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Motivation

Our approach: purely algebraic (phase semantic)

1. Consider some general class of sequent calculi. Some enjoy
cut-elimination, others do not.

2. Give algebraic criteria for such a sequent calculus to admit
cut-elimination.

Our program:

1. Structural rules

2. Logical connectives

3. Classical sequent calculi

4. Modalities

5. Quantifiers/fixpoints of types
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1. Consider a class of sequent calculi. Some enjoy
cut-elimination, others do not.

2. Give algebraic criteria for such a sequent calculus to admit
cut-elimination.

Our program:

1. Structural rules done (Terui 2005)

2. Logical connectives partly done (Ciabattoni-Terui 2005)

3. Classical sequent calculi ongoing

4. Modalities maybe possible

5. Quantifiers/fixpoints of types no idea...
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Summary of this talk

Part I: Based on NCILL (Non-Commutative Intuitionistic Linear
Logic), consider various structural rules.

Introduce two criteria for sets � of structural rules: syntactic
propagation property and semantic propagation property (in terms
of phase semantics).

Show that

NCILL+� admits cut-elimination �� � satisfies syntactic propagatio
�� � satisfies semantic propagatio

By-product: completion of structural rules.

Any set of structural rules can be converted into another
set which admits cut-elimination.
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Summary of this talk

Part II: Introduce a class of simple sequent calculi defined by
various logical connectives and structural rules.

Introduce an algebraic criterion for logical connectives: coherence.

Show that for any simple sequent calculus �
reductive cut-elimination �� propagation and coherence.

Also give a characterization of axiom expansion. When structural
rules satisfy propagation,

axiom expansion �� opposite of coherence
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�� 	 M� �� � ���� 
Æ ����� �� �� � fact �� �� 
Æ���

- Relationship with cut elimination is hinted, but not proved.

How is it possible to relate such a semantic criterion to syntactic cut
elimination?
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Background

Okada’s phase semantic proof of cut elimination for linear logic
(1996).

- A degenerate version of Tait-Girard’s reducibility argument.

- A powerful technique to prove cut elimination for various logics.

Girard’s test, when suitably modified, gives a sufficient condition for
the applicability of Okada’s argument.
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Non-Commutative Intuitionistic Linear Logic

Formulas: ���, ���, ���, �
Æ�, �Æ
�, ��, �, 0, 1.

Sequents: �� � (�: sequence of formulas)

Use ���� �� � � � as metavariables to be replaced by formulas.

(Selected) inference rules:
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�

� � �

������� �� � �� �

���� � � �

��

�� � ��� ���� � �

����� � 
Æ ���� � �


Æ�

���� �

�� � 
Æ �


Æ�

��� �� ���� � �

��� � � ���� � �

�

��� ���� � � ��� ���� � �

��� � � ���� � �
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Basic facts

�
	��� 	 is provable iff 	��� 	 is provable.

�� �
Æ� is provable iff ���� � is provable.

�

��� � is provable iff ���� � is provable for every � 	 
.

�� �
�

��	 �

�
��������	� and the converse are provable.
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Structural rules: example

Gentzen’s original rules:

Exchange: Weakening: Contraction:

�� �� � ��� 	

�� ������ 	

���� 	

�� ���� 	

�� ������ 	

�� ���� 	

� � � 
Æ � �� � 
Æ 1 � 
Æ� ��

Additional rules:

Seq-Contraction Expansion Mingle

(van Benthem 91) (Ohnishi-Matsumoto 64)

�� ��� ����� 	

�� ����� 	

�� ���� 	

�� ������ 	

�� ����� 	 �� �� ��� 	

�� ��� �� ��� 	

��� 
Æ�� ���� � 	 �� � �� 
Æ� ��� ��� 
Æ�� ���� ��� 	 �

(�� � �� � � � � ���)
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�
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Axiom representation: �� �
� ��� 
Æ �
� ����� � � � � �
� ����.

Due to (*),

1. All structural rules are admissible in intuitionistic logic.

2. Cut-elimination implies subformula property.

Instances of �: obtained by substitution �������� ������ � � �

When ��� ��� � � � 	 
, �������� ������ � � � is called an 
-instance.
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Motivating Example (1)

Contraction alone (without Exchange) does not admit cut
elimination:

�� � � � �

��� � ���

�� � � ��� ��� � ���

������� � ������ �����

��� � ������ �����

����

��� � ��� ��� �����

���

�

�� � � � �

��� � ���

�� � � � �

��� � ���

������� � ������ �����

��� � ������ �����

���
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Motivating Example (1)

Seq-Contraction propagates from atomic instances to �-instances:

�� 
Æ�� ������ � ������ � � � � �� � �����

is derivable in NCILL from

��� 
Æ��� ����������� ������ � � � � ��������� ������

On the other hand, Contraction does not propagate from atomic
instances to �-instances:

� 
Æ� ����� ���

is not derivable from

� 
Æ� ������� � 
Æ� ������� etc.

LIPN, 04/10/05 – p.19/68



Motivating Example (2)

Expansion does not admit cut elimination:

� � �

� � ���

�� �

�� �� �

�� � � ���

������� � ���

��

����� � ���

���

��� � ���

���

�

�� �

�� ���

� � �

� � �� �

��� � ���

���
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Motivating Example (2)

When Expansion is replaced with Mingle:
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� � � 
Æ� � � ������ ���� , for �� � 	 ��� ��

� �� � �� 
Æ �� � �� , for �� � 	 ��� ��

whereas Expansion does not propagate from atomic instances to

�-instances:

� �� 
Æ���� � ����

is not derivable from

� �� 
Æ������� � �� 
Æ������� ����
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Syntactic propagation property

A set � of structural rules satisfies the syntactic propagation
property if �-instances and �-instances are derivable from atomic
instances.
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Syntactic propagation property

A set � of structural rules satisfies the syntactic propagation
property if �-instances and �-instances are derivable from atomic
instances.

Proposition: If NCILL�� enjoys cut elimination, then � satisfies the
syntactic propagation property.
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Cut Elim. � Syn. Propagation

Proof: A miniature of Hilbert’s Programme. Imagine:
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Cut Elim. � Syn. Propagation

Proof: A miniature of Hilbert’s Programme. Imagine:

� (all instances) = “ideal (abstract) reasoning method”

����� (atomic instances) = “real (concrete) reasoning method”

Formulas with implications restricted to �
Æ� = “real statements”

Fact 1: Every �-instance (and �-instance) of �� is equivalent (in
NCILL) to a real statement 	.

����� � ����� �

�
��� 
Æ �
�
����� � � � � �
�
������� � �����

�� � 
Æ 	 � �
Æ � 
Æ 	

�� � 
Æ 	 � ��
Æ 	� � �� 
Æ 	�
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Cut Elim. � Syn. Propagation

Fact 2: Suppose that NCILL+� admits cut-elimination. If a real
statement 	 is provable in NCILL+�, then it is already provable in
NCILL+�����.
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“real statements provable with ideal methods are already
provable with real methods.”

Proof of the proposition: Let � 	 �. We have:
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NCILL �� � 	
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Intermezzo

We have shown

Cut Elimination �� Syntactic Propagation

We next show

Syntactic Propagation �� Semantic Propagation
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Phase structures

Let M � ��� �� �� be a monoid.
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Phase structures

Let M � ��� �� �� be a monoid.

We assume that M is finitely generated from a set �, i.e., any
element � of � can be written as �� � � � �� for some ��� � � � � �� 	 �.

A phase structure � � �M� 	� is a monoid M with a closure operator

	 �  ��� 
�  ��� such that for any ��� �� ,

1. � � 	���

2. � � � �� 	��� � 	�� �
3. 	�	���� � 	���

4. 	��� � 	�� � � 	�� � � �

���: the set of closed sets � � 	���.

�� ���: the set of atomic closed sets 	����� with � 	 �.
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Phase structures

For any ��� 	 ���,

� � � � � � ��

� � � � 	��  � ��

� � � � 	�� � � � � 	��� � � � �	�� �	� ���

� 
Æ � � �� � �� 	 ��� � � 	 � ��

� Æ
� � �� � �� 	 �� � � � 	 � ��
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Phase structures

A valuation ! � " �� 
� ���.
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Phase structures

A valuation ! � " �� 
� ���.

An atomic valuation ! � " �� 
� �� ���.

� is true under valuation ! in � if � 	 !���.

In particular, �
Æ� is true under ! iff !��� � !���.

A formula � is valid (atomically valid, resp.) in � if it is true under all
valuations (atomic valuations, resp.) on �.

An �-phase structure is a phase structure in which all axiom
representations �� 	 �� are valid.

Soundness: Any formula provable in NCILL+� is valid in all

�-phase structures.
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Semantic propagation property

A set � of structural rules satisfies the semantic propagation
property if atomic validity �� validity in every phase structure.
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Key property of phase structures

Lemma: In every phase structure,

��� �
��

	��
�� ����

i.e., any � 	 ��� can be decomposed as:

� �

�

��

	�����

�

�

��

�

��������

	������
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Intermezzo

We have shown

Cut Elimination �� Syntactic Propagation

�� Semantic Propagation

We finally show

Semantic Propagation �� Cut Elimination

by employing Okada’s construction of phase structures for cut
elimination.
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Syntactic phase structure

Fix a set � of structural rules.
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Syntactic phase structure

Fix a set � of structural rules.

!� : free monoid generated by the formulas ! of NCILL

Elements: sequences � of formulas

Monoid multiplication: concatenation ���
Unit: the empty sequence ".

The operator 	� �  �!�� 
�  �!�� defined by:

��� �� 	 � �	 � ��	��� 	 is cut-free provable in NCILL����

#�$% � ���� �� 	 � ���� 	 arbitrary��

� 	 ��� � � �
�

���
���� �� � 	�

	���� � the minimal closed set that includes �
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Syntactic phase structure

Fix a set � of structural rules.

!� : free monoid generated by the formulas ! of NCILL

Elements: sequences � of formulas

Monoid multiplication: concatenation ���
Unit: the empty sequence ".

The operator 	� �  �!�� 
�  �!�� defined by:

��� �� 	 � �	 � ��	��� 	 is cut-free provable in NCILL����

#�$% � ���� �� 	 � ���� 	 arbitrary��

� 	 ��� � � �
�

���
���� �� � 	�

	���� � the minimal closed set that includes �

In particular, �� �� � �	������ � � is a formula�
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Semantic cut-elimination

Meaning of closure operator:

	 	 	��������

Whenever ������ 	 is cut-free derivable, so is

��	��� 	.
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Idea of semantic cut-elimination

Without structural rules:

“Real” elements:

#�$% � ��� �� 	

codify cut-free provability in NCILL

� add

“ideal” elements:

��� �
�

��� ���� �� � 	�

model of NCILL with cuts

NCILL � � Soundness

�� � �� �

Okada’s Lemma

�� “ � ����� � ”

�� Cut-free NCILL � �
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Semantic cut-elimination

Let !���� � �� � �.
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Semantic cut-elimination

Let !���� � �� � �.

Okada’s Lemma: For every formula �,
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In particular, if � is true under !�, then
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Use left logical rules to show � 	 !����.
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Idea of semantic cut-elimination

With arbitrary structural rules �:

“Real” elements:

#�$% � ��� �� 	

codify cut-free provability in NCILL+�

� add

“ideal” elements:

��� �
�

��� ���� �� � 	�

model of NCILL+� ???

NCILL � � Soundness ???

�� � �� �

Okada’s Lemma

�� “ � ����� � ”

�� Cut-free NCILL � �
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Semantic cut-elimination

Lemma: Any �� 	 �� is atomically valid in � � �!�� 	�.

�� ������ 	 � � � �� ������ 	

�� ������ 	

�

Corollary: If � satisfies the semantic propagation property, then � is
an �-phase structure.

Proposition: If � satisfies the semantic propagation property, then
NCILL�� enjoys cut elimination.
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Main result of Part I

Theorem: Let � be a set of structural rules. Then the following are
equivalent:
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Main result of Part I

Theorem: Let � be a set of structural rules. Then the following are
equivalent:

1. FL��� admits cut elimination.

2. � satisfies the syntactic propagation property.

3. � satisfies the semantic propagation property.

Corollary: If NCILL+�� and NCILL+�� admit cut-elimination, then
so does NCILL+���  ���.
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Completion of structural rules

Substitution of sequences yields �-syntactic propagation:

�� ������ 	

�� ���� 	

�	#�� ��

�� ��� ����� 	

�� ����� 	

�$�% 
 	#��
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Linearization of lower sequent yields �-syntactic propagation:
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�� ������ 	

�&�'� �� �� ���� 	 �� � ��� 	

�� �� � ��� 	

������

These completion techniques are generally applicable.

Corollary: Any set � of structural rules can be completed into ��,
so that

� and �� are equivalent (in NCILL);

NCILL+�� admits cut elimination.
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Remark on Part I

We only considered uniform structural rules (that work in all contexts

���� 	):
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�
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Remark on Part I

We only considered uniform structural rules (that work in all contexts
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One can also consider non-uniform rules such as:

�� � �� � �

��� �� � �

���

Such a non-uniform rule can be handled in the framework of
prephase structures (Ciabattoni-Terui 05).
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Part II: Motivating Example (3)
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Without any structural rules, it does not satisfy (reductive)
cut-elimination nor axiom expansion:

....

�� �

....

�� �

�� � ��

....

�� ������ �

�� � ����� �

������ �

�����

���

....

�� �

....

�� �

....

�� ������ �

�� ������ �

�������� �

������ �

�����

�� �

�� � � �

�����

� � �

�� � � �

�����

�� � � � � �

� � � � � � �
LIPN, 04/10/05 – p.42/68



Motivating Example (3)
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Motivating Example (3)

& + Seq-Contraction admits cut-elimination, but not axiom
expansion.

& + Weakening admits axiom expansion, but not cut-elimination.

Intuitively, cut-elimination and axiom expansion are opposite to each
other.

We want to describe this situation generally and phase semantically.

What is the meaning of an arbitrary logical connective in phase
semantics?

Rules determine the meaning!
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Motivating Example (3)

Let us associate two interpretations to & in a phase structure �: for
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A natural conjecture

Let � be an (intuitionistic, propositional) sequent calculus having a
logical connective ( and “good” (i.e. propagating) structural rules �.

� admits reductive cut-elimination �� (�� ��� � (�� ���

in every �-phase structure.

� admits axiom expansion �� (�� ��� � (�� ���

in every �-phase structure.
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Semantic cut-elimination employs the soundness theorem.
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Supporting facts

Semantic cut-elimination employs the soundness theorem.

To make the cut rule

�� (�� ��� (�� ���� �

�� �

sound, we must have (�� ��� � (�� ���.

If axiom expansion holds, (�� ���� (�� ��� is derived from atomic
axioms �� � ��.

Thus by soundness, (�� ��� � (�� ���.
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Basic notions

Propositional variables: �� �� )� � � �

Logical connectives (of suitable arity): (�� (�� (�� � � �
Formulae: propositional variables or (���� � � � � ��� with ��� � � � � ��

formulae.

(Single-conclusion) sequents: �� � with ��� ' �.
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Simple sequent calculi

A simple sequent calculus � is a set of

(Id), (Cut)

structural rules

left and right logical rules of the form:

�� � �� � � � �� � ��

��� (� ������ � �

�(� ���

�� � �� � � � �� � ��

�� � (� ���

�(� ���

with ���� � � � ���� � ������� ���, ���� � � � ���� � ��� ���,

������� � ��� � ".

������� (left context variables), ��� (right context variables),

� ��� (active variables) are mutually disjoint.
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3 Types of Cuts

1. Cut against a context formula of a structural rule:
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2. Cut against a context formula of a logical rule:

�� �
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������ �� ���

3. Cut between two principal formulae of logical rules:
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� � � �� � �� � � �

�� �� ������ �

��� ���

������ �

We want to concentrate on 3. Hence we only consider those logical
rules which allow shifting-up of type-2 cuts.
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Example

& is defined by a countable set of left and right logical rules:

�� � � �� � �

�� � � & �

�&� ���

�� � �� ���� � �

�� � � & ���� � �
�&� ����

for all �� �� * 	 � . Here

�� � ��� � � � � ��

(sequence of � distinct metavariables.)
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Reductive cut-elimination

Some sequent calculi admit cut-elimination for stupid reasons: eg.

� � ��&� ���� �&� ����� admits it since �&� �� cannot be actually used.
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To avoid this, we consider reductive cut-elimination, which is a
stronger form of cut-elimination with nonlogical axioms.

Consider derivations with a set $ of nonlogical axioms. The
following cuts are irreducible.

1. Cut between two nonlogical axioms:

�� �
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2. Cut between a nonlogical axiom and the principal formula of a
logical rule:
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Reductive cut-elimination
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Reductive cut-elimination

� admits reductive cut-elimination if

�� � 
� � � � �� � 
�.... with reducible cuts

�� �

��

�� � 
� � � � �� � 
�.... without reducible cuts

�� �
Reductive cut-elimination �� ordinary cut-elimination.

� admits axiom expansion if any compound axiom �� � is cut-free
derivable from atomic axioms.

Example:

Reductive cut-elimination Axiom expansion

& +Seq-Contraction O (

& +Weakening ( O
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Interpretation of logical connectives

Idea: second-order definition using

�

.
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Example:

����� �� �� ��

��� � � ���� ��

��� ���

� &���
�

� �

�
��� 
Æ+Æ
�� � ��� ���+ 	 ���� �� �� � � � �� �+

� 1
Æ 	�� � � �Æ
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Interpretation of logical connectives

When ��(� ��������

and ��(� ��������

are the right and left logical
rules introducing (, define

(�
�

� ��� �

�
����

(���
�

� ���

(�
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�
����
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�
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In particular:

� &�
�

� � � � � � &�
�

� � 	�� � � �
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Valuation and soundness

We gave an asymmetric interpretation (�
�

, (�
�

to each (.
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Soundness Theorem: Let

�: a simple sequent calculus with structural rules �.

�: an �-phase structure.

! : a full-valuation on �.

If �� � is provable in �, then it is true under ! .

Note: the existence of a full-valuation is not guaranteed yet!

LIPN, 04/10/05 – p.56/68



Coherence and Rigidity

A logical connective ( is coherent in � (with structural rules �) if
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Coherence and Rigidity

A logical connective ( is coherent in � (with structural rules �) if

(�
�

� ��� � (�
�

� ���

for any closed sets �� in every �-phase structure.

A logical connective ( is rigid in � if

(�
�

� ��� � (�
�

� ���

for any closed sets �� in every �-phase structure.

Coherence guarantees the existence of a valuation.

If rigidity holds in addition, then the valuation is uniquely determined
by the values of atomic formulae.
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Reductive cut-elimination �� Coherence

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.

LIPN, 04/10/05 – p.58/68



Reductive cut-elimination �� Coherence

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.

Idea: (�
�

� ��� �
�

�����, (�
�

� ��� �
�

���� ��

LIPN, 04/10/05 – p.58/68



Reductive cut-elimination �� Coherence

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.

Idea: (�
�

� ��� �
�

�����, (�
�

� ��� �
�

���� ��
Thus (�

�

� ��� � (�
�

� ��� iff

�� � ��
for any � 	 �� � 	 ��.

LIPN, 04/10/05 – p.58/68



Reductive cut-elimination �� Coherence

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.

Idea: (�
�

� ��� �
�

�����, (�
�

� ��� �
�

���� ��
Thus (�

�

� ��� � (�
�

� ��� iff

�� � ��
for any � 	 �� � 	 ��.

One can syntactically insert an ideal element by rules �(� �� and

�(� ��:

�� � (� ���� ��

LIPN, 04/10/05 – p.58/68



Reductive cut-elimination �� Coherence

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.

Idea: (�
�

� ��� �
�

�����, (�
�

� ��� �
�

���� ��
Thus (�

�

� ��� � (�
�

� ��� iff

�� � ��
for any � 	 �� � 	 ��.

One can syntactically insert an ideal element by rules �(� �� and

�(� ��:

�� � (� ���� ��

Then reductive cut-elimination can eliminate the ideal:

�� � ��

LIPN, 04/10/05 – p.58/68



Reductive cut-elimination �� Coherence

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.

Idea: (�
�

� ��� �
�

�����, (�
�

� ��� �
�

���� ��
Thus (�

�

� ��� � (�
�

� ��� iff

�� � ��
for any � 	 �� � 	 ��.

One can syntactically insert an ideal element by rules �(� �� and

�(� ��:

�� � (� ���� ��

Then reductive cut-elimination can eliminate the ideal:

�� � ��

Hence (�
�

� ��� � (�
�

� ���.
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Axiom expansion �� Rigidity

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.
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Proposition: If a simple sequent calculus � admits reductive
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Axiom expansion �� Rigidity

Proposition: If a simple sequent calculus � admits reductive
cut-elimination, then all logical connectives are coherent in �.

Proof: By axiom expansion:

�� � �� � � � �� � ��.... Str. rules + ��� �� + ��� ��

�� ���� �� ���

Semantic reading

��

�� � �� � � � �� � ��.... Str. rules + ��� �� + ��� ��

��
�

� ��� � ��
�

� ���

for any interpretations �� 	 ��� of active variables.

Key point: since there is no cut, one can interpret (� ��� differently,
depending on whether it appears on the left or right.
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Intermezzo

We have seen:

Reductive cut-elimination �� Coherence

Axiom expansion �� Rigidity

We must show:

Coherence + Propagation �� Reductive cut-elimination

Rigidity + Propagation �� Axiom expansion

In the sequel, we show (non-reductive) cut-elimination instead of
reductive cut-elimination.
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Syntactic phase structure

Fix a simple sequent calculus �. As before:

!� : free monoid generated by the formulas ! of �.

The operator 	 �  �!�� 
�  �!�� defined by:

��� �� 	 � �	 � ��	��� 	 is cut-free provable in ���

� 	 ��� � � �
�

���
���� �� � 	�
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Split Okada’s Lemma

Okada’s Lemma � 	 !��� � ��� splits into two.
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Split Okada’s Lemma: Let (� ��� � (���� � � � � ���.
If �� is a closed set such that �� 	 �� � ����, then

(1) (�� ��� � ��(� ���,
(2) (� ��� 	 (�� ���.
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Coherence recovers One Okada

Lemma: If all the logical connectives in � are coherent, then there is
a valuation !� such that for any (� ��� we have:
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Semantic cut-elimination

Proposition: If all structural rules in � satisfies the propagation
property and all logical connectives are coherent in �, then � admits
cut-elimination.

LIPN, 04/10/05 – p.65/68



Semantic cut-elimination

Proposition: If all structural rules in � satisfies the propagation
property and all logical connectives are coherent in �, then � admits
cut-elimination.

To show reductive cut-elimination, more delicate argument is
needed...
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Rigidity + Propagation �� Axiom expansion

Proposition: If a logical connective ( is rigid in � (and all structural
rules satisfy the propagation property), then ( admits axiom
expansion.
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Rigidity + Propagation �� Axiom expansion

Proposition: If a logical connective ( is rigid in � (and all structural
rules satisfy the propagation property), then ( admits axiom
expansion.

Proof: Modify the definition of syntactic phase structure:

��� �� 	 � �	 � ��	��� 	 is cut-free derivable

from atomic axioms in ��

Split Okada’s Lemma still holds. Together with rigidity,
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I.e., (� ���� (� ��� is cut-free derivable from atomic axioms.
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Main Results of Part II

Theorem 1: Let � be a simple sequent calculus. Then,
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Main Results of Part II

Theorem 1: Let � be a simple sequent calculus. Then,

� admits reductive cut-elimination ��

All logical connectives of � are coherent and all structural
rules of � satisfy the propagation property.

Theorem 2: Assume that the structural rules of � satisfy the
propagation property. Then,

a logical connective ( admits axiom expansion �� ( is
rigid.

Corollary: Let �� and �� be simple sequent calculi such that the
sets of of logical connectives are disjoint. Then,

If �� and �� admit cut-elimination, then so does ��  ��.
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Difficulty in classical case

Everything so far works fine (assuming cyclicity). But LK does not
satisfy reductive cut-elimination!
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Then what’s the point of characterizing reductive cut-elimination?
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