A Direct Proof of the Amalgamation Property for Commutative Residuated Lattices

Kazushige Terui National Institute of Informatics

ASubL3, Crakow 06/11/06 - p.1/9

Amalgamation Property

V has the amalgamation property if for any $A, B, C \in V$ with embeddings

$$f_1: \mathbf{A} \longrightarrow \mathbf{B} \qquad f_2: \mathbf{A} \longrightarrow \mathbf{C},$$

there are $\mathbf{D} \in \mathcal{V}$ and embeddings

$$g_1: \mathbf{B} \longrightarrow \mathbf{D} \qquad g_2: \mathbf{C} \longrightarrow \mathbf{D}$$

such that $g_1 \circ f_1 = g_2 \circ f_2$.

- For BCK-algebras (Wroński 1984)
- For Commutative integral residuated lattices (Kowalski 2003)
- For Commutative (contractive) residuated lattices (Takamura 2004)

To prove AP, one shows:

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation
 - 4. Local Deduction Theorem

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation
 - 4. Local Deduction Theorem
 - 5. Deductive Interpolation

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation
 - 4. Local Deduction Theorem
 - 5. Deductive Interpolation
 - 6. Equational Interpolation

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation
 - 4. Local Deduction Theorem
 - 5. Deductive Interpolation
 - 6. Equational Interpolation
 - 7. Wroński's Construction

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation
 - 4. Local Deduction Theorem
 - 5. Deductive Interpolation
 - 6. Equational Interpolation
 - 7. Wroński's Construction
 - 8. Amalgamation Property

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation
 - 4. Local Deduction Theorem
 - 5. Deductive Interpolation
 - 6. Equational Interpolation
 - 7. Wroński's Construction
 - 8. Amalgamation Property
- Advantage: relationship between different concepts

- To prove AP, one shows:
 - 1. Cut-Elimination Theorem
 - 2. Maehara's Lemma
 - 3. Craig's Interpolation
 - 4. Local Deduction Theorem
 - 5. Deductive Interpolation
 - 6. Equational Interpolation
 - 7. Wroński's Construction
 - 8. Amalgamation Property
- Advantage: relationship between different concepts
- Disadvantages: Too long. Pure algebraists wouldn't like it. Does not work for noncommutative cases.

• To give a direct proof of the AP for CRL.

• To give a direct proof of the AP for CRL.

• APs for CIRL, CCRL, etc. follow immediately.

- **•** To give a direct proof of the AP for CRL.
 - APs for CIRL, CCRL, etc. follow immediately.
 - No Cut-Elimination! No Local Deduction! (No Proof Theory!)

- **•** To give a direct proof of the AP for CRL.
 - APs for CIRL, CCRL, etc. follow immediately.
 - No Cut-Elimination! No Local Deduction! (No Proof Theory!)
 - Wroński's construction replaced by phase semantic completion.

- **•** To give a direct proof of the AP for CRL.
 - APs for CIRL, CCRL, etc. follow immediately.
 - No Cut-Elimination! No Local Deduction! (No Proof Theory!)
 - Wroński's construction replaced by phase semantic completion.
 - Maehara's lemma turned into an algebraic argument.

- **•** To give a direct proof of the AP for CRL.
 - APs for CIRL, CCRL, etc. follow immediately.
 - No Cut-Elimination! No Local Deduction! (No Proof Theory!)
 - Wroński's construction replaced by phase semantic completion.
 - Maehara's lemma turned into an algebraic argument.
- Maehara's Lemma: If $\Gamma \Rightarrow \phi$ is provable (without cut), then for any partition $\Gamma_1, \Gamma_2 \equiv \Gamma$, there is an interpolant *i*:

$$\Gamma_1 \Rightarrow i \qquad i, \Gamma_2 \Rightarrow \phi$$

The monoid and condition set []

- Consider $((B \cup C)^*, \circ, \epsilon)$, the free commutative monoid generated by $B \cup C$.
- Given d ∈ B ∪ C, define the interpolating set [[d]] ⊆ (B ∪ C)*
 by: t ∈ [[d]] holds ⇔

The monoid and condition set

- Consider $((B \cup C)^*, \circ, \epsilon)$, the free commutative monoid generated by $B \cup C$.
- Given d ∈ B ∪ C, define the interpolating set [[d]] ⊆ (B ∪ C)*
 by: t ∈ [[d]] holds ⇔
 - 1. if $d \in B$, then for any partition $t_1 \circ t_2 = t$ with $t_1 \in C^*$ and $t_2 \in B^*$, there is $i \in A$ such that

$$t_1 \leq_{\mathbf{C}} i \qquad i \cdot t_2 \leq_{\mathbf{B}} d.$$

2. if $d \in C$, then for any partition $t_1 \circ t_2 = t$ with $t_1 \in B^*$ and $t_2 \in C^*$, there is $i \in A$ such that

$$t_1 \leq_{\mathbf{B}} i \qquad i \cdot t_2 \leq_{\mathbf{C}} d.$$

Phase semantic completion

- $X \subseteq (B \cup C)^*$ is closed if $X = \bigcap_{i \in I} (\{t_i\} \to \llbracket d_i \rrbracket).$
- Cl(X) = the least closed set containing X.
- $\mathbf{D} = \langle Closedsets, \cap, \cup_{Cl}, \bullet_{Cl}, \rightarrow, Cl(\{\epsilon\}) \rangle$, where
- Lemma: D is a commutative residuated lattice.

[] is an embedding

We have

$\begin{bmatrix} & \\ \end{bmatrix} & : & \mathbf{B} \longrightarrow \mathbf{D} \\ \\ \begin{bmatrix} & \\ \end{bmatrix} & : & \mathbf{C} \longrightarrow \mathbf{D} \end{bmatrix}$

• The $g_1 \circ f_1 = g_2 \circ f_2$ requirement trivially holds.

[] is an embedding

We have

 $\begin{bmatrix} & \\ \end{bmatrix} & : & \mathbf{B} \longrightarrow \mathbf{D} \\ \\ \begin{bmatrix} & \\ \end{bmatrix} & : & \mathbf{C} \longrightarrow \mathbf{D} \end{bmatrix}$

- The $g_1 \circ f_1 = g_2 \circ f_2$ requirement trivially holds.
- **•** Lemma: $[\![d]\!] = Cl(\{d\})$
- Corollary: [] is injective.
- Lemma: If $d, e \in B$,
 - **1.** $[\![d \cdot e]\!] = [\![d]\!] \bullet_{Cl} [\![e]\!].$
 - **2.** $[\![d \to e]\!] = [\![d]\!] \to [\![e]\!].$
 - 3. •••

Proof Idea

- Just Maehara's Lemma!
- Proof of $\llbracket d \rrbracket \bullet_{Cl} \llbracket e \rrbracket \subseteq \llbracket d \cdot e \rrbracket$:
 - Let $t \in \llbracket d \rrbracket$ and $u \in \llbracket e \rrbracket$. We show:

$$\frac{t \in \llbracket d \rrbracket \quad u \in \llbracket e \rrbracket}{t \circ u \in \llbracket d \cdot e \rrbracket}$$

Proof Idea

Just Maehara's Lemma!

- Proof of $\llbracket d \rrbracket \bullet_{Cl} \llbracket e \rrbracket \subseteq \llbracket d \cdot e \rrbracket$:
 - Let $t \in \llbracket d \rrbracket$ and $u \in \llbracket e \rrbracket$. We show:

$$\frac{t \in \llbracket d \rrbracket \quad u \in \llbracket e \rrbracket}{t \circ u \in \llbracket d \cdot e \rrbracket}$$

- - Let $\llbracket d \rrbracket \bullet \llbracket e \rrbracket \subseteq \{t\} \to \llbracket f \rrbracket$.
 - Since $d \in \llbracket d \rrbracket$ and $e \in \llbracket e \rrbracket$, we have $d \circ e \circ t \in \llbracket t \rrbracket$. We show:

$$\frac{d \circ e \circ t \in \llbracket t \rrbracket}{(d \cdot e) \circ t \in \llbracket f \rrbracket}$$

• So
$$d \cdot e \in \{t\} \rightarrow \llbracket f \rrbracket$$
.

Integral and contractive cases

- Integrality and contractivity are preserved by the operation
 (● ∪ ●)* and phase semantic completion.
 - (Cf. Latter is a necessary and sufficient condition for cut-elimination for FL+ simple structural rules; Terui 2006, Ciabattoni-T 2006)
- \blacksquare I.e., If B and C are integral and/or contractive, so is D.
- **•** Theorem: Any of CRL, CIRL, CCRL satisfies the (strong) AP.

Integral and contractive cases

- Integrality and contractivity are preserved by the operation
 (● ∪ ●)* and phase semantic completion.
 - (Cf. Latter is a necessary and sufficient condition for cut-elimination for FL+ simple structural rules; Terui 2006, Ciabattoni-T 2006)
- \blacksquare I.e., If B and C are integral and/or contractive, so is D.
- **•** Theorem: Any of CRL, CIRL, CCRL satisfies the (strong) AP.

Conclusion: Phase semantic construction provides a simple and general methodology. It could be used to show AP for other algebras, and to show other properties.