THE JOURNAL OF SYMBOLIC LOGIC
Volume 00, Number 0, XXX 0000

WHICH STRUCTURAL RULES ADMIT CUT ELIMINATION?
— AN ALGEBRAIC CRITERION

KAZUSHIGE TERUI

Abstract. Consider a general class of structural inference rules such as exchange,
weakening, contraction and their generalizations. Among them, some are harmless but
others do harm to cut elimination. Hence it is natural to ask under which condition cut
elimination is preserved when a set of structural rules is added to a structure-free logic.
The aim of this work is to give such a condition by using algebraic semantics.

We consider full Lambek calculus (FL), i.e., intuitionistic logic without any structural
rules, as our basic framework. Residuated lattices are the algebraic structures correspond-
ing to FL. In this setting, we introduce a criterion, called the propagation property, that
can be stated both in syntactic and algebraic terminologies. We then show that, for any
set R of structural rules, the cut elimination theorem holds for FL enriched with R if and

only if R satisfies the propagation property.

»

As an application, we show that any set R of structural rules can be ”completed” into

another set R”, so that the cut elimination theorem holds for FL enriched with R*, while

the provability remains the same.

§1. Introduction. Gentzen’s sequent calculus has been playing a central role
in proof theory and logic in computer science. Its main advantage is the cut elim-
ination theorem, which not only yields a lot of important corollaries, but also is
the main target of research by itself in the proofs-as-programs paradigm of com-
putation. Another remarkable feature of sequent calculus is that the inference
rules concerning the structure of hypotheses/conclusions can be distinguished
from those concerning the use of logical connectives. The former are called
structural rules. One can therefore obtain various logical systems by selecting
a suitable set of structural rules, while keeping the logical connectives and the
associated inference rules unchanged. Studies of structural rules have a long
history, but it is relatively recently that their relevance to computation has been
pointed out (especially in the framework of linear logic [??, ??]) and a systematic
study of such logics with selected structural rules has been undertaken (under
the name substructural logics [?7, 77?]).

Gentzen’s original sequent calculus contains three structural rules:
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Exchange: Weakening: Contraction:
F,a,ﬂ,Aéve A=y w F,a,a,A=>'yc
[,8,a,A =~ Lo, A=~ Lo, A=~

where «, 8 and ~ stand for formulas, and " and A for sequences of formulas (we
only consider intuitionistic sequents in this paper). In addition, one can also
consider other non-standard structural rules such as:

Expansion (cf. [?7?]): Mingle (cf. [?7]):
Fa, A=y exp A=~y IO, A=~y |
oo, A =7y [¥,0,A=vy i

(See also [??, ?77?] for a detailed account.) Among them, some are harmless but
others cause failure of cut elimination. In fact, cut elimination is very sensitive
to the choice of structural rules:

e In general, sequent calculi with Contraction but without Exchange do not
enjoy cut elimination. One way to recover cut elimination is to generalize
Contraction to the one for sequences of formulas:

e Expansion and Mingle are derivable from each other. However, Mingle
admits cut elimination whereas Expansion does not.

In view of these intricacies, it is natural to look for some general criteria for a set
of structural rules to admit cut elimination. Such criteria, if given on a suitable
level of abstraction, would also help us understand the nature of cut elimination
from a deeper point of view. The aim of this paper is to give a criterion for cut
elimination by using algebraic semantics.

Our criterion, called the propagation property, originates in Girard’s naturality
test. In Appendix C.4 of [??], Girard proposes a test for naturality of logical
principles (i.e., structural rules). Roughly, a principle (structural rule) R passes
Girard’s test if the following is true for every phase space (M, L): whenever R
holds for all atomic facts {z}*+, it also holds for arbitrary facts X1 (here, z €
M and X C M). In other words, a principle passes the test when it propagates
from atomic facts to all facts. Based on this test, Weakening and Contraction are
justified (in the presence of Exchange) whereas Expansion is abandoned (which
is called a Broccoli, a completely artificial construct). Moreover, a connection
between this test and cut elimination is hinted (see footnote 36 in Appendix C.4).
Our propagation property is obtained by making Girard’s test more precise and
more general.

Actually, the propagation property we propose has two equivalent forms, one
syntactic and the other semantic. A set of rules satisfies the syntactic propa-
gation property if, roughly, it propagates from propositional variables to their
disjunctions and fusions (i.e. multiplicative conjunctions). Similarly, it satis-
fies the semantic propagation property if it propagates from an arbitrary set of
elements to their (infinite) joins and multiplications in all residuated lattices.
Our main contribution is then the following characterization of cut elimination,
which clarifies and confirms Girard’s idea:
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e The cut elimination theorem holds for a structure-free sequent calculus
enriched with a set R of structural rules iff R satisfies the syntactic prop-
agation property iff R satisfies the semantic propagation property.

As an application, we show that every set of structural rules can be completed
into another set that enjoys cut elimination without changing provability.

In Section 2, we review full Lambek calculus [??, 77, 7?], i.e., intuitionistic logic
without any structural rules, as our basic system. More precisely, we consider
its O-free fragment, denoted by FL*. We then introduce (additive) structural
rules on FLT in a general format. In Section 3, we introduce a syntactic version
of the propagation property, and show that cut elimination implies the syntactic
propagation property. In Section 4, we review the residuated lattices (see [?7,
??]), that is, algebraic structures for FL™, and introduce a semantic version of
the propagation property. We then show that the syntactic propagation property
implies the semantic one. In Section 5, we consider the phase structures (see for
instance [??, ??, ??]), a particular class of residuated lattices, and describe a
useful construction of phase structures due to Okada [??, ??, ??] in which the
validity of a formula directly implies its cut-free provability. If our choice R of
structural rules satisfies the semantic propagation property, then Okada’s phase
structure, defined on the basis of R, becomes a model of R. Therefore, together
with the soundness theorem, we obtain the cut elimination theorem. Section 6
is devoted to the completion of structural rules as mentioned above.

Related work. Sufficient conditions on cut elimination have been considered in
[??, 72, ?7]; in particular [??] and [??] discuss various structural rules. The
papers [??, 72, ??] give necessary and sufficient conditions for logics with various
logical connectives, but only those with full structural rules.

After submission of this paper, we have extended our analysis to a more general
class of structural rules, and moreover to a certain class of logical connectives
too [??]. Our recent work [??] also discusses quantification rules (in the set-
ting of multiple conclusion sequent calculi with Exchange) and gives a syntactic
criterion.

§2. Full Lambek Calculus and Structural Rules. The formulas of FL™T
are built from propositional variables p,q,r, ... and constants 1 (unit), T (true)
and L (false) by using binary logical connectives - (fusion), \ (left implication),
/ (right implication), A (conjunction) and V (disjunction). The set of formulas
is denoted by F. Small Greek letters «, 3, ... range over F. For simplicity, we
do not consider negation and 0 in this paper; it is, however, easy to incorporate
them if one wishes. We use — as synonym for \, because it can be read as
implication more naturally. The other implication / is not much used in this
paper. For the convenience of the reader who is familiar with linear logic, the
correspondence with (intuitionistic noncommutative) linear logic connectives is
given in Table 1. Notice in particular that L of FL™ corresponds to 0 of linear
logic.

A sequent of FL™ is of the form ay, ... ,a, = 3. In the sequel, ', A, ... stand
for finite sequences of formulas, and () for the empty sequence.
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FL™ L[T|L]-[\(=)|/ ||V
Linear Logic |1 | T |0 | ®@| —o |o—|& |&

TABLE 1. Correspondence with linear logic connectives

I'sa Al,a,A2:>'y ¢
AT, Ay =y o a = a nit =1 Ir
Fl,a,,B,F2:>'y I'= « A:>B7“ Fl,F2:>(5 1
Ty,a-8,Ty =y A=a-f3 [,1,T, =6
I'=sa A1,[3,A2=>5\l a,F:>,B\
r
AT a\B, A2 = § I'=a\p I, L, Ty=C L
'=sa Al,B,A2:>5/ F,a=>ﬂ/r
Ay, B/a,T, Ay =6 T = j/a S
Fl,a,F2:>5 Fl,B,F2=>5 =« F:>B
— 2 v — TV
TEAYEY Vi toavg ! Toavg 2
y,a,Ty =46 Al 'y, 8,Ty=6 A 'S« F:>B/\
ITIATEY R TLaABTo=06 "% T=ang 'V

FIcURE 1. Inference Rules of FL™

Given a set ® of formulas, we say that a sequent I' = « is deducible from ®
in FL* and write ® g+ ' = a, if it can be derived from sequents of the form
= [ with # € ® by using the inference rules in Figure 1. We also say that «
is deducible from ® in FLT and write ® Fpp+ o, if T is empty. Furthermore, a
is simply said to be provable in FL™, if & is also empty. (See [??, ??] for more
information).

When it is necessary to indicate variables py, ... , p,, that might possibly occur
in a formula a, we shall use the notation a[pi,...,pm], or a[p] for short. The
formula obtained from a[p, ... ,pm] by substituting 3; for each p; is denoted by
alBi,...,Bm], or a[[;]. Similar notation is used for sequences of formulas (and
structural rules introduced below).

For ¥ = aq,...,a, (n > 1), define

xX = Qn,

\/Ezal\/---Van.

Notice here that parentheses are omitted; it is justified by the associativity of -
and V in FL*. If £ = (), we define *X =1 and \/Z = L.
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Listed below are some elementary facts used in this paper: for any set ® of
formulas,

¢ P+ xX. T =>4iff &g+ X,T = 1.

e P+ I'=>a—-Biff & lpp+ o, = 5.

e Plpp+ VI, I = Biff @ bgpp+ a,I' = S for every a € X.

FL™ does not have structural rules at all. Various systems of substructural
logics are obtained by enriching it with a suitable set of structural rules.

DEFINITION 2.1. A structural rule R is an n + 1 tuple (09 <1 04;...;0,),
where n > 1 and each O; is a finite sequence of variables, that satisfies the
following condition:

(*) any variable occurring in ©1,... ,0, also occurs in O.
The last condition will be referred to as the non-erasing condition.

Let R[] be a structural rule (Qo[f] < ©1[fl; ... ;©,[f]), and § a sequence of
formulas. Then the result of substitution R[3] = (00[3] < ©1[5];. .. ;: O.[A]), is
called an instance of R. In particular, when E consists of propositional variables,
R[B'] is called a variable instance of R. Each instance R[g] codifies an inference
scheme of the form:

Loy, A=y - T,0,[5,A=y

=,

L, 00[0],A = v

with T, A and v arbitrary.
For example, the structural rules mentioned in the introduction can be for-
mally specified as follows:

e: (¢,p <p,q)
w: (p<a0)
c: (p<dp,p)
exp: (p,p <p)
min: {(pl) 7Py Qs @t <DLy -+ o D31, - - )ql) | k)l > 0}
® seq-c: {(pla coo 5P <AD1s - Dk DL - - 7pk) | k Z 0}
Notice that min and seq-c are specified by a countable set of structural rules.

Some remarks on the generality of our definition are in order. First, the
structural rules considered in this paper are additive, in the sense that they are
applicable in an arbitrary context I'; A, v and the context must be identical in all
the upper sequents. Non-additive structural rules are considered in [??]. Struc-
tural rules that affect the right hand side of a sequent, such as right weakening,
are also considered in the latter paper.

Second, our structural rules are supposed to respect the non-erasing condition.
We need this condition because a structural rule might cause a disastrous effect
without it. In particular, any unary rule (@9 <1©;) that violates the non-erasing
condition causes logical inconsistency. On the other hand, all structural rules
that respect the non-erasing condition are admissible in intuitionistic logic.

Given a set R of structural rules, the system FLT(R) is defined to be FL*
enriched with all instances of the additional structural rules R. For instance,
FL"({e}) amounts to FL¢ (intuitionistic linear logic without modality) and
FL*({e,w,c}) is nothing but intuitionistic logic.
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Due to the non-erasing condition, our structural rules satisfy the following
property: any formula occurring in the upper sequents of a structural rule also
occurs in the lower sequent. It follows that the cut elimination theorem always
implies the subformula property.

More precisely, for each formula «, define the set Pos(a) of positive subfor-
mulas and the set Neg(a) of negative subformulas as follows. When f{ is either
a variable or a constant, Pos(t) = {f}; Neg(f) = 0. When x € {A,V,-},
Pos(a * ) = Pos(a) U Pos(8) U {a* }; Neg(ax ) = Neg(a) U Neg(B). For
residuals, Pos(a\B) = Pos(8)UNeg(a)U{a\B}; Neg(a\B) = Neg(8)UPos(a).
Similarly for /. Finally, for a sequent S = f1,...,0r = a, Pos(S) = Neg(f1) U
...UNeg(Br) U Pos(a) and Neg(S) = Pos(81) U ...U Pos(8r) U Neg(a). We
then have:

LEMMA 2.2. Let R be a set of structural rules. Suppose that FL1(R) enjoys
cut elimination. Then it satisfies the (polarized) subformula property: if a se-
quent ' = « is provable in FL+(R), then it has a derivation m in which only
subformulas of I' = « occur. Moreover, any formula of occurring on the left
(right, resp.) hand side of a sequent in 7 is a negative (positive, resp.) subfor-
mula of T = a.

To study the properties of structural rules, it is convenient to represent them
as formulas. Given a structural rule R = (09 <04;... ;0,), define its aziomatic
form R by

R=x0 — (¥©1 V-V %0,,).
For instance, €é = ¢-p — p-q and w = p — 1. The axiomatic form of min; =
(P,g<p;q)isp-g—=pVa. R )

When R is a set of structural rules, R denotes the set {R | R € R}.

As expected, there is an instance-wise correspondence between structural rules
and their axiomatic forms:

LEMMA 2.3. Let R[p)] be a structural rule. Then an instance R[d] is derivable
from R[A] in FLY and vice versa.

PRrOOF. For simplicity of notation, let us just consider a binary structural rule
R = (O¢ <1 01;0,) and an instance given by the identity substitution. Now R

can be derived from R as follows:
o, A=~y TI,0;,A=4y

= %09 = (¥01 V*02) T «0,,A =~ T, %0, A=~
Op = *x01 V %0, [,%01 V%05, A = v
[,00,A =~
Conversely, R can be proved by using R as follows:

0, = %0, 0, = %0,
O = %x0; V05 Oy = xO; V %0,
Oy = *O; V %O,

*@0 = *@1 V *@2
= xQy — (*(")1 V *(")2)
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§3. Syntactic Propagation. Let us now introduce a syntactic version of
the propagation property. To motivate the notion, consider the contrast between
FL*({c}) and FL" (seq-c). As is mentioned in the introduction, the former does
not enjoy cut elimination. For instance, the cut below cannot be eliminated:

a-f=>a-f a-f=>a-p
754 B8 afabs@p @b
a,f=a- B a-B=(a-fB) (aB)
a,B=(a-p)-(a-p)
On the other hand, if ¢ is generalized to seq-c, the above cut can be easily
eliminated:

cut

a=>a =0 a=>a =0
a,Bf=>a 0 a,f=>af
a:ﬂaaaﬂ = (Clﬂ) i (aﬂ)
a,f = (a- ) (a-pB)
Now our question is this: is it possible to distinguish ¢ and seq-c without men-
tioning cut elimination? It is certainly possible. The idea is to replace the

variable p in ¢ = ¢[p] by a fusion p; - p» of two variables. Then the resulting
instance ¢[p; - p2] is not deducible from the variable instances of ¢. Namely,

seq-c

{p1 = p1-p1, P2 = D2 P2 } Fer+ (1 p2) = (p1-D2) - (P1 - D2).

We say that ¢ does not propagate with respect to fusion. In contrast, when we
replace a variable p in R[p] € seq-c by a fusion p; - po, the resulting instance
R[pl - po] is always deducible from the variable instances of rules in seq-¢. For
instance,

{Pl "P2 = P1:P2P1-P2 } FrL+ (Pl 'p2) - (p1 'p2)‘(P1 'p2)7

where the left formula p; - po — p1 - p2 - p1 - p2 is a variable instance of a rule
in seq-c of length two, while the right formula is a (fusion) instance of a rule in
seq-c of length one. Therefore, seq-c propagates with respect to fusion.

It is worth noting that ¢ propagates with respect to fusion in the presence of
e:

P1 = p1-p1, P2 = P2 P2
D1

"P2 = P2-P1, P2-P1 > P1-P2 } pLe (Prop2) = (rep2) - (P p2)

and indeed FL* ({e,c}) admits cut elimination.
Next, consider the contrast between FL' ({exp}) and FL™ (min). The former
does not enjoy cut elimination, as witnessed by:

s a aVp=>aVp exp
B=p a=aVp aVp,avf=>aVp
B=aVp a,aVpB=>aVp cut
a,B=aVp cut

Notice that one cannot obtain a cut-free proof even if exp is generalized to a
sequence version as above. On the other hand, when exp is replaced with min,
a cut-free proof can be obtained:
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a=a B=p
a=>aVp B=>aVp
a,B=>aVp min

Here, we may again ask whether it is possible to distinguish exp and min without
mentioning cut elimination. This time, our answer is that min propagates with
respect to disjunction, while exp does not. Namely, when we replace a variable
p in R[p] € min by a disjunction p; V ps, the resulting instance R[pl V po] is
deducible from the variable instances of min in FLT. For instance,

{pr-a=pVaG p2-q=>p2Val}bers (PLVP2)-a— (pLVp2)Va
This property does not hold for exp:

{p1-p1 = p1, P2 P2 = p2 } et (P1VD2) (1 VD2) = (P1VD2)

These observations lead us to the following definition.

DEFINITION 3.1. Given a set R of structural rules, let VarI(R) be the set
of variable instances of the rules in R. We say that R satisfies the syntactic
propagation property if the following holds:

e For any R[p1,...,pm] € R and any finite sequences ¥1,..., %, of proposi-
tional variables, the formulas R[*X1,...,*X,,] and R[\/ £1,...,V X,,,] are
deducible from VarI(R) in FL*.

In view of Lemma 2.3, this is equivalent to say that

o the formulas R[*%,,...,*3,,] and R[\/ 31, ...,\/ Z,.] are provable in FL*
enriched with variable instances VarI(R) of structural rules R.

Another thing to be noted is that it is actually sufficient to consider only
those sequences Xp,..., %, with |¥;] < 2 for every 1 < i < m in the above
definition. One can then easily prove by induction that the rules satisfy the
syntactic propagation property.

PROPOSITION 3.2. Let R be a set of structural rules. If FL*(R) enjoys cut
elimination, then R satisfies the syntactic propagation property.

PROOF. Let R[p1,...,pm] = (09 901;...:;0,) € R. Then R is of the form
*@g = %01 V ---V %x0,. One can show that for any sequences ¥1,...,%,, of
propositional variables, the formula R[\/ £1,...,\/ S.] is equivalent in FLT to
a formula Rv such that

e for any implication subformula o — § occurring in Ry, « is a propositional
variable.

This is true because we have the following logical equivalences in FLT:
a-0g=>54 00— (a—90)
aVB—=de (a—=d)AN(B—9)
120446
Now, Lemma 2.3 ensures that R\ Z1,...,\/ Sm] is provable in FL*(R),

hence so is Ry. By assumption, FL*(R) enjoys cut elimination. Hence Lemma
2.2 entails that R\ has a derivation in which only propositional variables occur
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on the left hand side of a sequent, because Ry has only propositional variables
as negative subformulas. This means that only variable instances of structural
rules R are used in the derivation. Therefore Ry, and so R[\/ £4,...,\/ £,.], are

deducible from VarI(R) in FL* by Lemma 2.3.
It can be shown similarly that R[*Z1, ..., #X,,] is deducible from VarI(R). -

§4. Residuated lattices and semantic propagation. Let us now move on
to algebraic semantics for FL™ and find out a semantic analogue of the syntactic
propagation property.

An algebra P = (P, A,V,-,\,/,1) is called a (bounded) residuated lattice if

1. (P,A,V) is a lattice with the greatest element T and the least element L.

2. (P,-,1) is a monoid.

3. The operations \ and / are left and right residuals of -. Namely, for any

z,Y,z € P,
zy<z<—y<r\z<=z<z/y.

(See [??, 27] for general introductions to residuated lattices.)

A waluation f on P maps each propositional variable to an element of P. Given
aset X C P, fis called an X -valuation if the range is a subset of X. As usual,
f can be extended to a map from the formulas F to P as follows:

f) =t for t € {T, L, 1},
flaxB) = fla)xf(B) forxe {/\7\/7'7\’/}'
A formula « is said to be true under valuation f in P if f(«) > 1. In particular,
a — B, ie., a\f is true iff f(a) < f(B). A formula « is valid (X -valid, resp.) in
P if it is true under all valuations (X-valuations, resp.) on P.
The residuated lattices are algebraic models of FL™. In particular, the fol-
lowing strong form of soundness holds:

LeMMA 4.1. Let P be a residuated lattice and f a valuation on it. If « is
deducible from ® and all formulas in ® are true under f in P, then a is also
true under f.

Given a set R of structural rules, an R-residuated lattice is a residuated lattice
in which all formulas in R are valid. By the previous lemma, any formula
provable in FLT(R) is valid in all R-residuated lattices.

Coming back to the residuated lattices in general, we may observe that the
monoid multiplication - is continuous in the following sense:

LEMMA 4.2. Let cg,... ¢y € P and let
(5(1’1,... )xm) =C - T1"C " "Cm-1"Tm " Cm,

for any x1,... ,x, € P. Let also S(m) =d(z,...,z). Suppose that X is a subset
of P for which \| X exists. We then have:

sV x)=\/ /v,
YCrinX

where Y Cyi X holds iff Y is a finite subset of X.
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Proor. Note that, by distributivity of \/ over -,

g(\/X): \/ \/ 0(x1,. -, Tm).

z1€X Tm€EX

Now, for any z1,... ,2,m € X and x =1 V - -+ V &, we have
0(x1,. .. xm) <0(x,...,x)
= d(z)
<\ s\/m.
YCjinX
Therefore, one direction holds. The other direction can be shown easily. -

Given X C P, the multiplication closure [[(X), the join closure [[(X) and
the finite join closure [];,,(X) are defined by

H(X):{mlxn | nZO;l“l,--- » Tn GX})
[T ={\VY v CX\/Y exists},
[T ={VY 1Y Cpin X}

fin
We are now ready to define a semantic analogue of the syntactic propagation
property.
DEFINITION 4.3. A set R of structural rules satisfies the semantic propagation
property if for any residuated lattice P and X C P, the following holds:

e if all formulas in R are X-valid, then they are also LI(TT(X))-valid.
We then have:

PROPOSITION 4.4. If a set R of structural rules satisfies the syntactic propa-
gation property, it also satisfies the semantic propagation property.

ProoFr. Let P be a residuated lattice and X C P. Suppose that all formulas
in R are X-valid. It is then easy to see that all formulas in Vm) are also
X-valid.

Let R[p1,..., Pm] = (Op < O1;...;0,) be a structural rule in R. Our first
claim is that R is [J(X)-valid. So suppose that f is a [J(X)-valuation which in
particular assigns to each p; (1 < i < m) a finite multiplication f(p;) = *Y; with
Y; Cfin X. One can consider sequences X, ..., %, of propositional variables
and a X-valuation g such that g(xX;) = xY; = f(p;) for every 1 < i < m. In
particular, R A

f(R) = g(R[*X1,...,%X,]).

Since g is an X -valuation, all formulas in Vm) are true under g. Moreover,
the syntactic propagation property ensures that the formula R[*El, RV 3 S £
deducible from Vm). Hence by the strong soundness (Lemma 4.1), R[*Z1, ..., %Z,,]

is true under g, and so R is true under f.
Thus we have shown that R is [[(X)-valid. Similarly, one can show that R is

[ i (TT(X))-valid.
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Finally, to show that R is [J(J](X))-valid, let f be a [J([](X))-valuation that
assigns to each variable p; a join V' Y; with ¥; C [[(X). We write g Cyyp f if
g is a [[;,(I[(X))-valuation which assigns to each p; a finite join \/ Z; with
Z; Cpin Vi

Recall that *0q is a fusion of variables in {pi,...,pm} possibly with some
repetitions. By applying Lemma 4.2 on each of py,...,p, and by using the fact
that R is [ (IT(X))-valid (and hence g(x0g) < g(¥O1 V - -~V x0,,) whenever
g Cyin f), we obtain:

f(x00) = \/ g(x60)

9Cfinf
<V 901V V0,
9Cfinf
= f(xO1 V-V x0,)
Therefore, R is true under f- -

§5. Phase structures and semantic cut elimination. We now introduce
a special class of residuated lattices, called (intuitionistic noncommutative) phase
structures (see [?7, 77, ??]). Let M = (M, -, 1) be a monoid. Denote the powerset
of M by p(M), and define for X,Y € p(M),

XeY={z-y|reX,yeY}.

A function C : p(M) — (M) is said to be a closure operator on (M) if for
all X,Y € p(M),

1. X C C(X),

2. C(C(X)) € O(X),

3. X CY implies C(X) C C(Y),

4. C(X)eC(Y)CC(X oY).
A set X € p(M) is closed if X = C(X). The set of all closed sets in p(M) is
denoted by Cps. Define for any closed sets X,Y € Cpr and for any family A" of
closed sets,

XUcY =C(XUY),
et = C(U),

XecY =C(XeY),
X\Y={y|VeeX,z-yeY},
Y/X={y|VeeX,y-z €Y}

We then have:

LeEmMMA 5.1. If M is a monoid and C is a closure operator on p(M), then
the algebra

Cn = (€N U, 00\, [, C({11))

is a complete residuated lattice with infinite join |J.

In every phase structure, the following hold:

1. C({z-y}) = C({z}) sc C({y}) for any z,y € M,
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2. C(X) =U¢ rex C{z}) for any X C M.

As a consequence, phase structures satisfy the following remarkable property
which plays a key role in connecting the semantic propagation property to cut
elimination:

LEMMA 5.2. Suppose that M is finitely generated by a set A, i.e., any ele-
ment x of M can be written as y; ---yn for some y1,... ,yn, € A. Let C'y =

{C{y}) | y € A}. Then we have Cpr = [I([T(C")).

PRroOOF. By 1 above, we have

C({z}) = C({y1}) oc -~ oc C({yn}),

for any # = y1---yn. Thus C({z}) € [[(C4). Now the lemma immediately
follows by 2 above. .

It follows that the semantic propagation property roughly corresponds to Gi-
rard’s naturality test [??] as far as the phase structures are concerned. More
precisely, let us say that a set R of structural rules passes the modified naturality
test if in every phase structure whose underlying monoid is finitely generated by
A, the C')-validity of R implies its validity. Then we see that any R with the
semantic propagation property passes the modified naturality test by virtue of
Lemma 5.2.

We now describe a specific construction of a phase structure due to [??7, 77]
(and slightly remedied by [??]), which is quite useful for proving the cut elim-
ination theorem. (See also [??], where Okada’s construction is reformulated as
algebraic quasi-completion and quasi-embedding.)

Let F* be the free monoid generated by the formulas F of FL™; the elements
of F* are sequences of formulas, the monoid multiplication is concatenation, and
the unit element is the empty sequence 0.

Let us fix a set R of structural rules. The operator C' is defined on the basis
of cut-free provability in FL™ (R):

[l.A=+]={Z|T,%,A = vis cut-free provable in FLT(R)},
D={[l A=~]|T,A,~ arbitrary},
cx)= (] Vv

XCYeD

Then one can show that C is indeed a closure operator on p(F*). Hence by
Lemma 5.1, the algebra

Cr- = (Cr-,N,Uc,0c,\, [, C({0}))

is a complete residuated lattice.
Let fo be a valuation on Cz« defined by fo(p) = C({p}) for every propositional
variable p. In this setting, we have Okada’s lemma:

LEMMA 5.3. For every formula o, a € fo(a) C [_ = af. In particular, for
every sequent I' = «a, if (xI') — « is true under fy, then I' = « is cul-free
provable in FLT(R).



WHICH STRUCTURAL RULES ADMIT CUT ELIMINATION?— AN ALGEBRAIC CRITERIOKN3

PRrROOF. The first claim can be proved by induction on the complexity of a
(see [?77?]). As for the second claim, let I' = f1,..., 8k. Then we have f(51) ec
---o¢ f(Br) C fla). Since B; € f(B;) for 1 <i <k and f(a) C [L = o], we have
(B1,-..,Bk) €= a],ie., Bi,...,Br = ais cut-free provable in FL™(R). -

It is worth noting that Okada’s lemma holds independently of which structural
rules R we adopt. It only concerns with the properties of logical inference rules.
What depends on the choice of R is the following:

LEMMA 5.4. If R satisfies the semantic propagation property, then Cr- is an
R-residuated lattice.

PRrROOF. Let C% be {C({a}) |« € F}, and let R = (Qg <1 04;...;0,) € R.
We first prove that R is C'r-valid.

To show this, suppose that f is a C’z-valuation, i.e., for any variable p, f(p) is
of the form C'({a}). We can then naturally associate to each variable p a formula

p such that f(p) = C({p}).

Now, recall that R is of the form *x®@g — (¥@; V ---V x0,,), and each O; is
a sequence of the form pi,...,pj (0 < i < n). Denote by 0, the sequence
P, D), Then we have:

=C({n
=C({p, -, pi })
=C({e:}),
fxOLV---Vx0,) =C({0:})Uc ---Uc C({0,})
= C({(:)1§ ,(:)n}),
where {(:)1; ce @n} iAs a set of n elements O, . s On, eachvof Whichvis a sequence
of formulas. Hence R is true under f iff C({©¢}) C C({O1;...;0,}) iff ©g €

C({O1;...;0n}). ) )

To show the last membership, suppose that {©1;...;0,} C [ A = 4].
This means that T',©;, A = ~ is cut-free provable for each 1 < i < n. Since
(©p <1 Oy;...;0,) is an instance of R, the sequent I',0¢, A = v is cut-free
provable in FLT(R). Namely, Oy € [[_A = 7]. Since it holds for arbitrary T', A
and 7y, we have @9 € C({O1;...;0,}), and thus R is true under f.

We have shown that R is C’r-valid. Since R is supposed to satisfy the semantic
propagation property, R is also valid in Cx- by Lemma 5.2. -

PROPOSITION 5.5. If R satisfies the semantic propagation property, then FLT(R)
enjoys cut elimination.

PROOF. Suppose that I' = « is provable in FL*(R). Then by the soundness,
(') — « is valid in all R-residuated lattices. In particular it is valid in Cz« by
Lemma 5.4. This implies that T' = « is cut-free provable by Lemma 5.3. -

By putting Propositions 3.2, 4.4 and 5.5 together, we obtain our main theorem:

THEOREM 5.6. Let R be a set of structural rules. Then the following are
equivalent:
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1. FL*(R) enjoys cut elimination.
2. R satisfies the syntactic propagation property.
3. R satisfies the semantic propagation property.

§6. Completion of Structural Rules. Recall that Contraction ¢ can be
generalized to its sequence version seq-c without changing provability so that
the cut elimination theorem holds for FL™ (seq-c). We say that c can be com-
pleted to seq-c. Likewise, Expansion exp can be completed to Mingle min. The
completion techniques implicitly used there, which we call stretching and rami-
fication, are by no means specific to ¢ and exp. In fact, we show in this section
that they are widely applicable, and an arbitrary set of structural rules can be
completed by stretching and ramification. To show this, our characterization of
cut elimination by the syntactic propagation property turns out useful.

To each propositional variable p, we associate a countable set of variables
p',p?,.... The sequence p', ... ,p* is denoted by p(k). Let us extend the notion
of substitution so that a sequence p(k) can be substituted for a variable p oc-
curring in a variable sequence ©. A stretch of R[p1,... ,pm] is then of the form
R[p,(k1), ... ,Pp(km)] for some ky,... ,kmn > 0. Define Str(R) to be the set

{R' | R’ is a stretch of some R € R}.

For instance, a stretch of min; = (p, g < p;q) is of the form

(®(k),q(l) <p(k);q)) = (p',....p% ¢", ... .d <p, ... p"d . dh),

for some k,I > 0. Hence the set Str({min;}) is nothing but min. Likewise,
Str({c}) is nothing but seq-c.

PROPOSITION 6.1. Let R be a set of structural rules. Then the following hold:

1. FLT(R) and FL*(Str(R)) are equivalent.
2. Str(R) propagates with respect to fusion. Namely, for any Rs[p1,-.. ,pm] €
Str(R) and any finite sequences X1, . .., X, of propositional variables, Rs[*X1, ..., xX,,]

is deducible from VarI(Str(R)) in FL™.

ProOF. 1. Notice that R € R itself is a stretch of R (up to renaming of vari-
ables), and thus belongs to Str(R). Conversely, any (axiomatic form of a) stretch
R[p,(k1),-.. ,Pym(km)] is deducible from an instance R[*p, (k1),. .. ,*P,,(km)] of
R.

2. R,[¥%,...,%%,,] is deducible from R,[E1,..., ], where Ry[21,..., O]
is a variable instance of another stretch in Str(R). =

A structural rule R = (O¢ <1 O4;...;0,) is said to be left-linear if O is
linear, i.e., each variable in @y has exactly one occurrence in it. The following
lemma provides us with a useful criterion for the propagation with respect to
disjunction.

LEMMA 6.2. If a rule R[p1,... ,pm] = (00 <O1;...;0,) is left-linear, then it
propagates with respect to disjunction. Namely, for any finite sequences Xq, ..., %m
of propositional variables, R[\/ £1,...,\/ ] is deducible from VarI({R}) in
FL™.
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PrOOF. Forany ¢1 € ¥1,...,qm € Xm, R[ql, ..., qm] is a variable instance of
R. It implies in FL™ the formula

*00[q1, -, qm] = (01 V- Vx0,)[\/ T1,..., \/ S,

By left-linearity and distributivity of \/ over -, we have R[\/ 2,5, VEL] de-
ducible from VarI({R}) in FL*. =

Now let ©® be a sequence of variables and suppose that a variable p has k > 1
occurrences in ©. We denote by lin,(0) the sequence obtained by replacing the
jth occurrence of p in © with p’ for every 1 < j < k. For instance, if © = p, ¢, p,
then lin,(0) = p',¢,p*>. In addition, we denote by (@)} the set of variable
sequences ©' such that ©' is obtained from © by replacing each occurrence of
p with one of p',... ,p* (not assumed to be chosen distinct). For instance, if
© = p, q, p as before, then

©)2 ={(" q,p"), (0", 0, 9°), ®*,0,p"), ¥, 0, p")}-
Now let R = (09 <1 0y;...;0,) and suppose that a variable p has k > 1 occur-
rences in ©g. Then the ramification of R at p is defined to be:

Ram,(R) = (linp(©0) < <61>£5 T §<®n>k):

p

where each set (Oi)’; is ordered according to some fixed ordering. Finally, if
P1,--- ,Pm are the variables that have more than one occurrences in 0, then

the ramification of R is defined by
Ram(R) = Ramy, --- Ram,,, (R).
For instance, Ram(exp) is nothing but min;, and Ram(p,p < p,p,p) is
(p'p* <p',ptpts popt P Pt P2 pt s Pt et % Rt et Pt PP
04t 00t 0 ).
Let Ram(R) be the set of ramifications of rules in R.
PROPOSITION 6.3. Let R be a set of structural rules. Then the following hold:

1. FLT(R) and FL*Y(Ram(R)) are equivalent.
2. Ram(R) propagates with respect to disjunction.

PROOF. 1. It is sufficient to show that FL*({R}) and FL*({Ram,(R)}) are
equivalent for any structural rule R and any variable p. Let R be of the form
Rlp,q] = (09 < Oy;...;0,) and suppose that the variable p has k occurrences
in ©p. It is clear that R itself can be seen as an instance of Ram,(R); if p is
substituted for all of p',... ,p*, every O} € (G)i)’; becomes identical with ©; and
liny(0p) identical with Oy.

To prove the converse, we show that R[pl V.-V p*, ) implies Ram,(R). But
it is clear, because lin,(0p) — *Og[p' V -+ V p* ] and xO;[p' vV -V pk q] —
V(©:)% (1 <i <n) are provable in FL*.

2. By Lemma 6.2. o

Observe that the stretching operation does not affect left-linearity. We have
therefore obtained a general completion result:

THEOREM 6.4. Given a set R of structural rules, define R* to be Str(Ram(R)).
Then the following hold.
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e FLT(R) and FL*(R*) are equivalent.
e R* satisfies the syntactic propagation property. Hence FL+(R*) enjoys
cut-elimination.

Note that Ram(R) = R when all rules in R are already left-linear. Moreover,
we can identify Str(Str(R)) with Str(R) under suitable renaming of variables.
Therefore, we have R** equivalent to R* in practice. Hence the operation x can
be legitimately called a completion.

§7. Conclusion. Gentzen’s sequent calculus comprises two sorts of inference
rules: logical inference rules and structural inference rules. Accordingly, it is
natural to consider that any proof of cut elimination consists of two parts (even
if they are entangled in practice): the logical part and the structural part. Of
these two, the former part is semantically dealt with by Okada’s construction
(at least when substructural logics, linear logic and intuitionistic/classical logics
are concerned), which is algebraically reformulated as quasi-completion by [27];
remember that Okada’s lemma is only concerned with the properties of logical
connectives, and it holds for any extension of FL™, no matter which inference
rules and/or axioms are added. On the other hand, what we have established
is the fact that the structural part is deeply connected with the propagation
property; it is only when R satisfies the propagation property that Okada’s
phase structure with respect to R is guaranteed to be an R-residuated lattice,
and thus cut elimination is obtained. We believe that the propagation property
together with the quasi-completion captures some essence of cut elimination from
an algebraic point of view.
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