
On the Computational Complexity of Cut-Elimination
in Linear Logic

Harry G. Mairson1 and Kazushige Terui2

1 Computer Science Department, Brandeis University,
Waltham, Massachusetts 02454, USA
mairson@cs.brandeis.edu

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
101-8430 Tokyo, Japan
terui@nii.ac.jp

Abstract. Given two proofs in a logical system with a confluent cut-elimination
procedure, the cut-elimination problem (CEP) is to decide whether these proofs
reduce to the same normal form. This decision problem has been shown to be
PTIME-complete for Multiplicative Linear Logic (Mairson 2003). The latter result
depends upon a restricted simulation of weakening and contraction for boolean
values in MLL; in this paper, we analyze how and when this technique can
be generalized to other MLL formulas, and then consider CEP for other sub-
systems of Linear Logic. We also show that while additives play the role of
nondeterminism in cut-elimination, they are not needed to express determinis-
tic PTIME computation. As a consequence, affine features are irrelevant to ex-
pressing PTIME computation. In particular, Multiplicative Light Linear Logic
(MLLL) and Multiplicative Soft Linear Logic (MSLL) capture PTIME even with-
out additives nor unrestricted weakening. We establish hierarchical results on the
cut-elimination problem for MLL(PTIME-complete), MALL(coNP-complete),
MSLL(EXPTIME-complete), and for MLLL
(2EXPTIME-complete).

1 Introduction

Cut-elimination is naturally seen as a function from proofs to their normal form, and
we can derive from it an equally natural decision problem: if L is a logical system
with a confluent cut-elimination procedure, and we are given two proofs in L, do they
reduce to the same normal form? Call this the cut elimination problem (CEP). When
L has reasonable representations of boolean values as proofs, an even simpler decision
problem is to ask: given a proof, does it reduce to the representation for “true”?

Through the Curry-Howard correspondence, we know that proofs in linear logics
represent programs, typically in a functional programming langauge with highly spec-
ified forms of copying, where cut-elimination serves as an interpreter: normalization is
evaluation. The cut-elimination problem is then a fundamental question about program
equivalence, and how hard it is to decide. Moreover, the correspondence facilitates our
identification of particular logics with associated complexity classes, where our goal
is to link the expressive power of proofs with a suitably powerful interpreter that can
“run” representations of programs in that complexity class.

The cut-elimination problem is known to be non-elementary for simply typed λ -
calculus [Sta79], and hence for linear logic. Low order fragments of simply typed λ -
calculus are investigated in [Sch01]. In this paper, we consider the decision problem
for various weak subsystems of linear logic that have no exponentials, or have very
weak forms of them (i.e., the so-called “light” linear logics). Such an investigation
suggests another way to characterize the complexity of linear logics: not only by the
complexity of theorem proving (proof search)—see, for example, [Lin95]—but also by
the complexity of theorem simplification (proof normalization).

Even in intuitionistic multiplicative linear logic (IMLL), which has no exponen-
tials, it is possible to simulate weakening and contraction for a restricted set of formulas,
including a formula whose proofs code boolean values. As a consequence, we derive
PTIME-completeness for CEP in IMLL; see Section 2. This result contradicts folkloric
intuitions that MLL proofnets could be normalized in logarithmic space—that is, with
only a finite number of pointers into the proofnet, presumably following paths in the
style of the geometry of interaction. Similar to the results for IMLL, in Section 3 we
derive coNP-completeness results for IMALL, where we also have additives.

An alternative way to represent a complexity class by some logic is to consider the
functions realizable (say, by a Turing machine) in the class, and show how each can
be coded as a fixed proof (program) in the logic. For example, Light Linear Logic has
been shown to so represent PTIME computations [Gir98], and the use of additives in that
proof was replaced by unrestricted weakening in Light Affine Logic [Asp98,AR02]. We
improve these results to show that such weakening is also unnecessary: Multiplicative
Light Linear Logic is sufficient to capture PTIME (see Section 4), where we also prove
that deciding CEP is complete for doubly-exponential time. Finally, in Section 5 we
show similar characterizations of exponential time in Multiplicative Soft Linear Logic
[Laf01].

2 Expressivity of Multiplicatives

2.1 Weakening in MLL

We restrict our attention to the intuitionistic (−◦,∀) fragment IMLL of MLL, although
all the results in this section carry over to the full classical MLL with no difficulty.
Moreover, we omit type annotation from the proof syntax, and identify proofs of IMLL
with type-free terms of linear λ -calculus.

A term (proof) of IMLL is either a variable x, or an application (tu) where t and
u are terms such that FV (t)∩FV (u) = /0, or an abstraction (λ x.t) where t is a term
and x ∈ FV (t). Terms are considered up to α -equivalence, and the variable convention
is adopted. The substitution operation t[u/x] and the β reduction relation are defined
as usual. The size |t| of a term t is the number of nodes in its syntax tree. The type
assignment rules are as follows3:

3 Note that any term of linear λ -calculus has a propositional type [Hin89]; the role of second
order quantifers is not to increase the number of typable terms, but to assign a uniform type to
structurally related terms.

x :A � x :A

Γ � u :A x :A,∆ � t :C
Γ ,∆ � t[u/x] :C

x :A,Γ � t :B
Γ � λ x.t :A−◦B

Γ � u :A x :B,∆ � t :C
Γ ,y :A−◦B,∆ � t[yu/x] :C

Γ � t :A
Γ � t :∀α .A

α �∈ FV (Γ)
x :A[B/α],Γ � t :C
x :∀α .A,Γ � t :C

Here, Γ ,∆ . . . stand for finite multisets of declarations x :A and FV (Γ) denotes the set
of all free type variables in Γ . We say that a term t is of type A (or t is a proof of A) if
� t :A is derivable by the above rules. A type A is inhabitied if there is a term of type A.

Unit 1 and tensor product ⊗ are introduced by means of the second order definitions:

1 ≡ ∀α .α −◦α A⊗B ≡ ∀α .(A−◦B−◦α)−◦α
I ≡ λ x.x t ⊗u ≡ λ x.xtu

let t be I in u ≡ tu let t be x⊗ y in u ≡ t(λ xy.u).

Tensor product is naturally extended to n-ary ones: t 1 ⊗ . . .⊗ tn and let u be x1 ⊗·· ·⊗
xn in t. The expression λ x1 ⊗·· ·⊗ xn.t stands for λ z.let z be x1 ⊗·· ·⊗ xn in t. We also
use shorthand notations such as id ≡ λ x.x, t ◦u ≡ λ x.t(u(x)), An ≡ A⊗·· ·⊗A︸ ︷︷ ︸

n times

, A(n)−◦

B ≡ A−◦·· ·A−◦︸ ︷︷ ︸
n times

B.

Our first observation is that a version of weakening rule can be constructed for a
certain restricted class of IMLL formulas.

Definition 1 (Π1, Σ1, eΠ1, eΣ1). A type A is Π1 (Σ1) if it is built from type variables
by −◦, 1, ⊗ (viewed as primitives) and positive (negative) occurrences of ∀. An eΠ 1

(eΣ1) type is like a Π1 (Σ1) type, but it may additionally contain negative (positive)
occurrences of inhabited ∀-types.

The above definition of Π 1 and eΠ1 involves 1 and ⊗ as primitives, but we may
ignore them in practice, because negative occurrences of ⊗ and 1 can be removed by
isomorphisms ((A⊗B)−◦C) ◦−◦ (A−◦B−◦C) and (1−◦C) ◦−◦ C, while positive
occurrences can be replaced with their Π 1 definitions.

Finite data types are naturally represented by closed inhabited Π 1 types. A typical
example is the boolean type: B ≡ ∀α .α −◦α −◦α ⊗ α . Meanwhile, functional types
over those finite data types, such as (B−◦B)−◦B, are all included in the class eΠ 1.

Theorem 1 (eΠ1-Weakening). For any closed eΠ1 type A, there is a term wA of type
A−◦1.

Proof. Without loss of generality, we may assume that A does not contain ⊗ and 1. Let
B[1] be the type B with all free variables replaced with 1. By simultaneous induction,
we prove: (i) for any eΠ1 type B, B[1] � 1 is provable; and (ii) for any eΣ1 type B, � B[1]
is provable. When B is a variable, the claims are obvious. When B is C−◦D, for (i) we
derive (C −◦D)[1] � 1 from � C[1] and D[1] � 1, and for (ii) we derive � (C −◦D)[1]
from C[1] � 1 and � D[1]. Let B be ∀α .C. If B is eΠ 1, we derive (∀α .C)[1] � 1 from
C[1] � 1. If B is eΣ1, � B is provable by definition, and so is � B[1].

2.2 Encoding boolean circuits

Let A be an arbitrary type, and B be a type that supports weakening in the sense we
have just described; we can then define a projection function fst B : A⊗B−◦A, given
by fstB ≡ λ x.let x be y⊗ z in (let wB(z) be I in y). By using this coding, we can then
specify boolean values, weakening, and operations (including duplication) as:

true ≡ λ xy.x⊗ y :B
false ≡ λ xy.y⊗ x :B
wB ≡ λ z.let zII be x⊗ y in (let y be I in x) :B−◦1
not ≡ λ Pxy.Pyx :B−◦B
or ≡ λ PQ.fstB(P trueQ) :B−◦B−◦B
cntr ≡ λ P.fstB⊗B(P(true⊗ true)(false⊗ false)) :B−◦B⊗B

Recall that a language X ⊆{0,1}∗ is logspace reducible to Y ⊆{0,1}∗ if there exists
a logspace function f : {0,1}∗ −→ {0,1}∗ such that w ∈ X iff f (w) ∈ Y . Language X
is PTIME-complete if X ∈ PTIME and each language L ∈ PTIME is logspace reducible
to X ; a decision problem is said to be PTIME-complete when the language defined by
that problem is PTIME-complete. The canonical PTIME-complete decision problem is
the following:

Circuit Value Problem: Given a boolean circuit C with n inputs and 1 output, and
truth values x = x1, . . . ,xn, is x accepted by C? [Lad75]

Using the above coding of boolean operations, the problem is logspace reducible to
CEP for IMLL:

Theorem 2 (PTIME-completeness of IMLL, [Mai03]). There is a logspace algorithm
which transforms a boolean circuit C with n inputs and m outputs into a term tC of type
Bn −◦Bm, where the size of tC is O(|C|). As a consequence, the cut-elimination problem
for IMLL is PTIME-complete.

Since binary words of length n can be represented by B n, any finite function f : {0,1}n −→
{0,1}m can be represented by a term t f :Bn −◦Bm. In this sense, MLL captures all the
finite functions.

2.3 Contraction in MLL

One of the key observations in proving Theorem 2 is that contraction is available for
B. We now generalize this observation, and show that the same holds for all closed
inhabited Π1 types (i.e. finite data types). First we show that conditional is available in
IMLL:

Lemma 1 (Conditional). Let t1 and t2 be terms such that x1 :C1, . . . ,xn :Cn � ti : D for
i = 1,2, and the type A ≡C1 −◦ ·· ·Cn −◦D is eΠ1 (not necessarily closed). Then there
is a term if b then t1 else t2 such that

b :B,x1 :C1, . . . ,xn :Cn � if b then t1 else t2 :D,

where (if true then t1 else t2) −→ t1 and (if false then t1 else t2) −→ t2.

Proof. Define if b then t else u≡ fst∀α .A(b(λ x.t)(λ x.u))x, where x abbreviates x1, . . . ,xn

and ∀α .A is the universal closure of A. This term can be typed as required; λ x.t and
λ x.u have type ∀α .A, thus b(λ x.t)(λ x.u) has type ∀α .A⊗∀α .A, to which the projec-
tion fst∀α .A applies. The rest is obvious.

Fix a quantifier-free type A of size k, built from a single type variable α . A long
normal form of type A is a term t such that � t :A has a derivation in which all identity
axioms are atomic, i.e., of the form x :α � x :α . It is clear that every long normal form
t of type A has size bounded by k, and we may assume that all variables occurring
in it are from a fixed set of variables {x1, . . . ,xk} (due to α -equivalence). Therefore,
t can be written as a word in {0,1}n, where n = O(k logk). Since {0,1}n can in turn
be represented by Bn, there must be a function � which maps a given term u of size
bounded by k into a term �u of type Bn. Furthermore, as a consequence of Theorem 2,
we can associate to this coding two terms abs,app : Bn −◦Bn −◦Bn which satisfy

abs�y�t −→∗ �λ y.t, if |λ y.t| ≤ k and y ∈ {x1, . . . ,xk};
app�t�u −→∗ �tu, if |tu| ≤ k.

We now show that the coding function � can be internalized in IMLL, as far as
the long normal forms of a fixed type A is concerned. For each subtype B of A, define
σB(t) and τB(t) as follows:

σα (t) ≡ t σB−◦C(t) ≡ abs�yσC(t τB(�y));
τα (t) ≡ t τB−◦C(t) ≡ λ z.τC(appt σB(z));

where y is from {x1, . . . ,xk} and fresh, in the sense that �y does not occur in t. The term
σB(t) has type Bn whenever t has type B[Bn/α], and τB(t) has type B[Bn/α] whenever
t has type Bn. Finally, let codeA ≡ λ x.σA(x) : A[Bn/α]−◦Bn.

Lemma 2 (Internal Coding). Let A be as above. For each closed long normal form t
of type A, codeA(t) −→∗�t.

For example, let A1 be ((α −◦α)−◦α)−◦ (α −◦α)−◦α , which has two long nor-
mal forms t1 ≡ λ F f . f (F(λ y.y)) and t2 ≡ λ F f .F(λ y. f y)). Then codeA1 is defined as
follows:

τα−◦α (� f) ≡ λ x.app� f x;

τ(α−◦α)−◦α (�F) ≡ λ g.app�F(abs�y(g�y));
codeA1 ≡ λ z.abs�F(abs� f (zτ(α−◦α)−◦α (�F)τα−◦α (� f))).

It is easy to check that codeF(ti) reduces to �ti for i = 1,2.

Theorem 3 (Π1-Contraction). Let A be a closed Π 1 type which is inhabited. Then
there is a contraction map cntrA : A−◦A⊗A such that for any normal form t of type A,
cntrA(t) −→∗t ′ ⊗ t ′, where t ′ is a long normal form η -equivalent to t.

Proof. Without loss of generality, we may assume that A is free from ⊗ and 1. Let
A− be obtained from A by replacing all subtypes ∀β .C by C[α/β] for a fixed variable

α . Then, there is a canonical map isoA : A−◦A−[D/α] for any D which preserves the
structure of terms up to η -equivalence. By applying Lemma 2 to the type A − we obtain
a coding map codeA− :A−[Bn/α]−◦Bn.

Let t1, . . . ,tl be the long normal forms of type A. By using the conditional in Lemma
1 several times, we can build a term copyA :Bn −◦A⊗A which satisfies

copyA(u) −→∗ ti ⊗ ti, if u ≡ �ti;
−→∗ t1 ⊗ t1, otherwise.

Finally, define cntrA ≡ copyA ◦ codeA− ◦ isoA.

3 Additives as Nondeterminism

3.1 Additive slices and nondeterministic cut-elimination

We now move on to the multiplicative additive fragment of Linear Logic. We again con-
fine ourselves to the intuitionistic fragment IMALL, and furthermore, we only consider
& as the additive connective, although ⊕ could be added harmlessly. 4

The terms of IMALL are defined analogously to the terms of IMLL, but we have
in addition: (i) if t and u are terms and FV (t) = FV (u), then so is 〈t,u〉; (ii) if t is a
term, then so are π1(t) and π2(t). The type assignment rules are extended with:

Γ � t1 :A1 Γ � t2 :A2

Γ � 〈t1,t2〉 :A1 & A2

x :Ai,Γ � t :C
y :A1 & A2,Γ � t[πi(y)/x] :C

i = 1,2
,

and the reduction rules are extended with πi〈t1, t2〉 −→ ti, for i = 1,2.
Note that some reductions cause duplication (e.g. (λ x.〈x,x〉)t −→ 〈t, t〉), thus cut-

elimination in IMALL is no more in linear steps.5 However, duplication can be avoided
by computing each component of 〈t1, t2〉 separately. To formalize this idea, we recall the
notion of slice [Gir87].

Definition 2 (Slices). A slice of a term t is obtained by applying the following operation
to t as much as possible: 〈u,v〉 �→ 〈u〉1, or 〈u,v〉 �→ 〈v〉2.

We say that two slices t and u (of possibly different terms) are compatible if there
is no context (i.e. a term with a hole) Φ such that t ≡ Φ[〈t ′〉i], u ≡ Φ[〈u′〉 j], and i �= j.

Lemma 3 (Slicewise checking). Two terms t and u are equivalent if and only if for
every compatible pair (t ′,u′) of slices of t and u, we have t ′ ≡ u′.

The reduction rules are naturally adapted for slices:

(λ x.t)u sl−→ t[u/x] πi〈t〉i
sl−→ t πi〈t〉 j

sl−→ fail, if i �= j.

4 However, we have to be careful when considering the classical system, which is not confluent
as it stands. It could be overcome by adopting Tortora’s proofnet syntax with generalized &
boxes, which enjoys confluence [dF03]; see also [MR02].

5 There is a linear step cut-elimination procedure for terms (proofnets) of lazy types, i.e., those
which do not contain positive occurrences of & and negative occurrences of ∀.

Lemma 4 (Pullback). Let t −→∗u and u′ be a slice of u. Then there is a unique slice t ′

of t such that t ′ sl−→∗u′.

Proof. See the following diagrams

(λ x.s)v s[v/x]

(λ x.s′)v′ s′[v′/x]

�

�

�

�

�

�

�

�

�
slice o f

� � � � � � ��sl

�
slice o f

π1〈s,v〉 s

π1〈s′〉1 s′

�

�

�

�

�

�

�

�

�

�

�
slice o f

� � � � � � ��sl

�
slice o f

Note that there are exponentially many slices for a given term, but once a slice has
been chosen, the computation afterwards can be done in linear steps, thus in quadratic
time, since each slice is entirely a linear term. We therefore have a nondeterministic
polynomial time cut-elimination procedure, viewing the slicing operation in Definition
2 as a nondeterministic reduction rule. Lemma 3 states that the equivalence of two
normal forms can be checked slicewise, and Lemma 4 assures that every slice of a
normal form can be obtained by the above nondeterministic procedure. Hence we may
conclude that the cut-elimination problem for IMALL is in coNP.

3.2 Encoding a coNP-complete Problem

Now we show that the following coNP-complete problem is logspace reducible to CEP
for IMALL:

Logical Equivalence Problem: Given two boolean formulas, are they logically equiv-
alent? (cf. [GJ78])

By Theorem 2, every boolean formula C with n variables can be translated into a
term tC of type B(n)−◦B in O(log |C|) space. For each 1 ≤ k ≤ n, let

tak ≡ λ f .λ x1 · · ·xk−1.〈 f true x1 · · ·xk−1, f false x1 · · ·xk−1〉,

which is of type ∀α .(B(k)−◦α)−◦ (B(k−1)−◦α & α), and define ta(tC) by

ta(tC) ≡ ta1(· · · (tantC) · · ·) : B & · · ·& B︸ ︷︷ ︸
2n times

.

It is clear that the term ta(tC) can be built from tC with the help of a counter of size
O(logn).

The normal form of ta(tC) consists of 2n boolean values, each of which corresponds
to a ‘truth assignment’ to the formula C. For example, ta(or) reduces to 〈〈or true true,or true false〉,〈or false true,or

and thus to 〈〈true, true〉,〈true, false〉〉.
Therefore, two formulas C and D with n variables are logically equivalent if and

only if ta(tC) and ta(tD) reduce to the same normal form.

Theorem 4 (coNP-completeness of IMALL). The cut-elimination problem for IMALL
is coNP-complete.

Remark 1. We do not claim that the complexity of MALL is coNP. What we have
shown is that a specific problem, CEP for MALL, is complete for coNP. If we had
considered the complement of CEP, then the result would have been NP-completeness.
Likewise, we could obtain a C -completeness result for any class C in the polynomial
time hierarchy by complicating the problem more and more.

However, we do claim that additives have something to do with nondeterminism,
as they provide a notion of nondeterminsitic cut-elimination, as well as a very natural
coding of nondeterministic Turing machine computation.

4 Multiplicative Light Linear Logic and 2EXPTIME

In this section, we show that the intuitionistic multiplicative fragment IMLLL of Light
Linear Logic is already expressive enough to represent all polynomial time functions;
it needs neither additives (as in [Gir98]) nor unrestricted weakening (as in [Asp98]).

Since our concern is not normalization but representation, we do not need to in-
troduce a proper term calculus with the polynomial time normalization property (see
[Asp98] and [Ter01] for such term calculi). We rather use the standard λ -calculus and
think of IMLLL as a typing system for it.

The type assignment rules of IMLLL are those of IMLL with the following:

x :B � t :A
x :!B � t :!A

Γ � t :C
x :!B,Γ � t : C

x :!A,y :!A,Γ � t :C
z :!A,Γ � t[z/x,z/y] :C

x :A,y :B � t :C

x : !A,y :§B � t :§C

where x :B may be absent in the first rule. Define W to be ∀α .!(B−◦α −◦α)−◦§(α −◦
α). Then each word w = i1 · · · in, where n ≥ 0 and ik ∈ {0,1}, is represented by w ≡
λ cx.ci1 ◦ · · · ◦ cin(x) : W, where ik is false if ik = 0, and is true if ik = 1. A function
f :{0,1}∗ −→ {0,1}∗ is represented by a term t if f (w) = v ⇐⇒ tw −→∗v.

Simulation of polynomial time Turing machines in Light Linear Logic [Gir98,AR02]
consists of two parts; one for coding of polynomials and the other for simulation of
one-step transition (as well as initialization and output extraction). Since the former is
already additive-free in [Gir98], we focus on the latter here.

Let M be a Turing machine with two symbols6 and 2n states, and let

δ : Symbols×States −→ Symbols×States×{left, right}

be the associated instruction function. A configuration of M can be specified by a triple
〈w1,w2,q〉, where the stack w1 ∈ {0,1}∗ describes the non-blank part of the tape to the
left of the head, the stack w2 ∈ {0,1}∗ describes the non-blank part of the tape to the
right of the head, and q < 2n denotes the current state. By convention, w1 is written in
the reverse order, and w1 includes the content of the cell currently scanned.

The configurations are represented by terms of type ID[B n], where ID[A] is defined
by ID[A] ≡ ∀α .!(B−◦α −◦α)−◦ §(α −◦α −◦ (α ⊗α ⊗A)). Note that ID[A] is a gen-
eralization of W, which allows to encode two words and an additional datum of type A

6 Although more than two symbols are required in general, we describe the two symbols version
here for simplicity. The extension is straightforward.

into one term. For example, the configuration 〈010,11,7〉 is represented by

〈010,11,q〉 ≡ λ c.λ x1x2.(c0◦ c1◦ c0(x1))⊗ (c1◦ c1(x2))⊗q,

where q is a term of type Bn coding q ∈ States.
To simulate one-step transition, it is convenient to divide it into two parts: the de-

composition part and the combination part.

Lemma 5 (Decomposition). There is a term dec : ID[Bn]−◦ ID[B⊗B⊗Bn] such that
for any configuration 〈i1 · · · in, j1 · · · jm,q〉,

dec〈i1 · · · in, j1 · · · jm,q〉 −→∗〈i2 · · · in0, j2 · · · jm0, i1, j1,q〉.

Proof. Define dec(conf) to be λ c.G(confF(c)), where the ‘step’ function F and the
‘basis’ function G are defined as follows;

F(c) ≡ λ b1.λ b2 ⊗w.(b1 ⊗ (cb2w))
G(y) ≡ λ x1x2.let (y(0⊗ x1)(0⊗ x2)) be (i1 ⊗w1)⊗ (j1 ⊗w2)⊗q in

(w1 ⊗w2 ⊗ i1 ⊗ j1 ⊗q)
c :B−◦α −◦α � F(c) :B−◦D−◦D

y :D−◦D−◦D⊗D⊗Bn � G(y) :α −◦α −◦ (α ⊗α ⊗B⊗B⊗Bn).

Here, D stands for B⊗α . The use of F may be illustrated by

(F(c)i1)◦ · · · ◦ (F(c)in)(0⊗ x) −→∗ i1 ⊗ (ci2 ◦ · · · ◦ cin ◦ c0(x)) :D,

while G plays the roles of initialization and rearrangement of the output.

Lemma 6 (Combination). There is a term com : ID[B⊗B⊗Bn]−◦ ID[Bn] such that
for any 〈w1,w2, i1, i2,q〉 with δ(i1,q) = (s,q′,m),

com〈w1,w2, i1, i2,q〉 −→∗ 〈w1, si2w2,q′〉, if m = left;
−→∗ 〈i2sw1, w2,q′〉, if m = right.

Proof. Let left ≡ true and right ≡ false. By Theorem 2, there is a term delta such that
delta i1q reduces to s⊗q′ ⊗m when δ(i1,q) = (s,q′,m). Now the key trick is to use the
boolean value m as “switcher.” Observe that msi2 reduces to s⊗ i2 (i2 ⊗ s) and mw1w2

reduces to w1 ⊗w2 (w2 ⊗w1) when m is left (right)—thus m can be used to determine
on which side of the tape we push symbols, and in what order they are pushed.

Formally, let cntr3 : B −◦ B3 be a generalized contraction which produces three
copies of a given boolean value, and define G(m,w1,w2, i2,s,c1,c2) to be

let cntr3(m) be m1 ⊗m2 ⊗m3 in (let m1si2 be j1 ⊗ j2 in

(let m2w1w2 be v1 ⊗ v2 in m3v1(c1 j1 ◦ c2 j2(v2)))),

which is of type

m:B,w1 :α ,w2 :α , i2 :B,s:B,c1 :B−◦α −◦α ,c2 :B−◦α −◦α �G(m,w1,w2, i2,s,c1,c2):
α ⊗α . Then, depending on the value of m, it reduces as follows:

G(true,w1,w2, i2,s,c,c) −→∗w1 ⊗ (cs◦ci2(w2));
G(false,w1,w2, i2,s,c,c) −→∗(ci2 ◦ cs(w1))⊗w2.

Finally, the term com is defined to be

λ z.λ cx1x2.let zcx1x2 be w1 ⊗w2 ⊗ i1 ⊗ i2 ⊗q in

(let delta i1q be s⊗q′ ⊗m in G(m,w1,w2, i2,s,c,c)⊗q′).

Although the ‘cons’ variable c is used three times in com, it does not matter since it is
assigned a type !(B−◦α −◦α).

The desired one-step transition function is obtained by composing dec and com.

Theorem 5 (IMLLL represents PTIME functions). A function f :{0,1}∗ −→ {0,1}∗
is computable in DTIME[nk] if and only if it is represented by an IMLLL term t of type
W−◦§dW, where d = O(logk).

In general, cut-elimination in Light Affine Logic, hence in IMLLL, requires of time
O(s2d+1

), where s is the size of a proof and d is its depth, which counts the nesting of
! and § inferences. The reason why we have a characterization of PTIME above is that
we consider a fixed program t, so all the terms tw to be evaluated have a fixed depth.
On the other hand, CEP allows the depth to vary, hence we get a characterization of
doubly-exponential time as in [NM02].

Theorem 6 (2EXPTIME-completeness of IMLLL). The cut-elimination problem for

IMLLL is complete for 2EXPTIME =
⋃

k DTIME[22nk

].

5 Multiplicative Soft Linear Logic and EXPTIME

In this section, we show that the intuitionistic mulitplicative fragment IMSLL of Soft
Linear Logic is expressive enough to represent all polynomial time functions, as con-
jectured by Lafont [Laf01]. As before, we do not introduce a term calculus for IMSLL,
thinking of it as a type assignment system for the standard λ -calculus.

The type assignment rules of IMSLL are those of IMLL with the following:

x1 :B1, . . . ,xm :Bm � t :A
x1 :!B1, . . . ,xm :!Bm � t :!A

m ≥ 0
x1 :A, . . . ,xn :A,Γ � t :C

z :!A,Γ � t[z/x1, . . . ,z/xn] :C
n ≥ 0

The former is called soft promotion and the latter is called multiplexing. A term which
can be typed without multiplexing is called generic. Note that every generic term is a
linear λ -term.

The policy of MSLL programming is to write each program in a generic way; mul-
tiplexing (i.e. duplication) is used only in data. Due to this restriction, simulation of Tur-
ing machines is more sophisticated than before. Let M and δ be as before. Let ID k[A]

be ∀α .!(B−◦α −◦α)−◦ ((α −◦α)k ⊗A). Each term of type IDk[A] encodes k words as
well as an element of type A. For instance, the configuration 〈010,11,7〉 is represented
by

〈010,11,7〉 ≡ λ c.(c0◦ c1◦ c0)⊗ (c1◦ c1)⊗7: ID2[Bn].

Lemma 7 (Decomposition). For every k ≥ 1, there exists a generic term dec of type
IDk[Bn]−◦ ID2k[B⊗Bn] such that for any 〈i1w1, . . . , ikwk,q〉 ∈ ({0,1}+)k ×2n,

dec〈i1w1, . . . , ikwk,q〉 −→∗〈w1, . . . ,wk, i1, . . . , ik, i1,q〉.

Note that the output contains two occurrences of i1; the first is a word of length 1
which will be thrown away, while the second is a boolean value which will be used as
the current symbol in the next combination part.

Proof. Consider the case k = 1. The term dec is defined to be λ z.λ c.λ z⊗q.(zF(c)(id⊗
id⊗0))⊗q, where the step function F is defined by

F(c) ≡ λ b.let cntr(b) be b1 ⊗b2 in (λ g⊗h⊗e.fst(((h◦ g)⊗ cb1 ⊗b2)⊗ e))

c :B−◦α −◦α � F(c) :B−◦ ((α −◦α)2 ⊗B)−◦ ((α −◦α)2 ⊗B).

The behavior of F is illustrated as follows;

(F(c)i1)◦ · · · ◦ (F(c)in)(id ⊗ id⊗0) −→∗ (ci2 ◦ · · · ◦ cin)⊗ ci1 ⊗ ci1.

The case k ≥ 2 is similar, except that we remove all redundant boolean values i 2, . . . , ik
by weakening for B.

Now let us move on to the combination part. Due to the genericity restriction, we
face two difficulties: (i) we cannot create a new tape cell, since the ‘cons’ variable c of
type !(B−◦α −◦α) cannot be used twice; (ii) we cannot simply remove an unnecessary
tape cell of type α −◦α , since we do not have weakening for the open type α −◦α .
To resolve the first difficulty, we prepare two additional stacks which are filled with
0’s and 1’s respectively, and instead of creating a new cell, we pick one from these
two stacks according to the instruction δ. To resolve the second difficulty, we further
prepare a ‘garbage’ stack where unneccesary tape cells are collected. Thus we associate
five stacks in total with a configuration. The transition corresponding to “write 1 and
move right” is illustrated in Figure 1.

Lemma 8 (Combination). There is a generic term com of type ID10[B⊗Bn]−◦ID5[Bn]
such that for any 〈w1, . . . ,w5, i1, . . . , i5,b,q〉 ∈ ({0,1}+)5 ×{0,1}5 ×{0,1}× 2n with
δ(b,q) = (s,q′,m),

com〈w1, . . . ,w5, i1, i2,0,1, i5,b,q〉
−→∗ 〈w1, 0i2w2, w3, 1w4, i1i5w5,q′〉 if s = 0 and m = left;
−→∗ 〈w1, 1i2w2, 0w3, w4, i1i5w5,q′〉 if s = 1 and m = left;
−→∗ 〈i20w1, w2, w3, 1w4, i1i5w5,q′〉 if s = 0 and m = right;
−→∗ 〈i21w1, w2, 0w3, w4, i1i5w5,q′〉 if s = 1 and m = right.

i1 i2

0 1

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of 1

garbages

↓

=⇒
1

0

i1

i2

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of 1

garbages

↓

Fig. 1. “Write 1 and move right” (↓ indicates the head position)

Keep in mind that the third and the fourth stacks are to be filled with 0’s and 1’s, so
that we always find 0 and 1 at positions i3 and i4, respectively.

Proof. As before, there is a term delta such that deltabq reduces to s⊗ q ′ ⊗m when
δ(b,q) = (s,q′,m). Define 1Right by

1Right≡ (i2 ◦ i4 ◦w1)⊗w2 ⊗ (i3 ◦w3)⊗w4 ⊗ (i1 ◦ i5 ◦w5)

w1 :α −◦α , . . . ,w5 :α −◦α , i1 :α −◦α , . . . , i5 :α −◦α � 1Right :(α −◦α)5,

which corresponds to the case s = 1 and m = right (see Figure 1) and gives five stacks
as output. 0Left, 1Left and 0Right are defined analogously. By using conditionals in
Lemma 1 three times, we obtain

G(m,s,w1, . . . ,w5, i1, . . . , i5) ≡
(

if m then if s then 0Left else 1Left
then if s then 0Right else 1Right

)

com ≡ λ z.λ c.let zc be w1 ⊗·· ·⊗w5 ⊗ i1 ⊗·· ·⊗ i5 ⊗b⊗q in

(let delta bq be s⊗q′ ⊗m in G(m,s,w1, . . . ,w5, i1, . . . , i5)⊗q′).

The rest of coding is basically the same as in [Laf01] except the initialization part,
where we need to fill two stacks with 0’s and 1’s. As in [Laf01], we have no idea how
to extract a single word as output from the final configuration consisting of five stacks.
Instead, we can extract the boolean value which tells us whether the final configuration
is accepting or not. Thus the representation theorem below is stated in terms of lan-
guages rather than functions in general. Furthermore, due to the genericity restriction,
we need to relax the definition of representation slightly. The set {0,1}∗ is represented
by W≡∀α .!(B−◦α −◦α)−◦α −◦α . We say that a language X ⊆{0,1}∗ is represented
by a term t :Wl −◦B if w ∈ X ⇐⇒ t w · · ·w︸ ︷︷ ︸

l times

−→∗true.

Theorem 7 (IMSLL captures PTIME). A language X ⊆ {0,1}∗ is accepted in
DTIME[nk] if and only if it is represented by a generic term t of type W l −◦B, where

l = O(k).

As in the case of IMLLL, the complexity of CEP exceeds polynomial time. A
difference is that cut-elimination in IMSLL only requires exponential time O(s d+2)
[Laf01]. Hence we have:

Theorem 8 (EXPTIME-completeness of IMSLL). The cut-elimination problem for IMSLL
is complete for EXPTIME under logspace reducibility.

Proof (sketch). Suppose that a language X be accepted by a Turing machine M in time
O(2nk

). For each word w of length n, the following terms (of suitable types) can be
constructed in O(k logn) space: (1) the Church representation w of w; (2) the term

exp(nk) of size and depth O(nk), which reduces to the tally integer 2nk
; (3) the term

Mn,k(w,x) with two variables w and x, which outputs the result of x-steps computation
on the input w, when w is of length n and x is of the same type as exp(n k). By putting
them together, we obtain a term Mn,k(w,exp(nk)) which normalizes to true if and only
if w ∈ X .

Acknowledgments. We wish to thank Patrick Baillot and Marco Pedicini for very stimu-
lating discussions, and Jean-Yves Girard, Stefano Guerrini, Yves Lafont, Satoshi Mat-
suoka, Peter Neergaard, Peter Selinger, Izumi Takeuti and Rene Vestergaard for a lot of
useful comments.

References

[Asp98] A. Asperti. Light affine logic. In Proceedings of the Thirteenth Annual IEEE Sympo-
sium on Logic in Computer Science, pages 300–308, 1998.

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic (proof-nets, normalization
complexity, expressive power, programming notation). ACM Transactions on Computa-
tional Logic, 3(1):1–39, 2002.

[dF03] L. Tortora de Falco. The additive multiboxes. Annals of Pure and Applied Logic,
120(1):65–102, 2003.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gir98] J.-Y. Girard. Light linear logic. Information and Computation, 14(3):175–204, 1998.
[GJ78] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-

completeness. Freeman, San Francisco, 1978.
[Hin89] J. R. Hindley. BCK-combinators and linear λ -terms have types. Theoretical Computer

Science, 64:97–105, 1989.
[Lad75] R. E. Ladner. The circuit value problem is logspace complete for P. SIGACT News,

7(1):18–20, 1975.
[Laf01] Y. Lafont. Soft linear logic and polynomial time. Theoretical Computer Science, to

appear.
[Lin95] P. D. Lincoln. Deciding provability of linear logic formulas. In Advances in Linear

Logic, London Mathematical Society Lecture Notes Series, Volume 222, Cambridge
University Press, 1995, 109–122.

[MR02] H. G. Mairson and X. Rival. Proofnets and context semantics for the additives. Com-
puter Science Logic (CSL) 2002, 151–166.

[Mai03] H. G. Mairson. Linear lambda calculus and polynomial time. Journal of Functional
Programming, to appear.

[NM02] P. M. Neergaard and H. G. Mairson. LAL is square: representation and expressive-
ness in light affine logic. Presented at the Fourth International Workshop on Implicit
Computational Complexity, 2002.

[Sch01] A. Schubert. The Complexity of β-Reduction in Low Orders. Typed Lambda Calculi
and Applications (TLCA) 2001, 400–414.

[Sta79] R. Statman. The typed λ -calculus is not elementary recursive. Theoretical Computer
Science, 9:73–81, 1979.

[Ter01] K. Terui. Light affine lambda calculus and polytime strong normalization. In Pro-
ceedings of the sixteenth annual IEEE symposium on Logic in Computer Science, pages
209–220, 2001. The full version is available at http://research.nii.ac.jp/∼terui.

