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Abstract

We discuss how to represent real numbers, real functions and opera-
tors based on coherence spaces and stable/linear maps. Specifically, we
introduce a representation of the real line by a coherence space, which is
admissible in the sense of the type-two theory of effectivity (TTE). This
implies that a real function is realized by a stable map if and only if it
is continuous, thus further leads to an admissible representation of the
space of continuous real functions. In contrast, a real function is realized
by a linear map if and only if it is uniformly continuous. Our presen-
tation is concrete and self-contained, so that it can be read without any
prerequisite in computable analysis and realizability.

1 Introduction

Coherence spaces, introduced by Girard [Gi87], are a drastic simplification of
stable domain theory due to Berry [Be78]. Originally it was introduced as a de-
notational semantics for System F and used to interpret lambda terms by stable
maps. As is well known, stable maps better capture the sequential computation
in the sense of PCF than continuous maps in Scott domains. In particular, it is
known that the parallel-or function is not expressible as stable map. Coherence
spaces are equipped with another type of morphism, called linear maps, which
gave birth to linear logic. Thus coherence spaces provide a simple denotational
basis for both “stable” and “linear” functional computations.

While computation is usually carried out over finite objects such as inte-
gers, lists and trees, we are here interested in more abstract objects such as
real numbers, real functions and operators. Since the latter cannot be directly
manipulated by a computer, we first have to represent them in an appropriate
way. The aim of this paper is to give a self-contained account on how to rep-
resent such abstract entities by coherence spaces and to see how the distinction
between stable and linear maps shows up in this setting.

There have been a lot of attempts to concretely representing reals and real
functions (as well as more abstract mathematical entities) since the very first
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work by Turing [Tu36]. It constitutes a large research field, collectively called
computable analysis. Among various approaches, let us only mention two par-
ticularly successful ones: the type-two theory of effectivity (TTE) [KW85, We00,
BHW08] and the theory of domain representations [Sco70, Bl97, ES99, SHT08].

In TTE, the real line R, for instance, is represented by a partial surjective
function ρ :� t0, 1uω ÝÑ R from the Cantor space t0, 1uω (or the Baire space
N

ω) to R. Once a representation has been given, the whole computation is
carried out on the Cantor/Baire spaces, whose objects are concrete and directly
manipulated by a computer. Among various representations, one can distinguish
good ones from bad ones with respect to continuity and computability. One
of the most important achievements of TTE is a suitable criterion for good
representations, called admissibility. It works not only for the real line but also
for various topological spaces.

On the other hand, a domain representation of R is given by a partial sur-
jection ρ : D ÝÑ R from a domain D. This approach, though similar to the
previous one, leads to a typed account on representation: once R has been rep-
resented by D, it is natural to represent the function space CpR,Rq by D ñ D,
an exponential object in the category at issue.

In this paper, we develop a similar theory of representations based on co-
herence spaces. After some preliminaries in Section 2, we introduce coherence
representations in Section 3. In our framework, the real line R is represented
by a partial surjection ρR :� R ÝÑ R from a suitable coherence space R (sim-
ilarly to [DCC00]). Our theory is thus typed as the domain representations
approach. We then import the concept of admissibility from TTE. It is, how-
ever, not as easy as it may seem at first, because coherence spaces are far more
liberal than the Cantor and Baire spaces. We are thus led to restrict the class of
representations to spanned ones which behave similarly to TTE representations.
Admissibility can be naturally defined with this restriction and it is shown that
our representation ρR :� R ÝÑ R is indeed admissible in this sense. As a con-
sequence, we obtain a natural result that a function f : R ÝÑ R is continuous if
and only if it is realized by a stable map F : R ÝÑst R (Section 4). This result
then induces an admissible representation of CpR,Rq based on the exponential
coherence space Rñ R (Section 6).

All the above suggests that coherence spaces could be a reasonable deno-
tational semantics for functional programming languages for real number com-
putation (e.g., [Es96, ES14], just to mention a few). We must however admit
that there is not much novelty, if we only consider stable maps as morphisms.
An entirely new phenomenon arises when we consider linear maps as well. In
Section 5, we show that a function f : R ÝÑ R is uniformly continuous if and
only if it is realized by a linear map F : R ÝÑlin R. Thus linearity in coherence
spaces corresponds to uniformity of real functions. Although this result rests
on our specific way of representing R, we believe that it is worth noting since
it well illustrates a distinction between stable and linear maps in an analytic
setting.

Related work. This paper is based on a presentation made at the Twelfth In-
ternational Conference on Computability and Complexity in Analysis (CCA’15).
It is fair to say that some of our results may be indirectly obtained from the
corresponding results in TTE, by establishing an equivalence between spanned
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coherence representations and TTE representations. In addition, some of our
developments admit a more abstract account based on the modern theory of
realizability [Lo94]. Indeed, it is well known that representations in TTE (and
in our setting) are intimately related to modest sets in the sense of realizability
[Bi99, Ba00, Ba02]. These aspects are to be discussed in a separate paper writ-
ten by the first author [Ma16]. The latter also generalizes our results on R to a
wider class of topological spaces and uniform spaces.

In contrast to [Ma16], we try to make our presentation as concrete, exposi-
tory and self-contained as possible so that it can be read without any background
on computable analysis. Although this risks reproving similar results and losing
a global perspective, we hope that it will be useful to invite people working on
denotational semantics of linear logic to the field of computable analysis. Apart
from connection to computable analysis, this paper exhibits several new coher-
ence spaces as well as their curious properties, which will be valuable as source
of inspiration and deeper understanding of coherence spaces.

2 Coherence spaces

We here recall some basics of coherence spaces. See [Gi87, Me09] for further
information.

Definition 2.1 (coherence spaces) A coherence space X � pX, "
!

q con-
sists of a set X of tokens and a reflexive symmetric relation "

!

on X, called
coherence.

Throughout this paper, we assume that every token set X is at most count-
able. This assumption, which is needed for Theorem 4.5, is quite reasonable in
practice, since we would like to think of tokens as computational objects (see
[As90] for computability over coherence spaces).

A clique ofX is a set of pairwise coherent tokens in X . By abuse of notation,
we denote the set of cliques by X. We also write Xfin and Xmax to denote the
sets of finite cliques and maximal cliques, respectively.

Given tokens x, y P X , we write x" y (strict coherence) if x"
!

y and x � y.
Notice that coherence and strict coherence are mutually definable from each
other. Given cliques a, b PX, we write a"

!

b if aY b PX. This means that any
token in a is coherent with any token in b.

The set X is ordered by inclusion �, and endowed with the Scott topology
generated by txay : a PXfinu, where

xay :� tb PX : a � bu.

Thus a coherence space can be seen as a poset, and it is in fact a Scott domain
whose compact elements are exactly finite cliques. Note that it is a T0-space,
and is countably based (i.e., has a countable base) due to our assumption that
the token set X is countable.

A typical coherence space is PF :� pN� N, "
!

q, where "
!

is defined by

pm1, n1q
"

!

pm2, n2q ðñ m1 � m2 implies n1 � n2.

An equivalent definition can be given in terms of " :

pm1, n1q" pm2, n2q ðñ m1 � m2.
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We have f P PF iff f is (the graph of) a partial function f :� N ÝÑ N, where
we abuse the same notation for both a function and its graph. Maximal cliques
correspond to total functions. A set U � PF is open iff there is a set B of finite
partial functions such that f P U ðñ g � f for some g P B.

Definition 2.2 (stable and linear maps) Let X and Y be coherence spaces.
A function F : X Ñ Y is said to be stable, written F : X ÝÑst Y , if it is
continuous and for any cliques a, b PX,

a"
!

b ùñ F paX bq � F paq X F pbq.

A function F : X Ñ Y is said to be linear, written F : X ÝÑlin Y , if it
satisfies

a �
¸

i

ai ùñ F paq �
¸

i

F paiq,

where
°

means disjoint union of cliques.

It is easy to see that every linear map is stable.
There are alternative definitions. Given a function F : X ÝÑ Y , call

pa, yq PXfin � Y a minimal pair of F if F paq Q y and there is no proper subset
a1 � a such that F pa1q Q y. The set of minimal pairs of F is called the trace of
F and denoted by trpF q.

Now, F is a stable map iff it is monotone w.r.t. � and:

(st) if F paq Q y, there is a unique a0 � a such that pa0, yq P trpF q.

Indeed, suppose that F is stable and F paq Q y. Then continuity ensures the
existence of a finite a0 � a such that F pa0q Q y, and stability ensures that a0 is
unique if it is chosen to be minimal.

If F is furthermore linear, preservation of disjoint union ensures that a0 is a
singleton: a �

°

xPatxu ñ F paq �
°

xPa F pxq. Thus, F is a linear map iff it is
monotone and:

(lin) if F paq Q y, there is a unique x P a such that ptxu, yq P trpF q.

By abuse of notation, we denote the set tpx, yq | ptxu, yq P trpF qu by trpF q if F
is supposed to be a linear map.

Below are some typical constructions of coherence spaces. LetXi � pXi, "
!

iq

be a coherence space for i � 1, 2. We denote by X1 Z X2 the disjoint sum
tp1, xq : x P X1u Y tp2, x

1

q : x1 P X2u. We define:

• J :� pH,Hq.

• X1 �X2 :� pX1 ZX2, "
!

q, where pi, xq"
!

pj, yq holds iff either i � j or
i � j ^ x"

!

i y.

• X1 ñ X2 :� ppX1qfin � X2, "
!

q, where pa, xq" pb, yq holds iff a"
!

1b

implies x" 2 y.

• X1��X2 :� pX1�X2, "
!

q, where pz, xq" pw, yq holds iff z"
!

1 w implies
x" 2 y.
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It is well known that the category Coh of coherence spaces and stable maps
equipped with pJ,�,ñq is cartesian closed. Likewise, the category Lin of
coherence spaces and linear maps can be enhanced with the structure of a Seely
category, a model of linear logic (see [Me09]).

We do not describe the categorical structure in detail, but let us just remark
the following. Given c P X � Y , there uniquely exist cliques a P X and b P Y

such that c � aZ b. Writing c � xa, by, it is easy to see that xa, by"
!

X�Y xa
1, b1y

holds iff a"
!

Xa
1

^ b"
!

Y b
1. Given F : X ÝÑst Y , we have trpF q P X ñ Y .

Conversely, given α PX ñ Y , there is a stable map pα : X ÝÑst Y defined by

pαpaq :� ty P Y : pa0, yq P α for some a0 � au.

Similarly, every linear map F : X ÝÑlin Y leads to a clique trpF q P X �� Y ,
and every clique α P X �� Y leads to a linear map pαpaq :� ty P Y : px, yq P
α for some x P au. These data constitute the bijective correspondences:

CohpX ,Y q �X ñ Y , LinpX,Y q �X �� Y .

3 Representations

3.1 Representations of sets

We are interested in computation over abstract mathematical spaces, which can-
not be directly dealt with by computers. The basic idea of TTE is to represent
an abstract space X by a surjective partial function ρ :� t0, 1uω ÝÑ X from
the concrete space t0, 1uω (Cantor space). We basically follow the same idea,
the only difference being that we think of coherence spaces as concrete. Let us
begin with representations of plain sets without any topological structures.

Definition 3.1 (representation) Let S be an arbitrary set. A tuple pX , ρ, Sq

is called a representation of S if X is a coherence space and ρ :� X ÝÑ S is
a partial surjective function. Below, pX , ρ, Sq is denoted as X

ρ
ÝÑ S or simply

as ρ. If ρpaq � r, we say that r is realized by a clique a (via representation ρ).

Representations allow us to express abstract functions as stable maps.

Definition 3.2 (stable realizability) Let X
ρX

ÝÑ S and Y
ρY

ÝÑ T be repre-
sentations. We say that a total function f : S ÝÑ T is realized by a stable map
F : X ÝÑst Y via representations ρX , ρY if the following diagram commutes:

X

F
//

ρX

��

Y

ρY

��

S

f
// T

(1)

Such a function f is also called stably realizable.
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Many of the constructions on coherence spaces are inherited by representa-
tions and stably realizable maps. Typically, we have:

Definition 3.3 (product and exponential) Let X
ρX

ÝÑ S and Y
ρY

ÝÑ T be
representations.

• The product X�Y
xρX ,ρY y

ÝÑ S�T is naturally defined, where dompρX�Y q :�
txa, by : a P dompρXq, b P dompρY qu and ρX�Y pxa, byq :� xρXpaq, ρY pbqy.

• The exponential X ñ Y
rρXÑρY s

ÝÑ SRpρX , ρY q is defined as follows. De-
fine rρX Ñ ρY s :�X ñ Y ÝÑ T S by

rρX Ñ ρY spαq :� f ðñ f : S ÝÑ T is realized by pα : X ÝÑst Y .

SRpρX , ρY q � T S is the range of rρX Ñ ρY s, which consists of stably
realizable functions.

As expected, the categoryReppCohq of representations and stably realizable
functions is cartesian closed. Furthermore it is regular and locally cartesian
closed, since ReppCohq is equivalent to the category of modest sets over a
universal coherence space. Relationship with the realizability theory will be
discussed in [Ma16].

3.2 Representation of the real line

We now illustrate how to represent a space. Our principal example is the real
line R.

Let D :� Z � N, where each pm,nq P D is identified with a dyadic rational
number m{2n. Notice that we distinguish p1, 0q and p2, 1q as elements of D,
while 1{20 and 2{21 are identical as points of R. We will explicitly write x P D
when we take the former standpoint.

We use the following notations: for x � pm,nq P D, denpxq :� n (the
exponent of the denominator), and

rxs :� rpm� 1q{2n; pm� 1q{2ns

(the closed interval of R with center x and length 2�n�1). We also write Dn :�
tpm,nq | m P Zu so that x P Dn iff denpxq � n.

A coherence space for the real line is given by R :� pD, "
!

q, where

x" y ðñ denpxq � denpyq and rxs X rys � H.

Let a be a clique in R and n P N. Since  px"x1q for all x, x1 P Dn, a
contains at most one element xn such that xn P Dn. Moreover, it is not hard to
see that a can be extended to a larger clique a1 :� aYtxnu if aXDn � H. Hence
if a is a maximal clique, it can be identified with a sequence pxnqnPN such that
xn P Dn for each n P N. On the other hand, notice that the second condition
can be rephrased as follows:

rxs X rys � H ðñ |x� y| ¤ 2�denpxq
� 2�denpyq. (2)

Hence a P Rmax expresses a (rapidly-converging) Cauchy sequence:

N   m,n ùñ |xm � xn| ¤ 2�m
� 2�n

¤ 2�N .
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D0

D1

D2

D3

0/1 1/1 2/1

0/2 2/21/2 3/2 4/2

0/4 2/4 4/4 6/4 8/4

0/8 4/8 8/8 12/8 16/8

Figure 1: A clique a � tp1, 0q, p1, 1q, p4, 2q, p6, 3q, . . .u

This allows us to define a function ρRpaq :� limnÑ8

xn with dompρRq :�
Rmax. We often write a� instead of ρRpaq. Since any real number can be ap-
proximated by a sequence of dyadic rationals, ρR : dompRq ÝÑ R is surjective.

Hence we have obtained a representation R
ρR

ÝÑ R. Figure 1 illustrates a clique
a � tp1, 0q, p1, 1q, p4, 2q, p6, 3q, . . .u, where each thick line indicates the interval
rxs associated to a token x P a.

Our next goal is to show that ρR : Rmax ÝÑ R is continuous, where Rmax �

R is endowed with the subspace topology.

Lemma 3.4 For every a P Rmax, we have

x P a ùñ a� P rxs.

Proof. Suppose that a � pxnqnPN and x � xm. From (2), we have |x � xn| ¤

2�m
� 2�n for any n P N. Since xn tends to a� as nÑ8. we obtain |x�a�| ¤

2�m, i.e., a� P rxs.

Given a nonempty set b � D, we write rbs :�
�

xPbrxs. Note that b � c

implies rcs � rbs. The following is an easy consequence of the previous lemma.

Lemma 3.5 For every a P Rmax, ras � ta
�

u.

Proof. Let a � pxnqnPN P Rmax. We have a� P ras by Lemma 3.4. Given any
r P ras, we have |r � a�| ¤ |r � xn�1| � |xn�1 � a�| ¤ 2�n for all n P N since
r P ras � rxn�1s, which leads to r � a�.

Lemma 3.6 For every a P Rmax and every open set U � R with a� P U , there
exists x P a such that rxs � U .

Proof. Let a � pxnqnPN P Rmax. One can take δ ¡ 0 such that pa��δ, a��δq �
U . Then for a sufficiently large n, we have rxns � pa

�

� δ, a� � δq, since rxns is
a closed interval which contains a� and whose length tends to 0 as nÑ8.
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Lemma 3.7 ρR : Rmax ÝÑ R is continuous.

Proof. Let U � R be an open set. We claim:

ρ�1

R
rU s �

¤

txby : b P Rfin and rbs � Uu X dompρRq,

where the right hand side is a union of basic open sets in Rmax, hence is open.
Indeed, a P ρ�1

R
rU s implies a� P U . By Lemma 3.6, we obtain rxs � U for some

x P a. Since a P xtxuy, it belongs to the right hand side. Conversely, suppose
that a P xby with b P Rfin and rbs � U . Then a� P ras � rbs � U by Lemma 3.5.
That is, a P ρ�1

R
rU s.

We investigate further properties of the representation ρR which will be
needed later.

Lemma 3.8 (hybridding) Let a � pxmqmPN be a maximal clique and b �

tyn : n P Iu be a clique of R with I � N such that a� P rbs. Define c � pzkqkPN
by

zk :� yk pk P Iq

:� xk (otherwise)

Then c is a maximal clique such that b � c and c� � a�.

Proof. Notice that every rzks contains a� in common. c is a clique, since
denpzkq � denpzk1q and a� P rzks X rzk1s � H for all k, k1 P N with k � k1.
Maximality is obvious. c� � a� follows by Lemma 3.5.

Lemma 3.9 For any b P R and r P R, we have:

r P rbs ðñ b has an extension c P Rmax with c� � r.

Proof. The backward direction can be easily seen by noting that b � c implies
c� P rcs � rbs. For the forward direction, choose a maximal clique a with a� � r.
Applying Lemma 3.8 to the cliques a and b, we obtain a maximal clique c such
that b � c and c� � r.

4 Admissible Representations

4.1 Spanned representations

We have seen how to represent the real line. A similar idea leads to representa-
tion of other metric spaces, and a more general class of topological spaces.

In general, a space may have many representations. Some are good, while
others are terrible from a computational perspective. In TTE, a criterion for
reasonable representations has been established, that is the concept of admis-
sibility [We00, Sc02a]. Roughly speaking, a representation is admissible if it is
continuous and “weakly final” among all continuous representations. This idea
has been adapted to domain representations by Hamrin [Ha05].

We are now going to adapt it to coherence spaces. However, it turns out
that a straightforward translation as in [Ha05, Da07] does not work, since it

does not even make R
ρR

ÝÑ R admissible. This is because we consider stable
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maps, which are far more restrictive than continuous ones. We are thus led to
impose an additional requirement.

Recall that each member of the Cantor space t0, 1uω (infinite sequence) can
be approximated by its finite prefixes in t0, 1u�, and that the set t0, 1u� with
the prefix ordering � forms a tree. In short, t0, 1uω is “spanned” by the tree
pt0, 1u�,�q. The point of the definition below is to impose a similar structure
on the domain of a representation.

Definition 4.1 (spanned representation) A representation X
ρ
ÝÑ S is said

to be spanned if there is a set F � Xfin (called a spanning forest) with the fol-
lowing properties:

• For any a, b P F with a"
!

b, either a � b or b � a holds.

• a P dompρq iff there is a maximal chain taiuiPI in F such that a �
�

ai.

We denote by SpnReppCohq the full subcategory of ReppCohq that consists
of spanned representations.

It would be perhaps more appropriate to call it a spannable representation
since the spanning forest F is not part of data, though we stick to calling it a
spanned representation. Observe that the first condition makes pF ,�q a forest
in the sense of graph theory: a � c and b � c with a, b, c P F imply a � b or
b � a. On the other hand, the second condition states that every a P dompρq is
approximated by a (unique) maximal chain in F , and conversely any a P F has
an extension in dompρq, that is, xay X dompρq � H (density).

For instance, the representation R
ρR

ÝÑ R is spanned by the tree F of finite
initial segments of Cauchy sequences: a0 P F iff a0 � tx0, . . . , xmu P Rfin for
some m P N and xi P Di.

A more direct example is the following.

Example 4.2 (coherence space for the Cantor space) Let C :� pt0, 1u�, "
!

q,
where w"

!

u iff w � u or u � w. Then any maximal clique in C can be iden-
tified with an infinite sequence in the Cantor space t0, 1uω, so that we obtain a
function ρC : Cmax ÝÑ t0, 1uω. It is not hard to see that ρC is continuous (in
fact a homeomorphism).

On the other hand, any w P t0, 1uωYt0, 1u� leads to a clique w�

P C defined
by:

w� :� tu P t0, 1u� : u � wu.

This allows us to define a spanning forest F :� tw� : w P t0, 1u�u � Cfin. Thus

C
ρC

ÝÑ t0, 1uω is an object of SpnReppCohq.

SpnReppCohq is closed under finite products.

Lemma 4.3 If X
ρX

ÝÑ S and Y
ρY

ÝÑ T belong to SpnReppCohq, so is the

product representation X � Y
ρX�Y

ÝÑ S � T .

Proof. Let FX and FY be spanning forests for ρX and ρY , respectively. Note
that each element of dompρXq is either a leaf of FX or the limit of an infinite
path in FX . For each a P FX , we write hpaq � n if there are exactly n elements
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below a in the forest pFX ,�q: a1 � � � � � an � a (strict inclusion). We use the
same notation for elements of FY .

Now a forest FX�Y � pX � Y qfin can be defined as follows:

xa, by P FX�Y ðñ

$

&

%

hpaq � hpbq, or
a is a leaf and hpaq   hpbq, or
b is a leaf and hpaq ¡ hpbq,

for all a P FX and b P FY . It is clear that FX�Y satisfies the second condition
for spanning forests. For the first condition, let xai, biy P FX�Y (i � 1, 2) be
cliques such that xa1, b1y"

!

xa2, b2y. Notice that we have a1 � a2_ a2 � a1 and
b1 � b2_b2 � b1 by assumption. Our goal is to show that either a1 � a2^b1 � b2
or a2 � a1 ^ b2 � b1 holds. Suppose for contradiction that a1 � a2 and b2 � b1
so that hpa1q   hpa2q and hpb2q   hpb1q. We never have hpa1q   hpb1q since a1
is not a leaf. On the other hand, hpb1q ¤ hpa1q implies hpb2q   hpa2q, which is
impossible since b2 is not a leaf. Thus it is impossible to have both a1 � a2 and
b2 � b1 together.

4.2 Admissibility

As will be discussed in [Ma16], SpnReppCohq is categorically equivalent to the
category ReppBq of TTE representations (although we do not use this fact in
this paper). Hence we may naturally import the concept of admissibility from
the latter.

Definition 4.4 (admissibility) Let Y be a topological space. A representation

Y
ρ
ÝÑ Y in SpnReppCohq is admissible if it is continuous as a partial function

and for any subspace Y0 � Y and any continuous representation X
γ
ÝÑ Y0 in

SpnReppCohq there exists a stable map F : X ÝÑst Y which realizes the
inclusion map i : Y0 ÝÑ Y:

X

F
//

γ

��

Y

ρ

��

Y0

i
// Y

(3)

Given a topological space X, its admissible representations are interchange-
able in the following sense. Let X0

ρ0

ÝÑ X and X1

ρ1

ÝÑ X be admissible rep-
resentations. Then the identity map id : X ÝÑ X is realized by stable maps
F : X0 ÝÑst X1 and G : X1 ÝÑst X0. Hence realizability of a function
f : X ÝÑ Y does not depend on the choice of an admissible representation.
However, notice that F and G need not be inverses of each other, since we do
not require uniqueness.

Admissible representations enjoy a very pleasant property that stable real-
izability does coincide with sequential continuity (see below).
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Theorem 4.5 Let X and Y be topological spaces admissibly represented by X
ρX

ÝÑ

X and Y
ρY

ÝÑ Y. A function f : X ÝÑ Y is stably realizable if and only if it
is sequentially continuous, that is, it preserves the limit of any convergent se-
quence:

xn Ñ x pnÑ8q ùñ fpxnq Ñ fpxq pnÑ 8q.

Let us make some comments before proving the theorem. Several variants of
this theorem are known in the literature. In TTE, Kreitz andWeihrauch [KW85]
first proved the theorem for countably-based T0-spaces. It was later extended to
arbitrary topological spaces and beyond by Schröder [Sc01, Sc02a, Sc02b, Sc02c],
modifying the definition of admissibility. Hamrin [Ha05] proved a similar result
about net-continuity for domain representations.

In general, continuity of a function f : X ÝÑ Y implies sequential continu-
ity. The other direction holds when the topology on X satisfies an additional
property. A subset S of X is called sequentially open if any sequence pxnqn P X

ω

converging to a point in S eventually lies in S. A sequential space is a topo-
logical space whose open sets and sequentially open sets coincide. It is this
property that makes the two notions of continuity coincide. It is known that
every countably based space is a sequential space. Hence the following topo-
logical spaces are all sequential: the real line R, coherence spaces X, and their
subspaces (since every subspace of a countably based space is also countably
based).

As a corollary of Theorem 4.5, we have:

Corollary 4.6 Let X and Y be topological spaces which are admissibly repre-
sented by X

ρX

ÝÑ X and Y
ρY

ÝÑ Y. Suppose that X is a sequential space. Then a
function f : X ÝÑ Y is stably realizable if and only if it is continuous.

Although Theorem 4.5 follows from the corresponding result for TTE in
[Sc02a] via the categorical equivalence SpnReppCohq � ReppBq [Ma16], we
nevertheless give a self-contained proof here. Let us begin with a technical
construction.

Let X be a topological space and pxnqnPN a sequence in X
ω which converges

to x
8

P X. We assume that x
8

� xn for every n P N. Then the subspace
X0 :� txn : n P NY t8uu can be represented as follows.

We use the coherence spaceC in Example 4.2 as the source of representation.
Let

an :� p0n1ωq� pn P Nq

a
8

:� p0ωq�.

We may then define a representation C
γ
ÝÑ X0 by γpanq :� xn for every n P

NY t8u.

Lemma 4.7

1. panqnPN converges to a
8

in C.

2. γ is continuous.

Proof. For claim 1, suppose that a
8

belongs to a basic open set xby, where
b P Xfin. By definition, a

8

P xby iff b � p0ωq�. Such b must be of the form
t0m1 , . . . , 0mk

u, where m1, . . .mk P N. Let m :� maxtm1, . . . ,mku. Then for
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any n P N, we have an P xby iff n ¥ m. Hence all an but finitely many belong
to xby.

For claim 2, observe that am P xp0
n1q�y iff p0n1q� � p0m1q� iff m � n. Hence

xp0n1q�y X dompγq is a singleton tanu for every n P N. Now let U � X0 be an
open set. We prove that γ�1

rU s is open by case distinction.

• If x
8

R U , then by the above observation,

γ�1
rU s � tan : xn P Uu �

¤

n:xnPU

xp0n1q�y X dompγq ,

which is a union of basic open sets, hence is open.

• If x
8

P U , then there is m P N such that all xn with n ¥ m belong to U ,
since pxnq converges to x8. In this case, we have:

γ�1
rU s � tan : xn P Uu Y

�

xp0mq�y X dompγq




,

which is open in the similar way.

Hence γ is continuous.

We are now ready to prove Theorem 4.5.

Proof. (ð) Let f : X ÝÑ Y be a sequentially continuous function and Y0 :�
f rXs (the range of f). Then the composed function f � ρX : dompρXq ÝÑ Y0 is
sequentially continuous. Recall that dompρXq is sequential, since it is a subspace
of a sequential spaceX . Hence f �ρX is in fact continuous. Since dompf �ρXq �
dompρXq, it belongs to SpnReppCohq. We may now apply admissibility of ρY
to γ :� f � ρX (see (3)) to obtain a stable map F : X ÝÑst Y that makes the
diagram (1) commute.

(ñ) Suppose that f is realized by a stable map F . Let pxnqn P X
ω be a

sequence converging to x
8

P X and let X0 :� txn : n P N Y t8uu as above.
Our goal is to show that fpxnq converges to fpx

8

q in Y as n Ñ 8. By the

lemma above, there is a continuous representation C
γ
ÝÑ X0. Since X0 is

a subspace of X, admissibility of ρX implies the existence of a stable map
G : C ÝÑst X that makes the left square below commute (the right square
commutes by assumption):

C

G
//

γ

��

X

F
//

ρX

��

Y

ρY

��

X0

i
// X

f
// Y

Since stable maps are continuous, the composed map ρY � F � G is also
continuous. We also know that the sequence panqn converges to a

8

in C by the
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previous lemma. Now consider the sequence pfpxnqqn. Since we have

fpxnq � f � i � γpanq � ρY � F �Gpanq

for every n P N Y t8u, we conclude that the sequence pfpxnqqn converges to
fpx

8

q.

The following is an easy consequence of Lemma 4.3.

Proposition 4.8 If X
ρX

ÝÑ X and Y
ρY

ÝÑ Y are admissible representations, so

is the product representation X � Y
xρX ,ρY y

ÝÑ X� Y.

4.3 Admissibility of ρR

Having established a general property of admissible representations, we now
provide an instance. Let us begin with a generalization of Lemma 3.6.

Lemma 4.9 Let X
γ
ÝÑ X be a continuous representation. For every open set

U � X and a P dompγq with γpaq P U , there exists a finite subclique a0 � a such
that

γpaq P γxa0y � U,

where γxa0y � tγpbq : b P xa0y X dompγqu.

Proof. By continuity of γ, γ�1
rU s is an open set of the form

�

iPIxaiy, and a
must belong to some xaiy (i P I).

Recall that ρR is continuous (Lemma 3.7) and admits a spanning forest so
that it belongs to SpnReppCohq. We now prove:

Theorem 4.10 The representation R
ρR

ÝÑ R is admissible.

Proof. Let R0 be a subspace of R and X
γ
ÝÑ R0 a continuous representation in

SpnReppCohq. Our goal is to find a stable map F which makes the following
diagram commute:

X

F
//

γ

��

R

ρR

��

R0

i
// R .

A naive attempt would be to define:

F paq � ty P D : γxa0y � rys for some finite a0 � au.

Although F is intuitively correct, it is not stable. First of all, F paq should not
contain two distinct elements y, z with y, z P Dn, since they are not coherent
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while F paq must be a clique. Thus we have to “choose” one element y P Dn for
each n P N if there are several candidates.

This is not enough, however. The condition (st) (see Section 2) forces that
F paq Q y implies the unique existence of a minimal a0 � a such that F pa0q Q y.
It is here that a spanning forest F for γ plays a role. The idea is to look for
such a minimal a0 in F . Since F is a forest, minimality ensures uniqueness.
Moreover, restricting to the elements of F is not harmful, since any element of
dompγq is approximated by a maximal chain in F .

Let us now proceed to the formal definition. Let Ψ : F � N Ñ D be a
multifunction defined by

Ψpa, nq :� ty P Dn : γxay � rysu

for each a P F and n P N, and let ψ :� F � N ÝÑ D be a partial function such
that

• ψpa, nq is defined and ψpa, nq P Ψpa, nq just in case a is a minimal element
in the set tb P F : Ψpb, nq � Hu.

Thus ψ is a choice function. Notice that ψpa, nq � y implies γxay � rys and
denpyq � n. Finally we define

F paq :� ty P D : Da0 � a, Dn P N, ψpa0, nq � yu.

This implements the ideas explained above. Let us now verify that F is the
desired map in 4 steps.

(i) F paq is a clique of R for every a PX.
Let y, z P F paq with y � z. This means that there are a0, a1 P F and n,m P N

such that ψpa0, nq � y, ψpa1,mq � z and a0, a1 � a. Since a0"
!

a1, either
a0 � a1 or a1 � a0 hold. If n � m, then a0 � a1 by the minimality condition
and thus y � ψpa0, nq � ψpa1,mq � z, contradicting the assumption y � z.
Hence denpyq � n � m � denpzq.

We also have rys X rzs � H. Indeed, there is c P xa0y X xa1y X dompγq by
the density condition (see Definition 4.1; note also a0 � a1 or a1 � a0), thus
γpcq P γxa0y X γxa1y � rys X rzs. Therefore, y" z.

(ii) F is a stable map.
It is sufficient to verify the condition (st): F paq Q y implies the unique existence
of a minimal a0 � a such that F pa0q Q y. But it is clear from the definition of
F .

(iii) F paq P Rmax for every a P dompγq.
First recall that there is a chain takukPI in F such that a �

�

kPI ak. For
maximality of F paq, it suffices to show that for every n P N there is y P F paq
with denpyq � n.

Since γpaq P R, there is z P Dn such that γpaq belongs to the interior U of
rzs. By Lemma 4.9, there is a finite subclique a1 of a such that γxa1y � U � rzs.
Without loss of generality, we may assume that a1 � ak for some k P I. This
shows that Ψpak, nq � H, which implies that ψpam, nq � y is defined for some
am � ak. Hence we obtain y P F paq with denpyq � n as required.
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(iv) F paq� � γpaq for every a P dompγq.
Suppose that y P F paq with denpyq � n, namely there is a0 � a such that
ψpa0, nq � y. That is, γpaq P γxa0y � rys. Since it holds for every y in F paq, we
have γpaq P rF paqs. Since F paq P Rmax by (iii), we conclude F paq� � γpaq by
Lemma 3.5.

As a consequence of Corollary 4.6, Proposition 4.8 and Theorem 4.10:

Corollary 4.11 A function f : R
n
ÝÑ R is continuous if and only if it is

realized by a stable map F : Rn
ÝÑ R.

Hence we can express any continuous real function by a stable map. On the
other hand, expressing real operators needs some extra work. We will address
this issue in Section 6.

4.4 Traces of realizable functions

Suppose that f : R ÝÑ R is realized by a stable map F : R ÝÑ R. Then
the trace trpF q P R ñ R must contain enough data to recover f . Hence it
is interesting to look into its structure. We here prove two basic properties
of the traces of realizers. Recall that each clique α P R ñ R is a subset of
Rfin � D. Given any α P R ñ R and any n P N, we denote the subclique
tpa, yq P α : y P Dnu by α

pnq.

Proposition 4.12 If pa0, yq P trpF q, then f ra0s � rys.

Proof. Suppose that a real number r belongs to the interval ra0s. By Lemma
3.9, a0 has an extension a P Rmax such that a� � r. We have F paq Q y, so
F paq� P rys by Lemma 3.4. Hence fprq � fpa�q � F paq� P rys.

Proposition 4.13 For every a P Rmax and n P N, there is a unique pa0, yq P
trpF qpnq such that a0 � a.

Proof. Since F is a realizer of f , we must have F paq P Rmax. So F paq Q y for
some y P Dn, and we find pa0, yq P trpF q

pnq such that a0 � a. There is no other
pa1, zq P trpF q

pnq with the same property; if there were, we would have a0"
!

a1
but not y" z, contradicting trpF q being a clique.

Figure 2 illustrates how the trace trpF q approximates a function f : pa0, yq P
trpF qmeans that there is an approximating rectangle ra0s�rys such that f ra0s �
rys. Such a rectangle is uniquely determined as soon as a P Rmax and n P N

(corresponding to the height of the rectangle) are specified. Each trpF qpnq is
then a collection of rectangles of height 2�n�1 which cover the graph of f .

5 Linear Maps

5.1 Linearity and uniform continuity

We now turn our attention to another aspect of coherence spaces: linearity.
We have seen in the previous section that stable realizability coincides with
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Figure 2: The trace of a stably realizable function

sequential continuity for any topological spaces with admissible representations.
Although we do not yet have such a general result concerning linearity, we do
have a curious observation if we restrict to real functions:

linear realizability ðñ uniform continuity.

This section is devoted to a proof of this fact. Let us begin with a formal
definition.

Definition 5.1 (linear realizability) Let X
ρX

ÝÑ X and Y
ρY

ÝÑ Y be repre-
sentations. A total function f : X ÝÑ Y is linearly realizable via ρX , ρY if it
is realized by a linear map F : X ÝÑlin Y (see Definition 3.2).

Recall that a function g : R ÝÑ R is uniformly continuous if and only if it
has a modulus of continuity, that is a function µ : N ÝÑ N such that

|x� y| ¤ 2�µpnq
ùñ |gpxq � gpyq| ¤ 2�n

holds for any x, y P R and n P N.
Now let us fix a function f : R ÝÑ R which is realized by a linear map F .

Our first goal is to discover a modulus of continuity for f by looking into trpF q.
Recall that each clique α P R��R is a subset of D�D. Given α P R��R

and n P N, we denote the subclique tpx, yq P α : y P Dnu by α
pnq. As before, the

trace trpF q satisfies the following basic properties (see Propositions 4.12, 4.13).

Proposition 5.2 If px, yq P trpF q, then f rxs � rys.

Proposition 5.3 For every a P Rmax and n P N, there is a unique px, yq P
trpF qpnq such that x P a.

Proposition 5.3 can be understood interactively. Think of a as a Cauchy
sequence and n as a degree of precision. Given a and n as inputs, F is expected
to return an approximate value of fpa�q with precision 2�n. As F is linear, it
“sees” exactly one element x in the Cauchy sequence a and returns a dyadic
number y. That is px, yq P trpF qpnq.

Since F is not allowed to “see” any other element in a, the way F picks up
an appropriate element x from a must be independent of the internal structure
of a. That is, the number denpxq must be determined only by n. This is the
main reason why linearity leads to uniformity. The next lemma ensures that
this intuition is correct.
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Figure 3: The trace of a linearly realizable function

Lemma 5.4 There is a function µ : N ÝÑ N such that for every x P Dµpnq

there is y P Dn such that px, yq P trpF q.

Proof. Let n P N. Fix an arbitrary px
Æ

, y
Æ

q P trpF qpnq which exists by Proposi-
tion 5.3. Let m :� denpx

Æ

q. We claim that

• for x :� x
Æ

� 2�m
P Dm, there is y P Dn such that px, yq P trpF qpnq.

To see this, choose a maximal clique a � tziuiPN with zm � x
Æ

and a� � x
Æ

.
By Proposition 5.3, px

Æ

, y
Æ

q P trpF qpnq is the unique element such that x
Æ

P a.
Since a� P rxs, we may apply Lemma 3.8 to the cliques a and b � txu, to obtain
another clique c in which zm � x

Æ

is replaced by qzm � x. That is, we have:

a � tz0, z1, . . . , zm, zm�1, . . . u,

c � tz0, z1, . . . , qzm, zm�1, . . . u.

By Proposition 5.3, there is pz, yq P trpF qpnq such that z P c. We have
z � qzm, since otherwise z P a contradicting uniqueness of px

Æ

, y
Æ

q P trpF qpnq.
This proves the claim.

The same reasoning works for x :� x � 2�m too. Hence by repetition we
obtain px, yq P trpF qpnq for every x P Dm. Now the lemma follows by letting
µpnq :� m.

Figure 3 illustrates trpF qpnq. Observe that there is a rectangle rxs � rys for
each x P Dµpnq. The graph of f is then covered by rectangles of “uniform size”.

We are now ready to prove the main theorem of this section.

Theorem 5.5 A function f : R ÝÑ R is linearly realizable if and only if it is
uniformly continuous.

Proof. (ñ) Suppose that f is realized by a linear map F as above. Then we
claim that µ1pnq :� µpn� 1q is a modulus of f . To see this, take r, s P R such
that |r � s| ¤ 2�µpn�1q. Then there is x P Dµpn�1q such that r, s P rxs. By the
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previous lemma, there is y P Dn�1 such that px, yq P trpF q. By Proposition 5.2
we obtain fprq, fpsq P rys. Therefore,

|fprq � fpsq| ¤ |fprq � y| � |y � fpsq| ¤ 2�pn�1q
� 2�pn�1q

� 2�n.

(ð) Suppose that f : RÑ R is uniformly continuous. Then there is a function
µ : N ÝÑ N such that

|r � s| ¤ 2�µpnq�1
ùñ |fprq � fpsq| ¤ 2�n.

We define a linear map F : R ÝÑlin R as follows. Let Ψ : D � N Ñ D be a
multifunction defined by

Ψpx, nq :� ty P Dn : f rxs � rysu

for each n P N and x P Dµpnq (otherwise Ψpx, nq :� H), and let ψ :� D�N ÝÑ D

be a partial function such that

• ψpx, nq is defined and ψpx, nq P Ψpx, nq just in case Ψpx, nq � H.

Notice that ψpx, nq � y implies f rxs � rys, denpxq � µpnq and denpyq � n.
Finally we define

F paq :� ty P D : Dx P a, Dn P N, ψpx, nq � yu.

As in the proof of Theorem 4.10, the verification consists of the following 4
steps.

(i) F paq is a clique of R for every a P R.
Let y, z P F paq with y � z. This means that there are n,m P N, x P Dµpnq

and w P Dµpmq

such that ψpx, nq � y, ψpw,mq � z and x,w P a (so x"
!

w).
If n � m, then denpxq � denpwqp� µpnqq so that x � w and y � ψpx, nq �

ψpw,mq � z, contradicting y � z. Hence denpyq � n � m � denpzq.
We also have rysX rzs � H, since rxsX rws � H, f rxs � rys and f rws � rzs.

Therefore, y" z.

(ii) F is a linear map.
It is sufficient to verify the condition (lin) (see Section 2): F paq Q y implies the
unique existence of x P D such that F ptxuq Q y. Notice that y P D determines the
number n :� denpyq uniquely. Hence there is a unique x such that ψpx, nq � y

and x P a.

(iii) F paq P Rmax for every a � txnunPN P Rmax.
It suffices to show that for every n P N there is y P F paq with denpyq � n. By
the definition of µ, f rxµpnqs is contained in an interval of length 2�n, so there
is z P Dn such that f rxµpnqs � rzs. Hence Ψpxµpnq, nq is nonempty so that
y :� ψpxµpnq, nq is defined. This y satisfies y P F paq and denpyq � n.

(iv) F paq� � fpa�q for every a P Rmax.
Suppose that y P F paq with denpyq � n, namely there is x P a such that
ψpx, nq � y. By Lemma 3.4, we have fpa�q P f rxs � rys. Since it holds for
every y in F paq, we have fpa�q P rF paqs. Since F paq P Rmax by (iii), we conclude
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F paq� � fpa�q by Lemma 3.5.

Observe that the above proof rests on our specific way of representing the
real line. In other words, linear realizability of a function does depend on the
choice of an admissible representation. This motivates us to develop a theory
of linear admissible representations, which is a subject of our companion paper
[Ma16].

6 Admissible Representation of Function Spaces

6.1 Representing CpI,Rq

Admissible representations studied in Section 4 can be extended to function
spaces. Our ultimate goal is to show that ρRR :� rρR Ñ ρRs (see Section 3)
is an admissible representation of the space CpR,Rq of continuous functions on
the real line equipped with the compact-open topology. However, it is delicate
since the domain R is not compact. Hence we begin with a more tractable case:
CpI,Rq, where I is a compact interval of R.

Let ID :� D X I and IDn :� Dn X I. The latter is a finite set due to
compactness. We define a coherence space I :� pID, "

!

q by restricting the
token set D of R � pD, "

!

q to ID. Function ρI : Imax ÝÑ I is defined just as

ρR. It is clear that I
ρI

ÝÑ I is an admissible representation.

Lemma 6.1 Imax is a compact subset of I.

Proof. Let A be a set of finite cliques in I such that txay : a P Au is an open
cover of Imax. We may assume that each a P A is an initial segment of a Cauchy
sequence (see §4.1): if a X IDn � H, then a can be replaced by finitely many
cliques aYtx1u, . . . , aYtxku, where x1, . . . , xk P IDn, so that xay �

�

xaYtxiuy.
Let A0 be the set of minimal elements of A (with respect to inclusion �).

Then txay : a P A0u is still an open cover of Imax, since a � b implies xby � xay
for all a, b P I. Our goal is to show that A0 is finite.

Suppose that A0 is infinite. Define the set F � Ifin by:

b P F ðñ b is an initial segment of some a P A0

Then pF ,�q is an infinite tree with root H and leaves in A0. Moreover, it is
finitely branching at the root and each internal node, since each IDn is finite.
Hence it contains an infinite branch pbiqiPN by König’s lemma. Clearly b �

�

bi
belongs to Imax, hence to some member xay (a P A0) of the open covering.

However, this means that a � bi for a large enough i, and bi � a1 for some
a1 P A0 by the definition of F . That is, a � a1, contradicting minimality of a1

in A0.

We are ready to introduce a representation of CpI,Rq. Recall that the cate-
gory ReppCohq is cartesian closed, so that we have an exponential representa-

tion I ñ R
ρIR

ÝÑ SRpρI , ρRq, where ρIR :� rρI Ñ ρRs and SRpρI , ρRq consists
of stably realizable functions from I to R with respect to ρI and ρR. Since the
latter are both admissible, a function is realizable if and only if it is continuous
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(cf. Corollary 4.11). Hence SRpρI , ρRq � CpI,Rq, and we have thus obtained a
representation

I ñ R
ρIR

ÝÑ CpI,Rq.

We assume that CpI,Rq is equipped with the uniform topology induced by
the uniform norm }f}

8

:� maxxPI |fpxq| (f P CpI,Rq). We will now verify that
ρIR is continuous with respect to this topology.

Lemma 6.2 Suppose that α P dompρIRq. Then αpnq is a finite clique for every
n P N.

Proof. Suppose that αpnq � tpaj , yjq : j P Ju. Notice that α � trpF q for some
realizer F of a function in CpI,Rq. Hence by Proposition 4.13, txajy : j P Ju is a
disjoint cover of dompρIq. Namely, for every a P dompρIq there exists a unique
j P J with a P xajy.

On the other hand, dompρIq is compact in I by Lemma 6.1. Since txajy :
j P Ju is a disjoint open cover of a compact set, J has to be finite by itself.

Lemma 6.3 ρIR :� I ñ R ÝÑ CpI,Rq is continuous.

Proof. Let α P dompρIRq and n P N. It is sufficient to give an open set U in
I ñ R such that

β P U X dompρIRq ùñ }ρIRpαq � ρIRpβq}8 ¤ 2�n.

Our choice is U :� xαpn�1q
y. It is legitimate since αpn�1q

P pI ñ Rqfin by the
previous lemma.

Suppose that β P U X dompρIRq and let f :� ρIRpαq, g :� ρIRpβq. Given
r P I, there is a P dompρIq such that a� � r. By Proposition 4.13, there is
pa0, yq P α

pn�1q such that a0 � a. We also have pa0, yq P β since αpn�1q
� β.

Hence y P pαpaq X pβpaq. By Lemma 3.4, we obtain fprq � ppαpaqq� P rys and

gprq � ppβpaqq� P rys. Since rys is of length 2�n, |fprq � gprq| ¤ 2�n. Since this
holds for every r P I, we conclude that }f � g}

8

¤ 2�n.

6.2 Admissibility of ρIR

Our next goal is to show that I ñ R
ρIR

ÝÑ CpI,Rq belongs to SpnReppCohq.

Lemma 6.4 Let α, β P dompρIRq and n P N. If αpnq"
!

βpnq, then αpnq � βpnq.

Proof. Suppose that αpnq"
!

βpnq and pb0, zq P β
pnq. We claim that pb0, zq P α

pnq

so that we have βpnq � αpnq and αpnq � βpnq by a symmetric reasoning.
Choose a clique b P xb0y X dompρIq. Then by Proposition 4.13, there is

a unique pa0, yq P α
pnq such that a0 � b. Since pa0, yq"

!

pb0, zq, a0"
!

b0 and
 pz" yq, we conclude pb0, zq � pa0, yq P α

pnq.

This allows us to define

F :� tα¤n : α P dompρIRq and n P Nu,

where α¤n :�
�

i¤n α
piq. F is indeed a spanning forest for dompρIRq. By the

previous lemma, if α¤m, β¤n
P F and α¤m

"

!

β¤n, then αpiq � βpiq for all
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i ¤ min pm,nq, so either α¤m
� β¤n or β¤n

� α¤m depending on whether
m ¤ n or n ¤ m. Hence the representation ρIR belongs to SpnReppCohq.

Before we conclude the admissibility of ρIR let us recall a fact from general
topology that the evaluation map ev : CpI,Rq � I ÝÑ R is continuous because
of the compactness of I.

Theorem 6.5 The representation I ñ R
ρIR

ÝÑ CpI,Rq is admissible.

Proof. Let Z be a subspace of CpI,Rq and Z
γ
ÝÑ Z be a continuous represen-

tation in SpnReppCohq. Our goal is to find a stable map F : Z ÝÑst I ñ R

which realizes the inclusion map i : Z ÝÑ CpI,Rq:

Z

F
//

γ

��

I ñ R

ρIR

��

Z

i
// CpI,Rq

Let R0 :� tfprq : f P Z, r P Iu and define δ :� Z � I ÝÑ R0 by

δpα, aq :� evpγpαq, ρIpaqq

for every α P dompγq and a P dompρIq. This map is surjective, and moreover
continuous because ev is. Furthermore, a spanning forest for δ can be given as

in the proof of Lemma 4.3. Hence Z � I
δ
ÝÑ R0 belongs to SpnReppCohq.

Now by admissibility of ρR we obtain a stable map G such that:

Z � I

G
//

δ

��

R

ρR

��

R0

i
// R

By Currying G, we obtain a desired map F : Z ÝÑst I ñ R.

6.3 Representing CpR,Rq

Let us now proceed to the full function space CpR,Rq. As before, the exponential

ρRR � rρR Ñ ρRs forms a representation Rñ R
ρRR

ÝÑ CpR,Rq.
Since R is not compact, the uniform topology is not suitable. Instead, we

equip CpR,Rq with the compact-open topology, which is generated by the collec-
tion of function sets T pK,Uq as subbasis, where

T pK,Uq :� tf P CpR,Rq : f rKs � Uu,
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for each compact K � R and open U � R (where f rKs is the image of K under
f). We now prove that ρRR is continuous with respect to the compact-open
topology.

Lemma 6.6 Suppose that a function f : R ÝÑ R is realized by a stable map
F : R ÝÑst R. Then for any compact K � R and open U � R, the function
f belongs to T pK,Uq if and only if there are pa1, y1q, . . . , pak, ykq P trpF q such
that

K � ra1s Y � � � Y raks and ry1s Y � � � Y ryks � U. (4)

Proof. (ð) Our goal is to show fprq P U for any r P K. By the first condition,
r P rais for some i ¤ k. Combining Proposition 4.12 with the second condition,
we get

fprq P f rais � ryis � U.

(ñ) We claim that for each r P K, there is par, yrq P trpF q such that r belongs
to the interior of rars and ryrs � U . Since the interiors of trarsurPK cover K,
compactness of K gives us finitely many par1 , yr1q, . . . , park , yrkq satisfying the
requirement (4).

Let us prove the claim. It is easy to see that for any r P K, there is a P ρ�1

R
prq

such that r belongs to the interior of rxs for any member x P a (see Figure 1). Let
b :� F paq P Rmax. Since f belongs to T pK,Uq, we have b� � F paq� � fprq P U .
By Lemma 3.6, there exists yr P b such that ryrs � U . Since F paq Q yr, there
is a finite subclique ar � a such that par, yrq P trpF q. Clearly r belongs to the
interior of rars �

�

xPar
rxs.

Lemma 6.7 The representation Rñ R
ρRR

ÝÑ CpR,Rq is continuous.

Proof. Let K � R be compact and U � R open. Then for every f : R ÝÑ R

realized by a stable map F , f P T pK,Uq if and only if there is a finite subclique
α � tpa1, y1q, . . . , pak, ykqu of trpF q satisfying the property (4). We denote the
set of all such finite subcliques of trpF q by MpK,Uq. We then have:

F realizes some f P T pK,Uq ðñ trpF q includes some α PMpK,Uq

ðñ trpF q P
¤

αPMpK,Uq

xαy.

Recall that F realizes f iff trpF q P ρ�1

RR
pfq. Hence we obtain ρ�1

RR
rT pK,Uqs �

�

αPMpK,Uqxαy X dompρRRq. This proves the continuity of ρRR.

6.4 Admissibility of ρRR

We have seen that the representation R ñ R
ρRR

ÝÑ CpR,Rq is continuous. We
now show that it belongs to SpnReppCohq, by exhibiting a spanning forest for
ρRR.

We consider a monotone sequence of compact intervals

I0 � I1 � I2 � � � �

22



whose union is R. The corresponding coherence spaces are denoted by I0, I1,
I2, . . . . Notice that I0 � I1 � I2 � � � � � R as the sets of cliques. Given a
clique α P dompρRRq, we decompose it into

αpm,nq :� tpa, yq P α : a P pImqfin, y P Dnu,

so that α �

�

m,nPN α
pm,nq. Then each αpm,nq is finite by Lemma 6.2 and

subject to Lemma 6.4. Let F be the set of cliques of the form
�

i¤m αpm,iq

for any α P dompρRRq and m P N. If m ¤ m1, then αpm,nq
"

!

βpm
1,nq implies

αpm,nq
� βpm

1,nq, since βpm,nq
� βpm

1,nq and αpm,nq
"

!

βpm,nq implies αpm,nq
�

βpm,nq. Then it is not hard to see that F is a spanning forest for ρRR.
Finally, the representation ρRR is admissible. The proof is exactly the same

as that of Theorem 6.5, by noting that the evaluation map ev : CpR,Rq�R ÝÑ R

is continuous when CpR,Rq is endowed with the compact-open topology (see,
e.g., [Br93]). We therefore conclude:

Theorem 6.8 The representation Rñ R
ρRR

ÝÑ CpR,Rq is admissible.

As a consequence:

Corollary 6.9 A real operator Φ : CpR,Rq ÝÑ CpR,Rq is sequentially continu-
ous if and only if it is stably realizable.

This allows us to represent various real operators as stable maps. An example
is the integral operator

f ÞÑ λx.

» x

0

fpyqdy.
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