \sqsubset a_i}{x \sqsubset a_1 \lor a_2}$	$\frac{a \sqsubset u b \sqsubset u}{a \lor b \sqsubset u}$

Instead of working on the concrete

 $(Fm(X \cap Y), \Rightarrow_{\mathbf{FLe}}) \quad (Fm(X), \Rightarrow_{\mathbf{FLe}}) \quad (Fm(Y), \Rightarrow_{\mathbf{FLe}}),$

we consider in general

$$\mathbf{W}_A = (A, \Box_A) \quad \mathbf{W}_B = (B, \Box_B) \quad \mathbf{W}_C = (C, \Box_C)$$

such that $A \subseteq B \cap C$ and

$$x \sqsubset_A u \iff x \sqsubset_B u \iff x \sqsubset_C u$$

for any $x \in A^*$ and $u \in A^{con}$.

▶ Define $\mathbf{W}_M = (B \cup C, \sqsubset_M)$ where \sqsubset_M is generated by

Define $\mathbf{W}_M = (B \cup C, \Box_M)$ where \Box_M is generated by

 $x \sqsubset_M a$ iff for any $y \in B^*$ and $u \in C^{con}$ such that yu = (x, a), there is $i \in A$ such that

 $y \sqsubset_B i$ and $i \sqsubset_C u$.

The same holds with B and C exchanged.

Define $\mathbf{W}_M = (B \cup C, \Box_M)$ where \Box_M is generated by

 $x \sqsubset_M a$ iff for any $y \in B^*$ and $u \in C^{con}$ such that yu = (x, a), there is $i \in A$ such that

 $y \sqsubset_B i$ and $i \sqsubset_C u$.

The same holds with B and C exchanged.

Maehara's Lemma (Frame Version): If W_B and W_C are simple Gentzen frames, so is W_M .

Define $\mathbf{W}_M = (B \cup C, \Box_M)$ where \Box_M is generated by

 $x \sqsubset_M a$ iff for any $y \in B^*$ and $u \in C^{con}$ such that yu = (x, a), there is $i \in A$ such that

 $y \sqsubset_B i$ and $i \sqsubset_C u$.

The same holds with B and C exchanged.

- Maehara's Lemma (Frame Version): If W_B and W_C are simple Gentzen frames, so is W_M .
- **Lemma**: If \Box_B and \Box_C are antisymmetric, so is \Box_M

Define $\mathbf{W}_M = (B \cup C, \Box_M)$ where \Box_M is generated by

 $x \sqsubset_M a$ iff for any $y \in B^*$ and $u \in C^{con}$ such that yu = (x, a), there is $i \in A$ such that

 $y \sqsubset_B i$ and $i \sqsubset_C u$.

The same holds with B and C exchanged.

- Maehara's Lemma (Frame Version): If W_B and W_C are simple Gentzen frames, so is W_M .
- **J** Lemma: If \Box_B and \Box_C are antisymmetric, so is \Box_M
- Corollary: $(·)^{\triangleleft}$: B ∪ C → W⁺_M is a homomorphism. Moreover, if \sqsubset_B and \sqsubset_C are antisymmetric, $(·)^{\triangleleft}$ is an embedding.

• Take $\mathbf{W}_A = (Fm(X \cap Y), \Rightarrow_{\mathbf{FLe}}) \mathbf{W}_B = (Fm(X), \Rightarrow_{\mathbf{FLe}})$ and $\mathbf{W}_C = (Fm(Y), \Rightarrow_{\mathbf{FLe}}).$

- Take $\mathbf{W}_A = (Fm(X \cap Y), \Rightarrow_{\mathbf{FLe}}) \mathbf{W}_B = (Fm(X), \Rightarrow_{\mathbf{FLe}})$ and $\mathbf{W}_C = (Fm(Y), \Rightarrow_{\mathbf{FLe}}).$
- \mathbf{W}_{M}^{+} is a commutative residuated lattice and $(\cdot)^{\triangleleft}: Fm(X) \cup Fm(Y) \longrightarrow \mathbf{W}_{M}^{+}$ is a homomorphism.

- Take $\mathbf{W}_A = (Fm(X \cap Y), \Rightarrow_{\mathbf{FLe}}) \mathbf{W}_B = (Fm(X), \Rightarrow_{\mathbf{FLe}})$ and $\mathbf{W}_C = (Fm(Y), \Rightarrow_{\mathbf{FLe}}).$
- \mathbf{W}_{M}^{+} is a commutative residuated lattice and $(\cdot)^{\triangleleft}: Fm(X) \cup Fm(Y) \longrightarrow \mathbf{W}_{M}^{+}$ is a homomorphism.
- Let $\phi \in Fm(X)$ and $\psi \in Fm(Y)$. If $\phi \Rightarrow_{\mathbf{FLe}} \psi$, then

$$\mathbf{W}_{M}^{+} \models \phi \Rightarrow \psi$$
$$\mathbf{W}_{M}^{+}, (\cdot)^{\triangleleft} \models \phi \Rightarrow \psi$$
$$\phi^{\triangleleft} \subset \psi^{\triangleleft}$$
$$\phi \in \psi^{\triangleleft}$$
$$\phi \subseteq \psi^{\triangleleft}$$

- Take $\mathbf{W}_A = (Fm(X \cap Y), \Rightarrow_{\mathbf{FLe}}) \mathbf{W}_B = (Fm(X), \Rightarrow_{\mathbf{FLe}})$ and $\mathbf{W}_C = (Fm(Y), \Rightarrow_{\mathbf{FLe}}).$
- \mathbf{W}_{M}^{+} is a commutative residuated lattice and $(\cdot)^{\triangleleft}: Fm(X) \cup Fm(Y) \longrightarrow \mathbf{W}_{M}^{+}$ is a homomorphism.
- Let $\phi \in Fm(X)$ and $\psi \in Fm(Y)$. If $\phi \Rightarrow_{\mathbf{FLe}} \psi$, then

$$\mathbf{W}_{M}^{+} \models \phi \Rightarrow \psi$$
$$\mathbf{W}_{M}^{+}, (\cdot)^{\triangleleft} \models \phi \Rightarrow \psi$$
$$\phi^{\triangleleft} \subset \psi^{\triangleleft}$$
$$\phi \in \psi^{\triangleleft}$$
$$\phi \subseteq \psi^{\triangleleft}$$

There is $i \in Fm(X \cap Y)$ such that $\phi \Rightarrow_{\mathbf{FLe}} i$ and $i \Rightarrow_{\mathbf{FLe}} \psi$.

Direct Proof of Amalgamation

Let A, B and C be commutative residuated lattices such that
 A is a subalgebra of both B and C.

Direct Proof of Amalgamation

- Let A, B and C be commutative residuated lattices such that
 A is a subalgebra of both B and C.
- Take $\mathbf{W}_A = \mathbf{A}_+$, $\mathbf{W}_B = \mathbf{B}_+$ and $\mathbf{W}_C = \mathbf{C}_+$. Then \mathbf{W}_M^+ is a commutative residuated lattice and $(\cdot)^{\triangleleft} : \mathbf{B} \cup \mathbf{C} \longrightarrow \mathbf{W}_M^+$ is an embedding (since \mathbf{W}_B and \mathbf{W}_C are antisymmetric).

Direct Proof of Amalgamation

- Let A, B and C be commutative residuated lattices such that
 A is a subalgebra of both B and C.
- Take $\mathbf{W}_A = \mathbf{A}_+$, $\mathbf{W}_B = \mathbf{B}_+$ and $\mathbf{W}_C = \mathbf{C}_+$. Then \mathbf{W}_M^+ is a commutative residuated lattice and $(\cdot)^{\triangleleft} : \mathbf{B} \cup \mathbf{C} \longrightarrow \mathbf{W}_M^+$ is an embedding (since \mathbf{W}_B and \mathbf{W}_C are antisymmetric).
- We thus have two embeddings

$$(\cdot)_B^{\triangleleft} : \mathbf{B} \longrightarrow \mathbf{W}_M^+$$
$$(\cdot)_C^{\triangleleft} : \mathbf{C} \longrightarrow \mathbf{W}_M^+$$

and cleary $a_B^{\triangleleft} = a_C^{\triangleleft}$ for any $a \in A$.

Generalizing Amalgamation

- Square diagramatic properties: Amalgamation, Congruence
 Extension, Transferrable Injection ...
- One can uniformly prove them for the variety of commutative residuated lattices.
- Let A, B and C be commutative residuated lattices and $f : \mathbf{A} \longrightarrow \mathbf{B}$ and $g : \mathbf{A} \longrightarrow \mathbf{C}$ homomorphisms. ($\mathbf{B} \cap \mathbf{C} = \emptyset$)

Generalizing Amalgamation

From the simple Genzen frames \mathbf{B}_+ and \mathbf{C}_+ , define $\mathbf{W}_M = (B \cup C, \sqsubset_M)$ by

> $x \sqsubset_M a$ iff for $y \in B^*$ and $u \in C^{con}$ such that yu = (x, a), there is $i \in A$ such that

$$y \sqsubset_{\mathbf{B}} f(i)$$
 and $g(i) \sqsubset_{\mathbf{C}} u$.

The same holds with B and C exchanged.

- Generalized Maehara's Lemma: W_M is a simple Genzen frame.
- Corollary: $(\cdot)^{\triangleleft} : \mathbf{B} \cup \mathbf{C} \longrightarrow \mathbf{W}_M^+$ is a homomorphism.

Generalizing Amalgamation

Hence we have homomorphisms

$$h: \mathbf{B} \longrightarrow \mathbf{W}_{M}^{+}$$
$$k: \mathbf{C} \longrightarrow \mathbf{W}_{M}^{+}$$

Moreover, $f(a)^{\triangleleft} = g(a)^{\triangleleft}$ for any $a \in A$, i.e., $h \circ f = k \circ g$.

Lemma:

- 1. If f is injective, so is k.
- 2. If f is surjective, so is k.
- A uniform proof of TI, CEP and AP for commutative residuated lattices.
- Proposition: In general, $g(ker f) = (ker k) \cap g(A)$.

Disjunction Property

- Disjunction Property: If $\Rightarrow_{FLe} \phi \lor \psi$, then either $\Rightarrow_{FLe} \phi$ or $\Rightarrow_{FLe} \psi$.
- Proof:
 - Step 1: Prove cut-elimination
 - Step 2: Show Disjunction Lemma: If $\Rightarrow \alpha \lor \beta$ is cut-free provable, either $\Rightarrow \alpha$ or $\Rightarrow \beta$ is cut-free provable.

Disjunction Lemma Rephrased

- We need to consider meta-disjunction on r.h.s. So consider pairs of formulas $Fm \times Fm$. Write $\alpha \oplus \beta$ for $(\alpha, \beta) \in Fm \times Fm$.
- From relation ⇒_{FLe}, define a new relation ⇒_D between Fm^* and (L × L).
 - $\Gamma \Rightarrow_D \alpha \oplus \beta$ iff the following hold:

If $\Gamma = \emptyset$ either $\Rightarrow_{FLe} \alpha$ or $\Rightarrow_{FLe} \beta$. Otherwise $\Gamma \Rightarrow_{FLe} \alpha \lor \beta$.

- Disjunction Lemma: \Rightarrow_D is preserved by the rules of FLe other than cut.

Disjunction Lemma Rephrased

A less-simple frame (Q, Q', □): □ is a relation between Q* and (Q, Q')^{con} = Q* × Q' such that

$$xy \sqsubset (z,a) \Longleftrightarrow y \sqsubset (xz,a).$$

It is simple in case Q = Q'.

- Given a less-simple frame W, the completion R(W) is defined as before. It is a commutative residuated lattice.
- Let Q be a partial algebra in the language of residuated lattices. A less-simple cut-free Gentzen frame over Q is (Q, Q', □) such that Q is the underlying set of Q, Q can be embedded into Q' and □ is preserved under the rules of FLe other than cut.

Fundamental Theorem 2 (BJO, GJ): If W is a simple Gentzen frame over Q, then (·)[⊲] : Q → R(W) is a quasi homomorphism: for any a, b ∈ Q, * ∈ {∧, ∨, ·, →}, and any a ∈ X ⊂ a[⊲], b ∈ Y ⊂ b[⊲],

$$a \star b \in X \star_{R(W)} Y \subseteq (a \star b)^{\triangleleft}.$$

Moreover, if \sqsubset is antisymmetric on $Q \times Q$, then $(\cdot)^{\triangleleft}$ is injective (quasi-embedding).

Disjunction Lemma Revisited

Let W be a simple Genzen fram over Q. The quasi-dual algebra W⁺⁺ of W is the subalgebra of R(W) with the underlying set

 $\{X|X \text{ is closed and } a \in X \subseteq a^{\triangleleft} \text{ for some } a \in Q\}.$

If \Box is antisymmetric, the quasi-embedding $(\cdot)^{\triangleleft}$ can be reversed. Namely, there is a surjiective homomorphism $f: \mathbf{W}^{++} \longrightarrow \mathbf{Q}$ given by $f(\mathbf{X}) = a$ if $a \in \mathbf{X} \subseteq a^{\triangleleft}$.

Disjunction Lemma Revisited

- Given a simple Gentzen frame W = (Q, □) over a commutative residuated lattice Q, build a less-simple frame W_D = (Q, Q × Q, □_D) where □_D is generated by x □_D a ⊕ b ⇔
 If x = ε either ε □ a or ε □ b. Otherwise x □ a ∨ b.
- Disjunction Lemma (Frame Version): W_D is a cut-free Genzen frame.
- Corollary: $(\cdot)^{\triangleleft} : \mathbf{Q} \longrightarrow \mathbf{W}_D^{++}$ is a quasi-homomorphism.
- Lemma: Let X, Y ∈ W⁺⁺_D such that a ∈ X ⊆ a ⊲ and
 b ∈ Y ⊆ b ⊲. If $1 ≤ X ∨_{W^{++}_D} Y$, then $ε \sqsubset a$ or $ε \sqsubset b$.
- Moreover, if \sqsubset is antisymmetric, there is a surjective homomorphism $f: W_D^{++} \longrightarrow Q$. If $1 \le X \lor_{W_D^{++}} Y$, then $\epsilon \sqsubset f(X)$ or $\epsilon \sqsubset f(Y)$.

Algebraic Proof of Disjunction Property

• From
$$(Fm, \Rightarrow_{\mathbf{FLe}})$$
 construct \mathbf{W}_D .

- If $\Rightarrow_{FLe} \phi \lor \psi$, then \mathbf{W}_D^{++} , $v \models \phi \lor \psi$ with valuation v given by $v(p) = p^{\triangleleft}$.
- Since $\phi \in v(\phi) \subseteq \phi^{\triangleleft}$ and $\psi \in v(\phi) \subseteq \psi^{\triangleleft}$, we have $\Rightarrow_{FLe} \phi$ or $\Rightarrow_{FLe} \psi$.

Algebraic counterpart of DP

- Theorem: For any substructural logic L, the following are equivalent.
 - 1. L satisfies the Disjunction Property
 - 2. For any $\mathbf{A} \in \mathcal{V}(\mathbf{L})$, there is $\mathbf{D} \in \mathcal{V}(\mathbf{L})$ and a surjective homomorphism $f : \mathbf{D} \longrightarrow \mathbf{A}$ such that $1 \leq_{\mathbf{D}} a \lor b$ implies $1 \leq_{\mathbf{A}} f(a)$ or $1 \leq_{\mathbf{A}} f(b)$.
- Proof of condition 2 for FLe: Just take A_+ as W and construct W_D .

In proof theory, one typically proves some property \mathcal{P} for all provable sequents.

- In proof theory, one typically proves some property \mathcal{P} for all provable sequents.
- Instead, one can define a new relation \Rightarrow_P based on \mathcal{P} and show that \Rightarrow_P is preserved by inference rules.

- In proof theory, one typically proves some property \mathcal{P} for all provable sequents.
- Instead, one can define a new relation \Rightarrow_P based on \mathcal{P} and show that \Rightarrow_P is preserved by inference rules.
- Residuated frames are flexible enough to capture this situation. It is useful to extract the common part between an algebraic proof of *P* and a direct proof of the corresponding algebraic property.

- In proof theory, one typically proves some property \mathcal{P} for all provable sequents.
- Instead, one can define a new relation \Rightarrow_P based on \mathcal{P} and show that \Rightarrow_P is preserved by inference rules.
- Residuated frames are flexible enough to capture this situation. It is useful to extract the common part between an algebraic proof of *P* and a direct proof of the corresponding algebraic property.
- Future Work
Conclusion and Future Work

- In proof theory, one typically proves some property \mathcal{P} for all provable sequents.
- Instead, one can define a new relation \Rightarrow_P based on \mathcal{P} and show that \Rightarrow_P is preserved by inference rules.
- Residuated frames are flexible enough to capture this situation. It is useful to extract the common part between an algebraic proof of *P* and a direct proof of the corresponding algebraic property.
- Future Work
 - (Maximova's Variable Separation Principle)

Conclusion and Future Work

- In proof theory, one typically proves some property \mathcal{P} for all provable sequents.
- Instead, one can define a new relation \Rightarrow_P based on \mathcal{P} and show that \Rightarrow_P is preserved by inference rules.
- Residuated frames are flexible enough to capture this situation. It is useful to extract the common part between an algebraic proof of *P* and a direct proof of the corresponding algebraic property.
- Future Work
 - (Maximova's Variable Separation Principle)
 - Application to other logics.

Conclusion and Future Work

- In proof theory, one typically proves some property \mathcal{P} for all provable sequents.
- Instead, one can define a new relation \Rightarrow_P based on \mathcal{P} and show that \Rightarrow_P is preserved by inference rules.
- Residuated frames are flexible enough to capture this situation. It is useful to extract the common part between an algebraic proof of *P* and a direct proof of the corresponding algebraic property.
- Future Work
 - (Maximova's Variable Separation Principle)
 - Application to other logics.
 - General theory to translate proof theoretic arguments to arguments on frames.