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Abstract

We discuss how to represent real numbers, real functions and opera-
tors based on coherence spaces and stable/linear maps. Specifically, we
introduce a representation of the real line by a coherence space, which is
admissible in the sense of the type-two theory of effectivity (TTE). This
implies that a real function is realized by a stable map if and only if it
is continuous, thus further leads to an admissible representation of the
space of continuous real functions. In contrast, a real function is realized
by a linear map if and only if it is uniformly continuous. Our presen-
tation is concrete and self-contained, so that it can be read without any
prerequisite in computable analysis and realizability.

1 Introduction

Coherence spaces, introduced by Girard [Gi87], are a drastic simplification of
stable domain theory due to Berry [Be78]. Originally it was introduced as a de-
notational semantics for System F and used to interpret lambda terms by stable
maps. As is well known, stable maps better capture the sequential computation
in the sense of PCF than continuous maps in Scott domains. In particular, it is
known that the parallel-or function is not expressible as stable map. Coherence
spaces are equipped with another type of morphism, called linear maps, which
gave birth to linear logic. Thus coherence spaces provide a simple denotational
basis for both “stable” and “linear” functional computations.

While computation is usually carried out over finite objects such as inte-
gers, lists and trees, we are here interested in more abstract objects such as
real numbers, real functions and operators. Since the latter cannot be directly
manipulated by a computer, we first have to represent them in an appropriate
way. The aim of this paper is to give a self-contained account on how to rep-
resent such abstract entities by coherence spaces and to see how the distinction
between stable and linear maps shows up in this setting.

There have been a lot of attempts to concretely representing reals and real
functions (as well as more abstract mathematical entities) since the very first
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work by Turing [Tu36]. It constitutes a large research field, collectively called
computable analysis. Among various approaches, let us only mention two par-
ticularly successful ones: the type-two theory of effectivity (TTE) [KW85, We00,
BHWO08] and the theory of domain representations [Sco70, B197, ES99, SHT0S].

In TTE, the real line R, for instance, is represented by a partial surjective
function p :€ {0,1}* — R from the Cantor space {0,1}* (or the Baire space
N«) to R. Once a representation has been given, the whole computation is
carried out on the Cantor/Baire spaces, whose objects are concrete and directly
manipulated by a computer. Among various representations, one can distinguish
good ones from bad ones with respect to continuity and computability. One
of the most important achievements of TTE is a suitable criterion for good
representations, called admissibility. It works not only for the real line but also
for various topological spaces.

On the other hand, a domain representation of R is given by a partial sur-
jection p : D — R from a domain D. This approach, though similar to the
previous one, leads to a typed account on representation: once R has been rep-
resented by D, it is natural to represent the function space C(R,R) by D = D,
an exponential object in the category at issue.

In this paper, we develop a similar theory of representations based on co-
herence spaces. After some preliminaries in Section 2, we introduce coherence
representations in Section 3. In our framework, the real line R is represented
by a partial surjection pgr :€ R — R from a suitable coherence space R (sim-
ilarly to [DCCO00]). Our theory is thus typed as the domain representations
approach. We then import the concept of admissibility from TTE. It is, how-
ever, not as easy as it may seem at first, because coherence spaces are far more
liberal than the Cantor and Baire spaces. We are thus led to restrict the class of
representations to spanned ones which behave similarly to TTE representations.
Admissibility can be naturally defined with this restriction and it is shown that
our representation pg :€ R — R is indeed admissible in this sense. As a con-
sequence, we obtain a natural result that a function f : R — R is continuous if
and only if it is realized by a stable map F' : R — 4 R (Section 4). This result
then induces an admissible representation of C(R,R) based on the exponential
coherence space R = R (Section 6).

All the above suggests that coherence spaces could be a reasonable deno-
tational semantics for functional programming languages for real number com-
putation (e.g., [Es96, ES14], just to mention a few). We must however admit
that there is not much novelty, if we only consider stable maps as morphisms.
An entirely new phenomenon arises when we consider linear maps as well. In
Section 5, we show that a function f : R — R is uniformly continuous if and
only if it is realized by a linear map F' : R —>y;;,, R. Thus linearity in coherence
spaces corresponds to uniformity of real functions. Although this result rests
on our specific way of representing R, we believe that it is worth noting since
it well illustrates a distinction between stable and linear maps in an analytic
setting.

Related work. This paper is based on a presentation made at the Twelfth In-
ternational Conference on Computability and Complezity in Analysis (CCA’15).
It is fair to say that some of our results may be indirectly obtained from the
corresponding results in TTE, by establishing an equivalence between spanned



coherence representations and TTE representations. In addition, some of our
developments admit a more abstract account based on the modern theory of
realizability [Lo94]. Indeed, it is well known that representations in TTE (and
in our setting) are intimately related to modest sets in the sense of realizability
[Bi99, Ba00, Ba02]. These aspects are to be discussed in a separate paper writ-
ten by the first author [Mal6]. The latter also generalizes our results on R to a
wider class of topological spaces and uniform spaces.

In contrast to [Mal6], we try to make our presentation as concrete, exposi-
tory and self-contained as possible so that it can be read without any background
on computable analysis. Although this risks reproving similar results and losing
a global perspective, we hope that it will be useful to invite people working on
denotational semantics of linear logic to the field of computable analysis. Apart
from connection to computable analysis, this paper exhibits several new coher-
ence spaces as well as their curious properties, which will be valuable as source
of inspiration and deeper understanding of coherence spaces.

2 Coherence spaces

We here recall some basics of coherence spaces. See [Gi87, Me09] for further
information.

Definition 2.1 (coherence spaces) A coherence space X = (X, ) con-
sists of a set X of tokens and a reflexive symmetric relation < on X, called
coherence.

Throughout this paper, we assume that every token set X is at most count-
able. This assumption, which is needed for Theorem 4.5, is quite reasonable in
practice, since we would like to think of tokens as computational objects (see
[As90] for computability over coherence spaces).

A clique of X is a set of pairwise coherent tokens in X. By abuse of notation,
we denote the set of cliques by X. We also write Xy, and X nax to denote the
sets of finite cliques and maximal cliques, respectively.

Given tokens z,y € X, we write x ~y (strict coherence) if x Cy and x # y.
Notice that coherence and strict coherence are mutually definable from each
other. Given cliques a,b € X, we write a © b if a ub € X. This means that any
token in a is coherent with any token in b.

The set X is ordered by inclusion €, and endowed with the Scott topology
generated by {(a): a € X¢,}, where

{ay:={be X :a C b}.

Thus a coherence space can be seen as a poset, and it is in fact a Scott domain
whose compact elements are exactly finite cliques. Note that it is a Ty-space,
and is countably based (i.e., has a countable base) due to our assumption that
the token set X is countable.

A typical coherence space is PF := (N x N, &), where © is defined by

(m1,n1) © (ma,n2) <= my = mse implies ny = no.
An equivalent definition can be given in terms of —~:

(ml,nl)f\(mg,ng) < mq #mg.



We have f € PF iff f is (the graph of) a partial function f :Z N — N, where
we abuse the same notation for both a function and its graph. Maximal cliques
correspond to total functions. A set U € PF is open iff there is a set B of finite
partial functions such that f € U <= g < f for some g € B.

Definition 2.2 (stable and linear maps) Let X andY be coherence spaces.
A function F : X — Y is said to be stable, written F' : X —4 Y, if it is
continuous and for any cliques a,b € X,

acb = F(anb)=F(a)n F(b).
A function F : X — Y s said to be linear, written F' : X —;, Y, if it

satisfies
a = Zai = F(a) = ZF(ai),

where Y, means disjoint union of cliques.

It is easy to see that every linear map is stable.

There are alternative definitions. Given a function F : X — Y, call
(a,y) € X¢n x Y a minimal pair of F if F(a) 3y and there is no proper subset
a’ € a such that F(a’) 3 y. The set of minimal pairs of F' is called the trace of
F and denoted by tr(F).

Now, F'is a stable map iff it is monotone w.r.t. € and:

(st) if F(a) 3y, there is a unique ag € a such that (ag,y) € tr(F).

Indeed, suppose that F is stable and F(a) 3 y. Then continuity ensures the
existence of a finite ag € a such that F(ap) 3 y, and stability ensures that ag is
unique if it is chosen to be minimal.

If F' is furthermore linear, preservation of disjoint union ensures that ag is a
singleton: a = > . {z} = F(a) = >, ., F(x). Thus, F' is a linear map iff it is
monotone and:

(lin) if F(a) 3y, there is a unique z € a such that ({z},y) € tr(F).

By abuse of notation, we denote the set {(z,y) | ({z},y) € tr(F)} by tr(F) if F
is supposed to be a linear map.

Below are some typical constructions of coherence spaces. Let X; = (X;, ©;)
be a coherence space for ¢ = 1,2. We denote by X; w X5 the disjoint sum
{(1,2):xe X1} u{(2,2): 2’ € Xo}. We define:

o T:=(J,9).

X1 x Xq:= (X7 w Xy, ), where (i,2) = (j,y) holds iff either i # j or
t=jJ AT, Y.

e X1 = Xo := ((X1)fin X X2, ©), where (a,z) ~ (b,y) holds iff a=1b
implies x ~ 2 y.

X1—o0Xs5:= (X1 xXs, O), where (z,2) ~ (w, y) holds iff 21 w implies
r—2%Y.



It is well known that the category Coh of coherence spaces and stable maps
equipped with (T, x,=>) is cartesian closed. Likewise, the category Lin of
coherence spaces and linear maps can be enhanced with the structure of a Seely
category, a model of linear logic (see [Me09]).

We do not describe the categorical structure in detail, but let us just remark
the following. Given c € X x Y, there uniquely exist cliques a € X and be 'Y
such that ¢ = a wb. Writing ¢ = {a, b), it is easy to see that {a, by = x xy<{a’, ")
holds iff a© xa’ AbTyl. Given F: X —4 Y, we have tr(F) e X = Y.
Conversely, given o € X = Y, there is a stable map & : X —; Y defined by

a(a):={yeY : (ag,y) € a for some ag S a}.

Similarly, every linear map F' : X —;, Y leads to a clique tr(F) e X - Y,
and every clique & € X — Y leads to a linear map a(a) := {y € Y : (x,y) €
a for some x € a}. These data constitute the bijective correspondences:

Coh(X,Y)=X =Y, Lin(X,Y)=X oY.

3 Representations

3.1 Representations of sets

We are interested in computation over abstract mathematical spaces, which can-
not be directly dealt with by computers. The basic idea of TTE is to represent
an abstract space X by a surjective partial function p :€ {0,1}* — X from
the concrete space {0,1}* (Cantor space). We basically follow the same idea,
the only difference being that we think of coherence spaces as concrete. Let us
begin with representations of plain sets without any topological structures.

Definition 3.1 (representation) Let S be an arbitrary set. A tuple (X, p,S)
is called a representation of S if X is a coherence space and p :€ X — S is
a partial surjective function. Below, (X, p,S) is denoted as X 58 or simply
as p. If p(a) = r, we say that r is realized by a clique a (via representation p).

Representations allow us to express abstract functions as stable maps.

Definition 3.2 (stable realizability) Let X % S and Y 25 T be repre-
sentations. We say that a total function f: S — T is realized by a stable map
F: X — Y via representations px, py if the following diagram commutes:

F
X — Y (1)
pPX Y

f

S — T

Such a function f is also called stably realizable.



Many of the constructions on coherence spaces are inherited by representa-
tions and stably realizable maps. Typically, we have:

Definition 3.3 (product and exponential) Let X 2% S and Y 25 T be
representations.

e The product X xY CXBY) G T s naturally defined, where dom(px xy ) :=
{{a,b) : a € dom(px),b € dom(py)} and px xy ({a,b) := (px(a), py (b)).

e The exponential X =Y ox—gx] SR(px,py) is defined as follows. De-
fine [px = py] S X =Y —T% by

[px = pyl(a):=f < f:S5—Tisrealizedbya:X —4Y.

SR(px,py) S T? is the range of [px — py], which consists of stably
realizable functions.

As expected, the category Rep(Coh) of representations and stably realizable
functions is cartesian closed. Furthermore it is regular and locally cartesian
closed, since Rep(Coh) is equivalent to the category of modest sets over a
universal coherence space. Relationship with the realizability theory will be
discussed in [Mal6].

3.2 Representation of the real line

We now illustrate how to represent a space. Our principal example is the real
line R.

Let D := Z x N, where each (m,n) € D is identified with a dyadic rational
number m/2". Notice that we distinguish (1,0) and (2,1) as elements of D,
while 1/2° and 2/2! are identical as points of R. We will explicitly write z € D
when we take the former standpoint.

We use the following notations: for & = (m,n) € D, den(z) := n (the
exponent of the denominator), and

[2] := [(m—1)/2"; (m +1)/2"]

(the closed interval of R with center  and length 27"*1). We also write D,, :=
{(m,n) | m € Z} so that xz € D,, iff den(z) = n.
A coherence space for the real line is given by R := (D, ), where

x~y < den(z) #den(y) and [z] n[y] # &.

Let a be a clique in R and n € N. Since —(x ~z') for all z,2’ € D,, a
contains at most one element x,, such that x,, € D,,. Moreover, it is not hard to
see that a can be extended to a larger clique ¢’ := au {z,} if anD,, = &. Hence
if @ is a maximal clique, it can be identified with a sequence (z,)nen such that
z, € D, for each n € N. On the other hand, notice that the second condition
can be rephrased as follows:

[:C] N [y] # @ <~ |;C — y| < 27den(m) 4 2*den(y). (2)
Hence a € Rmax expresses a (rapidly-converging) Cauchy sequence:

N<mn = |z, —z,| <2 ™ +2"<27V,



0/1 11 2/1

0/2 172 2/2 3/2 4/2
D, : * : : :

0/4 2/4 4/4 6/4 8/4
D, | | | : * : | | |

0/8 4/8 8/8 12/8 16/8
D, et —t—t—t——t

Figure 1: A clique a = {(1,0), (1,1), (4,2), (6,3),...}

This allows us to define a function pgr(a) := lim,_, x, with dom(pr) :=
Rax. We often write a* instead of pgr(a). Since any real number can be ap-
proximated by a sequence of dyadic rationals, pg : dom(R) — R is surjective.
Hence we have obtained a representation R 25 R. Figure 1 illustrates a clique
a ={(1,0),(1,1), (4,2),(6,3),...}, where each thick line indicates the interval
[x] associated to a token x € a.

Our next goal is to show that pr : Rmax — R is continuous, where Ry.x ©
R is endowed with the subspace topology.

Lemma 3.4 For every a € Rnax, we have
rea = a*€elx]

Proof. Suppose that @ = (2, )peny and & = x,,. From (2), we have |z — z,| <
27™ 4+ 27" for any n € N. Since z,, tends to a* as n — 0. we obtain |z —a*| <
27™ de., a* € [z]. ]

Given a nonempty set b € D, we write [b] := [),,[z]. Note that b € ¢
implies [c] € [b]. The following is an easy consequence of the previous lemma.

Lemma 3.5 For every a € Rmax, [a] = {a*}.

Proof. Let a = (y)neny € Rmax. We have a* € [a] by Lemma 3.4. Given any
r € [a], we have |r — a*| < |r — Tpt1| + [Tng1 — a®] < 277" for all n € N since
r € [a] € [zn+1], which leads to r = a*.

|

Lemma 3.6 For ecvery a € Rynax and every open set U € R with a* € U, there
exists T € a such that [z] € U.

Proof. Let a = (2)neny € Rmax- One can take § > 0 such that (a* —§,a*+0) <
U. Then for a sufficiently large n, we have [z, ] € (a* — §,a* + §), since [z,] is

a closed interval which contains a* and whose length tends to 0 as n — 0.
|



Lemma 3.7 pr : Rnax — R is continuous.
Proof. Let U € R be an open set. We claim:
pr' (U] = [ J{®) : b e Ry and [b] € U} n dom(pr),

where the right hand side is a union of basic open sets in R,.x, hence is open.
Indeed, a € pg'[U] implies a* € U. By Lemma 3.6, we obtain [z] € U for some
x € a. Since a € {{x}), it belongs to the right hand side. Conversely, suppose
that a € (b) with b € R4, and [b] € U. Then a* € [a] € [b] € U by Lemma 3.5.
That is, a € pg' [U]. |

We investigate further properties of the representation pgr which will be
needed later.

Lemma 3.8 (hybridding) Let a = (zp)men be a maximal cliqgue and b =
{yn : m € I} be a clique of R with I € N such that a* € [b]. Define ¢ = (2k)ken
by
ze = yr (kel)
= 1z (otherwise)

Then ¢ is a maximal clique such that b S ¢ and c¢* = a*.

Proof. Notice that every [zx] contains a* in common. ¢ is a clique, since
den(zy) # den(zx) and a* € [zx] N [zxr] # & for all k, k' € N with k& # k.
Maximality is obvious. ¢* = a* follows by Lemma 3.5. ]

Lemma 3.9 For any be R and r € R, we have:
re[b] <= b has an extension ¢ € Rmax with ¢* = r.

Proof. The backward direction can be easily seen by noting that b ¢ implies
c* € [¢] € [b]. For the forward direction, choose a maximal clique a with a* = r.
Applying Lemma 3.8 to the cliques a and b, we obtain a maximal clique ¢ such
that b € ¢ and ¢* =r. ]

4 Admissible Representations

4.1 Spanned representations

We have seen how to represent the real line. A similar idea leads to representa-
tion of other metric spaces, and a more general class of topological spaces.

In general, a space may have many representations. Some are good, while
others are terrible from a computational perspective. In TTE, a criterion for
reasonable representations has been established, that is the concept of admis-
sibility [We00, Sc02a]. Roughly speaking, a representation is admissible if it is
continuous and “weakly final” among all continuous representations. This idea
has been adapted to domain representations by Hamrin [Ha05].

We are now going to adapt it to coherence spaces. However, it turns out
that a straightforward translation as in [Ha05, Da07] does not work, since it

does not even make R 2% R admissible. This is because we consider stable



maps, which are far more restrictive than continuous ones. We are thus led to
impose an additional requirement.

Recall that each member of the Cantor space {0,1}* (infinite sequence) can
be approximated by its finite prefixes in {0,1}*, and that the set {0,1}* with
the prefix ordering = forms a tree. In short, {0,1}* is “spanned” by the tree
({0,1}*,E). The point of the definition below is to impose a similar structure
on the domain of a representation.

Definition 4.1 (spanned representation) A representation X L, 8 is said
to be spanned if there is a set F € Xyin (called a spanning forest) with the fol-
lowing properties:

o For any a,be F with a " b, either a S b or b € a holds.
e a e dom(p) iff there is a mazimal chain {a;}icr in F such that a = |Ja;.

We denote by SpnRep(Coh) the full subcategory of Rep(Coh) that consists
of spanned representations.

It would be perhaps more appropriate to call it a spannable representation
since the spanning forest F is not part of data, though we stick to calling it a
spanned representation. Observe that the first condition makes (F, S) a forest
in the sense of graph theory: a € ¢ and b € ¢ with a,b,c € F imply a € b or
b € a. On the other hand, the second condition states that every a € dom(p) is
approximated by a (unique) maximal chain in F, and conversely any a € F has
an extension in dom(p), that is, (a) n dom(p) # & (density).

For instance, the representation R 2% R is spanned by the tree F of finite
initial segments of Cauchy sequences: ag € F iff ag = {xo,...,2m} € Ren for
some m € N and x; € ;.

A more direct example is the following.

Example 4.2 (coherence space for the Cantor space) Let C := ({0,1}*,
where w Cw iff w E u or u E w. Then any mazximal cliqgue in C can be iden-
tified with an infinite sequence in the Cantor space {0,1}*, so that we obtain a
function pe : Cmax — {0,1}*. It is not hard to see that pc is continuous (in
fact a homeomorphism,).

On the other hand, any w € {0,1}* U {0,1}* leads to a clique w® € C defined
by:

w® = {ue{0,1}*:uEw}.

This allows us to define a spanning forest F := {w° : w € {0,1}*} € Chn. Thus
C 25 (0,1} is an object of SpnRep(Coh).
SpnRep(Coh) is closed under finite products.

Lemma 4.3 If X 25 S and Y 25 T belong to SpnRep(Coh), so is the
product representation X xY PXY S xT.

Proof. Let Fx and Fy be spanning forests for px and py, respectively. Note
that each element of dom(px) is either a leaf of Fx or the limit of an infinite
path in Fx. For each a € Fx, we write h(a) = n if there are exactly n elements

0



below a in the forest (Fx,Z): a1 € -+ S a, S a (strict inclusion). We use the
same notation for elements of Fy .
Now a forest Fxxy S (X X Y )sn can be defined as follows:

h(a) = h(b), or
{a,bye Fxxy < a is a leaf and h(a) < h(b), or
b is a leaf and h(a) > h(b),

for all a € Fx and b € Fy. It is clear that Fx «y satisfies the second condition
for spanning forests. For the first condition, let {a;,b;) € Fxxy (i = 1,2) be
cliques such that {a1, b1y {aq, bs). Notice that we have a1 € as v ag S a; and
b1 € bavby C by by assumption. Our goal is to show that either a; S as Ab; S bo
or as € a1 A by € by holds. Suppose for contradiction that a1 & as and by & by
so that h(a1) < h(az) and h(bs) < h(b1). We never have h(a1) < h(by) since aq
is not a leaf. On the other hand, h(b1) < h(a;1) implies h(b2) < h(asz), which is
impossible since bs is not a leaf. Thus it is impossible to have both a; & as and
by © b1 together. |

4.2 Admissibility

As will be discussed in [Mal6], SpnRep(Coh) is categorically equivalent to the
category Rep(B) of TTE representations (although we do not use this fact in
this paper). Hence we may naturally import the concept of admissibility from
the latter.

Definition 4.4 (admissibility) Let Y be a topological space. A representation
Y % Y in SpnRep(Coh) is admissible if it is continuous as a partial function
and for any subspace Yo € Y and any continuous representation X — Yq in
SpnRep(Coh) there exists a stable map F : X —4 Y which realizes the
inclusion map 1 : Yo — Y:

i

Y ——— Y

Given a topological space X, its admissible representations are interchange-
able in the following sense. Let X 2% X and X 1 L1, X be admissible rep-
resentations. Then the identity map id : X — X is realized by stable maps
F: Xg —s X1 and G : X1 —4 Xo. Hence realizability of a function
f : X — Y does not depend on the choice of an admissible representation.
However, notice that F' and G need not be inverses of each other, since we do
not require uniqueness.

Admissible representations enjoy a very pleasant property that stable real-
izability does coincide with sequential continuity (see below).

10



Theorem 4.5 Let X and Y be topological spaces admissibly represented by X £
X and Y 25 Y. A function f : X — Y is stably realizable if and only if it
is sequentially continuous, that is, it preserves the limit of any convergent se-
quence:

Tn =z (n— ) = f(zn) = f(z) (n - 0).

Let us make some comments before proving the theorem. Several variants of
this theorem are known in the literature. In TTE, Kreitz and Weihrauch [KW85]
first proved the theorem for countably-based Ty-spaces. It was later extended to
arbitrary topological spaces and beyond by Schroder [Sc01, Sc02a, Sc02b, Sc02¢],
modifying the definition of admissibility. Hamrin [Ha05] proved a similar result
about net-continuity for domain representations.

In general, continuity of a function f : X — Y implies sequential continu-
ity. The other direction holds when the topology on X satisfies an additional
property. A subset S of X is called sequentially open if any sequence (), € X%
converging to a point in S eventually lies in S. A sequential space is a topo-
logical space whose open sets and sequentially open sets coincide. It is this
property that makes the two notions of continuity coincide. It is known that
every countably based space is a sequential space. Hence the following topo-
logical spaces are all sequential: the real line R, coherence spaces X, and their
subspaces (since every subspace of a countably based space is also countably
based).

As a corollary of Theorem 4.5, we have:

Corollary 4.6 Let X and Y be topological spaces which are admissibly repre-
sented by X 225 X and Y 25 Y. Suppose that X is a sequential space. Then a
function f: X — Y is stably realizable if and only if it is continuous.

Although Theorem 4.5 follows from the corresponding result for TTE in
[Sc02a] via the categorical equivalence SpnRep(Coh) ~ Rep(B) [Mal6], we
nevertheless give a self-contained proof here. Let us begin with a technical
construction.

Let X be a topological space and (,,)nen & sequence in X* which converges
to x,, € X. We assume that x,, # x, for every n € N. Then the subspace
Xo :={zn : n € N U {0}} can be represented as follows.

We use the coherence space C' in Example 4.2 as the source of representation.
Let

a, = (0"1*)° (neN)
ap = (0¥)°.

We may then define a representation C —— Xy by v(an) := x, for every n €
N U {oo}.

Lemma 4.7
1. (an)nen converges to ay, in C.
2. v is continuous.

Proof. For claim 1, suppose that a, belongs to a basic open set {b), where
b € Xsin. By definition, ay, € by iff b € (04)°. Such b must be of the form
{0™,...,0m*}, where mq,...mp € N. Let m := max{m1,...,mg}. Then for
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any n € N, we have a,, € (b) iff n = m. Hence all a,, but finitely many belong
to (b).

For claim 2, observe that a,, € {(0"1)°) iff (0"1)° < (0™1)° iff m = n. Hence
{(0™1)°) n dom(7) is a singleton {a,} for every n € N. Now let U € X be an
open set. We prove that y~1[U] is open by case distinction.

e If z,, ¢ U, then by the above observation,

YUY = {an s aae Ub = | €(071)%) dom(y) ,

n:xnp,elU
which is a union of basic open sets, hence is open.

e If z,, € U, then there is m € N such that all x,, with n = m belong to U,
since (x,) converges to x,. In this case, we have:

V1= fan s € U o (07 0 domy))

which is open in the similar way.

Hence 7 is continuous. [ ]
We are now ready to prove Theorem 4.5.

Proof. (<) Let f: X — Y be a sequentially continuous function and Yq :=
fIX] (the range of f). Then the composed function fopx : dom(px) — Yy is
sequentially continuous. Recall that dom(px ) is sequential, since it is a subspace
of a sequential space X. Hence fopx isin fact continuous. Since dom(fopx) =
dom(px), it belongs to SpnRep(Coh). We may now apply admissibility of py
to v := fopx (see (3)) to obtain a stable map F : X —,; Y that makes the
diagram (1) commute.

(=) Suppose that f is realized by a stable map F. Let (x,), € X¥ be a
sequence converging to ., € X and let Xy := {z,, : n € Nu {0}} as above.
Our goal is to show that f(z,) converges to f(z) in Y as n — oo. By the
lemma above, there is a continuous representation C 5 Xp. Since Xq is
a subspace of X, admissibility of px implies the existence of a stable map
G : C — 4 X that makes the left square below commute (the right square
commutes by assumption):

Xo X Y

Since stable maps are continuous, the composed map py o F o G is also
continuous. We also know that the sequence (a,), converges to a,, in C by the
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previous lemma. Now consider the sequence (f(z,))n. Since we have
f(zn) = foioy(an) = py o FoGlay)

for every n € N u {0}, we conclude that the sequence (f(xy)), converges to

f(xL) |

The following is an easy consequence of Lemma 4.3.

Proposition 4.8 If X 225 X and Y 25 Y are admissible representations, so

is the product representation X x'Y oty X xY.

4.3 Admissibility of pgr

Having established a general property of admissible representations, we now
provide an instance. Let us begin with a generalization of Lemma 3.6.

Lemma 4.9 Let X — X be a continuous representation. For every open set
U € X and a € dom(vy) with v(a) € U, there exists a finite subclique ag S a such
that

v(a) € v{aoy € U,
where v{apy = {y(b) : b € {ag) n dom(7)}.

Proof. By continuity of v, v '[U] is an open set of the form | J;;{a;), and a
must belong to some {a;) (i € I). [ |

Recall that pg is continuous (Lemma 3.7) and admits a spanning forest so
that it belongs to SpnRep(Coh). We now prove:

Theorem 4.10 The representation R 25 R is admissible.

Proof. Let Rg be a subspace of R and X —> Ry a continuous representation in
SpnRep(Coh). Our goal is to find a stable map F which makes the following
diagram commute:

)
Ry — R
A naive attempt would be to define:
F(a) = {yeD:~{agpy S [y] for some finite ag S a}.
Although F is intuitively correct, it is not stable. First of all, F(a) should not

contain two distinct elements y, z with y, z € D,,, since they are not coherent
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while F'(a) must be a clique. Thus we have to “choose” one element y € D,, for
each n € N if there are several candidates.

This is not enough, however. The condition (st) (see Section 2) forces that
F(a) 3 y implies the unique existence of a minimal ag € a such that F(ag) 2 y.
It is here that a spanning forest F for v plays a role. The idea is to look for
such a minimal ag in F. Since F is a forest, minimality ensures uniqueness.
Moreover, restricting to the elements of F is not harmful, since any element of
dom(7) is approximated by a maximal chain in F.

Let us now proceed to the formal definition. Let ¥ : F x N =3 D be a
multifunction defined by

U(a,n) := {y € Dy : v{a) < [yl}

for each a € F and n € N, and let ¢ :©€ F x N — D be a partial function such
that

e t(a,n) is defined and 1 (a,n) € ¥(a,n) just in case a is a minimal element
in the set {be F : U(b,n) # J}.

Thus 1) is a choice function. Notice that v(a,n) = y implies 7<{a) S [y] and
den(y) = n. Finally we define

F(a):={yeD:3ap S a, IneN, Y(ap,n) = y}.

This implements the ideas explained above. Let us now verify that F' is the
desired map in 4 steps.

(i) F(a) is a clique of R for every a € X.
Let y,z € F(a) with y # z. This means that there are ag,a; € F and n,m € N
such that ¥(ag,n) = y, ¥(a1,m) = 2z and ag,a; S a. Since ayg Z aq, either
ag € aj or a; € ag hold. If n = m, then agp = a; by the minimality condition
and thus y = ¥(ag,n) = ¥(a1,m) = z, contradicting the assumption y # z.
Hence den(y) = n # m = den(z).

We also have [y] n [z] # . Indeed, there is ¢ € {ap) n {a1) N dom(y) by
the density condition (see Definition 4.1; note also ag S a; or a; € ag), thus
v(c) € ¥aoy n a1y € [y] n [2]. Therefore, y ~ z.

(ii) F is a stable map.
It is sufficient to verify the condition (st): F'(a) 3 y implies the unique existence
of a minimal ag € a such that F(ag) 3 y. But it is clear from the definition of
F.

(iii) F(a) € Rmax for every a € dom(%).

First recall that there is a chain {ap}rer in F such that a = (J,;ar. For
maximality of F(a), it suffices to show that for every n € N there is y € F(a)
with den(y) = n.

Since «(a) € R, there is z € D,, such that v(a) belongs to the interior U of
[z]. By Lemma 4.9, there is a finite subclique a’ of a such that v{a’y € U < [z].
Without loss of generality, we may assume that a’ = a;, for some k € I. This
shows that ¥(ag,n) # &, which implies that 1(am,,n) = y is defined for some
am S ay. Hence we obtain y € F(a) with den(y) = n as required.
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(iv) F(a)* = ~(a) for every a € dom(v).
Suppose that y € F(a) with den(y) = n, namely there is ap € a such that
P(ag,n) =y. That is, y(a) € v{aoy € [y]. Since it holds for every y in F(a), we
have v(a) € [F(a)]. Since F(a) € Rmax by (iii), we conclude F(a)* = y(a) by
Lemma 3.5. |

As a consequence of Corollary 4.6, Proposition 4.8 and Theorem 4.10:

Corollary 4.11 A function f : R™ — R is continuous if and only if it is
realized by a stable map F : R" — R.

Hence we can express any continuous real function by a stable map. On the
other hand, expressing real operators needs some extra work. We will address
this issue in Section 6.

4.4 Traces of realizable functions

Suppose that f : R — R is realized by a stable map F' : R — R. Then
the trace tr(F) € R = R must contain enough data to recover f. Hence it
is interesting to look into its structure. We here prove two basic properties
of the traces of realizers. Recall that each clique o € R = R is a subset of
Rin x D. Given any @« € R = R and any n € N, we denote the subclique
{(a,y) e a:yeD,} by a™.

Proposition 4.12 If (ag,y) € tr(F), then flao] < [y].

Proof. Suppose that a real number r belongs to the interval [ap]. By Lemma
3.9, ap has an extension a € Rmnax such that a* = r. We have F(a) 3 y, so
F(a)* € [y] by Lemma 3.4. Hence f(r) = f(a*) = F(a)* € [y]. [ |

Proposition 4.13 For every a € Rmax and n € N, there is a unique (ag,y) €
tr(F)™ such that ag < a.

Proof. Since F is a realizer of f, we must have F(a) € Rmax. So F(a) 3 y for
some y € D,,, and we find (ag,y) € tr(F)™ such that ag C a. There is no other
(a1,z) € tr(F)(™ with the same property; if there were, we would have ag < a;
but not y ~ z, contradicting tr(F') being a clique. [ |

Figure 2 illustrates how the trace tr(F') approximates a function f: (ag,y) €
tr(F) means that there is an approximating rectangle [ag] x [y] such that f[ag] S
[y]- Such a rectangle is uniquely determined as soon as a € Rmax and n € N
(corresponding to the height of the rectangle) are specified. Each tr(F)™ is
then a collection of rectangles of height 27"+ which cover the graph of f.

5 Linear Maps

5.1 Linearity and uniform continuity

We now turn our attention to another aspect of coherence spaces: linearity.
We have seen in the previous section that stable realizability coincides with
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Figure 2: The trace of a stably realizable function

sequential continuity for any topological spaces with admissible representations.
Although we do not yet have such a general result concerning linearity, we do
have a curious observation if we restrict to real functions:

linear realizability <=  uniform continuity.

This section is devoted to a proof of this fact. Let us begin with a formal
definition.

Definition 5.1 (linear realizability) Let X “5 X and Y 25 Y be repre-
sentations. A total function f: X — Y is linearly realizable via px, py if it
is realized by a linear map F : X —;, Y (see Definition 3.2).

Recall that a function g : R — R is uniformly continuous if and only if it
has a modulus of continuity, that is a function p : N — N such that

|z -yl <27 = |g(z) — g(y)| < 27"

holds for any =,y € R and n € N.
Now let us fix a function f : R — R which is realized by a linear map F.
Our first goal is to discover a modulus of continuity for f by looking into tr(F).
Recall that each clique o € R —o R is a subset of D x D. Given a € R —o R
and n € N, we denote the subclique {(z,9) € « : y € D,,} by a(™. As before, the
trace tr(F') satisfies the following basic properties (see Propositions 4.12, 4.13).

Proposition 5.2 If (z,y) € tr(F), then f[z] € [y].

Proposition 5.3 For every a € Rmax and n € N, there is a unique (x,y) €
tr(F)™ such that x € a.

Proposition 5.3 can be understood interactively. Think of a as a Cauchy
sequence and n as a degree of precision. Given a and n as inputs, F' is expected
to return an approximate value of f(a*) with precision 27". As F is linear, it
“sees” exactly one element x in the Cauchy sequence a and returns a dyadic
number y. That is (z,y) € tr(F)™).

Since F' is not allowed to “see” any other element in a, the way F picks up
an appropriate element x from a must be independent of the internal structure
of a. That is, the number den(z) must be determined only by n. This is the
main reason why linearity leads to uniformity. The next lemma ensures that
this intuition is correct.
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Figure 3: The trace of a linearly realizable function

Lemma 5.4 There is a function u : N — N such that for every x € D
there is y € Dy, such that (x,y) € tr(F).

p(n)

Proof. Let n e N. Fix an arbitrary (z.,y.) € tr(F)™ which exists by Proposi-
tion 5.3. Let m := den(zy). We claim that

o for x := 2, + 27" € D,,,, there is y € I, such that (z,y) € tr(F)"),

To see this, choose a maximal clique a = {z; };en With 2, = 24 and a* = z,.
By Proposition 5.3, (x,y,) € tr(F)™ is the unique element such that z, € a.
Since a* € [z], we may apply Lemma 3.8 to the cliques a and b = {x}, to obtain
another clique ¢ in which z,, = z, is replaced by Z,, = z. That is, we have:

{ZOazla' <oy Bmy AmAtl, - '}a
{ZOazla' s ;Emazm+1a-' }

c

By Proposition 5.3, there is (z,y) € tr(F)(™ such that z € ¢. We have
2 = %, since otherwise z € a contradicting uniqueness of (z,y.) € tr(F)™).
This proves the claim.

The same reasoning works for x := x — 27™ too. Hence by repetition we
obtain (z,y) € tr(F)™ for every x € D,,. Now the lemma follows by letting
win) :=m. [ |

Figure 3 illustrates tr(F)("™). Observe that there is a rectangle [z] x [y] for
each x € D (). The graph of f is then covered by rectangles of “uniform size”.
We are now ready to prove the main theorem of this section.

Theorem 5.5 A function f: R — R is linearly realizable if and only if it is
uniformly continuous.

Proof. (=) Suppose that f is realized by a linear map F as above. Then we
claim that p/'(n) := p(n + 1) is a modulus of f. To see this, take r, s € R such
that |r — s| < 27#("*1. Then there is z € D,(,41) such that r, s € [z]. By the
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previous lemma, there is y € D, 41 such that (z,y) € tr(F'). By Proposition 5.2
we obtain f(r), f(s) € [y]. Therefore,

1f(r) = FOI < 1) =yl + 1y = fls)] < 270D 427040 —97n,

<) Suppose that f : R — R is uniformly continuous. Then there is a function
1 N — N such that

r—sl <27 — | f(r) = fls)] <27

We define a linear map F : R —;, R as follows. Let ¥ : D x N =3 D be a
multifunction defined by

U(x,n) = {y €Dy : flz] < [y]}

for eachn € Nand z € D,,(;,) (otherwise ¥(z,n) := &), and let ¢ :S DxN — D
be a partial function such that

e (x,n) is defined and ¢ (x,n) € ¥(x,n) just in case ¥(x,n) # .

Notice that ¢ (z,n) = y implies f[z] € [y], den(z) = u(n) and den(y) = n.
Finally we define

F(a):={yeD:3zea, IneN, ¢¥(z,n) =y}

As in the proof of Theorem 4.10, the verification consists of the following 4
steps.

(i) F(a) is a clique of R for every a € R.
Let y,z € F(a) with y # z. This means that there are n,m € N, x € D,
and w € Dy, () such that ¢(z,n) =y, Y(w,m) = z and z,w € a (so xS w).
If n = m, then den(z) = den(w)(= u(n)) so that z = w and y = Y(x,n) =
Y(w, m) = z, contradicting y # z. Hence den(y) = n # m = den(z).

We also have [y] n [2] # &, since [z] n [w] # &, f[z] € [y] and f[w] € [z].
Therefore, y —~ z.

(ii) F is a linear map.
It is sufficient to verify the condition (lin) (see Section 2): F(a) 3 y implies the
unique existence of x € D such that F({z}) 3 y. Notice that y € D determines the
number n := den(y) uniquely. Hence there is a unique z such that ¥ (xz,n) =y
and x € a.

(i) F(a) € Rmax for every a = {Zp }nen € Rmax-
It suffices to show that for every n € N there is y € F(a) with den(y) = n. By
the definition of 41, f[x,n)] is contained in an interval of length 27", so there
is z € D, such that f[z,)] S [z]. Hence ¥(z,,),n) is nonempty so that
Y := Y(Ty(n), n) is defined. This y satisfies y € F'(a) and den(y) = n.

(iv) F(a)* = f(a*) for every a € Rmax.
Suppose that y € F(a) with den(y) = n, namely there is x € a such that
Y(z,n) = y. By Lemma 3.4, we have f(a*) € f[z] € [y]. Since it holds for
every y in F'(a), we have f(a*) € [F(a)]. Since F(a) € Rmax by (iii), we conclude
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F(a)* = f(a™) by Lemma 3.5. [ |

Observe that the above proof rests on our specific way of representing the
real line. In other words, linear realizability of a function does depend on the
choice of an admissible representation. This motivates us to develop a theory
of linear admissible representations, which is a subject of our companion paper

[Mal6).

6 Admissible Representation of Function Spaces

6.1 Representing C(I,R)

Admissible representations studied in Section 4 can be extended to function
spaces. Our ultimate goal is to show that prr := [pr — pr] (see Section 3)
is an admissible representation of the space C(R,R) of continuous functions on
the real line equipped with the compact-open topology. However, it is delicate
since the domain R is not compact. Hence we begin with a more tractable case:
C(I,R), where I is a compact interval of R.

Let ID := D N1 and ID,, := D,, n . The latter is a finite set due to
compactness. We define a coherence space I := (ID, ) by restricting the
token set D of R = (D, <) to ID. Function pr : I'max — I is defined just as
pr- It is clear that I £5 T is an admissible representation.

Lemma 6.1 I, is a compact subset of I.

Proof. Let A be a set of finite cliques in I such that {(a) : a € A} is an open
cover of I'max. We may assume that each a € A is an initial segment of a Cauchy
sequence (see §4.1): if a n ID,, = ¢, then a can be replaced by finitely many
cliques au{z1},...,au{zg}, where x1, ...,z € ID,, so that {a) = | J{a U {z;}).

Let Ap be the set of minimal elements of A (with respect to inclusion C).
Then {{a) : a € Ap} is still an open cover of I, since a € b implies (b)  {a)
for all a,b e I. Our goal is to show that Ay is finite.

Suppose that Ag is infinite. Define the set F C I, by:

be F <= bis an initial segment of some a € Ag

Then (F,C) is an infinite tree with root ¥ and leaves in Ag. Moreover, it is
finitely branching at the root and each internal node, since each 1D, is finite.
Hence it contains an infinite branch (;);en by Konig’s lemma. Clearly b = Jb;
belongs to I'max, hence to some member {a) (a € Ap) of the open covering.
However, this means that a € b; for a large enough 4, and b; € a’ for some
a’ € Ay by the definition of F. That is, a & a’, contradicting minimality of a’
in Ao. |

We are ready to introduce a representation of C(I, R). Recall that the cate-
gory Rep(Coh) is cartesian closed, so that we have an exponential representa-
tion I = R 25 SR(pr, pr), where prr := [pr — pr] and SR(pr, pr) consists
of stably realizable functions from I to R with respect to p;y and pgr. Since the
latter are both admissible, a function is realizable if and only if it is continuous
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(cf. Corollary 4.11). Hence SR(pr, pr) = C(I,R), and we have thus obtained a
representation
I = R”5C(IR).
We assume that C(I,R) is equipped with the uniform topology induced by

the uniform norm | f|, := maxzer |f(z)| (f € C(I,R)). We will now verify that
pIR is continuous with respect to this topology.

Lemma 6.2 Suppose that o € dom(prr). Then o™ is a finite clique for every
n € N.

Proof. Suppose that o™ = {(a;,y;) : j € J}. Notice that o = tr(F) for some
realizer F' of a function in C(I, R). Hence by Proposition 4.13, {a;) : j € J} is a
disjoint cover of dom(py). Namely, for every a € dom(py) there exists a unique
j € J with a € {a;).
On the other hand, dom(py) is compact in I by Lemma 6.1. Since {{a;) :
j € J} is a disjoint open cover of a compact set, J has to be finite by itself.
|

Lemma 6.3 prr .S I = R — C(I,R) is continuous.

Proof. Let a € dom(prr) and n € N. It is sufficient to give an open set U in
I = R such that

BeUndom(prr) = |prr(@) = prr(B)[x < 27"

Our choice is U := (a1}, It is legitimate since a®*1) e (I = R)g, by the
previous lemma.

Suppose that 5 € U ndom(prr) and let f := prr(«), g := prr(8). Given
r € I, there is a € dom(pr) such that a* = r. By Proposition 4.13, there is
(ag,y) € o) such that ag C a. We also have (ag,y) € 3 since a(*+t1) < 3.
Hence y € a(a) n B(a). By Lemma 3.4, we obtain f(r) = (a(a))* € [y] and
g(r) = (Bla))* € [y]. Since [y] is of length 27 |f(r) — g(r)| < 27™. Since this
holds for every r € I, we conclude that |f — g[» <27™. [

6.2 Admissibility of pip
Our next goal is to show that I = R ?8 C(I,R) belongs to SpnRep(Coh).

Lemma 6.4 Let a, 3 € dom(prgr) and n e N. If o™ = B then a(™ = g,

Proof. Suppose that o™ = B and (by, z) € (™. We claim that (bo, z) € o™
so that we have (") < a(™ and a(™ < (") by a symmetric reasoning.
Choose a clique b € {(bp) n dom(pr). Then by Proposition 4.13, there is
a unique (ag,y) € o™ such that ag € b. Since (ag,y) < (bo, 2), ao by and
—=(z ~y), we conclude (bg, z) = (ag,y) € a™. [ |

This allows us to define
F :={a~":aedom(prr) and n € N},
where a=" := | J,_, al’. F is indeed a spanning forest for dom(prr). By the

previous lemma, if o™, [3S" € and aS™ < BS?, then o = B for a
i 1 if <™, 3S" € F and o™ C 35", th (@) ﬂ()f 1
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i < min (m,n), so either «<™ < BS" or 5" € aS™ depending on whether
m < n or n < m. Hence the representation prr belongs to SpnRep(Coh).

Before we conclude the admissibility of prgr let us recall a fact from general
topology that the evaluation map ev : C(I,R) x I — R is continuous because
of the compactness of 1.

Theorem 6.5 The representation I = R 25 C(I,R) is admissible.

Proof. Let Z be a subspace of C(I,R) and Z —» Z be a continuous represen-
tation in SpnRep(Coh). Our goal is to find a stable map F: Z — 4 I = R
which realizes the inclusion map i : Z — C(I, R):

F
T > =R
Y PIR
)
7z ———— C(R)

Let Ry := {f(r): f € Z,r € I} and define § :€ Z x I — Ry by

6(a, a) := ev(y(a), pr(a))
for every « € dom(v) and a € dom(pr). This map is surjective, and moreover
continuous because ev is. Furthermore, a spanning forest for § can be given as

in the proof of Lemma 4.3. Hence Z x I 2, R belongs to SpnRep(Coh).
Now by admissibility of pr we obtain a stable map G such that:

G

ZxI —— R

T
Ry — R

By Currying G, we obtain a desired map F: Z — 4 I = R. [ ]

6.3 Representing C(R,R)

Let us now proceed to the full function space C(R,R). As before, the exponential
prR = [pr — pr] forms a representation R = R “Z5 C(R,R).

Since R is not compact, the uniform topology is not suitable. Instead, we
equip C(R,R) with the compact-open topology, which is generated by the collec-
tion of function sets T'(K,U) as subbasis, where

T(K,U):={fe CR,R): f[K] S U},
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for each compact K € R and open U € R (where f[K] is the image of K under
f). We now prove that prgr is continuous with respect to the compact-open
topology.

Lemma 6.6 Suppose that a function f : R — R is realized by a stable map
F:R—g 4 R. Then for any compact K € R and open U S R, the function
f belongs to T(K,U) if and only if there are (a1,y1),- .-, (ak,yx) € tr(F) such
that

Kcla]u---vulag] and [y1]v---vulys] € U. (4)

Proof. (<) Our goal is to show f(r) € U for any r € K. By the first condition,
r € [a;] for some ¢ < k. Combining Proposition 4.12 with the second condition,
we get

f(r)e fla;] S [yi] € U.

(=) We claim that for each r € K, there is (a,,y,) € tr(F') such that r belongs
to the interior of [a,] and [y,] € U. Since the interiors of {[a,]}rex cover K,
compactness of K gives us finitely many (ar,,yr,), - -, (@r,, yr,) satisfying the
requirement (4).

Let us prove the claim. It is easy to see that for any r € K, thereisa € pﬁl (r)
such that r belongs to the interior of [z] for any member x € a (see Figure 1). Let
b:= F(a) € Rmax. Since f belongs to T(K,U), we have b* = F(a)* = f(r) e U.
By Lemma 3.6, there exists y,. € b such that [y,.] € U. Since F(a) 3 y,, there
is a finite subclique a, € @ such that (a,,y,) € tr(F'). Clearly r belongs to the
interior of [a,] = ﬂxear [z]. [ ]

Lemma 6.7 The representation R = R 25 C(R,R) is continuous.

Proof. Let K € R be compact and U € R open. Then for every f: R — R
realized by a stable map F', f € T(K,U) if and only if there is a finite subclique
a = {(a1,y1),. .., (ar,yr)} of tr(F) satisfying the property (4). We denote the
set of all such finite subcliques of tr(F) by M (K,U). We then have:

F realizes some f € T(K,U) — tr(F') includes some o € M (K, U)
= wFe |J <@

aeM(K,U)

Recall that F' realizes f iff tr(F) € prr(f). Hence we obtain pgy[T(K,U)] =
Uaent(x,07{c» n dom(prr). This proves the continuity of prr- [ |
6.4 Admissibility of prgr

We have seen that the representation R = R 225 C(R,R) is continuous. We
now show that it belongs to SpnRep(Coh), by exhibiting a spanning forest for

PRR-
We consider a monotone sequence of compact intervals

H()C]IlC]IQC---
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whose union is R. The corresponding coherence spaces are denoted by Ig, I,
I, .... Notice that Io c I; < Is c --- R as the sets of cliques. Given a
clique o € dom(prr), we decompose it into

almn) .— {(a,y) e a:a€ (Im)in, y €Dy},

so that a = UmyneNa(m’”). Then each a(™™ is finite by Lemma 6.2 and
subject to Lemma 6.4. Let F be the set of cliques of the form Uism alm:)
for any a € dom(prr) and m € N. If m < m/, then (™™ < B 1) implies
almn) ¢ 6(’""”), since glmn) < 6(’”"") and a(™™ < Bmn) implies o™ =
Bmm)  Then it is not hard to see that F is a spanning forest for prg.

Finally, the representation prgr is admissible. The proof is exactly the same
as that of Theorem 6.5, by noting that the evaluation map ev : C(R,R) xR — R
is continuous when C(R,R) is endowed with the compact-open topology (see,
e.g., [Br93]). We therefore conclude:

Theorem 6.8 The representation R = R ™25 C(R,R) is admissible.

As a consequence:

Corollary 6.9 A real operator ® : C(R,R) — C(R,R) is sequentially continu-
ous if and only if it is stably realizable.

This allows us to represent various real operators as stable maps. An example
is the integral operator

S e L F@)dy.
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