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1. Introduction

Cut-elimination is one of the most important techniques in proof theory. It
was first established by Gentzen [7] for the sequent calculi LK and LJ for
classical and intuitionistic first-order logic and later proved, using different
methods, for a wide range of calculi in nonclassical logics.

Checking whether a sequent calculus admits cut-elimination is often a
rather tedious task. Indeed, the proof is based on case distinctions and has
to be checked for all the possible combinations of the rules. This is usually
done using heavy syntactic arguments based on case distinctions, written
without filling in the details (note that even Gentzen did not formalize all
the cases). This renders the cut-elimination process rather opaque. It is
then natural to search for general criteria that a sequent calculus has to
satisfy in order to admit cut-elimination. Moreover, such criteria, if given
on a suitable level of abstraction, would also provide a deeper understanding
of the nature of cut-elimination.

Sufficient formal conditions for sequent calculi to admit cut-elimination
using particular methods were introduced in [13, 19, 6]. Indeed, Miller and
Pimentel introduced in [13] such conditions (together with an algorithm to
check them) for first-order sequent calculi possibly without the weakening
rules and/or the contraction rules. More general criteria, inspired by Bel-
nap’s work on Display Logic [4], were defined in [19] for propositional sequent
calculi with various logical and structural rules. Some structural rules that
do not fit into Restall’s pattern were instead considered in [6] for (first-order)
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single-conclusion sequent calculi with exchange and it was shown that these
calculi admit cut-elimination whenever their rules are reductive and substi-
tutive. Intuitively, logical rules are reductive if they allow the replacement
of cuts by smaller ones while any rule is substitutive when it leads to correct
inferences once one uniformly replaces all the occurrences of any formula in
its premise(s) and (some occurrences of this formula in its) conclusion by
any multiset of formulae.

Although rather elegant, if not satisfied by a sequent calculus the condi-
tions in [13, 19, 6] give no information as to whether a cut-elimination proof
for the considered calculus can be found at all.

A characterization of cut-elimination, i.e. the definition of formal crite-
ria that, when satisfied by a sequent calculus guarantee cut-elimination and,
when not satisfied they provide a counterexample to the eliminations of cuts,
was instead achieved in [2, 21] for particular families of calculi. Avron and
Lev indeed characterized propositional sequent calculi which in addition to
identity axioms and structural rules (weakening, exchange and contraction)
have only pure logical rules. Syntactic and semantic criteria for (additive)
structural rules to preserve cut-elimination once added to full Lambek cal-
culus were introduced in [21]. The semantic criterion –called propagation
property– was inspired by Girard’s naturality test (see Appendix C.4 in [11]).
Intuitively a set of structural rules satisfies the propagation property if it
propagates from an arbitrary set of elements to their infinite joins (i.e. ∨)
and multiplications (i.e. ⊗) in all residuated lattices.

In this paper we give a characterization of cut-elimination for simple
calculi, a rather general class of propositional single-conclusion sequent cal-
culi encompassing, e.g. propositional LJ, intuitionistic linear logic extended
with the knotted structural rules of [12] or the Full Lambek Calculi in [17].
The aim is to capture the notion of stepwise process of local transformations
to eliminate cuts in simple calculi. (Note that cut-freeness is undecidable
in general1). To this purpose, we consider a generalization of Gentzen’s
Hauptsatz to sequent calculi with non-logical axioms. Our notion (we call
it reductive cut-elimination) is a naturally strengthened version of so-called
free-cut elimination [5] (similar concepts are e.g. in [9, 20]). The criteria we
propose have two equivalent forms: syntactic (reductivity and being weakly
substitutive) and semantic (coherence and propagation). The former arise by
weakening the sufficient conditions in [6] while the propagation property is

1This can be shown by extending any calculus for an undecidable logic with suitable
rules that force the problem of deciding whether the calculus is cut-free to be reduced to
the problem of deciding whether particular formulae are derivable in the original calculus.
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a refinement of the homonym condition in [21] stated in terms of a variant
of phase semantics [1, 22, 17]. In analogy with [8, 10] we associate to each
logical connective two semantic interpretations depending on whether the
connective appears on the right or on the left hand side of a sequent. Coher-
ence then imposes a suitable restriction on this “asymmetric” interpretation.
Using both syntactic and semantic techniques (the latter mainly suggested
by [15]) we show that the following are equivalent:

1. A simple calculus L admits reductive cut-elimination.

2. Logical rules are reductive and structural rules are weakly substitutive.

3. Logical connectives are coherent and structural rules are propagating.

Furthermore, we prove that an identity axiom containing a logical connective
⋆ can be directly derived from atomic axioms only (i.e. the connective ⋆
admits axiom expansion) if and only if ⋆ satisfies rigidity, a condition dual
to coherence.

2. Basic Notions

Let us indicate with α, β, γ, . . . propositional variables and with ⋆1, ⋆2, ⋆3, . . .
logical connectives of suitable arity. A formula A is either a propositional
variable or a compound formula of the form ⋆(A1, . . . , Am) where A1, . . . , Am

are formulae. Let Γ, ∆, Π, Σ, . . . stand for sequences of formulae. To specify
inference rules we will use meta-variables X, Y, . . . , standing for arbitrary
formulae, and (possibly empty) sequences Θ, Ξ, Φ, Ψ, Υ . . . of meta-variables.
A (meta)sequent Γ ⇒ ∆ (Θ ⇒ Ξ) is called single-conclusion if ∆ (Ξ) contains
at most one formula (meta-variable).

Definition 2.1. We call any propositional single-conclusion sequent calcu-
lus L simple whenever L consists of the identity axiom of the form X ⇒ X,
together with: the (multiplicative version of the) cut rule (CUT ), struc-
tural rules {(Ri)}i∈Λ0

and for each logical connective ⋆, left logical rules
{(⋆, l)j}j∈Λ1

and right logical rules {(⋆, r)k}k∈Λ2
(Λ0, Λ1, Λ2 can be empty):

Θ ⇒ X Θl,X,Θr ⇒ Ξ

Θl,Θ,Θr ⇒ Ξ
(CUT )

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θl ⇒ Ξ
(Ri)

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θl, ⋆( ~X),Θr ⇒ Ξ
(⋆, l)j

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θl ⇒ ⋆( ~X)
(⋆, r)k
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where Θ, Θl, Θr and Ξ in (CUT ) are arbitrary (thus (CUT ) actually con-
sists of a countable set of inference rules). In rules (Ri), (⋆, l)j and (⋆, r)k,
n ≥ 0 and the meta-variables in Θl, Θr (called left context meta-variables),
those in Ξ (called right context meta-variables), and the meta-variables in
~X ≡ X1, . . . , Xm, m ≥ 0 (called active meta-variables) are mutually disjoint.
The active meta-variables X1, . . . , Xm are mutually distinct. In addition,
structural rules satisfy the following condition:

(str) Any meta-variable in Υ1, . . . ,Υn is a left context meta-variable, and
any meta-variable in Ψ1, . . . ,Ψn is a right context meta-variable.

while logical rules satisfy:

(log0) Any Υ1, . . . ,Υn is either an active or a left context meta-variable, and
any meta-variable in Ψ1, . . . ,Ψn is either an active or a right context
meta-variable.

(log1) Each meta-variable occurs at most once in Θl, Θr.

(log2) If (I)[X] is a logical rule of L with a left context meta-variable X,
then (I)[Φ] also belongs to L for any sequence Φ of fresh and distinct
meta-variables. Here, (I)[Φ] denotes the rule obtained from (I) by
replacing all the occurrences of X with Φ.

(log3) If (I)[Y ] is a logical rule of L with a right context meta-variable Y ,
then (I)[Φl; Φr ⇒ Ξ] also belongs to L for any sequent Φl, Φr ⇒ Ξ
that consists of fresh and distinct meta-variables. Here, (I)[Φl; Φr ⇒
Ξ] denotes a logical rule obtained from (I) by replacing all sequents
of the form Θ ⇒ Y with Φl, Θ, Φr ⇒ Ξ.

Henceforth we will only consider simple sequent calculi. Due to condi-
tions (str) and (log0) their rules do not allow context meta-variables to move
from antecedent to consequent of sequents and vice versa. Moreover, with
the exception of (CUT ), rules satisfy the following (subformula) property:
any meta-variable occurring in the premises also occurs in the conclusion.
Finally, conditions (log1), (log2) and (log3) ensure that logical rules are
substitutive in the sense of [6].

As usual, an instance of a logical or structural rule is obtained by substi-
tuting arbitrary formulae for meta-variables. In an instance of a logical or
structural rule, the formulae replacing context meta-variables (active meta-
variables, respectively) are called context formulae (active formulae, respec-
tively) and the formula of the form ⋆( ~A) as well as the formulae replacing
X in identity axioms are called principal formulae. The two occurrences of
the formula instantiating X in (CUT ) are called cut formulae.
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Example 2.2. Many well known sequent calculi fit into our framework.
Among them, propositional LJ [7], intuitionistic linear logic extended with
knotted structural rules [12] or the Full Lambek Calculi in [17]. For instance,
axiom ⇒ ⊤ for the logical constant ⊤ (true) is codified by a right logical
rule ⇒ ⊤ with zero premises. The structural rules exchange (e), weakening
(w) and contraction (c) are respectively codified by countable sets of rules
as follows:

Θi,X, Y,Θ′

j ⇒ Ξk

Θi, Y,X,Θ′

j ⇒ Ξk

(e)ijk
Θi,Θ

′

j ⇒ Ξk

Θi,X,Θ′

j ⇒ Ξk

(w)ijk
Θi,X,X,Θ′

j ⇒ Ξk

Θi,X,Θ′

j ⇒ Ξk

(c)ijk

where Θi, Θ′
j and Ξk are sequences of distinct meta-variables of length i, j

and k, respectively. In the sequel, the rules {(e)ijk | i, j ∈ N, k ∈ {0, 1}} are
collectively denoted by (e), and similar conventions are used for other rules.
Useful variations of (c) are sequence contraction (sc) [21], weak contraction
(wc) [6] and n-contraction (nc) (for n ≥ 2) [18]:

Θl,Φ,Φ,Θr ⇒ Ξ

Θl,Φ,Θr ⇒ Ξ
(sc)

Θl,X,X,Θr ⇒

Θl,X,Θr ⇒
(wc)

Θl,X
n,Θr ⇒ Ξ

Θl,X
n−1,Θr ⇒ Ξ

(nc)

Let us consider the connective ⊓ defined by the following logical rules:

Θ ⇒ X Θ ⇒ Y
Θ ⇒ X ⊓ Y

(⊓, r)
Θl,X, Y,Θr ⇒ Ξ

Θl,X ⊓ Y,Θr ⇒ Ξ
(⊓, l)

Note that ⊓ behaves as additive conjunction when appearing on the right
hand side of a sequent and as multiplicative conjunction otherwise. Let L⊓

be the simple sequent calculus that consists of the identity axiom, (CUT )
and the logical rules (⊓, r) and (⊓, l). In L⊓, (CUT ) between two principal
formulae cannot be replaced by (CUT ) between their subformulae, due to
the lack of any form of contraction:

Σ ⇒ A Σ ⇒ B
Σ ⇒ A ⊓ B

Γ, A,B,∆ ⇒ Π

Γ, A ⊓ B,∆ ⇒ Π

Γ,Σ,∆ ⇒ Π
(CUT )

6−→
Σ ⇒ A

Σ ⇒ B Γ, A,B,∆ ⇒ Π

Γ, A,Σ,∆ ⇒ Π

Γ,Σ,Σ,∆ ⇒ Π

Γ,Σ,∆ ⇒ Π
(???)

Nevertheless, the above (CUT) cannot occur in any L⊓-derivation since no
sequent containing more than one formula on the left hand side is derivable
from identity axioms only using (CUT ) and (⊓, r). Hence the rule (⊓, l)
cannot be used in L⊓-derivations. Thus L⊓ admits cut-elimination although
not in a modular way. Indeed L⊓ no longer admits cut-elimination when
extended with other rules (e.g. with the “harmless” rules for implication
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in intuitionistic linear logic). To avoid such pathological cases we introduce
below a specialized notion of cut-elimination.

Let L be a simple sequent calculus and S a set of sequents (considered
as non-logical axioms). A derivation in L of a sequent S0 from S is a labeled
tree whose root is labeled by S0, the leaves are labeled by an instance of
an identity axiom, by an instance of a logical L-rule without premises or
by a sequent in S, and the inner nodes are labeled in accordance with the
instances of the L-rules. When there exists such a derivation, we say that
S0 is derivable from S in L.

Definition 2.3. An occurrence of (CUT ) in a derivation is said to be re-
ducible if one of the following holds:

(i) Both cut formulae are the principal formulae of logical rules.

(ii) One of the two cut formulae is a context formula of a rule other than
(CUT ).

(iii) One of the two premises is an identity axiom.

We say that a simple sequent calculus L admits reductive cut-elimination if
whenever a sequent S0 is derivable in L from a set S of non-logical axioms,
S0 has a derivation in L from S without any reducible cuts.

Notice that in a derivation without non-logical axioms, uppermost cuts
are always reducible. Hence reductive cut-elimination implies the usual cut-
elimination. On the other hand, the following cuts are not reducible, even
if they are uppermost: (i) (CUT ) between two non-logical axioms and (ii)
(CUT ) between a non-logical axiom and the lower sequent of a logical rule
whose principal formula coincides with the cut formula.

Reductive cut-elimination is a naturally strengthened version of free-cut
elimination [5] (or cut-elimination with non-logical axioms [9, 20]). The
latter roughly says that one can eliminate cut inferences whose cut formulae
are not directly derived from non-logical axioms. Reductive cut-elimination
in addition aims to shift upward non-eliminable cuts as much as possible.

In the sequel, we sometimes treat meta-variables as if they were propo-
sitional variables, and consider derivations with meta-variables.

Definition 2.4. A logical connective ⋆ admits axiom expansion if the iden-
tity axiom ⋆( ~X) ⇒ ⋆( ~X) with ~X ≡ X1, . . . , Xn has a cut-free derivation
from atomic axioms, i.e. in which the identity axioms are restricted to the
form Xi ⇒ Xi (1 ≤ i ≤ n).
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Example 2.5.

1. The sequent calculus L⊓ admits neither reductive cut-elimination nor
axiom expansion. Indeed e.g. X ⇒ Y is derivable from X, X ⇒ Y
only using reducible cuts as follows:

X ⇒ X X ⇒ X
X ⇒ X ∧ X

(⊓, r)
X,X ⇒ Y

X ∧ X ⇒ Y
(⊓, l)

X ⇒ Y
(CUT )

while axiom expansion fails due to the lack of weakening.

2. L⊓ + (w) admits axiom expansion, indeed

X ⇒ X
X,Y ⇒ X

(w) Y ⇒ Y
X, Y ⇒ Y

(w)

X,Y ⇒ X ⊓ Y
(⊓, r)

X ⊓ Y ⇒ X ⊓ Y
(⊓, l)

However L⊓ + (w) does not admit reductive cut-elimination.

3. By contrast, L⊓ + (sc) (sequence contraction) admits reductive cut-
elimination, but not axiom expansion.

3. Syntactic Criteria: Reductivity and Weak Substitutivity

In this section we introduce reductivity and weak substitutivity and show
that these syntactic criteria are satisfied by any simple sequent calculus that
admits reductive cut-elimination. Our criteria are obtained by suitably mod-
ifying the sufficient conditions defined in [6] that ensure cut-elimination (via
suitable substitutions) for single-conclusion sequent calculi with exchange.

Definition 3.6. Let L be a simple sequent calculus. We call its logical rules
{(⋆, r)p}p∈Λ and {(⋆, l)q}q∈Λ′ for introducing a logical connective ⋆ reductive
in L if either Λ or Λ′ is empty, or for any p ∈ Λ and q ∈ Λ′:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ ⇒ ⋆( ~X)
(⋆, r)p

Υ′

1
⇒ Ψ′

1
· · · Υ′

m ⇒ Ψ′

m

Θ′

l, ⋆(
~X),Θ′

r ⇒ Ξ′

(⋆, l)q

the meta-sequent Θ′
l, Θ, Θ′

r ⇒ Ξ′ is derivable from {Υi ⇒ Ψi}1≤i≤n and
{Υ′

i ⇒ Ψ′
i}1≤i≤m using only identity axioms, (CUT ) and the structural

rules of L.
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Example 3.7. (⊓, r) and (⊓, l) are reductive in L⊓ + (sc):

Θ ⇒ X

Θ ⇒ Y Θl,X, Y,Θr ⇒ Ξ

Θl,X,Θ,Θr ⇒ Ξ
(CUT )

Θl,Θ,Θ,Θr ⇒ Ξ
(CUT )

Θl,Θ,Θr ⇒ Ξ
(sc)

while they are not in L⊓ + (w).

Remark 3.8. Reductivity was equivalently defined in [6] using rule instances
instead of rules schemas. This condition also corresponds to the principal
formula condition in [19].

Definition 3.9. Let Θ ⇒ Ξ be a meta-sequent. Given a meta-variable X
and a sequence Φ of fresh meta-variables, [Θ ⇒ Ξ]X 7→Φ is the set of meta-
sequents obtained from Θ ⇒ Ξ by replacing some (possibly zero) occurrences
of X in Θ with Φ. Likewise, given X and a meta-sequent Φl, Φr ⇒ Ψ which
consists of fresh meta-variables, [Θ ⇒ Ξ]X 7→(Φl;Φr⇒Ψ) is (i) {Θ ⇒ Ξ}, when
Ξ 6≡ X and (ii) {Θ ⇒ Ξ, Φl, Θ, Φr ⇒ Ψ}, otherwise.

Notice that any S ∈ [Θ ⇒ Ξ]X 7→Φ (S ∈ [Θ ⇒ Ξ]X 7→(Φl;Φr⇒Ψ)) is obtained
by some, possibly zero, applications of (CUT ) to Θ ⇒ Ξ and Φ ⇒ X
(Φl, X, Φr ⇒ Ψ).
Henceforth we will indicate with (R) the following structural rule (S0, . . . Sn

stand for meta-sequents):

S1 · · · Sn

S0

(R)

Definition 3.10. Let L be a simple sequent calculus. (R) is said to be
a derived structural rule in L if there exists a derivation in L of S0 from
{S1, . . . , Sn} using only the structural rules of L.

A structural rule (R) is weakly substitutive in L if for any meta-variable
X, any O ≡ Φ or Φl; Φr ⇒ Ψ (see Def. 3.9) and any S′

0 ∈ [S0]X 7→O, there
exists a derived structural rule in L of the form

S′

1
· · · S′

m

S′

0

where each S′
j (1 ≤ j ≤ m) belongs to

⋃
1≤i≤n[Si]X 7→O.

Remark 3.11. Intuitively, weakly substitutive structural rules allow any cut
to be shifted upward by replacing some2 occurrences of the cut formula in

2All, in the case of the substitutivity condition in [6].
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their premises by the context of the remaining premise of the cut. Due to
conditions (log1) – (log3) in Definition 2.1 logical rules naturally satisfy a
stronger version of being weakly substitutive.

Example 3.12.

1. (c) is not weakly substitutive in L⊓+(c). Indeed, let S0 be Θl, X, Θr ⇒
Ξ (the conclusion of (c)) and S1 be Θl, X, X, Θr ⇒ Ξ (the premise of
(c)). Then S′

0 ≡ Θl, Y, Z,Θr ⇒ Ξ belongs to [S0]X 7→Y,Z and there is
no derived rule in L⊓ + (c) with conclusion S′

0 and premises in

[S1]X 7→Y,Z = {(Θl, X, X, Θr ⇒ Ξ), (Θl, X, Y, Z,Θr ⇒ Ξ),

(Θl, Y, Z, X,Θr ⇒ Ξ), (Θl, Y, Z, Y, Z,Θr ⇒ Ξ)}.

In contrast, (c) (and more generally (sc)) is weakly substitutive in

L⊓ +(sc). In particular,
S′

1

S′
0

with S′
1 ≡ Θl, Y, Z, Y, Z,Θr ⇒ Ξ is just an

instance of (sc).

2. (c) and (wc) are weakly substitutive in L⊓+(c)+(e) and L⊓+(wc)+(e)
respectively.

3. (3c) (and (nc) with n ≥ 3 in general) is not weakly substitutive in
L⊓ + (3c) + (e). Indeed, let U0 be Θl, X, X, Θr ⇒ Ξ (the conclusion
of (3c)) and U1 be Θl, X, X, X, Θr ⇒ Ξ (the premise of (3c)). Then
U ′

0 ≡ Θl, Y, X,Θr ⇒ Ξ belongs to [U0]X 7→Y and there is no derived
rule in L⊓ + (3c) + (e) with conclusion U ′

0 and premises in [U1]X 7→Y .

4. (3c) is weakly substitutive in L⊓ + (c) + (e) (although not substitutive
in the sense of [6]). Indeed e.g., by using (c), U ′

0 above is derivable
from Θl, Y, Y, X,Θr ⇒ Ξ that belongs to [U1]X 7→Y .

The notion of weak substitutivity can be extended to derived rules in a
natural way, as shown by the following lemma.

Lemma 3.13. Let L be a simple sequent calculus. If all the structural rules
of L are weakly substitutive then so are all the derived structural rules of L.

Proof. By induction on the length of the derivation for each derived struc-
tural rule.

In the sequel, we prove that reductive cut-elimination implies reductivity
(Theorem 3.14) and weak substitutivity (Theorem 3.15).

Theorem 3.14. Let L be a simple sequent calculus. If L admits reductive
cut-elimination, then its logical rules are reductive.
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Proof. Let ⋆ be a logical connective and (⋆, r)p and (⋆, l)q (as in Def. 3.6)
be a pair of right and left introduction rules for ⋆ in L. By applying (CUT ),
the meta-sequent Θ′

l, Θ, Θ′
r ⇒ Ξ′ is derivable from S = {Υ1 ⇒ Ψ1, . . .Υn ⇒

Ψn, Υ′
1 ⇒ Ψ′

1, . . .Υ
′
m ⇒ Ψ′

m}. By reductive cut-elimination, Θ′
l, Θ, Θ′

r ⇒ Ξ′

is derivable from S without reducible cuts. Since the sequents in S and
Θ′

l, Θ, Θ′
r ⇒ Ξ′ all consist of meta-variables, no logical rule is used in it.

Theorem 3.15. Let L be a simple sequent calculus. If L admits reductive
cut-elimination, then its structural rules are weakly substitutive.

Proof. Let (R) be a structural rule of L, X a meta-variable and O ≡ Φ
a sequence of fresh meta-variables (the case O ≡ Φl; Φr ⇒ Ψ is similar).
Let S′

0 ∈ [S0]X 7→Φ. Thus S′
0 is obtained by (repeatedly) applying (CUT )

between S0 and Φ ⇒ X. I.e., there is a derivation of S′
0 of the form

Φ ⇒ X

Φ ⇒ X

S1 · · · Sn

S0

(R)

· · ·
(CUT )

S′

0

(CUT )

Since L admits reductive cut-elimination, we can find a derivation D of S′
0

from {S1, . . . , Sn, Φ ⇒ X} without reducible cuts. In D, we can find meta-
sequents U1, . . . , Um such that, for each 1 ≤ i ≤ m,

above Ui, only (CUT ) is used; below Ui, no (CUT ) is used

because otherwise there would be a reducible cut in D. Recall that the
left context meta-variables of (R) and the right context meta-variables of
(R) are mutually distinct, and that Φ consists of fresh meta-variables. It
follows that every occurrence of (CUT ) above each Ui has cut formula X
and premise Φ ⇒ X, i.e. each Ui belongs to some [Sj ]X 7→Φ. This means
that we have a derivation of S′

0 from
⋃

1≤j≤n[Sj ]X 7→Φ without using (CUT ).
Since U1, . . . , Um and S′

0 all consist of meta-variables, no logical rule is used
in it. Hence (R) is weakly substitutive.

4. Semantic Criteria: Coherence, Rigidity and Propagation

Here we introduce the semantic counterparts of the criteria investigated in
the previous section: coherence and propagation. These are stated in terms
of prephase structures, which are another presentation of (intuitionistic, non-
commutative) phase structures (see [1, 22, 17], or [14, 15] for a presentation
closer to ours).
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In a prephase structure, closed sets interpreting formulae are built from
a class of more “primitive” objects (as closed sets in a topological space
are built from a closed basis). Propagation, a refinement of the homonym
condition in [21], then arises as a natural property. Intuitively, structural
rules propagate if when they hold for primitive objects, then they also hold
for all closed sets. This property suitably formalizes Girard’s naturality test
[11] for logical principles.

Coherence arises by considering an “asymmetric” interpretation for con-
nectives (cfr. [8]; see also Section 5.2.3 of [10]). Indeed, to each compound
formula ⋆( ~X) we will associate two different interpretations (⋆, r)P( ~X•) and
(⋆, l)P( ~X•), depending on whether the formula appears on the right hand
side or on the left hand side of a sequent. Under such asymmetry, it is natu-
ral to require (⋆, r)P( ~X•) ⊆ (⋆, l)P( ~X•), since otherwise the cut rule cannot
be semantically sound3. That is the coherence property.

We show that reductivity implies coherence and weak substitutivity im-
plies propagation. Furthermore we consider rigidity – the converse condition
of coherence – and show that axiom expansion implies rigidity.

We start by introducing some notation and terminology. Let A be any
set, A∗ = (A∗, ·, 1) denotes the free monoid generated by A, and ℘(A∗) the
powerset of A∗. For any P, Q ⊆ A∗, define

P\Q = {y | ∀x ∈ P (x · y ∈ Q)}, P • Q = {x · y | x∈P, y∈Q},
Q/P = {y | ∀x ∈ P (y · x ∈ Q)}.

For any x ∈ A∗, we write x\P to denote {x}\P and P/x to denote P/{x}.
We then have y ∈ x\P ⇐⇒ x · y ∈ P ⇐⇒ x ∈ P/y. It follows that the set
(x\P )/y coincides with x\(P/y) and will be henceforth denoted by x\P/y.

Definition 4.16. A prephase structure P is a triple (A,B,⊥) such that
⊥ ⊆ A∗ and B ⊆ ℘(A∗). The set B ∪ {⊥} is denoted by B⊥. A closed set
is a subset of A∗ of the form

⋂
i∈Λ yi\Qi/zi where Λ is an arbitrary index

set, yi, zi ∈ A∗ and Qi ∈ B⊥ for each i ∈ Λ. The set of all closed sets in P

is denoted by CP. Given a set P ⊆ A∗, CP(P ) denotes the least closed set
containing P , i.e.,

CP(P ) =
⋂

{ y\Q/z | P ⊆ y\Q/z, y, z ∈ A∗ and Q ∈ B⊥}.

3From a semantic point of view, the cut rule is nothing but transitivity of inclusion.
Under asymmetry, it gives rise to the following principle: from Θ• ⊆ (⋆, r)P( ~X•) and
(⋆, l)P( ~X•) ⊆ Ξ•, deduce Θ• ⊆ Ξ•. This holds if and only if (⋆, r)P( ~X•) ⊆ (⋆, l)P( ~X•).
It is worth noting that the algebraic proof of reductive cut-elimination in the next section
vitally rests upon the soundness of the cut rule.
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Intuitively, a prephase structure can be considered as a topology-like
structure over a free monoid A∗, where the set {x\P/y | x, y ∈ A∗, P ∈ B⊥}
forms a basis for closed sets. The distinguished set ⊥ is used to interpret
the empty right hand side Ξ ≡ ∅ of a sequent.

Lemma 4.17. In every prephase structure P = (A,B,⊥), the operator CP

satisfies the following closure properties: (i) P ⊆ CP(P ), (ii) CP(CP(P )) ⊆
CP(P ), (iii) P ⊆ Q implies CP(P ) ⊆ CP(Q), (iv) CP(P )•CP(Q) ⊆ CP(P •
Q), and (v) every Q ∈ B⊥ is closed.

Proof. Properties (i) – (iii) are easy to check. As for (iv), it is enough
to show CP(P ) • Q ⊆ CP(P • Q) (as well as P • CP(Q) ⊆ CP(P • Q)).
For this, it is enough to prove that for any zl, zr ∈ A∗ and O ∈ B⊥ such
that P • Q ⊆ zl\O/zr, we have CP(P ) • Q ⊆ zl\O/zr. For every y ∈ Q,
P • {y} ⊆ zl\O/zr, i.e., P • {y · zr} ⊆ zl\O, hence P ⊆ zl\O/(y · zr). Thus
CP(P ) ⊆ zl\O/(y·zr), so CP(P )•{y·zr} ⊆ zl\O, i.e., CP(P )•{y} ⊆ zl\O/zr.
Since this holds for any y ∈ Q, we obtain CP(P )•Q ⊆ zl\O/zr, as required.
As for (v), just observe that Q = 1\Q/1.

Remark 4.18. The above lemma shows that every prephase structure (A,
B,⊥) induces a (non-commutative) phase structure (A∗, CP,⊥) [1, 22, 17].

Although closed under intersection, CP is not closed under union. We
therefore introduce the following operation: Let X be a set of closed sets,

⊕
X = CP(

⋃
X ), in particular,

⊕
X = CP(∅), when X is empty.

Let us fix a prephase structure P = (A,B,⊥). We now interpret each
logical connective ⋆ based on the logical rules for introducing ⋆. Consider
the meta-sequent Θ ⇒ Ξ, where Θ and Ξ consist of the meta-variables
X1, . . . , Xn. Suppose that a closed set X•

i ∈ CP is associated to each Xi

(i = 1, . . . n). We can then associate to

• Θ the closed set Θ• denoting CP((X•
i1

)• · · · • (X•
ik

)) if Θ ≡ Xi1 , . . . Xik

(i1, . . . , ik ∈ {1, . . . , n}), or 1 = CP({1}) if Θ is empty;

• Ξ the closed set Ξ• denoting either X•
i if Ξ ≡ Xi (1 ≤ i ≤ n), or ⊥ if

Ξ is empty.

We say that X•
1 , . . . , X•

n satisfy Θ ⇒ Ξ if Θ• ⊆ Ξ•.

Definition 4.19. For each right logical rule

Υ1 ⇒ Ψ1 · · · Υm ⇒ Ψm

Θ ⇒ ⋆( ~X)
(⋆, r)i
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that consists of active meta-variables ~X ≡ X1, . . . , Xn and context meta-
variables ~Y ≡ Y1, . . . , Yk, and for any closed sets X•

1 , . . . , X•
n ∈ CP, we define

(⋆, r)Pi ( ~X•) =
⊕

{Θ•| ~Y • ∈ CP, Υ•
1 ⊆ Ψ•

1, . . . ,Υ
•
m ⊆ Ψ•

m}

i.e., the largest value Θ• ∈ CP such that ~X•, ~Y • satisfy all the premises
(with ~Y • ranging over CP). Consequently, we always have Θ• ⊆ (⋆, r)Pi ( ~X•)

whenever ~X•, ~Y • ∈ CP satisfy the premises. Likewise, for each left logical
rule

Υ1 ⇒ Ψ1 · · · Υm ⇒ Ψm

Θl, ⋆( ~X),Θr ⇒ Ξ
(⋆, l)j

that consists of active meta-variables ~X and context meta-variables ~Y , and
for any closed sets ~X• ∈ CP, we define

(⋆, l)Pj ( ~X•) =
⋂

{Θ•
l \Ξ

•/Θ•
r | ~Y • ∈ CP, Υ•

1 ⊆ Ψ•
1, . . . ,Υ

•
m ⊆ Ψ•

m}

i.e., the least value Θ•
l \Ξ

•/Θ•
r ∈ CP such that ~X•, ~Y • satisfy all the premises

(with ~Y • ranging over CP). Consequently, we always have Θ•
l • (⋆, l)Pj ( ~X•) •

Θ•
r ⊆ Ξ•, whenever ~X•, ~Y • ∈ CP satisfy the premises. When {(⋆, r)i}i∈Λ

and {(⋆, l)j}j∈Λ′ are the right and left logical rules introducing ⋆( ~X), the

right interpretation (⋆, r)P( ~X) and the left interpretation (⋆, l)P( ~X) of ⋆ are
defined as follows:

(⋆, r)P( ~X•) =
⊕

i∈Λ

(⋆, r)Pi ( ~X•), (⋆, l)P( ~X•) =
⋂

j∈Λ′

(⋆, l)Pj ( ~X•).

Example 4.20. The logical rules

Z ⇒ X Z ⇒ Y
Z ⇒ X ⊓ Y

(⊓, r)i

Z1,X, Y, Z2 ⇒ W

Z1,X ⊓ Y,Z2 ⇒ W
(⊓, l)j

are respectively interpreted as follows: for any X•, Y • ∈ CP,

(⊓, r)Pi (X•, Y •) =
⊕

{Z• | Z• ∈ CP, Z• ⊆ X•, Z• ⊆ Y •} = X• ∩ Y •

(⊓, l)Pj (X•, Y •) =
⋂

{Z•

1
\W •/Z•

2
| Z•

1
, Z•

2
,W • ∈ CP, Z•

1
• X• • Y • • Z•

2
⊆ W •}

= 1\CP(X• • Y •)/1 = CP(X• • Y •)

Definition 4.21. A structural rule (R) with context meta-variables ~X is
valid in P if whenever ~X• ∈ CP satisfy the premises of (R), ~X• also satisfy
the conclusion. A prephase structure P is said to be an L-structure if all the
structural rules of L are valid in P.
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We have associated two interpretations to each logical connective. How-
ever, to make both identity axiom and (CUT ) sound, we must associate one
closed set to each formula.

Definition 4.22. Given a simple sequent calculus L and a prephase struc-
ture P, a valuation on P (for L) is a map f from the set of formulae to CP

such that for each compound formula ⋆( ~A) ≡ ⋆(A1, . . . , An),

(⋆, r)P(
−−−→
f(A)) ⊆ f(⋆( ~A)) ⊆ (⋆, l)P(

−−−→
f(A)),

where
−−−→
f(A) denotes f(A1), . . . , f(An). A valuation f can be extended to

a sequence Γ ≡ A1, . . . , An of formulae by letting f(Γ) = CP(f(A1) • · · · •
f(An)) when n ≥ 1, and otherwise f(Γ) is either 1 or ⊥ depending on
whether Γ appears on the left or right hand side of a sequent (the context
will always provide the relevant information). A sequent Γ ⇒ ∆ is true
under f if f(Γ) ⊆ f(∆).

Theorem 4.23 (Soundness). Let L be a simple sequent calculus, P an L-
structure, and f a valuation on P. If all non-logical axioms in S are true
under f and S0 is derivable in L from S, then S0 is also true under f .

Proof. By induction on the length of the derivation of S0. It is easy to see
that all instances of the identity axiom are true under any valuation, and
all instances of the cut rule and the structural rules in L preserve truth in
P. Now consider an instance of a right logical rule (⋆, r)i with conclusion
Γ ⇒ ⋆( ~A), and suppose that the premises are true under f . A straightfor-

ward argument shows that f(Γ) ⊆ (⋆, r)Pi (
−−−→
f(A)) (cfr. Definition 4.19). Since

(⋆, r)Pi (
−−−→
f(A)) ⊆ (⋆, r)P(

−−−→
f(A)) ⊆ f(⋆( ~A)), the conclusion is true under f .

Similarly for left logical rules.

Even though the soundness theorem holds for any simple sequent calculus
L, this does not mean that L can be semantically interpreted in a useful way.
In particular, it is not always the case that there exists a valuation on a given
prephase structure. For instance, when L involves ⊓, any valuation f must
satisfy f(A) ∩ f(B) ⊆ f(A ⊓ B) ⊆ CP(f(A) • f(B)) (cfr. Example 4.20).
However, such a valuation does not always exist because P ∩Q ⊆ CP(P •Q)
does not hold in general. To ensure the existence of a valuation, a further
condition is required.

Definition 4.24. A logical connective ⋆ is coherent (rigid, respectively) in
L if (⋆, r)P( ~X•) ⊆ (⋆, l)P( ~X•) ((⋆, l)P( ~X•) ⊆ (⋆, r)P( ~X•), respectively) for
any closed sets ~X• in any L-structure.



Towards a Semantic Characterization of Cut-elimination 109

Coherence of logical connectives guarantees that there exists a valua-
tion in any L-structure. When in addition logical connectives are rigid, the
value of a compound formula is uniquely determined by the values of its

subformulae; namely, f(⋆( ~A)) = (⋆, l)P(
−−−→
f(A)) = (⋆, r)P(

−−−→
f(A)).

Example 4.25. In any L⊓ +(sc)-structure (cfr. Example 2.5), we have P ⊆
CP(P • P ) for any closed set P . This makes (⊓, r)P(P, Q) = P ∩ Q ⊆
CP((P ∩ Q) • (P ∩ Q)) ⊆ CP(P • Q) = (⊓, l)P(P, Q) for any closed sets P
and Q. Hence ⊓ is coherent in L⊓ + (sc).

On the other hand, we have P ⊆ 1 in any L⊓ + (w)-structure. This
makes CP(P • Q) ⊆ CP(P • 1) ∩ CP(1 • Q) = P ∩ Q for any closed sets P
and Q. Therefore ⊓ is rigid in L⊓ + (w).

To introduce the propagation property, we need a notion of validity in a
“primitive” sense. Let Θ ⇒ Ξ be a meta-sequent in which Θ consists of the
meta-variables X1, . . . , Xn and Ξ is either empty or Ξ ≡ Y . Suppose that
an element X◦

i ∈ A is associated to each Xi (i = 1, . . . n) and a set Y ⋄ ∈ B
to Y . We can then associate to

• Θ an element Θ◦ denoting either X◦
i1
· · ·X◦

ik
∈ A∗ if Θ ≡ Xi1 , . . . , Xik ,

or 1 if Θ is empty;

• Ξ a set Ξ⋄ denoting either Y ⋄ if Ξ ≡ Y , or ⊥ if Ξ is empty.

We say that X◦
1 , . . . , X◦

n ∈ A and Y ⋄ ∈ B pre-satisfy Θ ⇒ Ξ if Θ◦ ∈ Ξ⋄.

Definition 4.26. A structural rule (R) with left context meta-variables ~X
and (possibly) a right context meta-variable Y is pre-valid in P if, for each
~X◦ ∈ A (and Y ⋄ ∈ B when the right hand side is nonempty) whenever
~X (and Y ⋄) pre-satisfy all the premises of (R), they also pre-satisfy the
conclusion.

A structural rule (R) is said to be propagating in L if (R) is valid in all
prephase structures in which all the structural rules of L are pre-valid.

Remark 4.27. In short, structural rules are propagating when their pre-
validity implies validity. Instead of pre-validity, validity with respect to the
atomic closed sets4 (i.e. those of the form C({a}), a ∈ A) is implicitly used
in [21].

4Intuitively, an atomic closed set C({a}) with a ∈ A can be considered as a first-order
object, and an arbitrary closed set C(P ) with P ⊆ A∗ as a second-order object. Then
the basic meaning of propagation is that the structural rules for second-order objects are
“conservative” over those for first-order objects. This accounts for why cut-elimination
implies the propagation property in [21], as cut-elimination is well-known to be an effective
means to show such a conservativity result (as pointed out by J.-Y. Girard).
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Example 4.28. Let P be any prephase structure in which (c) is pre-valid,
i.e. x ·a ·a ·y ∈ P0 implies x ·a ·y ∈ P0 for any a ∈ A, x, y ∈ A∗ and P0 ∈ B⊥.
(c) is not necessarily valid in P, i.e. it is not always the case that for any
closed sets P1, P2, P3, Q, (∗) P1 • Q • Q • P2 ⊆ P3 implies P1 • Q • P2 ⊆ P3.
Hence (c) is not propagating in L⊓ + (c).

On the other hand, the above (∗) holds when (sc) is pre-valid in P, i.e.
x·w ·w ·y ∈ P0 implies x·w ·y ∈ P0 for any w, x, y ∈ A∗ and P0 ∈ B⊥. Indeed,
assume P1 • Q • Q • P2 ⊆ P3. Let x ∈ P1, w ∈ Q, y ∈ P2 and P3 ⊆ zl\O/zr

with zl, zr ∈ A∗ and O ∈ B⊥. Then we have x · w · w · y ∈ zl\O/zr, i.e.
zl ·x ·w ·w ·y ·zr ∈ O. Since (sc) is pre-valid in P, we have zl ·x ·w ·y ·zr ∈ O,
i.e. x · w · y ∈ zl\O/zr. This shows P1 • Q • P2 ⊆ P3. Therefore, (c) (and
more generally (sc)) is propagating in L⊓ + (sc).

In the sequel, we will show that (i) reductivity implies coherence (The-
orem 4.29), (ii) axiom expansion implies rigidity (Theorem 4.30), and (iii)
weak substitutivity implies propagation (Theorem 4.31).

Theorem 4.29. Let L be a simple sequent calculus. Each connective ⋆ de-
fined by reductive rules in L is coherent in L.

Proof. Let P be an L-structure. If there is no right (left) logical rules for ⋆,
then ⋆ is trivially coherent because (⋆, r)P( ~X•) = CP(∅) ((⋆, l)P( ~X•) = A∗)
for any closed sets ~X•. Otherwise, it is enough to prove that for every
pair of right and left logical rules (⋆, r)i and (⋆, l)j , and for any closed sets
~X•, (⋆, r)Pi ( ~X•) ⊆ (⋆, l)Pj ( ~X•). Let the conclusions of (⋆, r)i and (⋆, l)j be

Θ ⇒ ⋆( ~X) and Θl, ⋆( ~X), Θr ⇒ Ξ respectively. Without loss of generality,
we may assume that the context meta-variables ~Y in Θ are distinct from the
meta-variables ~Z in Θl, Θr and Ξ, thus the only common meta-variables in
(⋆, r)i and (⋆, l)j are ~X.

Now, the reductivity of (⋆, r)i and (⋆, l)j (together with the assumption
that all the structural rules of L are valid in P) implies that for any closed
sets ~Y •, ~Z• that satisfy the premises of (⋆, r)i and (⋆, l)j , Θ•

l •Θ• •Θ•
r ⊆ Ξ•,

i.e., Θ• ⊆ Θ•
l \Ξ

•/Θ•
r . Since ~Y • and ~Z• can be chosen independently, we

obtain (⋆, r)Pi ( ~X•) ⊆ (⋆, l)Pj ( ~X•).

Theorem 4.30. Let L be a simple sequent calculus. Each connective ⋆ that
admits axiom expansion is rigid in L.

Proof. By assumption, ⋆( ~X) ⇒ ⋆( ~X) with ~X ≡ X1, . . . , Xn has a cut-
free derivation D from identity axioms of the form Xi ⇒ Xi (1 ≤ i ≤
n). Let P be an L-structure and ~X• be closed sets. Interpret the formula
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⋆( ~X) by (⋆, l)P( ~X•) when it appears on the left hand side of a sequent
and by (⋆, r)P( ~X•) otherwise. By induction on D, we can prove that this
interpretation satisfies each sequent in D. Thus we obtain (⋆, l)P( ~X•) ⊆
(⋆, r)P( ~X•).

Theorem 4.31. If all the structural rules of L are weakly substitutive, then
they are propagating in L.

To prove this theorem, we need a syntactic way of representing each
element of A∗ and B⊥ in a given prephase structure P = (A,B,⊥). Let
V0 be a set of meta-variables that is in one-to-one correspondence with A
via ◦. Namely, each element in A can be denoted by V ◦ for some V ∈ V0.
This way any element in A∗ can be denoted by Θ◦ where Θ consists of
meta-variables in V0. Similarly, let V1 be a set of meta-variables that is in
one-to-one correspondence with B via ⋄. Then any element in B⊥ can be
denoted by Ξ⋄ where Ξ is either empty or consists of some W ∈ V1.

Proof. Let (R) be a structural rule of L and P a prephase structure in
which all the structural rules of L are pre-valid. Suppose that (R) consists
of left context meta-variables X1, . . . , Xn and a right context metavariable
Y , and the conclusion is S0 ≡ Xi1 , . . . , Xik ⇒ Y with i1, . . . , ik ∈ {1, . . . , n}
(the case when the right hand side is empty is easier). Let X•

1 , . . . , X•
n, Y •

be closed sets that satisfy the premises S1, . . . , Sm of (R). Our goal is to
prove that the conclusion is also satisfied, i.e., X•

i1
• · · · • X•

ik
⊆ Y •. It is

enough to show the following:

For any Θ◦
1 ∈ X•

i1
, . . . ,Θ◦

k ∈ X•
ik

, any Θ◦
0, Θ◦

k+1 ∈ A∗ and
Φ⋄ ∈ B⊥ such that Y • ⊆ Θ◦

0\Φ
⋄/Θ◦

k+1, we have Θ◦
1 · · ·Θ

◦
k ∈

Θ◦
0\Φ

⋄/Θ◦
k+1, i.e., Θ◦

0 · · ·Θ
◦
k+1 ∈ Φ⋄.

Here we assume that the sequences Θ0, . . . ,Θk+1 (Φ, respectively) consist of
meta-variables V0 (V1, respectively). Since (R) is weakly substitutive, there
exists a derived rule (R0) with conclusion

S′
0 ≡ Θ0, Xi1 , . . . , Xik , Θk+1 ⇒ Φ ∈ [S0]Y 7→(Θ0;Θk+1⇒Φ)

and premises S′
1, . . . , S

′
m′ in

⋃
1≤p≤m[Sp]Y 7→(Θ0;Θk+1⇒Φ). By Lemma 3.13,

(R0) is weakly substitutive. Hence there exists a derived rule (R1) with
conclusion

Θ0, Θ1, Xi2 , . . . , Xik , Θk+1 ⇒ Φ ∈ [S′
0]Xi1

7→Θ1
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and premises in
⋃

1≤p≤m′ [S′
p]Xi1

7→Θ1
. By repeating this process k times,

we obtain a derived rule (Rk) with conclusion Θ0, . . . ,Θk+1 ⇒ Φ and with
premises obtained from S1, . . . , Sm by applying substitution operations Y 7→

(Θ0; Θk+1 ⇒ Φ), Xi1
7→ Θ1, . . . , Xik

7→ Θk.

Now (Rk) consists only of meta-variables V0,V1. We claim that all
premises of (Rk) are pre-satisfied by {V ◦|V ∈ V0} and {V ⋄|V ∈ V1}. In-
deed let Θ0, Θj1 , . . . ,Θjl

, Θk+1 ⇒ Φ be any premise of (Rk) obtained from
some Sj ≡ Xh1

, . . . , Xhl
⇒ Y by applying substitution operations. By

assumption, Θ◦
j1

∈ X•
h1

, . . . ,Θ◦
jl

∈ X•
hl

and Y • ⊆ Θ◦
0\Φ

⋄/Θ◦
k+1. Hence

Θ◦
0 · Θ

◦
j1
· · ·Θ◦

jl
· Θ◦

k+1 ∈ Φ⋄.

Since only structural rules are used to derive (Rk) and all of them are
assumed to be pre-valid, we conclude Θ◦

0 · · ·Θ
◦
k+1 ∈ Φ⋄.

5. Semantic Reductive Cut-Elimination

In this section we show that coherence and propagation are sufficient con-
ditions for a simple sequent calculus L to admit reductive cut-elimination.
Moreover, if a logical connective ⋆ satisfies rigidity, then ⋆ admits axiom
expansion. These results are obtained using a powerful semantic technique
introduced by Okada [14, 15, 16] (and also used in [3, 21]) who proved cut-
elimination for linear logic by constructing a specific phase structure in which
the validity of a formula directly implies its cut-free provability5.

Let us fix a simple sequent calculus L and a set S of non-logical axioms.
Let F be the set of formulae in L. We can identify a finite sequence Γ of
formulae with an element of the free monoid F∗. Define

[[A]] = {Γ | Γ ⇒ A is derivable in L from S without reducible cuts},

[[ ]] = {Γ | Γ ⇒ is derivable in L from S without reducible cuts}.

5In more detail, the argument goes as follows: we codify formulae by A and cut-free
provability by B⊥. Since A and B⊥ themselves do not constitute an algebraic structure
that models L, we build more abstract objects (i.e. closed sets) on them. By soundness,
any sequent provable using the cut rule is true on the closed sets. Then Okada’s Lemma
—a key result to be proved for each logical connective— provides a link between truth on
the closed sets and cut-free provability codified by B⊥. For this argument to work, two
requirements must be satisfied. First, the structural rules codified in the primitive objects
(A and B⊥) must extend smoothly to the more abstract objects (closed sets); this holds
when rules are propagating. Second, our asymmetric interpretation causes a split-up of
Okada’s Lemma into two parts. Hence they must be composed together to regain the
effect; this is guaranteed when logical connectives are coherent. Therefore propagation
and coherence are the keys to establish (reductive) cut-elimination. Rigidity provides us
with another way to compose two parts of Okada’s Lemma, thus yielding axiom expansion.
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Then L = (F ,B, [[ ]]) with B = {[[A]]|A ∈ F} is a prephase structure. In
the sequel, the induced closure operator CL will be simply written as C.
Although these devices are enough to prove cut-elimination, for reductive
cut-elimination we also need:

• [[A]]′p = {Γ | Γ ⇒ A is derivable in L from S without reducible cuts
and without A being a context formula of any logical/structural rule}.

• C ′
p(A) =

⋂
{∆\[[D]]/Σ | ∆, A,Σ ⇒ D is derivable in L from S without

reducible cuts and without A being a context formula of any logi-
cal/structural rule}.

• [[A]]p = C([[A]]′p), Cp(A) = C ′
p(A) ∩ [[A]]p.

It is clear that Cp(A), [[A]]p and [[A]] are closed, and A ∈ Cp(A) ⊆ [[A]]p ⊆ [[A]].
We now adapt to our setting Okada’s Lemma [14, 15, 16], which plays

a prominent role in proving algebraic cut-elimination. Since we have two
interpretations for each logical connectives, Okada’s Lemma is accordingly
split into two parts:

Lemma 5.32. Let ⋆( ~A) ≡ ⋆(A1, . . . , An) and suppose that for every 1 ≤ i ≤
n, X•

i is a closed set such that Ai ∈ X•
i ⊆ [[Ai]]. We then have:

(1) (⋆, r)L( ~X•) ⊆ [[⋆( ~A)]]p, (2) Cp(⋆( ~A)) ⊆ (⋆, l)L( ~X•).

Proof. (1) It suffices to show that for each right logical rule (⋆, r)i

Υ1 ⇒ Ψ1 · · · Υm ⇒ Ψm

Θ ⇒ ⋆( ~X)
(⋆, r)i

(⋆, r)Li ( ~X•) ⊆ [[⋆( ~A)]]p. Suppose that Θ ≡ Y1, . . . , Yh, and let Y •
1 , . . . , Y •

h be
any closed sets such that Υ•

1 ⊆ Ψ•
1, . . . , Υ•

m ⊆ Ψ•
m. Our goal is to show

Θ• ⊆ [[⋆( ~A)]]p, from which we can to conclude (⋆, r)Li ( ~X•) ⊆ [[⋆( ~A)]]p.
Choose arbitrary Γ1 ∈ Y •

1 , . . . ,Γh ∈ Y •
h and denote each Γi by Y̌i (con-

dition (log1) ensures that Y̌i is uniquely determined by Yi). For each active
meta-variable Xj , let X̌j stand for Aj . With this notation, we have Ž ∈ Z•

for any meta-variable Z occurring in (⋆, r)i, and moreover Z• ⊆ [[Ž]] when
Z is an active meta-variable. Let us extend this notation to any sequence
Υ ≡ Z1, . . . , Zk by letting Υ̌ be Ž1, . . . , Žk (and empty when Υ is). We then
have Υ̌p ∈ Υ•

p ⊆ Ψ•
p ⊆ [[Ψ̌p]] for every 1 ≤ p ≤ m, that means that Υ̌p ⇒ Ψ̌p

is derivable from S without reducible cuts. Moreover, due to condition (log2)
the inference

Υ̌1 ⇒ Ψ̌1 · · · Υ̌m ⇒ Ψ̌m

Θ̌ ⇒ ⋆( ~A)
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is an instance of a right logical rule introducing ⋆. This shows that Γ1, . . . ,Γh

≡ Θ̌ ∈ [[⋆( ~A)]]′p. Since this holds for any Γ1 ∈ Y •
1 , . . . , Γh ∈ Y •

h , we conclude

that Θ• ⊆ C([[⋆( ~A)]]′p) = [[⋆( ~A)]]p.

(2) It suffices to show that for each left logical rule (⋆, l)j

Υ1 ⇒ Ψ1 · · · Υm ⇒ Ψm

Θl, ⋆( ~X),Θr ⇒ Ξ
(⋆, l)j

Cp(⋆( ~A)) ⊆ (⋆, l)Lj ( ~X•). Suppose that Ξ ≡ W (the case Ξ ≡ ∅ is easier),
Θl ≡ Y1, . . . , Yh, and Θr ≡ Yh+1, . . . , Yk. As before, let Y •

1 , . . . , Y •
k , W •

be closed sets such that Υ•
1 ⊆ Ψ•

1, . . . , Υ•
m ⊆ Ψ•

m. Our goal is to show
Θ•

l • Cp(⋆( ~A)) • Θ•
r ⊆ W •.

Choose Γ1 ∈ Y •
1 , . . . ,Γk ∈ Y •

k and ∆l, Φ, ∆r (with |Φ| ≤ 1) such that
W • ⊆ ∆l\[[Φ]]/∆r. For each meta-variable Z occurring in (⋆, l)j , define Ž as
before. We again have Ž ∈ Z•, and moreover Z• ⊆ [[Ž]] when Z is an active
meta-variable. In addition, we define:

Υ ⇒ Ψ ≡ ∆l, Υ̌,∆r ⇒ Φ if Ψ ≡ W ;
≡ Υ̌ ⇒ Ψ̌ otherwise.

Then for each premise Υp ⇒ Ψp (1 ≤ p ≤ m), Υp ⇒ Ψp is derivable from S
without reducible cuts; indeed, when Ψp ≡ W , we have Υ̌p ∈ Υ•

p ⊆ W • ⊆

∆l\[[Φ]]/∆r, hence ∆l, Υ̌p, ∆r ⇒ Φ is derivable from S without reducible
cuts. Now the inference

Υ1 ⇒ Ψ1 · · · Υm ⇒ Ψm

∆l, Θ̌l, ⋆( ~A), Θ̌r, ∆r ⇒ Φ
(⋆, l)j

is an instance of a left logical rule introducing ⋆ due to conditions (log2)
and (log3). Therefore, C ′

p(⋆( ~A)) ⊆ (∆l, Θ̌l)\[[Φ]]/(Θ̌r, ∆r). By noting that

Cp(⋆( ~A)) ⊆ C ′
p(⋆( ~A)), we obtain {Θ̌l}•Cp(⋆( ~A))•{Θ̌r} ⊆ ∆l\[[Φ]]/∆r. Since

this holds for arbitrary Γi ∈ Y •
i (1 ≤ i ≤ k) and arbitrary ∆l, Φ, ∆r such

that W • ⊆ ∆l\[[Φ]]/∆r, we conclude Θ•
l • Cp(⋆( ~A)) • Θ•

r ⊆ W •.

When logical connectives are coherent we can compose the two parts of
the above lemma in a harmonious way. For any formula A, define f0(A) by
induction on the complexity of A as follows:

f0(α) = [[α]]p,

f0(⋆( ~A)) = (⋆, l)L(
−−−→
f0(A)) ∩ [[⋆( ~A)]]p.
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Lemma 5.33. If all the logical connectives in L are coherent, then f0 is a
valuation such that for any compound formula ⋆( ~A) we have:

(⋆, r)L(
−−−→
f0(A))

⊆

Cp(⋆( ~A)) ⊆ f0(⋆( ~A)) ⊆ [[⋆( ~A)]]p⊆

(⋆, l)L(
−−−→
f0(A))

Proof. By induction on the complexity of A, using coherence, Lemma 5.32
and the fact that A ∈ Cp(A) ⊆ [[A]]p ⊆ [[A]].

From the horizontal line above, we recover the original form of Okada’s
Lemma: A ∈ f0(A) ⊆ [[A]] for any formula A. As a consequence follows:

Theorem 5.34 (Completeness). If Γ ⇒ ∆ is true under f0 in L, then Γ ⇒ ∆
is derivable from S without reducible cuts.

Proof. Let Γ ≡ A1, . . . , An and ∆ ≡ B (the case ∆ ≡ ∅ is similar). Since
f0(A1) • · · · • f0(An) ⊆ f0(B), Okada’s Lemma implies A1, . . . , An ∈ [[B]],
i.e., Γ ⇒ ∆ is derivable from S without reducible cuts.

Note that the above theorem holds independently of the structural rules
of L. Their properties, instead, are used to prove the following lemma:

Lemma 5.35. If all the structural rules of L are propagating then L =
(F ,B, [[ ]]) is an L-structure.

Proof. We first prove that all the structural rules of L are pre-valid in L.
Let (R) be a structural rule of L with premises Υ1 ⇒ Ψ1, . . . Υn ⇒ Ψn and
conclusion Θ ⇒ Ξ. Suppose that Θ consists of meta-variables X1, . . . , Xm

and Ξ ≡ Y (the case Ξ ≡ ∅ is similar). Let X◦
1 , . . . , X◦

m be elements of F
and Y ⋄ = [[Z]] an element of B such that Υ◦

i ∈ Ψ⋄
i for each 1 ≤ i ≤ n.

When Ψi ≡ Y (Ψi ≡ ∅, respectively), this means that Υ◦
i ⇒ Z (Υ◦

i ⇒ ,
respectively) is derivable from S without reducible cuts. Since these are
instances of the premises of (R), the conclusion Θ◦ ⇒ Z is also derivable
from S without reducible cuts. From this, we conclude that Θ◦ ∈ [[Z]] = Y ⋄.

Since the structural rules of L are propagating, they are valid in L.
Therefore L is an L-structure.
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Lemma 5.36. All non-logical axioms in S are true under the valuation f0.

Proof. Let A1, . . . , An ⇒ B be a non-logical axiom in S. To show that it is
true under f0, by Lemma 5.33 it is enough to prove that [[A1]]p •· · ·• [[An]]p ⊆
Cp(B). For this, we have to prove (i) [[A1]]

′
p • · · · • [[An]]′p ⊆ C ′

p(B) and (ii)
[[A1]]

′
p • · · · • [[An]]′p ⊆ [[B]]′p. To show (i), let Γi ∈ [[Ai]]

′
p for 1 ≤ i ≤ n.

By definition, Γi ⇒ Ai is derivable from S without reducible cuts and
without Ai being a context formula of any logical/structural rule. Sup-
pose that (*) ∆l, B,∆r ⇒ Σ is derivable from S without reducible cuts
and without B being a context formula of any logical/structural rule. By
repeatedly applying (CUT ) to these sequents and A1, . . . , An ⇒ B, we ob-
tain a derivation of ∆l, Γ1, . . . ,Γn, ∆r ⇒ Σ without reducible cuts. Thus
Γ1, . . . ,Γn ∈ ∆l\[[Σ]]/∆r. Since this holds for arbitrary ∆l, ∆r and Σ satis-
fying (*), we obtain Γ1, . . . ,Γn ∈ C ′

p(B). (ii) can be shown similarly.

Theorem 5.37. Let L be a simple sequent calculus in which structural rules
are propagating and logical connectives are coherent. Then L admits reduc-
tive cut-elimination.

Proof. Suppose that a sequent S0 is derivable from S in L. Lemmas 5.35
and 5.36 ensure that L = (F ,B, [[ ]]) is an L-structure and that axioms in S
are true under f0. By Theorem 4.23, S0 is true under f0. The claim follows
by Theorem 5.34.

When a logical connective ⋆ is rigid and the structural rules of L are
propagating, we can modify the above construction to show that ⋆ admits
axiom expansion. Define Le = (F ,Be, [[ ]]e) by

[[A]]e = {Γ | Γ ⇒ A has a cut-free derivation from atomic axioms}

[[ ]]e = {Γ | Γ ⇒ has a cut-free derivation from atomic axioms}

and Be = {[[A]]e|A ∈ F}. Similarly to Lemma 5.32, we can prove that:
whenever Ai ∈ X•

i ⊆ [[Ai]]e for every 1 ≤ i ≤ n, we have (⋆, r)Le( ~X•) ⊆

[[⋆( ~A)]]e and ⋆( ~A) ∈ (⋆, l)Le( ~X•). Moreover, in analogy with Lemma 5.35 we
can also prove that Le is an L-structure. Therefore the rigidity of ⋆ allows
the composition of the two inclusions above as:

⋆( ~X) ∈ (⋆, l)Le(
−−→
[[X]]e) ⊆ (⋆, r)Le(

−−→
[[X]]e) ⊆ [[⋆(

−→
X )]]e.

This means that ⋆( ~X) ⇒ ⋆( ~X) has a cut-free derivation from atomic axioms
Xi ⇒ Xi (1 ≤ i ≤ n). We therefore have:
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Theorem 5.38. Let L be a simple sequent calculus in which structural rules
are propagating. If a logical connective ⋆ is rigid in L, then ⋆ admits axiom
expansion.

To sum up, we have obtained:

Corollary 5.39. Let L be a simple sequent calculus.
1. The following are equivalent:

(i) L admits reductive cut-elimination.

(ii) All the logical rules of L are reductive and all the structural rules of L
are weakly substitutive.

(iii) All the logical connectives of L are coherent and all the structural rules
of L are propagating.

2. When the structural rules of L are weakly substitutive, a logical connective
⋆ admits axiom expansion in L iff ⋆ is rigid.

On the one hand, the equivalence between (i) and (ii) provides us with
a syntactic and modular (rule-by-rule) way of checking whether a simple
sequent calculus admits reductive cut-elimination. On the other hand, the
equivalence between (i) and (iii) shows an algebraic perspective of reductive
cut-elimination. Finally, the duality between coherence and rigidity together
with our main results 1 and 2 suggests a duality between reductive cut-
elimination and axiom expansion, for simple sequent calculi whose structural
rules are weakly substitutive.

Acknowledgments. We are grateful to J-Y. Girard, M. Okada, H. Ono,
G. Metcalfe and the anonymous referees for useful comments. A. Ciabattoni
was supported by C. Bühler-Habilitations-Stipendium H191-N04, from the
Austrian Science Fund (FWF). K. Terui was supported by Grant-in-Aid for
Scientific Research, MEXT, Japan.

References

[1] Abrusci, V. M., ‘Non-commutative intuitionistic linear propositional logic’,

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 36:297–318,

1990.

[2] Avron, A., and I. Lev, ‘Canonical Propositional Gentzen-Type Systems’, Proceedings

of IJCAR’01, vol. 2083 LNCS, 2001, pp. 529–543.

[3] Belardinelli, F., H. Ono, and P. Jipsen, ‘Algebraic aspects of cut elimination’,

Studia Logica 68:1–32, 2001.



118 A. Ciabattoni and K. Terui

[4] Belnap, N. D., Jr., ‘Display Logic’, Journal of Philosophical Logic, 11(4):375–417,

1982.

[5] Buss, S., ‘An Introduction to Proof Theory’, Handbook of Proof Theory, Elsevier

Science, 1998, pp. 1–78.

[6] Ciabattoni, A., ‘Automated Generation of Analytic Calculi for Logics with Linear-

ity’, Proceedings of CSL’04, vol. 3210 LNCS, 2004, pp. 503–517.

[7] Gentzen, G., ‘Untersuchungen über das Logische Schliessen’, Math. Zeitschrift

39:176–210, 405–431, 1935.

[8] Girard, J.-Y., ‘Three valued logics and cut-elimination: the actual meaning of

Takeuti’s conjecture’, Dissertationes Mathematicae 136:1–49, 1976.

[9] Girard, J.-Y., Proof Theory and Logical Complexity, Bibliopolis, 1987.

[10] Girard, J.-Y., Y. Lafont, and P. Taylor, Proofs and Types, Cambridge University

Press, 1989.

[11] Girard, J.-Y., ‘On the meaning of logical rules I: syntax vs. semantics’, in U. Berger

and H. Schwichtenberg, (eds.), Computational Logic, Heidelberg Springer-Verlag,

1999, pp. 215–272.

[12] Hori, R., H. Ono, and H. Schellinx, ‘Extending intuitionistic linear logic with

knotted structural rules’, Notre Dame Journal of Formal Logic 35(2):219–242, 1994.

[13] Miller, D., and E. Pimentel, ‘Using Linear Logic to reason about sequent systems’,

Proceedings of Tableaux’02, vol. 2381 LNCS, 2002, pp. 2–23.

[14] Okada, M., ‘Phase semantics for higher order completeness, cut-elimination and

normalization proofs (extended abstract)’, in J.-Y. Girard, M. Okada, and A. Scedrov,

(eds.), ENTCS (Electronic Notes in Theoretical Computer Science) vol.3: A Special

Issue on the Linear Logic 96, Tokyo Meeting, Elsevier-ENTCS, 1996.

[15] Okada, M., ‘Phase semantic cut-elimination and normalization proofs of first- and

higher-order linear logic’, Theoretical Computer Science 227:333–396, 1999.

[16] Okada, M., ‘A uniform semantic proof for cut-elimination and completeness of var-

ious first and higher order logics’, Theoretical Computer Science 281:471–498, 2002.

[17] Ono, H., ‘Semantics for substructural logics’, in K. Došen and P. Schröder-Heister,
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