Towards a Semantic Characterization of Cut Elimination

Kazushige Terui National Institute of Informatics (Joint work with Agata Ciabattoni, TU Wien)

Cut-elimination plays a key role in proof theory and logic in computer science.

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.
- We do not want cut-elimination theorems anymore.

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.
- We do not want cut-elimination theorems anymore.
- We want theorems on cut-elimination.

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.
- We do not want cut-elimination theorems anymore.
- We want theorems on cut-elimination.
- People usually consider only good logics (with cut-elimination).

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.
- We do not want cut-elimination theorems anymore.
- We want theorems on cut-elimination.
- People usually consider only good logics (with cut-elimination).
- I want to know why good logics are good.

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.
- We do not want cut-elimination theorems anymore.
- We want theorems on cut-elimination.
- People usually consider only good logics (with cut-elimination).
- I want to know why good logics are good.
- I consider bad logics too.

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.
- We do not want cut-elimination theorems anymore.
- We want theorems on cut-elimination.
- People usually consider only good logics (with cut-elimination).
- I want to know why good logics are good.
- I consider bad logics too.
- Find some criteria that tell good from bad.

- Cut-elimination plays a key role in proof theory and logic in computer science.
- We want to understand it.
- We do not want cut-elimination theorems anymore.
- We want theorems on cut-elimination.
- People usually consider only good logics (with cut-elimination).
- I want to know why good logics are good.
- I consider bad logics too.
- Find some criteria that tell good from bad.

- Our approach: purely algebraic (phase semantic)
 - 1. Consider some general class of sequent calculi. Some enjoy cut-elimination, others do not.
 - 2. Give algebraic criteria for such a sequent calculus to admit cut-elimination.
- Our program:
 - 1. Structural rules
 - 2. Logical connectives
 - 3. Classical sequent calculi
 - 4. Modalities
 - 5. Quantifiers/fixpoints of types

Our approach: purely algebraic (phase semantic)

- 1. Consider a class of sequent calculi. Some enjoy cut-elimination, others do not.
- 2. Give algebraic criteria for such a sequent calculus to admit cut-elimination.

done (Terui 2005)

- Our program:
 - 1. Structural rules
 - 2. Logical connectives
 - 3. Classical sequent calculi
 - 4. Modalities
 - 5. Quantifiers/fixpoints of types

Our approach: purely algebraic (phase semantic)

- 1. Consider a class of sequent calculi. Some enjoy cut-elimination, others do not.
- 2. Give algebraic criteria for such a sequent calculus to admit cut-elimination.
- Our program:
 - 1. Structural rules
 - 2. Logical connectives
 - 3. Classical sequent calculi
 - 4. Modalities
 - 5. Quantifiers/fixpoints of types

done (Terui 2005)

partly done (Ciabattoni-Terui 2005

Our approach: purely algebraic (phase semantic)

- 1. Consider a class of sequent calculi. Some enjoy cut-elimination, others do not.
- 2. Give algebraic criteria for such a sequent calculus to admit cut-elimination.
- Our program:
 - 1. Structural rules
 - 2. Logical connectives
 - 3. Classical sequent calculi
 - 4. Modalities
 - 5. Quantifiers/fixpoints of types

done (Terui 2005)

partly done (Ciabattoni-Terui 2005 ongoing

Our approach: purely algebraic (phase semantic)

- 1. Consider a class of sequent calculi. Some enjoy cut-elimination, others do not.
- 2. Give algebraic criteria for such a sequent calculus to admit cut-elimination.
- Our program:
 - 1. Structural rules
 - 2. Logical connectives
 - 3. Classical sequent calculi
 - 4. Modalities
 - 5. Quantifiers/fixpoints of types

done (Terui 2005) partly done (Ciabattoni-Terui 2005 ongoing maybe possible

Our approach: purely algebraic (phase semantic)

- 1. Consider a class of sequent calculi. Some enjoy cut-elimination, others do not.
- 2. Give algebraic criteria for such a sequent calculus to admit cut-elimination.
- Our program:
 - Structural rules done (Terui 2005)
 Logical connectives partly done (Ciabattoni-Terui 2005)
 Classical sequent calculi ongoing
 Modalities maybe possible
 Quantifiers/fixpoints of types no idea...

Part I: Based on NCILL (Non-Commutative Intuitionistic Linear Logic), consider various structural rules.

- Part I: Based on NCILL (Non-Commutative Intuitionistic Linear Logic), consider various structural rules.
- Introduce two criteria for sets R of structural rules: syntactic propagation property and semantic propagation property (in terms of phase semantics).

- Part I: Based on NCILL (Non-Commutative Intuitionistic Linear Logic), consider various structural rules.
- Introduce two criteria for sets R of structural rules: syntactic propagation property and semantic propagation property (in terms of phase semantics).
- Show that

NCILL+ \mathcal{R} admits cut-elimination $\iff \mathcal{R}$ satisfies syntactic propagation

 $\iff \mathcal{R}$ satisfies semantic propagati

- Part I: Based on NCILL (Non-Commutative Intuitionistic Linear Logic), consider various structural rules.
- Introduce two criteria for sets R of structural rules: syntactic propagation property and semantic propagation property (in terms of phase semantics).
- Show that

NCILL+ \mathcal{R} admits cut-elimination $\iff \mathcal{R}$ satisfies syntactic propagation

 $\iff \mathcal{R}$ satisfies semantic propagati

- Part I: Based on NCILL (Non-Commutative Intuitionistic Linear Logic), consider various structural rules.
- Introduce two criteria for sets R of structural rules: syntactic propagation property and semantic propagation property (in terms of phase semantics).
- Show that

NCILL+ \mathcal{R} admits cut-elimination $\iff \mathcal{R}$ satisfies syntactic propagation

 $\iff \mathcal{R}$ satisfies semantic propagati

 By-product: completion of structural rules.
 Any set of structural rules can be converted into another set which admits cut-elimination.

Part II: Introduce a class of simple sequent calculi defined by various logical connectives and structural rules.

- Part II: Introduce a class of simple sequent calculi defined by various logical connectives and structural rules.
- Introduce an algebraic criterion for logical connectives: coherence.

- Part II: Introduce a class of simple sequent calculi defined by various logical connectives and structural rules.
- Introduce an algebraic criterion for logical connectives: coherence.
- Show that for any simple sequent calculus \mathcal{L}

reductive cut-elimination \iff propagation and coherence.

- Part II: Introduce a class of simple sequent calculi defined by various logical connectives and structural rules.
- Introduce an algebraic criterion for logical connectives: coherence.
- Show that for any simple sequent calculus \mathcal{L}

reductive cut-elimination \iff propagation and coherence.

Also give a characterization of axiom expansion. When structural rules satisfy propagation,

axiom expansion \iff opposite of coherence

Girard's test for naturality of structural rules (Meaning I, 1999).

Girard's test for naturality of structural rules (Meaning I, 1999).

A logical principle (structural rule) passes Girard's test if, in every phase structure (M, ⊥), it propagates from atomic facts {x}^{⊥⊥} to all facts X^{⊥⊥}.

Girard's test for naturality of structural rules (Meaning I, 1999).

- A logical principle (structural rule) passes Girard's test if, in every phase structure (M,⊥), it propagates from atomic facts {x}^{⊥⊥} to all facts X^{⊥⊥}.
- Weakening and Contraction pass it:

 $\forall x \in \mathbf{M}. \ \{x\}^{\perp \perp} \multimap \{x \cdot x\}^{\perp \perp} \implies \forall X: \text{ fact } (X \multimap X \otimes X).$

Girard's test for naturality of structural rules (Meaning I, 1999).

- A logical principle (structural rule) passes Girard's test if, in every phase structure (M,⊥), it propagates from atomic facts {x}^{⊥⊥} to all facts X^{⊥⊥}.
- Weakening and Contraction pass it:

 $\forall x \in \mathbf{M}. \ \{x\}^{\perp \perp} \multimap \{x \cdot x\}^{\perp \perp} \implies \forall X: \text{ fact } (X \multimap X \otimes X).$

- Broccoli fails it:

 $\forall x \in \mathbf{M}. \ \{x \cdot x\}^{\perp \perp} \multimap \{x\}^{\perp \perp} \not\Longrightarrow \forall X: \text{ fact } (X \otimes X \multimap X).$

Girard's test for naturality of structural rules (Meaning I, 1999).

- A logical principle (structural rule) passes Girard's test if, in every phase structure (M,⊥), it propagates from atomic facts {x}^{⊥⊥} to all facts X^{⊥⊥}.
- Weakening and Contraction pass it:

 $\forall x \in \mathbf{M}. \ \{x\}^{\perp \perp} \multimap \{x \cdot x\}^{\perp \perp} \implies \forall X: \text{ fact } (X \multimap X \otimes X).$

- Broccoli fails it:

 $\forall x \in \mathbf{M}. \ \{x \cdot x\}^{\perp \perp} \multimap \{x\}^{\perp \perp} \not\Longrightarrow \forall X: \text{ fact } (X \otimes X \multimap X).$

- Relationship with cut elimination is hinted, but not proved.

Girard's test for naturality of structural rules (Meaning I, 1999).

- A logical principle (structural rule) passes Girard's test if, in every phase structure (M,⊥), it propagates from atomic facts {x}^{⊥⊥} to all facts X^{⊥⊥}.
- Weakening and Contraction pass it:

 $\forall x \in \mathbf{M}. \ \{x\}^{\perp \perp} \multimap \{x \cdot x\}^{\perp \perp} \implies \forall X: \text{ fact } (X \multimap X \otimes X).$

- Broccoli fails it:

 $\forall x \in \mathbf{M}. \ \{x \cdot x\}^{\perp \perp} \multimap \{x\}^{\perp \perp} \not\Longrightarrow \forall X: \text{ fact } (X \otimes X \multimap X).$

- Relationship with cut elimination is hinted, but not proved.
- How is it possible to relate such a semantic criterion to syntactic cut elimination?

Okada's phase semantic proof of cut elimination for linear logic (1996).

- Okada's phase semantic proof of cut elimination for linear logic (1996).
 - A degenerate version of Tait-Girard's reducibility argument.

- Okada's phase semantic proof of cut elimination for linear logic (1996).
 - A degenerate version of Tait-Girard's reducibility argument.
 - A powerful technique to prove cut elimination for various logics.

- Okada's phase semantic proof of cut elimination for linear logic (1996).
 - A degenerate version of Tait-Girard's reducibility argument.
 - A powerful technique to prove cut elimination for various logics.
- Girard's test, when suitably modified, gives a sufficient condition for the applicability of Okada's argument.

Non-Commutative Intuitionistic Linear Logic

- **Formulas:** $A \& B, A \oplus B, A \otimes B, A \multimap B, B \hookrightarrow A, !A, \top, 0, 1.$
- **Sequents:** $\Gamma \Rightarrow Z$ (Γ : sequence of formulas)
- \blacksquare Use X, Y, Z, \ldots as metavariables to be replaced by formulas.
- (Selected) inference rules:

$$\frac{\Gamma \Rightarrow X \quad \Delta_1, X, \Delta_2 \Rightarrow Z}{\Delta_1, \Gamma, \Delta_2 \Rightarrow C} \quad Cut \qquad \frac{X \Rightarrow X}{X \Rightarrow X} \quad Identity \quad \frac{\Gamma \Rightarrow X \quad \Delta \Rightarrow Y}{\Gamma, \Delta \Rightarrow X \otimes Y} \otimes Identity$$

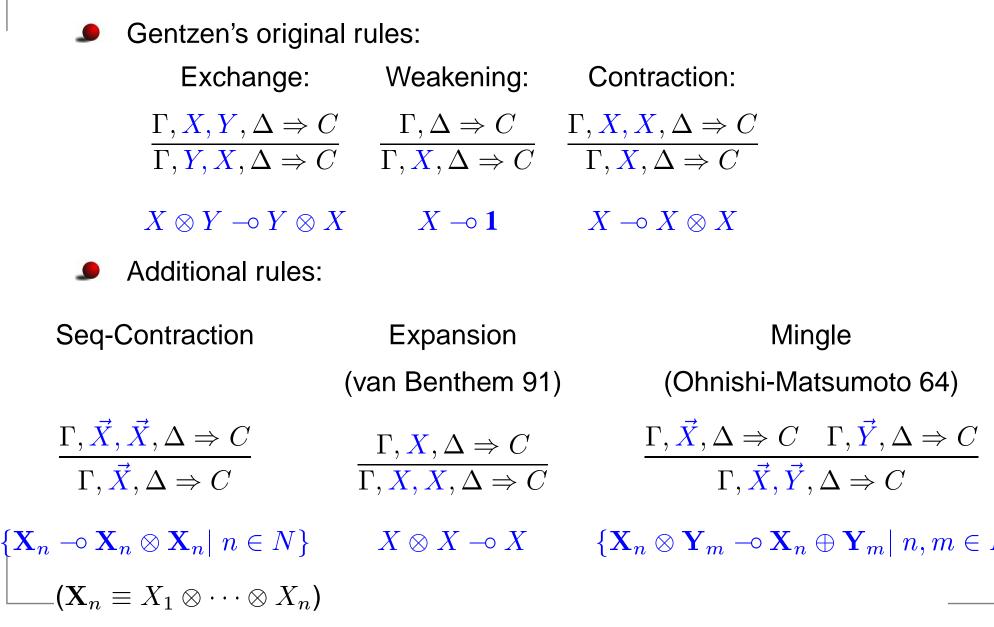
$$\frac{\Gamma \Rightarrow X \quad \Delta_1, Y, \Delta_2 \Rightarrow Z}{\Delta_1, \Gamma, X \multimap Y, \Delta_2 \Rightarrow Z} \quad \neg ol \qquad \frac{X, \Gamma \Rightarrow Y}{\Gamma \Rightarrow X \multimap Y} \quad \neg or \quad \frac{\Gamma_1, X, Y, \Gamma_2 \Rightarrow Z}{\Gamma_1, X \otimes Y, \Gamma_2 \Rightarrow Z} \otimes Identity$$

$$\frac{\Gamma_1, X, \Gamma_2 \Rightarrow Z \quad \Gamma_1, Y, \Gamma_2 \Rightarrow Z}{\Gamma_1, X \oplus Y, \Gamma_2 \Rightarrow Z} \oplus l \quad \frac{\Gamma \Rightarrow X}{\Gamma \Rightarrow X \oplus Y} \oplus r_1 \qquad \frac{\Gamma \Rightarrow Y}{\Gamma \Rightarrow X \oplus Y} \oplus r_2$$

Basic facts

- \square Γ ⇒ $A \multimap B$ is provable iff $A, Γ \Rightarrow B$ is provable.
- $\bigoplus \Phi, \Gamma \Rightarrow B$ is provable iff $A, \Gamma \Rightarrow B$ is provable for every $A \in \Phi$.

Structural rules: example



A structural rule is a scheme of the form:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

A structural rule is a scheme of the form:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

such that $\{\vec{X}_1, ..., \vec{X}_n\} \subseteq \{\vec{X}_0\}$ (*).

• Axiom representation: $\hat{R} \equiv \bigotimes \vec{X}_0 \multimap (\bigotimes \vec{X}_1) \oplus \cdots \oplus (\bigotimes \vec{X}_n).$

A structural rule is a scheme of the form:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

- Axiom representation: $\hat{R} \equiv \bigotimes \vec{X}_0 \multimap (\bigotimes \vec{X}_1) \oplus \cdots \oplus (\bigotimes \vec{X}_n)$.
- Due to (*),

A structural rule is a scheme of the form:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

- Axiom representation: $\hat{R} \equiv \bigotimes \vec{X}_0 \multimap (\bigotimes \vec{X}_1) \oplus \cdots \oplus (\bigotimes \vec{X}_n)$.
- Due to (*),
 - 1. All structural rules are admissible in intuitionistic logic.

A structural rule is a scheme of the form:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

- Axiom representation: $\hat{R} \equiv \bigotimes \vec{X}_0 \multimap (\bigotimes \vec{X}_1) \oplus \cdots \oplus (\bigotimes \vec{X}_n)$.
- Due to (*),
 - 1. All structural rules are admissible in intuitionistic logic.
 - 2. Cut-elimination implies subformula property.

A structural rule is a scheme of the form:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

- Axiom representation: $\hat{R} \equiv \bigotimes \vec{X}_0 \multimap (\bigotimes \vec{X}_1) \oplus \cdots \oplus (\bigotimes \vec{X}_n).$
- Due to (*),
 - 1. All structural rules are admissible in intuitionistic logic.
 - 2. Cut-elimination implies subformula property.
- Instances of *R*: obtained by substitution $R[A_1/X_1, A_2/X_2, \ldots]$

A structural rule is a scheme of the form:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

- Axiom representation: $\hat{R} \equiv \bigotimes \vec{X}_0 \multimap (\bigotimes \vec{X}_1) \oplus \cdots \oplus (\bigotimes \vec{X}_n)$.
- Due to (*),
 - 1. All structural rules are admissible in intuitionistic logic.
 - 2. Cut-elimination implies subformula property.
- Instances of *R*: obtained by substitution $R[A_1/X_1, A_2/X_2, \ldots]$
- ▶ When $A_1, A_2, \ldots \in \Phi$, $R[A_1/X_1, A_2/X_2, \ldots]$ is called an Φ -instance.

Contraction alone (without Exchange) does not admit cut elimination:

	$\overline{A \otimes B \Rightarrow A \otimes B} \overline{A \otimes B \Rightarrow A \otimes}$	B
$\overline{A \Rightarrow A} \overline{B \Rightarrow B}$	$\overline{A\otimes B,A\otimes B} \Rightarrow (A\otimes B)\otimes (A\otimes$	B)
$A, B \Rightarrow A \otimes B$	$A \otimes B \Rightarrow (A \otimes B) \otimes (A \otimes B)$	$\frac{-}{-}$ Cntr
A, B	$\Rightarrow (A \otimes B) \otimes (A \otimes B)$	Cut

¥

$A \Rightarrow A$	$B \Rightarrow B$	$\overline{A \Rightarrow A}$	$B \Rightarrow B$	2
$A, B \Rightarrow$	$A \otimes B$	$A, B \Rightarrow$	$A\otimes B$	-
A, B, A,	$B \Rightarrow (A$	$\otimes B) \otimes ($	$A\otimes B)$	ი ეე
A, B	$\Rightarrow (A \otimes A)$	$B)\otimes (A \Diamond$	$\otimes B)$???

When Contraction is generalized to

$$\frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} \text{ Seq-Contraction }$$

When Contraction is generalized to

 $\frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} \text{ Seq-Contraction }$

The above cut can be eliminated:

$$\frac{\overline{A \Rightarrow A} \quad \overline{B \Rightarrow B}}{A, B \Rightarrow A \otimes B} \quad \overline{A \Rightarrow A} \quad \overline{B \Rightarrow B} \\
\frac{\overline{A, B \Rightarrow A \otimes B}}{A, B \Rightarrow A \otimes B} \quad \overline{A, B \Rightarrow A \otimes B} \\
\frac{\overline{A, B, A, B \Rightarrow (A \otimes B) \otimes (A \otimes B)}}{A, B \Rightarrow (A \otimes B) \otimes (A \otimes B)} \quad Seq - Cntr$$

When Contraction is generalized to

 $\frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} \text{ Seq-Contraction }$

The above cut can be eliminated:

$$\frac{\overline{A \Rightarrow A} \quad \overline{B \Rightarrow B}}{A, B \Rightarrow A \otimes B} \quad \overline{A \Rightarrow A} \quad \overline{B \Rightarrow B} \\
\frac{\overline{A, B \Rightarrow A \otimes B} \quad \overline{A, B \Rightarrow A \otimes B}}{A, B \Rightarrow A \otimes B} \\
\frac{\overline{A, B, A, B \Rightarrow (A \otimes B) \otimes (A \otimes B)}}{A, B \Rightarrow (A \otimes B) \otimes (A \otimes B)} \quad Seq - Cntr$$

● Contraction X → X ⊗ X and Seq-Contraction
{X_n → X_n ⊗ X_n | n ∈ N} are equivalent with respect to provability
in NCILL.

When Contraction is generalized to

 $\frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} \text{ Seq-Contraction }$

The above cut can be eliminated:

$$\frac{\overline{A \Rightarrow A} \quad \overline{B \Rightarrow B}}{A, B \Rightarrow A \otimes B} \quad \frac{\overline{A \Rightarrow A} \quad \overline{B \Rightarrow B}}{A, B \Rightarrow A \otimes B} \\
\frac{\overline{A, B, A, B \Rightarrow (A \otimes B) \otimes (A \otimes B)}}{A, B \Rightarrow (A \otimes B) \otimes (A \otimes B)} \quad Seq - Cntr$$

- Contraction X → X ⊗ X and Seq-Contraction
 ${X_n → X_n ⊗ X_n | n ∈ N}$ are equivalent with respect to provability
 in NCILL.
- Is it possible to describe the difference between them without using the word 'cut elimination'?

Seq-Contraction propagates from atomic instances to &-instances:

$$\mathbf{X}_n \multimap \mathbf{X}_n \otimes \mathbf{X}_n[\alpha_1 \otimes \beta_1 / X_1, \dots, \alpha_n \otimes \beta_n / X_n]$$

is derivable in NCILL from

$$\mathbf{X}_{2n} \multimap \mathbf{X}_{2n} \otimes \mathbf{X}_{2n} [\alpha_1/X_1, \beta_1/X_2, \dots, \alpha_n/X_{2n-1}, \beta_n/X_{2n}]$$

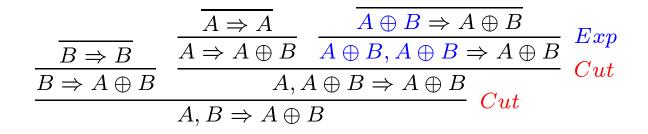
On the other hand, Contraction does not propagate from atomic instances to ⊗-instances:

$$X \multimap X \otimes X[\alpha \otimes \beta / X]$$

is not derivable from

 $X \multimap X \otimes X[\alpha/X], \quad X \multimap X \otimes X[\beta/X],$ etc.

Expansion does not admit cut elimination:



\bigvee

$\overline{A \Rightarrow A}$	$\overline{B \Rightarrow B}$	
$\overline{A \Rightarrow A \oplus B}$	$\overline{B} \Rightarrow A \oplus B$???
$\overline{\qquad} A, B \Rightarrow$	111	

When Expansion is replaced with Mingle:

$$\frac{\Gamma, \vec{X}, \Delta \Rightarrow C \quad \Gamma, \vec{Y}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \vec{Y}, \Delta \Rightarrow C} \quad Min$$

When Expansion is replaced with Mingle:

$$\frac{\Gamma, \vec{X}, \Delta \Rightarrow C \quad \Gamma, \vec{Y}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \vec{Y}, \Delta \Rightarrow C} \quad Min$$

The above cut can be eliminated:

$$\frac{\overline{A \Rightarrow A}}{\overline{A \Rightarrow A \oplus B}} \quad \frac{\overline{B \Rightarrow B}}{\overline{B \Rightarrow A \oplus B}}$$
$$\frac{\overline{A \Rightarrow A \oplus B}}{A, B \Rightarrow A \oplus B} \quad Min$$

When Expansion is replaced with Mingle:

$$\frac{\Gamma, \vec{X}, \Delta \Rightarrow C \quad \Gamma, \vec{Y}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \vec{Y}, \Delta \Rightarrow C} \quad Min$$

The above cut can be eliminated:

$$\frac{\overline{A \Rightarrow A}}{A \Rightarrow A \oplus B} \quad \frac{\overline{B \Rightarrow B}}{B \Rightarrow A \oplus B}$$

$$A, B \Rightarrow A \oplus B$$

$$Min$$

Expansion $X \otimes X \multimap X$ and Mingle $\{\mathbf{X}_n \otimes \mathbf{Y}_m \multimap \mathbf{X}_n \oplus \mathbf{Y}_m | n, m \in N\}$ are equivalent with respect to provability in NCILL.

When Expansion is replaced with Mingle:

$$\frac{\Gamma, \vec{X}, \Delta \Rightarrow C \quad \Gamma, \vec{Y}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \vec{Y}, \Delta \Rightarrow C} \quad Min$$

The above cut can be eliminated:

$$\frac{\overline{A \Rightarrow A}}{A \Rightarrow A \oplus B} \quad \frac{\overline{B \Rightarrow B}}{B \Rightarrow A \oplus B}$$

$$A, B \Rightarrow A \oplus B$$

$$Min$$

- Expansion $X \otimes X \multimap X$ and Mingle $\{\mathbf{X}_n \otimes \mathbf{Y}_m \multimap \mathbf{X}_n \oplus \mathbf{Y}_m | n, m \in N\}$ are equivalent with respect to provability in NCILL.
- Is it possible to describe the difference between them without using the word 'cut elimination'?

Mingle propagates from atomic instances to \oplus -instances: Eg,

is derivable in NCILL from

Mingle propagates from atomic instances to \oplus -instances: Eg, $X \otimes Y \multimap X \oplus Y [\alpha_1 \oplus \alpha_2 / X, \beta_1 \oplus \beta_2 / Y]$ $\equiv (\alpha_1 \oplus \alpha_2) \otimes (\beta_1 \oplus \beta_2) \multimap (\alpha_1 \oplus \alpha_2) \oplus (\beta_1 \oplus \beta_2)$ is derivable in NCILL from

■ Mingle propagates from atomic instances to ⊕-instances: Eg,

 $\begin{aligned} X \otimes Y \multimap X \oplus Y[\alpha_1 \oplus \alpha_2/X, \beta_1 \oplus \beta_2/Y] \\ \equiv (\alpha_1 \oplus \alpha_2) \otimes (\beta_1 \oplus \beta_2) \multimap (\alpha_1 \oplus \alpha_2) \oplus (\beta_1 \oplus \beta_2) \end{aligned}$ is derivable in NCILL from

$$\begin{split} X \otimes Y &\multimap X \oplus Y[\alpha_i/X, \beta_j/Y], \quad \text{for } i, j \in \{1, 2\} \\ \equiv \alpha_i \otimes \beta_j &\multimap \alpha_i \oplus \beta_j, \quad \text{for } i, j \in \{1, 2\} \end{split}$$

■ Mingle propagates from atomic instances to ⊕-instances: Eg,

 $X \otimes Y \multimap X \oplus Y[\alpha_1 \oplus \alpha_2/X, \beta_1 \oplus \beta_2/Y]$

 $\equiv (\alpha_1 \oplus \alpha_2) \otimes (\beta_1 \oplus \beta_2) \multimap (\alpha_1 \oplus \alpha_2) \oplus (\beta_1 \oplus \beta_2)$

is derivable in NCILL from

 $X \otimes Y \multimap X \oplus Y[\alpha_i/X, \beta_j/Y], \text{ for } i, j \in \{1, 2\}$

 $\equiv \alpha_i \otimes \beta_j \multimap \alpha_i \oplus \beta_j, \quad \text{for } i, j \in \{1, 2\}$

whereas Expansion does not propagate from atomic instances to ⊕-instances:

$$X \otimes X \multimap X[\alpha_1 \oplus \alpha_2/X]$$

is not derivable from

$$X \otimes X \multimap X[\alpha_1/X], \quad X \otimes X \multimap X[\alpha_2/X], \quad etc.$$

Syntactic propagation property

A set R of structural rules satisfies the syntactic propagation property if ⊗-instances and ⊕-instances are derivable from atomic instances.

Syntactic propagation property

- A set R of structural rules satisfies the syntactic propagation property if ⊗-instances and ⊕-instances are derivable from atomic instances.
- Proposition: If NCILL+ \mathcal{R} enjoys cut elimination, then \mathcal{R} satisfies the syntactic propagation property.

Proof: A miniature of Hilbert's Programme. Imagine:

- Proof: A miniature of Hilbert's Programme. Imagine:
- \mathcal{R} (all instances) = "ideal (abstract) reasoning method"

- Proof: A miniature of Hilbert's Programme. Imagine:
- R (all instances) = "ideal (abstract) reasoning method"
- \square \mathcal{R}_{atom} (atomic instances) = "real (concrete) reasoning method"

- Proof: A miniature of Hilbert's Programme. Imagine:
- R (all instances) = "ideal (abstract) reasoning method"
- \mathcal{P} \mathcal{R}_{atom} (atomic instances) = "real (concrete) reasoning method"
- **Solution** Formulas with implications restricted to $\alpha \multimap D =$ "real statements"

- Proof: A miniature of Hilbert's Programme. Imagine:
- R (all instances) = "ideal (abstract) reasoning method"
- \checkmark \mathcal{R}_{atom} (atomic instances) = "real (concrete) reasoning method"
- **Solution** Formulas with implications restricted to $\alpha \rightarrow D =$ "real statements"
- **Fact 1**: Every \oplus -instance (and \otimes -instance) of \hat{R} is equivalent (in NCILL) to a real statement C.

$$\hat{R}[\alpha_i \oplus \beta_i / X_i] \equiv \bigotimes \vec{X}_0 \multimap (\bigotimes \vec{X}_1) \oplus \cdots \oplus (\bigotimes \vec{X}_n)[\alpha_i \oplus \beta_i / X_i]$$

$$\alpha \otimes \beta \multimap C \Leftrightarrow \alpha \multimap \beta \multimap C$$

$$\alpha \oplus \beta \multimap C \Leftrightarrow (\alpha \multimap C) \& (\beta \multimap C)$$

Fact 2: Suppose that NCILL+ \mathcal{R} admits cut-elimination. If a real statement *C* is provable in NCILL+ \mathcal{R} , then it is already provable in NCILL+ \mathcal{R}_{atom} .

- Fact 2: Suppose that NCILL+ \mathcal{R} admits cut-elimination. If a real statement *C* is provable in NCILL+ \mathcal{R} , then it is already provable in NCILL+ \mathcal{R}_{atom} .
 - "real statements provable with ideal methods are already provable with real methods."

Fact 2: Suppose that NCILL+ \mathcal{R} admits cut-elimination. If a real statement *C* is provable in NCILL+ \mathcal{R} , then it is already provable in NCILL+ \mathcal{R}_{atom} .

"real statements provable with ideal methods are already provable with real methods."

Proof of the proposition: Let $R \in \mathcal{R}$. We have:

 $\begin{aligned} \mathsf{NCILL} + \mathcal{R} & \vdash \quad \hat{R}[\alpha_i \oplus \beta_i / X_i] \\ \mathsf{NCILL} + \mathcal{R} & \vdash \quad C \\ \mathsf{NCILL} + \mathcal{R}_{atom} & \vdash \quad C \\ \mathsf{NCILL} + \mathcal{R}_{atom} & \vdash \quad \hat{R}[\alpha_i \oplus \beta_i / X_i] \end{aligned}$

Fact 2: Suppose that NCILL+ \mathcal{R} admits cut-elimination. If a real statement *C* is provable in NCILL+ \mathcal{R} , then it is already provable in NCILL+ \mathcal{R}_{atom} .

"real statements provable with ideal methods are already provable with real methods."

Proof of the proposition: Let $R \in \mathcal{R}$. We have:

 $\begin{aligned} \mathsf{NCILL} + \mathcal{R} & \vdash \quad \hat{R}[\alpha_i \oplus \beta_i / X_i] \\ \mathsf{NCILL} + \mathcal{R} & \vdash \quad C \\ \mathsf{NCILL} + \mathcal{R}_{atom} & \vdash \quad C \\ \mathsf{NCILL} + \mathcal{R}_{atom} & \vdash \quad \hat{R}[\alpha_i \oplus \beta_i / X_i] \end{aligned}$

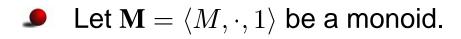
Intermezzo

We have shown

Cut Elimination \implies Syntactic Propagation

We next show

Syntactic Propagation \implies Semantic Propagation



- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- Solution We assume that **M** is finitely generated from a set A, i.e., any element x of M can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.

- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- Solution We assume that **M** is finitely generated from a set *A*, i.e., any element *x* of *M* can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.
- A phase structure $\mathbf{P} = (\mathbf{M}, C)$ is a monoid \mathbf{M} with a closure operator $C : \wp(M) \longrightarrow \wp(M)$ such that for any $X, Y \subseteq M$,

- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- We assume that **M** is finitely generated from a set *A*, i.e., any element *x* of *M* can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.
- ▲ A phase structure P = (M, C) is a monoid M with a closure operator
 C: ℘(M) → ℘(M) such that for any X, Y ⊆ M,
 A w ⊂ C(W)
 - 1. $X \subseteq C(X)$

- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- We assume that **M** is finitely generated from a set *A*, i.e., any element *x* of *M* can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.
- A phase structure $\mathbf{P} = (\mathbf{M}, C)$ is a monoid \mathbf{M} with a closure operator $C : \wp(M) \longrightarrow \wp(M)$ such that for any $X, Y \subseteq M$,
 - 1. $X \subseteq C(X)$
 - **2.** $X \subseteq Y \Longrightarrow C(X) \subseteq C(Y)$

- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- We assume that **M** is finitely generated from a set *A*, i.e., any element *x* of *M* can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.
- A phase structure $\mathbf{P} = (\mathbf{M}, C)$ is a monoid \mathbf{M} with a closure operator $C : \wp(M) \longrightarrow \wp(M)$ such that for any $X, Y \subseteq M$,
 - 1. $X \subseteq C(X)$
 - **2.** $X \subseteq Y \Longrightarrow C(X) \subseteq C(Y)$
 - **3.** $C(C(X)) \subseteq C(X)$

- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- We assume that **M** is finitely generated from a set *A*, i.e., any element *x* of *M* can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.
- A phase structure $\mathbf{P} = (\mathbf{M}, C)$ is a monoid \mathbf{M} with a closure operator $C : \wp(M) \longrightarrow \wp(M)$ such that for any $X, Y \subseteq M$,
 - 1. $X \subseteq C(X)$
 - **2.** $X \subseteq Y \Longrightarrow C(X) \subseteq C(Y)$
 - **3.** $C(C(X)) \subseteq C(X)$
 - 4. $C(X) \bullet C(Y) \subseteq C(X \bullet Y)$

- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- We assume that **M** is finitely generated from a set *A*, i.e., any element *x* of *M* can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.
- A phase structure $\mathbf{P} = (\mathbf{M}, C)$ is a monoid \mathbf{M} with a closure operator $C : \wp(M) \longrightarrow \wp(M)$ such that for any $X, Y \subseteq M$,
 - 1. $X \subseteq C(X)$
 - **2.** $X \subseteq Y \Longrightarrow C(X) \subseteq C(Y)$
 - **3.** $C(C(X)) \subseteq C(X)$
 - 4. $C(X) \bullet C(Y) \subseteq C(X \bullet Y)$
- $C\mathcal{L}_{\mathbf{P}}: \text{ the set of closed sets } X = C(X).$

- Let $\mathbf{M} = \langle M, \cdot, 1 \rangle$ be a monoid.
- Solution We assume that **M** is finitely generated from a set A, i.e., any element x of M can be written as $a_1 \cdots a_n$ for some $a_1, \ldots, a_n \in A$.
- A phase structure $\mathbf{P} = (\mathbf{M}, C)$ is a monoid \mathbf{M} with a closure operator $C : \wp(M) \longrightarrow \wp(M)$ such that for any $X, Y \subseteq M$,
 - 1. $X \subseteq C(X)$
 - **2.** $X \subseteq Y \Longrightarrow C(X) \subseteq C(Y)$
 - **3.** $C(C(X)) \subseteq C(X)$
 - 4. $C(X) \bullet C(Y) \subseteq C(X \bullet Y)$
- $C\mathcal{L}_{\mathbf{P}}: \text{ the set of closed sets } X = C(X).$

• For any $X, Y \in \mathcal{CL}_{\mathbf{P}}$,

 $\begin{array}{lcl} X \And Y &=& X \cap Y, \\ X \oplus Y &=& C(X \cup Y), \\ X \otimes Y &=& C(X \bullet Y) = C(\{x \cdot y \mid x \in X, y \in Y\}), \\ X \multimap Y &=& \{y \mid \forall x \in X, x \cdot y \in Y\}, \\ Y \multimap -X &=& \{y \mid \forall x \in X, y \cdot x \in Y\}. \end{array}$

 $A valuation f : Var \longrightarrow \mathcal{CL}_{\mathbf{P}}.$

- A valuation $f: Var \longrightarrow C\mathcal{L}_{\mathbf{P}}$.

- A valuation $f: Var \longrightarrow C\mathcal{L}_{\mathbf{P}}$.
- A is true under valuation f in P if $1 \in f(A)$.

- A valuation $f: Var \longrightarrow C\mathcal{L}_{\mathbf{P}}$.
- A is true under valuation f in **P** if $1 \in f(A)$.
- In particular, $A \multimap B$ is true under f iff $f(A) \subseteq f(B)$.

- A valuation $f: Var \longrightarrow C\mathcal{L}_{\mathbf{P}}$.
- A is true under valuation f in **P** if $1 \in f(A)$.
- In particular, $A \multimap B$ is true under f iff $f(A) \subseteq f(B)$.
- A formula A is valid (atomically valid, resp.) in P if it is true under all valuations (atomic valuations, resp.) on P.

- A valuation $f: Var \longrightarrow C\mathcal{L}_{\mathbf{P}}$.
- A is true under valuation f in **P** if $1 \in f(A)$.
- In particular, $A \multimap B$ is true under f iff $f(A) \subseteq f(B)$.
- A formula A is valid (atomically valid, resp.) in P if it is true under all valuations (atomic valuations, resp.) on P.
- An \mathcal{R} -phase structure is a phase structure in which all axiom representations $\hat{R} \in \widehat{\mathcal{R}}$ are valid.

- A valuation $f: Var \longrightarrow C\mathcal{L}_{\mathbf{P}}$.
- A is true under valuation f in **P** if $1 \in f(A)$.
- In particular, $A \multimap B$ is true under f iff $f(A) \subseteq f(B)$.
- A formula A is valid (atomically valid, resp.) in P if it is true under all valuations (atomic valuations, resp.) on P.
- An \mathcal{R} -phase structure is a phase structure in which all axiom representations $\hat{R} \in \widehat{\mathcal{R}}$ are valid.
- Soundness: Any formula provable in NCILL+ \mathcal{R} is valid in all \mathcal{R} -phase structures.

A set \mathcal{R} of structural rules satisfies the semantic propagation property if atomic validity \implies validity in every phase structure.

- A set \mathcal{R} of structural rules satisfies the semantic propagation property if atomic validity \implies validity in every phase structure.
- Proposition: If \mathcal{R} satisfies the syntactic propagation property, it also satisfies the semantic propagation property.

- A set \mathcal{R} of structural rules satisfies the semantic propagation property if atomic validity \implies validity in every phase structure.
- Proposition: If \mathcal{R} satisfies the syntactic propagation property, it also satisfies the semantic propagation property.

- A set \mathcal{R} of structural rules satisfies the semantic propagation property if atomic validity \implies validity in every phase structure.
- Proposition: If \mathcal{R} satisfies the syntactic propagation property, it also satisfies the semantic propagation property.

Key property of phase structures

Lemma: In every phase structure,

$$\mathcal{CL}_{\mathbf{P}} = \bigoplus \bigotimes_{fin} \mathcal{ATOM}_{\mathbf{P}},$$

i.e., any $X \in \mathcal{CL}_{\mathbf{P}}$ can be decomposed as:

$$X = \bigoplus_{x \in X} C(\{x\})$$
$$= \bigoplus_{x \in X} \bigotimes_{x = a_1 \cdots a_n} C(\{a_i\})$$

Intermezzo

We have shown

 $\begin{array}{rcl} \mbox{Cut Elimination} & \Longrightarrow & \mbox{Syntactic Propagation} \\ & \implies & \mbox{Semantic Propagation} \end{array}$

We finally show

Semantic Propagation \implies Cut Elimination

by employing Okada's construction of phase structures for cut elimination.

Fix a set $\mathcal R$ of structural rules.

- **Fix** a set \mathcal{R} of structural rules.
- \checkmark \mathcal{F}^* : free monoid generated by the formulas $\mathcal F$ of NCILL

- **Fix** a set \mathcal{R} of structural rules.
- \checkmark \mathcal{F}^* : free monoid generated by the formulas $\mathcal F$ of NCILL
 - Elements: sequences Γ of formulas

- **Fix a set** \mathcal{R} of structural rules.
- \mathcal{F}^* : free monoid generated by the formulas \mathcal{F} of NCILL
 - **s** Elements: sequences Γ of formulas
 - Monoid multiplication: concatenation Γ, Δ

- **Fix a set** \mathcal{R} of structural rules.
- \mathcal{F}^* : free monoid generated by the formulas \mathcal{F} of NCILL
 - **s** Elements: sequences Γ of formulas
 - Monoid multiplication: concatenation Γ, Δ
 - Unit: the empty sequence \emptyset .

- **Fix a set** \mathcal{R} of structural rules.
- \mathcal{F}^* : free monoid generated by the formulas \mathcal{F} of NCILL
 - **s** Elements: sequences Γ of formulas
 - Monoid multiplication: concatenation Γ, Δ
 - Unit: the empty sequence \emptyset .
- The operator $Cl: \wp(\mathcal{F}^*) \longrightarrow \wp(\mathcal{F}^*)$ defined by:

$$\begin{split} \llbracket \Gamma_\Delta \Rightarrow C \rrbracket &= \{\Sigma \mid \Gamma, \Sigma, \Delta \Rightarrow C \text{ is cut-free provable in NCILL} + \mathcal{R} \}, \\ \mathcal{BASE} &= \{\llbracket \Gamma_\Delta \Rightarrow C \rrbracket \mid \Gamma, \Delta, C \text{ arbitrary} \}, \\ Y \in \mathcal{CL}_{\mathbf{P}} &\Leftrightarrow Y = \bigcap_{i \in \Lambda} \llbracket \Gamma_i_\Delta_i \Rightarrow C_i \rrbracket \\ Cl(X) &= \text{ the minimal closed set that includes } X \end{split}$$

- **Fix a set** \mathcal{R} of structural rules.
- \mathcal{F}^* : free monoid generated by the formulas \mathcal{F} of NCILL
 - Elements: sequences Γ of formulas
 - Monoid multiplication: concatenation Γ, Δ
 - Unit: the empty sequence \emptyset .
- The operator $Cl: \wp(\mathcal{F}^*) \longrightarrow \wp(\mathcal{F}^*)$ defined by:

$$\begin{split} \llbracket \Gamma_\Delta \Rightarrow C \rrbracket &= \{ \Sigma \mid \Gamma, \Sigma, \Delta \Rightarrow C \text{ is cut-free provable in NCILL} + \mathcal{R} \}, \\ \mathcal{BASE} &= \{ \llbracket \Gamma_\Delta \Rightarrow C \rrbracket \mid \Gamma, \Delta, C \text{ arbitrary} \}, \\ Y \in \mathcal{CL}_{\mathbf{P}} &\Leftrightarrow Y = \bigcap_{i \in \Lambda} \llbracket \Gamma_i_\Delta_i \Rightarrow C_i \rrbracket \\ Cl(X) &= \text{ the minimal closed set that includes } X \end{split}$$

In particular, $\mathcal{ATOM} = \{Cl(\{A\}) \mid A \text{ is a formula}\}$

Meaning of closure operator:

$$\begin{split} &\Sigma \in Cl(\{\Lambda\}) \Longleftrightarrow \\ & \text{Whenever } \Gamma, \Lambda, \Delta \Rightarrow C \text{ is cut-free derivable, so is} \\ & \Gamma, \Sigma, \Delta \Rightarrow C. \end{split}$$

Idea of semantic cut-elimination

Without structural rules:

"Real" elements: $\mathcal{BASE} : [\Gamma_\Delta \Rightarrow C]$

codify cut-free provability in NCILL

↓ add

"ideal" elements: $\mathcal{CL}_{\mathbf{P}} : \bigcap_{i \in I} \llbracket \Gamma_i \Delta_i \Rightarrow C_i \rrbracket$ model of NCILL with cuts

 $\begin{array}{ccc} \mathsf{NCILL} \vdash A & \stackrel{\mathsf{Soundness}}{\Longrightarrow} & \mathbf{P} \models A \\ & \stackrel{\mathsf{Okada's Lemma}}{\Longrightarrow} & \text{``P} \models_{base} A \text{''} \\ & \implies & \mathsf{Cut-free \ NCILL} \vdash A \end{array}$

• Let
$$f_0(\alpha) = \llbracket \Rightarrow \alpha \rrbracket$$
.

• Let
$$f_0(\alpha) = \llbracket \Rightarrow \alpha \rrbracket$$
.

Okada's Lemma: For every formula A,

$$A \in f_0(A) \subseteq \llbracket \Rightarrow A \rrbracket.$$

In particular, if A is true under f_0 , then

 $1 \in f_0(A) \subseteq \llbracket \Rightarrow A \rrbracket.$

I.e., $\Rightarrow A$ is cut-free provable in NCILL+ \mathcal{R} .

• Let
$$f_0(\alpha) = \llbracket \Rightarrow \alpha \rrbracket$$
.

Okada's Lemma: For every formula A,

$$A \in f_0(A) \subseteq \llbracket \Rightarrow A \rrbracket.$$

In particular, if A is true under f_0 , then

 $1 \in f_0(A) \subseteq \llbracket \Rightarrow A \rrbracket.$

I.e., $\Rightarrow A$ is cut-free provable in NCILL+ \mathcal{R} .

■ Use left logical rules to show $A \in f_0(A)$.

• Let
$$f_0(\alpha) = \llbracket \Rightarrow \alpha \rrbracket$$
.

Okada's Lemma: For every formula A,

$$A \in f_0(A) \subseteq \llbracket \Rightarrow A \rrbracket.$$

In particular, if A is true under f_0 , then

$$1 \in f_0(A) \subseteq \llbracket \Rightarrow A \rrbracket.$$

I.e., $\Rightarrow A$ is cut-free provable in NCILL+ \mathcal{R} .

- Use left logical rules to show $A \in f_0(A)$.
- Use right logical rules to show $f_0(A) \subseteq \llbracket \Rightarrow A \rrbracket$.

Idea of semantic cut-elimination

Solution With arbitrary structural rules \mathcal{R} :

"Real" elements:

 $\mathcal{BASE}: \llbracket \Gamma \Delta \Rightarrow C \rrbracket$

codify cut-free provability in NCILL+ \mathcal{R}

 \Downarrow add

"ideal" elements: $\mathcal{CL}_{\mathbf{P}} : \bigcap_{i \in I} \llbracket \Gamma_i \Delta_i \Rightarrow C_i \rrbracket$ model of NCILL+ \mathcal{R} ???

 $\begin{array}{ccc} \mathsf{NCILL} \vdash A & \stackrel{\mathsf{Soundness ???}}{\Longrightarrow} & \mathbf{P} \models A \\ & & \mathsf{Okada's Lemma} & & & \\ & & & \Rightarrow & & \mathsf{Cut-free \ NCILL} \vdash A \end{array}$

LIPN, 04/10/05 - p.37/68

Semantic cut-elimination

• Lemma: Any $\hat{R} \in \widehat{\mathcal{R}}$ is atomically valid in $\mathbf{P} = (\mathcal{F}^*, C)$.

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

- Corollary: If \mathcal{R} satisfies the semantic propagation property, then P is an \mathcal{R} -phase structure.
- Proposition: If \mathcal{R} satisfies the semantic propagation property, then NCILL+ \mathcal{R} enjoys cut elimination.

Theorem: Let \mathcal{R} be a set of structural rules. Then the following are equivalent:

- **Proof Theorem:** Let \mathcal{R} be a set of structural rules. Then the following are equivalent:
 - 1. $FL(\mathcal{R})$ admits cut elimination.

- Theorem: Let \mathcal{R} be a set of structural rules. Then the following are equivalent:
 - 1. $FL(\mathcal{R})$ admits cut elimination.
 - 2. \mathcal{R} satisfies the syntactic propagation property.

- Theorem: Let \mathcal{R} be a set of structural rules. Then the following are equivalent:
 - 1. $FL(\mathcal{R})$ admits cut elimination.
 - 2. \mathcal{R} satisfies the syntactic propagation property.
 - 3. \mathcal{R} satisfies the semantic propagation property.

- Theorem: Let \mathcal{R} be a set of structural rules. Then the following are equivalent:
 - 1. $FL(\mathcal{R})$ admits cut elimination.
 - 2. \mathcal{R} satisfies the syntactic propagation property.
 - 3. \mathcal{R} satisfies the semantic propagation property.
- Corollary: If NCILL+ \mathcal{R}_1 and NCILL+ \mathcal{R}_2 admit cut-elimination, then so does NCILL+ $(\mathcal{R}_1 \cup \mathcal{R}_2)$.

Substitution of sequences yields ⊗-syntactic propagation:

$$\frac{\Gamma, X, X, \Delta \Rightarrow C}{\Gamma, X, \Delta \Rightarrow C} (Con) \implies \frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} (Seq - Con)$$

■ Substitution of sequences yields ⊗-syntactic propagation:

$$\frac{\Gamma, X, X, \Delta \Rightarrow C}{\Gamma, X, \Delta \Rightarrow C} (Con) \implies \frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} (Seq - Con)$$

$$\frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, X, \Delta \Rightarrow C} (Exp) \implies \frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, Y, \Delta \Rightarrow C} (Min_1)$$

■ Substitution of sequences yields ⊗-syntactic propagation:

$$\frac{\Gamma, X, X, \Delta \Rightarrow C}{\Gamma, X, \Delta \Rightarrow C} (Con) \implies \frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} (Seq - Con)$$

Linearization of lower sequent yields

-syntactic propagation:

$$\frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, X, \Delta \Rightarrow C} (Exp) \implies \frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, Y, \Delta \Rightarrow C} (Min_1)$$

These completion techniques are generally applicable.

■ Substitution of sequences yields ⊗-syntactic propagation:

$$\frac{\Gamma, X, X, \Delta \Rightarrow C}{\Gamma, X, \Delta \Rightarrow C} (Con) \implies \frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} (Seq - Con)$$

$$\frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, X, \Delta \Rightarrow C} (Exp) \implies \frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, Y, \Delta \Rightarrow C} (Min_1)$$

- These completion techniques are generally applicable.
- Corollary: Any set R of structural rules can be completed into R*, so that

■ Substitution of sequences yields ⊗-syntactic propagation:

$$\frac{\Gamma, X, X, \Delta \Rightarrow C}{\Gamma, X, \Delta \Rightarrow C} (Con) \implies \frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} (Seq - Con)$$

$$\frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, X, \Delta \Rightarrow C} (Exp) \implies \frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, Y, \Delta \Rightarrow C} (Min_1)$$

- These completion techniques are generally applicable.
- Corollary: Any set R of structural rules can be completed into R*, so that
 - \mathcal{R} and \mathcal{R}^* are equivalent (in NCILL);

■ Substitution of sequences yields ⊗-syntactic propagation:

$$\frac{\Gamma, X, X, \Delta \Rightarrow C}{\Gamma, X, \Delta \Rightarrow C} (Con) \implies \frac{\Gamma, \vec{X}, \vec{X}, \Delta \Rightarrow C}{\Gamma, \vec{X}, \Delta \Rightarrow C} (Seq - Con)$$

$$\frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, X, \Delta \Rightarrow C} (Exp) \implies \frac{\Gamma, X, \Delta \Rightarrow C}{\Gamma, X, Y, \Delta \Rightarrow C} (Min_1)$$

- These completion techniques are generally applicable.
- Corollary: Any set R of structural rules can be completed into R*, so that
 - \mathcal{R} and \mathcal{R}^* are equivalent (in NCILL);
 - NCILL+ \mathcal{R}^* admits cut elimination.

Remark on Part I

Solution We only considered uniform structural rules (that work in all contexts Γ, Δ, C):

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

Remark on Part I

Solution We only considered uniform structural rules (that work in all contexts Γ, Δ, C):

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

One can also consider non-uniform rules such as:

$$\frac{\vec{X} \Rightarrow \vec{Y} \Rightarrow Z}{\vec{X}, \vec{Y} \Rightarrow Z} Mix$$

Remark on Part I

Solution We only considered uniform structural rules (that work in all contexts Γ, Δ, C):

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

One can also consider non-uniform rules such as:

$$\frac{\vec{X} \Rightarrow \vec{Y} \Rightarrow Z}{\vec{X}, \vec{Y} \Rightarrow Z} Mix$$

Such a non-uniform rule can be handled in the framework of prephase structures (Ciabattoni-Terui 05).

Part II: Motivating Example (3)

Consider a new "connective" $A \sqcap B$ (tend) defined by:

$$\frac{\Sigma \Rightarrow A \quad \Sigma \Rightarrow B}{\Sigma \Rightarrow A \sqcap B} \ (\sqcap, r) \qquad \qquad \frac{\Gamma, A, B, \Delta \Rightarrow C}{\Gamma, A \sqcap B, \Delta \Rightarrow C} \ (\sqcap, l)$$

$$\frac{\underline{\Sigma \Rightarrow A \quad \underline{\Sigma \Rightarrow B}}}{\underline{\Sigma \Rightarrow A \sqcap B}} \xrightarrow{\Gamma, A, B, \Delta \Rightarrow C}{\Gamma, A \sqcap B, \Delta \Rightarrow C} \iff \frac{\underline{\Sigma \Rightarrow A} \quad \underline{\Sigma \Rightarrow B} \quad \Gamma, A, B, \Delta \Rightarrow C}{\Gamma, A, \Sigma, \Delta \Rightarrow C} \xrightarrow{\Gamma, \Sigma, \Sigma, \Delta \Rightarrow C} (Cut)$$

$$\frac{\frac{\alpha \Rightarrow \alpha}{\alpha, \beta \Rightarrow \alpha} (???)}{-\frac{\alpha, \beta \Rightarrow \alpha \sqcap \beta}{\alpha \sqcap \beta \Rightarrow \alpha \sqcap \beta}} (???)$$

Part II: Motivating Example (3)

Consider a new "connective" $A \sqcap B$ (tend) defined by:

$$\frac{\Sigma \Rightarrow A \quad \Sigma \Rightarrow B}{\Sigma \Rightarrow A \sqcap B} \ (\sqcap, r) \qquad \qquad \frac{\Gamma, A, B, \Delta \Rightarrow C}{\Gamma, A \sqcap B, \Delta \Rightarrow C} \ (\sqcap, l)$$

Without any structural rules, it does not satisfy (reductive) cut-elimination nor axiom expansion:

$$\frac{\begin{array}{c} \vdots \\ \Sigma \Rightarrow A \\ \hline \Sigma \Rightarrow A \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}}{\Gamma, \Sigma, \Delta \Rightarrow C} \xrightarrow{\left(\begin{array}{c} \vdots \\ \Gamma, A, B, \Delta \Rightarrow C \\ \hline \Gamma, A, B, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} \vdots \\ \Sigma \Rightarrow A \\ \hline \Gamma, A, B, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} \Sigma \Rightarrow A \\ \hline \Gamma, A, \Sigma, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} \vdots \\ \Gamma, A, B, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} \Sigma \Rightarrow A \\ \hline \Gamma, A, \Sigma, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} \Sigma \Rightarrow A \\ \hline \Gamma, \Sigma, \Sigma, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} Cut \end{array}\right)} \xrightarrow{\left(\begin{array}{c} \Sigma \Rightarrow A \\ \hline \Gamma, \Sigma, \Sigma, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} Cut \\ \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Sigma, \Delta \Rightarrow C \end{array}\right)} \xrightarrow{\left(\begin{array}{c} Cut \\ \hline \Gamma, \Sigma, \Sigma, \Delta \Rightarrow C \end{array}\right)}$$

$$\frac{\frac{\alpha \Rightarrow \alpha}{\alpha, \beta \Rightarrow \alpha} (???) \quad \frac{\beta \Rightarrow \beta}{\alpha, \beta \Rightarrow \beta}}{\frac{\alpha, \beta \Rightarrow \alpha \sqcap \beta}{\alpha \sqcap \beta \Rightarrow \alpha \sqcap \beta}} (???)$$

In + Seq-Contraction admits cut-elimination, but not axiom expansion.

- In + Seq-Contraction admits cut-elimination, but not axiom expansion.
- \square \square + Weakening admits axiom expansion, but not cut-elimination.

- In + Seq-Contraction admits cut-elimination, but not axiom expansion.
- \square \square + Weakening admits axiom expansion, but not cut-elimination.
- Intuitively, cut-elimination and axiom expansion are opposite to each other.

- In + Seq-Contraction admits cut-elimination, but not axiom expansion.
- \square \square + Weakening admits axiom expansion, but not cut-elimination.
- Intuitively, cut-elimination and axiom expansion are opposite to each other.
- We want to describe this situation generally and phase semantically.

- In + Seq-Contraction admits cut-elimination, but not axiom expansion.
- \square \square + Weakening admits axiom expansion, but not cut-elimination.
- Intuitively, cut-elimination and axiom expansion are opposite to each other.
- We want to describe this situation generally and phase semantically.
- What is the meaning of an arbitrary logical connective in phase semantics?

- In + Seq-Contraction admits cut-elimination, but not axiom expansion.
- \square \square + Weakening admits axiom expansion, but not cut-elimination.
- Intuitively, cut-elimination and axiom expansion are opposite to each other.
- We want to describe this situation generally and phase semantically.
- What is the meaning of an arbitrary logical connective in phase semantics?
- Rules determine the meaning!

■ Let us associate two interpretations to \sqcap in a phase structure **P**: for $X, Y \in C\mathcal{L}_{\mathbf{P}}$,

$$X \sqcap^{l} Y = X \otimes Y = C(X \bullet Y)$$
$$X \sqcap^{r} Y = X \& Y = X \cap Y$$

■ Let us associate two interpretations to \sqcap in a phase structure **P**: for $X, Y \in C\mathcal{L}_{\mathbf{P}}$,

$$X \sqcap^{l} Y = X \otimes Y = C(X \bullet Y)$$
$$X \sqcap^{r} Y = X \& Y = X \cap Y$$

If **P** satisfies $X \multimap X \otimes X$, then

 $X \sqcap^{r} Y = X \& Y \subseteq (X \& Y) \otimes (X \& Y) \subseteq X \otimes Y = X \sqcap^{l} Y$

■ Let us associate two interpretations to \sqcap in a phase structure **P**: for $X, Y \in C\mathcal{L}_{\mathbf{P}}$,

$$X \sqcap^{l} Y = X \otimes Y = C(X \bullet Y)$$
$$X \sqcap^{r} Y = X \& Y = X \cap Y$$

If **P** satisfies $X \multimap X \otimes X$, then

 $X \sqcap^{r} Y = X \& Y \subseteq (X \& Y) \otimes (X \& Y) \subseteq X \otimes Y = X \sqcap^{l} Y$

If **P** satisfies $X \rightarrow \mathbf{1}$, then

 $X \sqcap^{l} Y = X \otimes Y \subseteq (X \otimes \mathbf{1}) \& (\mathbf{1} \otimes Y) = X \& Y = X \sqcap^{r} Y$

A natural conjecture

Let L be an (intuitionistic, propositional) sequent calculus having a logical connective * and "good" (i.e. propagating) structural rules R.

 \mathcal{L} admits reductive cut-elimination $\iff \star^r(\vec{X}) \subseteq \star^l(\vec{X})$

in every \mathcal{R} -phase structure

 $\mathcal L$ admits axiom expansion

$$\iff \star^l(\vec{X}) \subseteq \star^r(\vec{X})$$

in every \mathcal{R} -phase structure

Semantic cut-elimination employs the soundness theorem.

Semantic cut-elimination employs the soundness theorem.

To make the cut rule

$$\frac{\Gamma \Rightarrow \star^r(\vec{X}) \quad \star^l(\vec{X}) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

sound, we must have $\star^r(\vec{X}) \subseteq \star^l(\vec{X})$.

Semantic cut-elimination employs the soundness theorem.

To make the cut rule

$$\frac{\Gamma \Rightarrow \star^r(\vec{X}) \quad \star^l(\vec{X}) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

sound, we must have $\star^r(\vec{X}) \subseteq \star^l(\vec{X})$.

If axiom expansion holds, $\star^l(\vec{X}) \Rightarrow \star^r(\vec{X})$ is derived from atomic axioms $X_i \Rightarrow X_i$.

Semantic cut-elimination employs the soundness theorem.

To make the cut rule

$$\frac{\Gamma \Rightarrow \star^r(\vec{X}) \quad \star^l(\vec{X}) \Rightarrow \Delta}{\Gamma \Rightarrow \Delta}$$

sound, we must have $\star^r(\vec{X}) \subseteq \star^l(\vec{X})$.

- If axiom expansion holds, $\star^l(\vec{X}) \Rightarrow \star^r(\vec{X})$ is derived from atomic axioms $X_i \Rightarrow X_i$.
- Thus by soundness, $\star^l(\vec{X}) \subseteq \star^r(\vec{X})$.

Basic notions

- **Propositional variables:** $\alpha, \beta, \gamma, \ldots$
- **Logical connectives (of suitable arity):** $\star_1, \star_2, \star_3, \ldots$
- Formulae: propositional variables or $\star(A_1, \ldots, A_m)$ with A_1, \ldots, A_m formulae.
- (Single-conclusion) sequents: $\Gamma \Rightarrow \Delta$ with $|\Delta| \le 1$.

Simple sequent calculi

A simple sequent calculus \mathcal{L} is a set of

Simple sequent calculi

- A simple sequent calculus \mathcal{L} is a set of
- (Id), (Cut)

Simple sequent calculi

- A simple sequent calculus \mathcal{L} is a set of
- (Id), (Cut)
- structural rules

Simple sequent calculi

- A simple sequent calculus \mathcal{L} is a set of
- (Id), (Cut)
- structural rules
- Ieft and right logical rules of the form:

$$\frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_n \Rightarrow \Psi_n}{\Theta_l, \star(\vec{X}), \Theta_r \Rightarrow \Xi} \ (\star, l)_j \qquad \frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_n \Rightarrow \Psi_n}{\Theta_l \Rightarrow \star(\vec{X})} \ (\star, r)_k$$

with $\{\Upsilon_1, \ldots, \Upsilon_n\} \subseteq \{\Theta_l, \Theta_r, \vec{X}\}, \{\Psi_1, \ldots, \Psi_n\} \subseteq \{\Xi, \vec{X}\}, \{\Theta_l, \Theta_r\} \cap \{\Xi\} = \emptyset.$

Simple sequent calculi

- A simple sequent calculus \mathcal{L} is a set of
- (Id), (Cut)
- structural rules
- Ieft and right logical rules of the form:

$$\frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_n \Rightarrow \Psi_n}{\Theta_l, \star(\vec{X}), \Theta_r \Rightarrow \Xi} \ (\star, l)_j \qquad \frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_n \Rightarrow \Psi_n}{\Theta_l \Rightarrow \star(\vec{X})} \ (\star, r)_k$$

with $\{\Upsilon_1, \ldots, \Upsilon_n\} \subseteq \{\Theta_l, \Theta_r, \vec{X}\}, \{\Psi_1, \ldots, \Psi_n\} \subseteq \{\Xi, \vec{X}\}, \{\Theta_l, \Theta_r\} \cap \{\Xi\} = \emptyset.$

• $\{\Theta_l, \Theta_r\}$ (left context variables), $\{\Xi\}$ (right context variables), $\{\vec{X}\}$ (active variables) are mutually disjoint.

1. Cut against a context formula of a structural rule:

$$\frac{\Sigma \Rightarrow A}{\Gamma, \Sigma, \Delta \Rightarrow C} \xrightarrow{\Gamma' \Rightarrow C' \cdots} (R)$$

1. Cut against a context formula of a structural rule:

$$\frac{\Sigma \Rightarrow A}{\Gamma, \Sigma, \Delta \Rightarrow C} \frac{ \cdots \quad \Gamma' \Rightarrow C' \quad \cdots}{\Gamma, A, \Delta \Rightarrow C} \quad (R)$$

2. Cut against a context formula of a logical rule:

$$\frac{\Sigma \Rightarrow A}{\Gamma, A, \Delta \Rightarrow \star(\vec{C})} \xrightarrow{(\star, r)_k} (\star, r)_k}{\Gamma, \Sigma, \Delta \Rightarrow \star(\vec{C})}$$

1. Cut against a context formula of a structural rule:

$$\frac{\Sigma \Rightarrow A}{\Gamma, \Sigma, \Delta \Rightarrow C} \frac{ \cdots \quad \Gamma' \Rightarrow C' \quad \cdots}{\Gamma, A, \Delta \Rightarrow C} \quad (R)$$

2. Cut against a context formula of a logical rule:

$$\frac{\Sigma \Rightarrow A}{\Gamma, A, \Delta \Rightarrow \star(\vec{C})} \xrightarrow{(\star, r)_k} (\star, r)_k}{\Gamma, \Sigma, \Delta \Rightarrow \star(\vec{C})}$$

3. Cut between two principal formulae of logical rules:

$$\frac{\cdots \quad \Sigma' \Rightarrow \Lambda' \quad \cdots}{\frac{\Sigma \Rightarrow \star(\vec{A})}{\Gamma, \Sigma, \Delta \Rightarrow C}} \quad \frac{(\star, r)_k}{\Gamma, \star(\vec{A}), \Delta \Rightarrow C} \quad (\star, l)_j$$

1. Cut against a context formula of a structural rule:

$$\frac{\Sigma \Rightarrow A}{\Gamma, \Sigma, \Delta \Rightarrow C} \frac{ \cdots \quad \Gamma' \Rightarrow C' \cdots}{\Gamma, A, \Delta \Rightarrow C} \quad (R)$$

2. Cut against a context formula of a logical rule:

$$\frac{\Sigma \Rightarrow A}{\Gamma, A, \Delta \Rightarrow \star(\vec{C})} \xrightarrow{(\star, r)_k} (\star, r)_k}{\Gamma, \Sigma, \Delta \Rightarrow \star(\vec{C})}$$

3. Cut between two principal formulae of logical rules:

$$\frac{\underbrace{\Sigma \Rightarrow \Lambda' \quad \cdots}}{\underbrace{\Sigma \Rightarrow \star(\vec{A})}} \quad \underbrace{(\star, r)_k}_{\Gamma, \star(\vec{A}), \Delta \Rightarrow C} \quad \underbrace{(\star, l)_j}_{\Gamma, \Sigma, \Delta \Rightarrow C}$$

We want to concentrate on 3. Hence we only consider those logical rules which allow shifting-up of type-2 cuts.

Example

 \square is defined by a countable set of left and right logical rules:

$$\frac{\Theta_i \Rightarrow X \quad \Theta_i \Rightarrow Y}{\Theta_i \Rightarrow X \sqcap Y} \ (\sqcap, r)_i \qquad \frac{\Theta_j, X, Y, \Theta_k \Rightarrow \Xi}{\Theta_j, X \sqcap Y, \Theta_k \Rightarrow \Xi} \ (\sqcap, l)_{jk}$$

for all $i, j, k \in N$. Here

$$\Theta_i \equiv Z_1, \ldots, Z_i$$

(sequence of *i* distinct metavariables.)

Some sequent calculi admit cut-elimination for stupid reasons: eg. $\mathcal{L} = \{(\Box, r)_i, (\Box, l)_{jk}\}$ admits it since (\Box, l) cannot be actually used.

- Some sequent calculi admit cut-elimination for stupid reasons: eg. $\mathcal{L} = \{(\Box, r)_i, (\Box, l)_{jk}\}$ admits it since (\Box, l) cannot be actually used.
- To avoid this, we consider reductive cut-elimination, which is a stronger form of cut-elimination with nonlogical axioms.

- Some sequent calculi admit cut-elimination for stupid reasons: eg. $\mathcal{L} = \{(\Box, r)_i, (\Box, l)_{jk}\}$ admits it since (\Box, l) cannot be actually used.
- To avoid this, we consider reductive cut-elimination, which is a stronger form of cut-elimination with nonlogical axioms.
- Consider derivations with a set S of nonlogical axioms. The following cuts are irreducible.

- Some sequent calculi admit cut-elimination for stupid reasons: eg. $\mathcal{L} = \{(\Box, r)_i, (\Box, l)_{jk}\}$ admits it since (\Box, l) cannot be actually used.
- To avoid this, we consider reductive cut-elimination, which is a stronger form of cut-elimination with nonlogical axioms.
- Consider derivations with a set S of nonlogical axioms. The following cuts are irreducible.
- 1. Cut between two nonlogical axioms:

$$\frac{\overline{\Sigma \Rightarrow A} \quad (Ax) \quad \overline{\Gamma, A, \Delta \Rightarrow C}}{\Gamma, \Sigma, \Delta \Rightarrow C} \quad (Ax)$$

- Some sequent calculi admit cut-elimination for stupid reasons: eg. $\mathcal{L} = \{(\Box, r)_i, (\Box, l)_{jk}\}$ admits it since (\Box, l) cannot be actually used.
- To avoid this, we consider reductive cut-elimination, which is a stronger form of cut-elimination with nonlogical axioms.
- Consider derivations with a set S of nonlogical axioms. The following cuts are irreducible.
- 1. Cut between two nonlogical axioms:

$$\frac{\overline{\Sigma \Rightarrow A} \quad (Ax) \quad \overline{\Gamma, A, \Delta \Rightarrow C}}{\Gamma, \Sigma, \Delta \Rightarrow C} \quad (Ax)$$

2. Cut between a nonlogical axiom and the principal formula of a logical rule:

$$\frac{\frac{1}{\Sigma \Rightarrow \star(\vec{A})} \quad (Ax) \quad \frac{\cdots \quad \Gamma' \Rightarrow C' \quad \cdots}{\Gamma, \star(\vec{A}), \Delta \Rightarrow C}}{\Gamma, \Sigma, \Delta \Rightarrow C} \quad (\star, l)$$

 \mathcal{L} admits reductive cut-elimination if

$$\begin{array}{cccc} \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n & & \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n \\ \vdots & \text{with reducible cuts} & & & \vdots & \text{without reducible cuts} \\ \Gamma \Rightarrow \Delta & & \Gamma \Rightarrow \Delta \end{array}$$

- - $\begin{array}{cccc} \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n & & \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n \\ \vdots & \text{with reducible cuts} & & \vdots & \text{without reducible cuts} \\ \Gamma \Rightarrow \Delta & & \Gamma \Rightarrow \Delta \end{array}$
- Reductive cut-elimination \implies ordinary cut-elimination.

$$\begin{array}{cccc} \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n & & \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n \\ \vdots & \text{with reducible cuts} & & \vdots & \text{without reducible cuts} \\ \Gamma \Rightarrow \Delta & & \Gamma \Rightarrow \Delta \end{array}$$

$$\begin{array}{cccc} \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n & & \Sigma_1 \Rightarrow \Pi_1 & \cdots & \Sigma_n \Rightarrow \Pi_n \\ \vdots & \text{with reducible cuts} & & \vdots & \text{without reducible cuts} \\ \Gamma \Rightarrow \Delta & & \Gamma \Rightarrow \Delta \end{array}$$

- Example:

	Reductive cut-elimination	Axiom expansion
□ +Seq-Contraction	0	×
□ +Weakening	×	0

Idea: second-order definition using \bigoplus .

- Idea: second-order definition using \bigoplus .
- Let **P** be a phase structure, $X_1, \ldots, X_n \in C\mathcal{L}_P$.

- Idea: second-order definition using \bigoplus .
- Let **P** be a phase structure, $X_1, \ldots, X_n \in C\mathcal{L}_{\mathbf{P}}$.
- For any right logical rule

$$\frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_m \Rightarrow \Psi_m}{Y_1, \dots, Y_k \Rightarrow \star(\vec{X})} \ (\star, r)_i$$

 $\star_{\mathbf{P}}^{r,i}(\vec{X}) = \text{the maximal value of } C(Y_1 \bullet \cdots \bullet Y_k) \in \mathcal{CL}_{\mathbf{P}} \text{ such that}$ $\Upsilon_1 \subseteq \Psi_1, \ldots, \Upsilon_m \subseteq \Psi_m \text{ (with } \vec{Y} \text{ ranging over } \mathcal{CL}_{\mathbf{P}}\text{)}$

- Idea: second-order definition using \bigoplus .
- Let **P** be a phase structure, $X_1, \ldots, X_n \in C\mathcal{L}_{\mathbf{P}}$.
- For any right logical rule

$$\frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_m \Rightarrow \Psi_m}{Y_1, \dots, Y_k \Rightarrow \star(\vec{X})} \ (\star, r)_i$$

 $\star_{\mathbf{P}}^{r,i}(\vec{X}) = \text{the maximal value of } C(Y_1 \bullet \cdots \bullet Y_k) \in \mathcal{CL}_{\mathbf{P}} \text{ such that}$ $\Upsilon_1 \subseteq \Psi_1, \ldots, \Upsilon_m \subseteq \Psi_m \text{ (with } \vec{Y} \text{ ranging over } \mathcal{CL}_{\mathbf{P}}\text{)}$

Example:

$$\frac{Z \Rightarrow X \quad Z \Rightarrow Y}{Z \Rightarrow X \sqcap Y} \ (\sqcap, r)_1$$

 $X \sqcap_{\mathbf{P}}^{r,1} Y = \bigoplus \{ Z \mid Z \in \mathcal{CL}_{\mathbf{P}}, \ Z \subseteq X, \ Z \subseteq Y \} = X \cap Y$

Idea: second-order definition using \bigcap .

- Idea: second-order definition using \bigcap .
- Let $X_1, \ldots, X_n \in \mathcal{CL}_P$.

- Idea: second-order definition using \bigcap .
- Let $X_1, \ldots, X_n \in \mathcal{CL}_{\mathbf{P}}$.
- For any left logical rule

$$\frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_m \Rightarrow \Psi_m}{\vec{Y}, \star(\vec{X}), \vec{Z} \Rightarrow W} \quad (\star, l)_j$$

 $\star_{\mathbf{P}}^{l,j}(\vec{X}) = \text{the minimal value of } \Theta_l^{\bullet} \multimap \Xi^{\bullet} \multimap \Theta_r^{\bullet} \text{ such that}$ $\Upsilon_1 \subseteq \Psi_1, \ldots, \Upsilon_m \subseteq \Psi_m \text{ (with } \vec{Y}, \vec{Z} \text{ ranging over } \mathcal{CL}_{\mathbf{P}}\text{)}$

- Idea: second-order definition using \bigcap .
- Let $X_1, \ldots, X_n \in \mathcal{CL}_{\mathbf{P}}$.
- For any left logical rule

$$\frac{\Upsilon_1 \Rightarrow \Psi_1 \cdots \Upsilon_m \Rightarrow \Psi_m}{\vec{Y}, \star(\vec{X}), \vec{Z} \Rightarrow W} \quad (\star, l)_j$$

 $\star_{\mathbf{P}}^{l,j}(\vec{X}) = \text{the minimal value of } \Theta_l^{\bullet} \multimap \Xi^{\bullet} \multimap \Theta_r^{\bullet} \text{ such that}$ $\Upsilon_1 \subseteq \Psi_1, \ldots, \Upsilon_m \subseteq \Psi_m \text{ (with } \vec{Y}, \vec{Z} \text{ ranging over } \mathcal{CL}_{\mathbf{P}}\text{)}$

Example:

$$\frac{Z_1, X, Y, Z_2 \Rightarrow W}{Z_1, X \sqcap Y, Z_2 \Rightarrow W} \ (\sqcap, l)_1$$

 $X \sqcap_{\mathbf{P}}^{l,1} Y = \bigcap \{ Z_1 \multimap W \multimap Z_2 \mid Z_1, Z_2, W \in \mathcal{CL}_{\mathbf{P}}, \ Z_1 \bullet X \bullet Y \bullet Z_2 \subseteq \mathbf{N} \}$ $= \mathbf{1} \multimap C(X \bullet Y) \odot \mathbf{1} = C(X \bullet Y)$

• When $\{(\star, r)_i\}_{i \in \Lambda_r}$ and $\{(\star, l)_j\}_{j \in \Lambda_l}$ are the right and left logical rules introducing \star , define

$$\star^{r}_{\mathbf{P}}(\vec{X}) = \bigoplus_{i \in \Lambda_{r}} \star^{r,i}_{\mathbf{P}}(\vec{X})$$
$$\star^{l}_{\mathbf{P}}(\vec{X}) = \bigcap_{j \in \Lambda_{l}} \star^{l,j}_{\mathbf{P}}(\vec{X})$$

• When $\{(\star, r)_i\}_{i \in \Lambda_r}$ and $\{(\star, l)_j\}_{j \in \Lambda_l}$ are the right and left logical rules introducing \star , define

$$\star^{r}_{\mathbf{P}}(\vec{X}) = \bigoplus_{i \in \Lambda_{r}} \star^{r,i}_{\mathbf{P}}(\vec{X})$$
$$\star^{l}_{\mathbf{P}}(\vec{X}) = \bigcap_{j \in \Lambda_{l}} \star^{l,j}_{\mathbf{P}}(\vec{X})$$

$$X \sqcap_{\mathbf{P}}^{r} Y = X \cap Y \qquad X \sqcap_{\mathbf{P}}^{l} Y = C(X \bullet Y)$$

• We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .

Solution We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .

Difficulty: (Id) and (Cut) on $\star(\vec{X})$.

- We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .
- **Difficulty:** (Id) and (Cut) on $\star(\vec{X})$.
- Full-valuation f: Formulas $\longrightarrow C_M$ such that for each $\star(\vec{A}) \equiv \star(A_1, \ldots, A_n)$,

$$\star^{r}_{\mathbf{P}}(\overrightarrow{f(A)}) \subseteq f(\star(\overrightarrow{A})) \subseteq \star^{l}_{\mathbf{P}}(\overrightarrow{f(A)}).$$

- Solution We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .
- **Difficulty:** (Id) and (Cut) on $\star(\vec{X})$.
- Full-valuation f: Formulas $\longrightarrow C_M$ such that for each $\star(\vec{A}) \equiv \star(A_1, \ldots, A_n)$,

$$\star^{r}_{\mathbf{P}}(\overrightarrow{f(A)}) \subseteq f(\star(\overrightarrow{A})) \subseteq \star^{l}_{\mathbf{P}}(\overrightarrow{f(A)}).$$

Soundness Theorem: Let

- Solution We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .
- **Difficulty:** (Id) and (Cut) on $\star(\vec{X})$.
- Full-valuation f: Formulas $\longrightarrow C_M$ such that for each $\star(\vec{A}) \equiv \star(A_1, \ldots, A_n)$,

$$\star^r_{\mathbf{P}}(\overrightarrow{f(A)}) \subseteq f(\star(\vec{A})) \subseteq \star^l_{\mathbf{P}}(\overrightarrow{f(A)}).$$

- Soundness Theorem: Let
 - \mathcal{L} : a simple sequent calculus with structural rules \mathcal{R} .

- We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .
- **Difficulty:** (Id) and (Cut) on $\star(\vec{X})$.
- Full-valuation f: Formulas $\longrightarrow C_M$ such that for each $\star(\vec{A}) \equiv \star(A_1, \ldots, A_n)$,

$$\star^r_{\mathbf{P}}(\overrightarrow{f(A)}) \subseteq f(\star(\vec{A})) \subseteq \star^l_{\mathbf{P}}(\overrightarrow{f(A)}).$$

- Soundness Theorem: Let
 - \mathcal{L} : a simple sequent calculus with structural rules \mathcal{R} .
 - **9 P**: an \mathcal{R} -phase structure.

- We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .
- **Difficulty:** (Id) and (Cut) on $\star(\vec{X})$.
- Full-valuation f: Formulas $\longrightarrow C_M$ such that for each $\star(\vec{A}) \equiv \star(A_1, \ldots, A_n)$,

$$\star^r_{\mathbf{P}}(\overrightarrow{f(A)}) \subseteq f(\star(\vec{A})) \subseteq \star^l_{\mathbf{P}}(\overrightarrow{f(A)}).$$

- Soundness Theorem: Let
 - \mathcal{L} : a simple sequent calculus with structural rules \mathcal{R} .
 - **9 P**: an \mathcal{R} -phase structure.
 - f: a full-valuation on \mathbf{P} .

- We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .
- **Difficulty:** (Id) and (Cut) on $\star(\vec{X})$.
- Full-valuation f: Formulas $\longrightarrow C_M$ such that for each $\star(\vec{A}) \equiv \star(A_1, \ldots, A_n)$,

$$\star^r_{\mathbf{P}}(\overrightarrow{f(A)}) \subseteq f(\star(\vec{A})) \subseteq \star^l_{\mathbf{P}}(\overrightarrow{f(A)}).$$

- Soundness Theorem: Let
 - \mathcal{L} : a simple sequent calculus with structural rules \mathcal{R} .
 - **9 P**: an \mathcal{R} -phase structure.
 - f: a full-valuation on **P**.
- If $\Gamma \Rightarrow \Delta$ is provable in \mathcal{L} , then it is true under f.

- We gave an asymmetric interpretation $\star^r_{\mathbf{P}}$, $\star^l_{\mathbf{P}}$ to each \star .
- **Difficulty:** (Id) and (Cut) on $\star(\vec{X})$.
- Full-valuation f: Formulas $\longrightarrow C_M$ such that for each $\star(\vec{A}) \equiv \star(A_1, \ldots, A_n)$,

$$\star^r_{\mathbf{P}}(\overrightarrow{f(A)}) \subseteq f(\star(\vec{A})) \subseteq \star^l_{\mathbf{P}}(\overrightarrow{f(A)}).$$

- Soundness Theorem: Let
 - \mathcal{L} : a simple sequent calculus with structural rules \mathcal{R} .
 - **9 P**: an \mathcal{R} -phase structure.
 - f: a full-valuation on **P**.
- If $\Gamma \Rightarrow \Delta$ is provable in \mathcal{L} , then it is true under f.
- Note: the existence of a full-valuation is not guaranteed yet!

Coherence and Rigidity

• A logical connective \star is coherent in \mathcal{L} (with structural rules \mathcal{R}) if

$$\star^{r}_{\mathbf{P}}(\vec{X}) \subseteq \star^{l}_{\mathbf{P}}(\vec{X})$$

for any closed sets \vec{X} in every \mathcal{R} -phase structure.

Coherence and Rigidity

A logical connective \star is coherent in \mathcal{L} (with structural rules \mathcal{R}) if

$$\star^r_{\mathbf{P}}(\vec{X}) \subseteq \star^l_{\mathbf{P}}(\vec{X})$$

for any closed sets \vec{X} in every \mathcal{R} -phase structure.

A logical connective \star is rigid in \mathcal{L} if

$$\star^l_{\mathbf{P}}(\vec{X}) \subseteq \star^r_{\mathbf{P}}(\vec{X})$$

for any closed sets \vec{X} in every \mathcal{R} -phase structure.

Coherence and Rigidity

A logical connective \star is coherent in \mathcal{L} (with structural rules \mathcal{R}) if

$$\star^r_{\mathbf{P}}(\vec{X}) \subseteq \star^l_{\mathbf{P}}(\vec{X})$$

for any closed sets \vec{X} in every \mathcal{R} -phase structure.

A logical connective \star is rigid in \mathcal{L} if

$$\star^l_{\mathbf{P}}(\vec{X}) \subseteq \star^r_{\mathbf{P}}(\vec{X})$$

for any closed sets \vec{X} in every \mathcal{R} -phase structure.

Coherence guarantees the existence of a valuation.

Coherence and Rigidity

• A logical connective \star is coherent in \mathcal{L} (with structural rules \mathcal{R}) if

$$\star^{r}_{\mathbf{P}}(\vec{X}) \subseteq \star^{l}_{\mathbf{P}}(\vec{X})$$

for any closed sets \vec{X} in every \mathcal{R} -phase structure.

A logical connective \star is rigid in \mathcal{L} if

$$\star^l_{\mathbf{P}}(\vec{X}) \subseteq \star^r_{\mathbf{P}}(\vec{X})$$

for any closed sets \vec{X} in every \mathcal{R} -phase structure.

- Coherence guarantees the existence of a valuation.
- If rigidity holds in addition, then the valuation is uniquely determined by the values of atomic formulae.

Reductive cut-elimination \Longrightarrow **Coherence**

Proposition: If a simple sequent calculus \mathcal{L} admits reductive cut-elimination, then all logical connectives are coherent in \mathcal{L} .

- Proposition: If a simple sequent calculus \mathcal{L} admits reductive cut-elimination, then all logical connectives are coherent in \mathcal{L} .

- Proposition: If a simple sequent calculus L admits reductive cut-elimination, then all logical connectives are coherent in L.

• Thus
$$\star^r_{\mathbf{P}}(ec{X}) \subseteq \star^l_{\mathbf{P}}(ec{X})$$
 iff

 $\Theta_i \subseteq \Xi_j$

for any $i \in \Lambda, j \in \Lambda'$.

- Proposition: If a simple sequent calculus L admits reductive cut-elimination, then all logical connectives are coherent in L.

$$\Theta_i \subseteq \Xi_j$$

for any $i \in \Lambda, j \in \Lambda'$.

One can syntactically insert an ideal element by rules (\star, r) and (\star, l) :

$$\Theta_i \Rightarrow \star(\vec{X}) \Rightarrow \Xi_j$$

LIPN, 04/10/05 - p.58/68

- Proposition: If a simple sequent calculus L admits reductive cut-elimination, then all logical connectives are coherent in L.

$$\Theta_i \subseteq \Xi_j$$

for any $i \in \Lambda, j \in \Lambda'$.

• One can syntactically insert an ideal element by rules (\star, r) and (\star, l) :

$$\Theta_i \Rightarrow \star(\vec{X}) \Rightarrow \Xi_j$$

Then reductive cut-elimination can eliminate the ideal:

$$\Theta_i \Rightarrow \Xi_j$$

- Proposition: If a simple sequent calculus L admits reductive cut-elimination, then all logical connectives are coherent in L.

$$\Theta_i \subseteq \Xi_j$$

for any $i\in\Lambda, j\in\Lambda'$.

• One can syntactically insert an ideal element by rules (\star, r) and (\star, l) :

$$\Theta_i \Rightarrow \star(\vec{X}) \Rightarrow \Xi_j$$

Then reductive cut-elimination can eliminate the ideal:

$$\Theta_i \Rightarrow \Xi_j$$

Hence $\star^r_{\mathbf{P}}(\vec{X}) \subseteq \star^l_{\mathbf{P}}(\vec{X}).$

LIPN, 04/10/05 - p.58/68

Axiom expansion \Longrightarrow **Rigidity**

Proposition: If a simple sequent calculus \mathcal{L} admits reductive cut-elimination, then all logical connectives are coherent in \mathcal{L} .

Axiom expansion \Longrightarrow **Rigidity**

- Proposition: If a simple sequent calculus \mathcal{L} admits reductive cut-elimination, then all logical connectives are coherent in \mathcal{L} .
- Proof: By axiom expansion:

$$\begin{array}{rcl} X_1 \Rightarrow X_1 & \cdots & X_n \Rightarrow X_n \\ \vdots & & \vdots \\ \star(\vec{X}) \Rightarrow \star(\vec{X}) \end{array}$$

Semantic reading

$$\begin{array}{c} X_1 \subseteq X_1 & \cdots & X_n \subseteq X_n \\ & \vdots & \text{Str. rules + } (\star, l) + (\star, r) \\ & \star^l_{\mathbf{P}}(\vec{X}) \subseteq \star^r_{\mathbf{P}}(\vec{X}) \end{array}$$

for any interpretations $\vec{X} \in \mathcal{CL}_{\mathbf{P}}$ of active variables.

Axiom expansion \implies **Rigidity**

- Proposition: If a simple sequent calculus \mathcal{L} admits reductive cut-elimination, then all logical connectives are coherent in \mathcal{L} .
- Proof: By axiom expansion:

$$\begin{array}{rcl} X_1 \Rightarrow X_1 & \cdots & X_n \Rightarrow X_n \\ \vdots & & \vdots \\ \star(\vec{X}) \Rightarrow \star(\vec{X}) \end{array}$$

Semantic reading

$$\begin{array}{c} X_1 \subseteq X_1 & \cdots & X_n \subseteq X_n \\ & \vdots & \text{Str. rules + } (\star, l) + (\star, r) \\ & \star^l_{\mathbf{P}}(\vec{X}) \subseteq \star^r_{\mathbf{P}}(\vec{X}) \end{array}$$

for any interpretations $\vec{X} \in C\mathcal{L}_{\mathbf{P}}$ of active variables.

Solution Key point: since there is no cut, one can interpret $\star(\vec{X})$ differently, depending on whether it appears on the left or right.

Intermezzo

We have seen:

Reductive cut-elimination \implies Coherence

Axiom expansion \implies Rigidity

We must show:

- Coherence + Propagation \implies Reductive cut-elimination Rigidity + Propagation \implies Axiom expansion
- In the sequel, we show (non-reductive) cut-elimination instead of reductive cut-elimination.

Syntactic phase structure

- **Fix a simple sequent calculus** \mathcal{L} . As before:
- The operator $C : \wp(\mathcal{F}^*) \longrightarrow \wp(\mathcal{F}^*)$ defined by:

 $\llbracket \Gamma _ \Delta \Rightarrow C \rrbracket = \{ \Sigma \mid \Gamma, \Sigma, \Delta \Rightarrow C \text{ is cut-free provable in } \mathcal{L} \}, \\ Y \in \mathcal{CL}_{\mathbf{P}} \quad \Leftrightarrow \quad Y = \bigcap_{i \in \Lambda} \llbracket \Gamma_i _ \Delta_i \Rightarrow C_i \rrbracket$

Split Okada's Lemma

• Okada's Lemma $A \in f(A) \subseteq \llbracket A \rrbracket$ splits into two.

Split Okada's Lemma

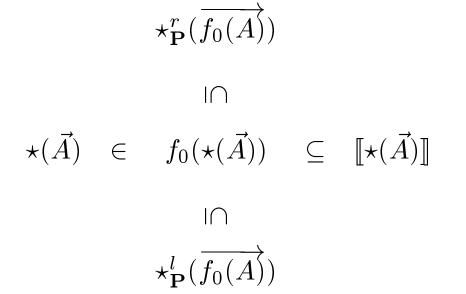
- Okada's Lemma $A \in f(A) \subseteq \llbracket A \rrbracket$ splits into two.
- Split Okada's Lemma: Let $\star(\vec{A}) \equiv \star(A_1, \dots, A_n)$. If X_i is a closed set such that $A_i \in X_i \subseteq [\![A_i]\!]$, then

Split Okada's Lemma

- Okada's Lemma $A \in f(A) \subseteq \llbracket A \rrbracket$ splits into two.
- Split Okada's Lemma: Let ★(\vec{A}) ≡ ★(A_1, \ldots, A_n). If X_i is a closed set such that $A_i \in X_i \subseteq [\![A_i]\!]$, then (1) ★^r(\vec{X}) ⊆ $[\![★(<math>\vec{A}$)]\!], (2) ★(\vec{A}) ∈ ★^l(\vec{X}).

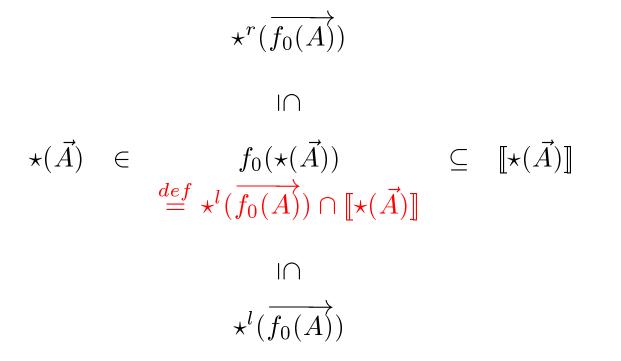
Coherence recovers One Okada

Lemma: If all the logical connectives in \mathcal{L} are coherent, then there is a valuation f_0 such that for any $\star(\vec{A})$ we have:



Coherence recovers One Okada

• Lemma: If all the logical connectives in \mathcal{L} are coherent, then there is a valuation f_0 such that for any $\star(\vec{A})$ we have:



Semantic cut-elimination

Proposition: If all structural rules in L satisfies the propagation property and all logical connectives are coherent in L, then L admits cut-elimination.

Semantic cut-elimination

- Proposition: If all structural rules in L satisfies the propagation property and all logical connectives are coherent in L, then L admits cut-elimination.
- To show reductive cut-elimination, more delicate argument is needed...

Rigidity + Propagation ==> Axiom expansion

Proposition: If a logical connective * is rigid in L (and all structural rules satisfy the propagation property), then * admits axiom expansion.

Rigidity + Propagation \Longrightarrow **Axiom expansion**

- Proposition: If a logical connective * is rigid in L (and all structural rules satisfy the propagation property), then * admits axiom expansion.
- Proof: Modify the definition of syntactic phase structure:

 $\llbracket \Gamma _ \Delta \Rightarrow C \rrbracket = \{ \Sigma \mid \Gamma, \Sigma, \Delta \Rightarrow C \text{ is cut-free derivable} \\ \text{from atomic axioms in } \mathcal{L} \}$

Rigidity + Propagation \Longrightarrow **Axiom expansion**

- Proposition: If a logical connective * is rigid in L (and all structural rules satisfy the propagation property), then * admits axiom expansion.
- Proof: Modify the definition of syntactic phase structure:

 $\llbracket \Gamma _ \Delta \Rightarrow C \rrbracket = \{ \Sigma \mid \Gamma, \Sigma, \Delta \Rightarrow C \text{ is cut-free derivable} \\ \text{from atomic axioms in } \mathcal{L} \}$

Split Okada's Lemma still holds. Together with rigidity,

$$\star(\vec{\alpha}) \stackrel{\mathsf{Okada}^{l}}{\in} \star^{l}_{\mathbf{P}}(\overrightarrow{\llbracket X \rrbracket}) \stackrel{\mathsf{Rigidity}}{\subseteq} \star^{r}_{\mathbf{P}}(\overrightarrow{\llbracket X \rrbracket}) \stackrel{\mathsf{Okada}^{r}}{\subseteq} \llbracket \star(\overrightarrow{X}) \rrbracket.$$

Rigidity + Propagation \Longrightarrow **Axiom expansion**

- Proposition: If a logical connective * is rigid in L (and all structural rules satisfy the propagation property), then * admits axiom expansion.
- Proof: Modify the definition of syntactic phase structure:

 $\llbracket \Gamma _ \Delta \Rightarrow C \rrbracket = \{ \Sigma \mid \Gamma, \Sigma, \Delta \Rightarrow C \text{ is cut-free derivable} \\ \text{from atomic axioms in } \mathcal{L} \}$

Split Okada's Lemma still holds. Together with rigidity,

$$\star(\vec{\alpha}) \stackrel{\mathsf{Okada}^l}{\in} \star^l_{\mathbf{P}}(\overrightarrow{\llbracket X \rrbracket}) \stackrel{\mathsf{Rigidity}}{\subseteq} \star^r_{\mathbf{P}}(\overrightarrow{\llbracket X \rrbracket}) \stackrel{\mathsf{Okada}^r}{\subseteq} \llbracket \star(\overrightarrow{X}) \rrbracket.$$

■ I.e., $\star(\vec{X}) \Rightarrow \star(\vec{X})$ is cut-free derivable from atomic axioms.

J Theorem 1: Let \mathcal{L} be a simple sequent calculus. Then,

D Theorem 1: Let \mathcal{L} be a simple sequent calculus. Then,

 \mathcal{L} admits reductive cut-elimination \iff All logical connectives of \mathcal{L} are coherent and all structural rules of \mathcal{L} satisfy the propagation property.

Theorem 1: Let \mathcal{L} be a simple sequent calculus. Then,

 \mathcal{L} admits reductive cut-elimination \iff All logical connectives of \mathcal{L} are coherent and all structural rules of \mathcal{L} satisfy the propagation property.

Theorem 2: Assume that the structural rules of L satisfy the propagation property. Then,

Theorem 1: Let \mathcal{L} be a simple sequent calculus. Then,

 \mathcal{L} admits reductive cut-elimination \iff All logical connectives of \mathcal{L} are coherent and all structural rules of \mathcal{L} satisfy the propagation property.

Theorem 2: Assume that the structural rules of L satisfy the propagation property. Then,

a logical connective \star admits axiom expansion $\Longleftrightarrow \star$ is rigid.

Theorem 1: Let \mathcal{L} be a simple sequent calculus. Then,

 \mathcal{L} admits reductive cut-elimination \iff All logical connectives of \mathcal{L} are coherent and all structural rules of \mathcal{L} satisfy the propagation property.

Theorem 2: Assume that the structural rules of \mathcal{L} satisfy the propagation property. Then,

a logical connective \star admits axiom expansion $\Longleftrightarrow \star$ is rigid.

Corollary: Let \mathcal{L}_1 and \mathcal{L}_2 be simple sequent calculi such that the sets of of logical connectives are disjoint. Then,

D Theorem 1: Let \mathcal{L} be a simple sequent calculus. Then,

 \mathcal{L} admits reductive cut-elimination \iff All logical connectives of \mathcal{L} are coherent and all structural rules of \mathcal{L} satisfy the propagation property.

Theorem 2: Assume that the structural rules of L satisfy the propagation property. Then,

a logical connective \star admits axiom expansion $\Longleftrightarrow \star$ is rigid.

Corollary: Let \mathcal{L}_1 and \mathcal{L}_2 be simple sequent calculi such that the sets of of logical connectives are disjoint. Then,

If \mathcal{L}_1 and \mathcal{L}_2 admit cut-elimination, then so does $\mathcal{L}_1 \cup \mathcal{L}_2$.

Difficulty in classical case

Everything so far works fine (assuming cyclicity). But LK does not satisfy reductive cut-elimination!

Difficulty in classical case

Everything so far works fine (assuming cyclicity). But LK does not satisfy reductive cut-elimination!

$$\frac{\Rightarrow A, B, B}{\Rightarrow A, B} (Contr) \xrightarrow{\Rightarrow B^{\perp}, B^{\perp}, C} (Contr)$$
$$\Rightarrow A, C (Cut)$$

Then what's the point of characterizing reductive cut-elimination?