
Decomposition of Computation
via Linear Logic

Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics, Tokyo

13/07/04, Turku – p.1/44

Motivation (1)

Linear Logic decomposes Intuitionistic Logic into

Multiplicatives: ⊗, −◦
Additives: &, ⊕
Exponentials: !

Eg,

A→ B ≡ !A−◦B
A ∨B ≡ !A⊕!B

Curry-Howard isomorphism relates Intuitionistic Logic to

Functional Computation.

13/07/04, Turku – p.2/44

Motivation (2)

How does Linear Logic decompose functional computation?

Intuitionistic Logic

Multiplicative

Additive Exponential

Functional
Computation

?

? ?

Curry-Howard

Study from the viewpoint of computational complexity.

13/07/04, Turku – p.3/44

Summary

MLL: complete for P

— Size-efficient coding of boolean circuits.

MALL: coNP-complete

— Nondeterministic cut-elimination procedure.

Generic MLL: captures Uniform P

— A logical notion of uniformity.

13/07/04, Turku – p.4/44

Cut-Elimination as a Problem

Cut-Elimination Problem (CEP):

Given 2 proofs, do they reduce to the same normal form?

Subsumes:

Given a proof, does it reduce to “true”?

CEPfor Linear Logic is non-elementary (Statman 1979).

CEPfor MLL is in P.

13/07/04, Turku – p.5/44

Syntax of MLL

We only consider the intuitionistic fragment IMLL.

Identify IMLL proofs = untyped linear lambda terms.

Justified by Hindley’s theorem: any linear lambda term has a simple
(propositional) type.

Types (−◦, ∀) are used neither for restriction nor for enrichment, but
for classification.

x :A 	 x :A
Γ 	 u :A x :A,Δ 	 t :C

Γ,Δ 	 t[u/x] :C

x :A,Γ 	 t :B
Γ 	 λx.t :A−◦B

Γ 	 u :A x :B,Δ 	 t :C
Γ, y :A−◦B,Δ 	 t[yu/x] :C

Γ 	 t :A
Γ 	 t :∀α.A α
∈ FV (Γ)

x :A[B/α],Γ 	 t :C
x :∀α.A,Γ 	 t :C

13/07/04, Turku – p.6/44

Defined Connectives

1 ≡ ∀α.α−◦ α A⊗B ≡ ∀α.(A−◦B −◦ α) −◦ α
I ≡ λx.x t⊗ u ≡ λx.xtu

let t be I in u ≡ tu let t be x⊗ y in u ≡ t(λxy.u).

The above definitions are sound w.r.t.

let I be I in t −→ t let t⊗ u be x⊗ y in v −→ v[t/x, u/y]

(but not w.r.t. the commuting reduction rules)

	 I :1
Γ 	 t :C

x :1,Γ 	 let x be I in t :C

Γ 	 t :A Δ 	 u :B
Γ,Δ 	 t⊗ u :A⊗B

x :A, y :B,Γ 	 t :C
z :A⊗B,Γ 	 let z be x⊗ y in t :C

13/07/04, Turku – p.7/44

Π1 and eΠ1 types

Π1: constructed by −◦, ⊗, 1 (viewed as primitives) and positive

∀.

Example:

B ≡ ∀α.α−◦ α−◦ α⊗ α (multiplicative boolean type)

W〈n〉 ≡ ∀α.(B −◦ α−◦ α)n −◦ α−◦ α ({0, 1}n)

Π1 includes finite data types.

eΠ1: like Π1, but may contain negative inhabited types.

Example: B is Π1 inhabited. Hence B −◦ B is eΠ1.

eΠ1 includes functionals over finite data types.

13/07/04, Turku – p.8/44

Elimination of ⊗ and 1

Proposition: Any Π1 type is “isomorphic” to another Π1 type not

containing ⊗ nor 1. Similarly for eΠ1.

Proof: Positive ⊗ and 1 are removed by their Π1 definitions,

while negative ones are removed by

((A⊗B) −◦ C) ◦−◦ (A−◦B −◦ C)

(1 −◦ C) ◦−◦ C

13/07/04, Turku – p.9/44

Weakening in MLL

Theorem (eΠ1-Weakening): For any closed eΠ1 type A, there is

a term wA of type A−◦ 1.

Examples:

	 1
	 1

	 1
1 	 1

1, 1 	 1

1 ⊗ 1 	 1
1 −◦ 1 ⊗ 1 	 1

1 −◦ 1 −◦ 1 ⊗ 1 	 1
B 	 1

	 B B 	 1
B −◦ B 	 1

The left proof yields:

wB ≡ λz.let zII be x⊗ y in (let y be I in x) :B −◦ 1.

13/07/04, Turku – p.10/44

Contraction in MLL

Theorem(Π1-Contraction): Let A be a closed inhabited Π1 type

(i.e. data type). Then there is a contraction map

cntrA : A−◦A⊗A such that for any closed term t : A,

cntrA(t) −→∗t′ ⊗ t′,

where t′ is βη-equivalent to t.

Idea: For B, we have

λz.if z then (true ⊗ true) else (false ⊗ false) : B −◦ B ⊗ B

Data duplication is for free!

13/07/04, Turku – p.11/44

Turing Machines and Logspace Functions

Multi-Tape Turing Machines
Input tape (read only)

Work tapes (read/write)

Output tape (write only)

Finite control

f : {0, 1}∗ −→ {0, 1}∗ is logspace if f(w) can be
computed within O(log n) workspace where n = |w|.
Output may be polynomially large.

The num of all possible config = O(2k log n) = O(nk) for
some k. In particular, L ⊆ P .

13/07/04, Turku – p.12/44

P-completeness

A language X ⊆ {0, 1}∗ is logspace reducible to Y ⊆ {0, 1}∗ if

there exists a logspace function f : {0, 1}∗ −→ {0, 1}∗ such that

w ∈ X ⇔ f(w) ∈ Y .

X is P-complete if X ∈ P and each Y ∈ P is logspace reducible

to X.

The hardest problems in P.

If X is P-complete, then X
∈ L unless L = P.

Circuit Value Problem (P-complete, Ladner 1975): Given a

boolean circuit C with n inputs and 1 output, and n truth values

�x = x1, . . . , xn, is �x accepted by C?

13/07/04, Turku – p.13/44

Boolean Circuits: implicit vs. explicit sharing

¬

∧ ∨

∨ ∧

∧

t f f

logspace
=⇒

¬

∧ ∨

∨ ∧

∧

C

C C

t f f

13/07/04, Turku – p.14/44

Boolean Circuits in MLL

Projection: for any eΠ1 type C,

fstC ≡ λx.let x be y ⊗ z in (let wC(z) be I in y)

For any closed term t⊗ u : A⊗ C, fstC(t⊗ u) −→∗t.

Boolean values and connectives:

true ≡ λxy.x⊗ y :B

false ≡ λxy.y ⊗ x :B

not ≡ λPxy.Pyx :B −◦ B

or ≡ λPQ.fstB(P trueQ) :B −◦ B −◦ B

cntr ≡ λP.fstB⊗B(P (true ⊗ true)(false ⊗ false)) :B −◦ B ⊗ B

13/07/04, Turku – p.15/44

Conditional

Lemma (eΠ1-Conditional): Let

x1 :C1, . . . , xn :Cn 	 t1, t2 :D

and the type A ≡ C1 −◦ · · ·Cn −◦D is eΠ1. Then there is a

conditional

b :B, x1 :C1, . . . , xn :Cn 	 if b then t1 else t2 :D,

such that (if true then t1 else t2) −→ t1 and

(if false then t1 else t2) −→ t2.

Proof: Let

if b then t else u ≡ fst∀�α.A(b(λ�x.t)(λ�x.u))�x

13/07/04, Turku – p.16/44

P-completeness of MLL

Theorem (Mairson2003, Mairson-Terui2004): There is a

logspace algorithm which transforms a boolean circuit C with n

inputs and m outputs into a term tC of type Bn −◦ Bm, where

the size of tC is O(|C|):

C
logspace
=⇒ tC : Bn −◦ Bm

As a consequence, the cut-elimination problem for IMLL is

complete for P.

Binary words {0, 1}n represented by Bn

Any f : {0, 1}n −→ {0, 1}m represented by a term tf :Bn −◦ Bm.

MLL captures all finite functions.

13/07/04, Turku – p.17/44

Remark

IMLL proofs represent finite functions as size-efficient as

boolean circuits.

What about depth-efficiency?

APN i: the class of languages for which there are

polynomial-size logi-depth proof nets in unbounded fan-in MLL

(here depth = the logical depth of cut-formulas).

stconni: St-connectivity gates for graphs of degree i.

Theorem (Terui 2004): APN i = ACi(stconn2).

Circuit depth corresponds to the depth of cut-formulas.

13/07/04, Turku – p.18/44

Syntax of MALL

We only consider the intuitionistic (∀,−◦,&) fragment IMALL.

Terms of IMALL: linear lambda terms plus the following;

(i) if t and u are terms and FV (t) = FV (u), then so is 〈t, u〉;
(ii) if t is a term, then so are π1(t) and π2(t).

Type assignment rules:

Γ 	 t1 :A1 Γ 	 t2 :A2

Γ 	 〈t1, t2〉 :A1 &A2

x :Ai,Γ 	 t :C
y :A1 &A2,Γ 	 t[πi(y)/x] :C

i = 1, 2
.

Reduction rule:

πi〈t1, t2〉 −→ ti,

for i = 1, 2.

13/07/04, Turku – p.19/44

Normalization in IMALL

Normalization is exponential as it stands; let

t0 ≡ λx.〈x, x〉
ti+1 ≡ λx.ti〈x, x〉

The size of nf(ti) is exponential in i; e.g.

t3 ≡ λw.(λx.(λy.(λz.〈z, z〉)〈y, y〉)〈x, x〉)〈w,w〉
↓

λw.(λx.(λy.〈〈y, y〉, 〈y, y〉〉)〈x, x〉)〈w,w〉
↓

λw.(λx.〈〈〈x, x〉, 〈x, x〉〉, 〈〈x, x〉, 〈x, x〉〉〉)〈w,w〉
↓

λw.〈〈〈〈w,w〉, 〈w,w〉〉, 〈〈w,w〉, 〈w,w〉〉〉, 〈〈〈w,w〉, 〈w,w〉〉, 〈〈w,w〉, 〈w,w〉〉〉
13/07/04, Turku – p.20/44

Slices

How to avoid exponential explosion?

Either restrict to lazy additives (with no positive & in the

conclusion type)

Or adopt nondeterministic cut-elimination with slices.

A slice of a term t is obtained by applying the slicing operation:

〈u, v〉 �→ 〈u〉1, or 〈u, v〉 �→ 〈v〉2

as many times as possible.

Reduction rules for slices:

(λx.t)u sl−→ t[u/x], πi〈t〉i sl−→ t, πi〈t〉j sl−→ fail, if i
= j.

13/07/04, Turku – p.21/44

Nondeterministic Cut-Elimination with Slices

λx.(λy.(λz.〈z, z〉)〈y, y〉)〈x, x〉
↙ ↘

λx.(λy.(λz.〈z〉1)〈y, y〉)〈x, x〉 λx.(λy.(λz.〈z〉2)〈y, y〉)〈x,

↙ ↘ ↙ ↘
λx.(λy.(λz.〈z〉1)〈y〉1)〈x, x〉 λx.(λy.(λz.〈z〉1)〈y〉2)〈x, x〉 · · · · · ·

↙ ↘ ↙ ↘ ↙ ↘ ↙ ↘
λx.(λy.(λz.〈z〉1)〈y〉1)〈x〉1 ·

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
λx.(λy.〈〈y〉1〉1)〈x〉1 ·

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
λx.〈〈〈x〉1〉1〉1 ·

Results in 8 normal forms:

λx.〈〈〈x〉1〉1〉1 λx.〈〈〈x〉2〉1〉1 λx.〈〈〈x〉1〉2〉1 λx.〈〈〈x〉2〉2〉1
λx.〈〈〈x〉1〉1〉2 λx.〈〈〈x〉2〉1〉2 λx.〈〈〈x〉1〉2〉2 λx.〈〈〈x〉2〉2〉2

13/07/04, Turku – p.22/44

Slicewise Checking

Two slices t and u (of possibly different terms) are comparable

if there is no context (i.e. a term with a hole) Φ such that

t ≡ Φ[〈t′〉i], u ≡ Φ[〈u′〉j], and i
= j.

Example:

〈〈〈(λx.x)〉1〉2〉1 〈〈〈yz〉1〉2〉1 : comparable;

〈〈〈(λx.x)〉1〉2〉1 〈〈〈(λx.x)〉1〉1〉1 : incomparable;

λx.x yz : comparable.

Lemma (Slicewise Checking): Two terms t and u are equivalent

iff for every comparable pair (t′, u′) of slices of t and u, t′ ≡ u′.

13/07/04, Turku – p.23/44

Pullback

Lemma (Pullback): Let t −→∗u and u′ be a slice of u. Then

there is a unique slice t′ of t such that t′ sl−→∗u′:

t u

t′ u′

�

�

�

�

�

�

�

�

�

�

�
slice_of

� � � � � � ��sl

�
slice_of

Proof:

(λx.s)v s[v/x]

(λx.s′)v′ s′[v′/x]

�

�

�

�

�

�

�

�

�

�
slice_of

� � � � � � ��sl

�
slice_of

π1〈s, v〉 s

π1〈s′〉1 s′

�

�

�

�

�

�

�

�

�

�

�

�
slice_of

� � � � � � ��sl

�
slice_of

13/07/04, Turku – p.24/44

CEP for IMALL is in coNP

Given t, u, suppose we want to show nf(t)
≡ nf(u).

By Slicewise Checking Lemma, it is sufficient to show that

there is a comparabale pair of slices (t′, u′) of nf(t) and nf(u)
such that t′
≡ u′.

By Pullback Lemma, any slice of the normal terms nf(t) and

nf(u). comes from a slice of the source terms t and u.

Slices t′ and u′ can be obtained by the nondeterministic

cut-elimination procedure with a suitable guess of slices, that

works in quadratic time.

Hence showing nf(t)
≡ nf(u) belongs to NP .

I.e., CEP for IMALL belongs to coNP.

13/07/04, Turku – p.25/44

Encoding a coNP-complete Problem (1)

Logical Equivalence Problem (coNP-complete): Given two

boolean formulas, are they logically equivalent?

For any boolean formula C with n variables,

C
logspace
=⇒ tC : Bn −◦ Bm.

For each 1 ≤ k ≤ n, let

tak ≡ λf.λx1 · · · xk−1.〈f true x1 · · · xk−1, f false x1 · · · xk−1〉,

which is of type ∀α.(B(k) −◦ α) −◦ (B(k−1) −◦ α& α), and define

ta(tC) ≡ ta1(· · · (tantC) · · ·) : B & · · · & B︸ ︷︷ ︸
2n times

.

ta(tC) can be built from C in logspace.
13/07/04, Turku – p.26/44

Encoding a coNP-complete Problem (2)

The normal form of ta(tC) consists of 2n boolean values, each

of which corresponds to a ‘truth assignment’ to the formula C.

Example: ta(or)

ta1(ta2or) ≡ (λf.〈f true, f false〉)((λgx.〈gtruex, gfalsex〉)or)

−→ (λf.〈f true, f false〉)(λx.〈or true x, or false x〉)
−→∗ 〈〈or true true, or true false〉, 〈or false true, or false false〉〉
−→∗ 〈〈true, true〉, 〈true, false〉〉.

Two formulas C and D with n variables are logically equivalent

if and only if ta(tC) and ta(tD) reduce to the same normal form.

Theorem (coNP-completeness of IMALL): The cut-elimination

problem for IMALL is coNP-complete.

13/07/04, Turku – p.27/44

Remark (1)

We do not claim that the complexity of MALL is coNP (If we

considered the complement of CEP, the result would be

NP-completeness).

We do claim that additives have something to do with

nondeterminism.

13/07/04, Turku – p.28/44

Remark (2)

Pullback Lemma:
t u

t′ u′

�

�

�

�

�

�

�

�

�

�

�
slice_of

� � � � � � ��sl

�
slice_of

is a syntactic counterpart of linearity in denotational semantics:
⋃
ai � X =⇒ F (

⋃
ai) =

⋃
F (ai)

Slicewise computation is only available in linear logic

framework.

13/07/04, Turku – p.29/44

Remark (3)

In reality, functional computation is never nondeterministic.

Nondeterministic computation can be simulated by

deterministic one with an exponential overhead:

=⇒ the complexity theoretic meaning of exponential

isomorphism

!(A&B)◦−◦!A⊗!B.

13/07/04, Turku – p.30/44

Towards Infinite

An MLL proof represents a finite function. What represents an

infinite one?

Analogy: A circuit C represents a finite predicate on {0, 1}n.

A family {Cn}n∈N of boolean circuits (Cn has n inputs)

represents an infinite predicate on {0, 1}∗.

Given an input w of length n, pick up Cn and evaluate Cn(w).

Such a family may represent a nonrecursive predicate.

A family {Cn}n∈N is logspace uniform if

n
O(logn) space

=⇒ Cn.

Theorem: X ∈ P ⇐⇒ there is a logspace uniform family

{Cn}n∈N representing X.
13/07/04, Turku – p.31/44

Towards Logical Uniformity

We could consider logspace uniform families of MLL proofs to

capture P.

But logspace uniformity is not a logical concept!

Is there a purely logical notion of uniformity?

=⇒ Generic exponentials (Lafont 2001)

13/07/04, Turku – p.32/44

Generic MLL(1)

Types of MGLL:

A,B ::= α | A −◦ B | ∀α.A | !A

Type assignment rules: MLL with generic promotion

x1 :A1, . . . , xn :An 	 t :B

x1 :!A1, . . . , xn :!An 	 t :!B

Notation: An ≡ A ⊗ · · · ⊗ A︸ ︷︷ ︸
n times

, A0 ≡ 1.

13/07/04, Turku – p.33/44

Interpretation: MGLL−→ MLL

For each n ∈ N , define a “functor” 〈n〉 by

〈n〉 : MGLL −→ MLL

!A �→ An

Γ 	 A
!Γ 	!A

�→ Γ 	 A
Γn 	 An

Theorem: Let an MGLL proof t : A be given. Then

n
O(log n) space

=⇒ t〈n〉 : A〈n〉.

Every MGLL proof t describes a logspace uniform family of

infinitely many MLL proofs.

t〈1〉, t〈2〉, t〈3〉, . . .
13/07/04, Turku – p.34/44

Example

Generic Proof t x :!B, y :!B 	 or(x, y) :!B

t〈1〉 x :B, y :B 	 or(x, y) :B

t〈2〉 x :B ⊗ B, y :B ⊗ B 	 let x be x1 ⊗ x2 in

let y be y1 ⊗ y2 in

(or(x1, y1) ⊗ or(x2, y2)) :B ⊗ B

t〈n〉 x :Bn, y :Bn 	 let x be x1 ⊗ · · · ⊗ xn in

let y be y1 ⊗ · · · ⊗ yn in

(or(x1, y1) ⊗ · · · ⊗ or(xn, yn)) :Bn

13/07/04, Turku – p.35/44

Representing words in MGLL

W ≡ ∀α.!(B −◦ α−◦ α) −◦ α−◦ α.

W has no proof in MGLL.

W〈n〉 ≡ ∀α.(B −◦ α−◦ α)n −◦ α−◦ α for each n ∈ N .

W〈n〉 has proofs w representing w ∈ {0, 1}n.

010 ≡ λf1 ⊗ f2 ⊗ f3.λx.(f1false)(f2true)(f3false)x)) :W〈3〉

13/07/04, Turku – p.36/44

Representing predicates in MGLL(1)

An MGLL proof t :Wl −◦ B represents a predicate X ⊆ {0, 1}∗
⇐⇒ for each word w of length n,

w ∈ X ⇐⇒ t〈n〉(w · · ·w︸ ︷︷ ︸
l times

) →∗ true

Theorem: Every proof t :Wl −◦ B in MGLL represents a P

predicate.

Proof: Given input w of length n, build t〈n〉 in logspace, thus in

polynomial time, and normalize t〈n〉(w · · ·w) in quadratic time.

13/07/04, Turku – p.37/44

Representing predicates in MGLL(2)

What about the converse?

Theorem (Lafont2001): Every P predicate is representable in

MGLL with additives.

Theorem (Mairson-Terui2004): Every P predicate is

representable in MGLL.

Every P predicate can be programmed with a (generic) linear

λ-term.

Duplication-free program execution:

1. Given an input w of length n, unfold t into MLL proofnet t〈n〉.
2. Normalize t〈n〉(w · · ·w) (no sharing, no duplication,

efficiently parallelizable)

13/07/04, Turku – p.38/44

Simulation of P Turing Machines (1)

Polynomial clock nk : N −◦ N〈Xk〉
— Already multiplicative in (Lafont 2001)

One-step transition : Conf −◦ Conf
— (Lafont 2001) uses additives

Iteration: A−◦!(A−◦A) −◦ N −◦A
Initialization, Acceptance-checking

— OK.

It suffices to give a multiplicative encoding of one-step

transition.

13/07/04, Turku – p.39/44

Simulation of P Turing Machines (2)

Consider a TM with 2 symbols and 2n states. Then,

Conf ≡ ∀α.!(B −◦ α−◦ α) −◦ ((α−◦ α)5 ⊗ Bn)

Bn corresponds to the 2n states.

Usually one needs just 2 stacks (α−◦ α)2, left-tape and

right-tape, but we need 5.

Difficulties:

1. We cannot create a new tape cell.

2. We cannot remove a redundant tape cell (as Weakening is

available only for closed types).

Solution: Use 5 stacks to represent each configuration:

left-tape, right-tape, stocks of 0, stocks of 1, garbages.

13/07/04, Turku – p.40/44

Simulation of P Turing Machines (3)

(1) “Write 0 and move left”

i1 i2

0 1

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of 1

garbages

↓
=⇒

i1

0 i2

1

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of

garbages

↓

(2) “Write 1 and move right”

=⇒ 1

0

i1

i2

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of

garbages

↓

13/07/04, Turku – p.41/44

Simulation of P Turing machines (4)

One-step transition is obtained from:

1. Lafont’s ψ function to decompose a stack into the head and

the tail

2. Multiplicative conditional to branch according to the current

state

3. Combinatorial operations to rearrange 5 stacks

13/07/04, Turku – p.42/44

Multiplicative Soft Linear Logic

MSLL: MGLL with multiplexing (generalization of dereliction,

weakening and contraction)

!X −◦Xn, for each n ∈ N

Internalization of 〈n〉 : MGLL −→ MSLL

W itself has inhabitants.

Satisfies polynomial time strong normalization:

Any proof t of depth d strongly normalizes in time O(|t|d+2)
(depth d counts nesting of ! promotions)

A self-contained logical system of polynomial time (like LLL).

13/07/04, Turku – p.43/44

Conclusion

Multiplicatives: all finite computations (including booleans,

conditionals)

Additives: nondeterminism

Generic Exponentials: uniformity

13/07/04, Turku – p.44/44

	Motivation (1)
	Motivation (2)
	Summary
	Cut-Elimination as a Problem
	Syntax of MLL
	Defined Connectives
	$Pi _1$ and $ePi _1$ types
	Elimination of $lltensor $ and $llone $
	Weakening in MLL
	Contraction in MLL
	Turing Machines and Logspace Functions
	ptime -completeness
	large Boolean Circuits: implicit vs. explicit sharing
	Boolean Circuits in MLL
	Conditional
	$ptime $-completeness of MLL
	Remark
	Syntax of MALL
	Normalization in IMALL
	Slices
	large Nondeterministic Cut-Elimination with Slices
	Slicewise Checking
	Pullback
	CEP for IMALL is in $conp $
	Encoding a coNP-complete Problem (1)
	Encoding a coNP-complete Problem (2)
	Remark (1)
	Remark (2)
	Remark (3)
	Towards Infinite
	Towards Logical Uniformity
	Generic MLL (1)
	Interpretation: MGLL $longrightarrow $ MLL
	Example
	Representing words in MGLL
	Representing predicates in MGLL (1)
	Representing predicates in MGLL (2)
	Simulation of ptime Turing Machines (1)
	Simulation of ptime Turing Machines (2)
	Simulation of ptime Turing Machines (3)
	Simulation of ptime Turing machines (4)
	Multiplicative Soft Linear Logic
	Conclusion

