Decomposition of Computation via Linear Logic

Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics, Tokyo

Motivation (1)

Linear Logic decomposes Intuitionistic Logic into

Multiplicatives: \otimes , \multimap Additives:&, \oplus Exponentials:!

● Eg,

 $A \to B \equiv !A - \bullet B$ $A \lor B \equiv !A \oplus !B$

Curry-Howard isomorphism relates Intuitionistic Logic to Functional Computation.

Motivation (2)

How does Linear Logic decompose functional computation?

Study from the viewpoint of computational complexity.

Summary

- MLL: complete for P
 - Size-efficient coding of boolean circuits.
- MALL: coNP-complete

— Nondeterministic cut-elimination procedure.

Generic MLL: captures Uniform P

— A logical notion of uniformity.

Cut-Elimination as a Problem

Cut-Elimination Problem (CEP):

Given 2 proofs, do they reduce to the same normal form?

Subsumes:

Given a proof, does it reduce to "true"?

- CEPfor Linear Logic is non-elementary (Statman 1979).
- **SEPFOR MLL** is in P.

Syntax of MLL

- We only consider the intuitionistic fragment IMLL.
- Identify IMLL proofs = untyped linear lambda terms.
- Justified by Hindley's theorem: any linear lambda term has a simple (propositional) type.
- Types (-∞, ∀) are used neither for restriction nor for enrichment, but for classification.

$$\frac{1 \vdash u:A \quad x:A, \Delta \vdash t:C}{\Gamma, \Delta \vdash t[u/x]:C} \\
\frac{x:A, \Gamma \vdash t:B}{\Gamma \vdash \lambda x.t:A \multimap B} \qquad \frac{\Gamma \vdash u:A \quad x:B, \Delta \vdash t:C}{\Gamma, y:A \multimap B, \Delta \vdash t[yu/x]:C} \\
\frac{\Gamma \vdash t:A}{\Gamma \vdash t:\forall \alpha.A} \quad \alpha \notin FV(\Gamma) \qquad \frac{x:A[B/\alpha], \Gamma \vdash t:C}{x:\forall \alpha.A, \Gamma \vdash t:C}$$

Defined Connectives

$$\begin{split} \mathbf{1} &\equiv \forall \alpha. \alpha \multimap \alpha & A \otimes B \equiv \forall \alpha. (A \multimap B \multimap \alpha) \multimap \alpha \\ \mathbf{I} &\equiv \lambda x. x & t \otimes u \equiv \lambda x. xt u \\ \text{let } t \text{ be I in } u \equiv t u & \text{let } t \text{ be } x \otimes y \text{ in } u \equiv t(\lambda xy. u). \end{split}$$

The above definitions are sound w.r.t.

 $\mathsf{let}\,\mathsf{I}\,\mathsf{be}\,\mathsf{I}\,\mathsf{in}\,t\longrightarrow t\qquad\qquad\mathsf{let}\,t\otimes u\,\mathsf{be}\,x\otimes y\,\mathsf{in}\,v\longrightarrow v[t/x,u/y]$

(but *not* w.r.t. the commuting reduction rules)

Π_1 and $e\Pi_1$ types

- Π_1 : constructed by $-\infty$, \otimes , 1 (viewed as primitives) and positive \forall .
- Example:
 - $\mathbf{B} \equiv \forall \alpha. \alpha \multimap \alpha \multimap \alpha \otimes \alpha \text{ (multiplicative boolean type)}$ $\mathbf{W} \langle n \rangle \equiv \forall \alpha. (\mathbf{B} \multimap \alpha \multimap \alpha)^n \multimap \alpha \multimap \alpha (\{0,1\}^n)$
- Π_1 includes finite data types.
- $e\Pi_1$: like Π_1 , but may contain negative inhabited types.
- **Solution** Example: **B** is Π_1 inhabited. Hence **B** \multimap **B** is $e\Pi_1$.
- $e\Pi_1$ includes functionals over finite data types.

Elimination of \otimes **and** 1

- Proposition: Any Π_1 type is "isomorphic" to another Π_1 type not containing \otimes nor 1. Similarly for $e\Pi_1$.
- Proof: Positive \otimes and 1 are removed by their Π_1 definitions, while negative ones are removed by

$$\begin{array}{cccc} ((A \otimes B) \multimap C) & \circ \multimap & (A \multimap B \multimap C) \\ & (\mathbf{1} \multimap C) & \circ \multimap & C \end{array}$$

Weakening in MLL

- Theorem ($e\Pi_1$ -Weakening): For any closed $e\Pi_1$ type A, there is a term w_A of type $A \rightarrow 1$.
- **•** Examples:

The left proof yields:

 $w_{\mathbf{B}} \equiv \lambda z$.let zll be $x \otimes y$ in (let y be l in x) : $\mathbf{B} \multimap \mathbf{1}$.

Contraction in MLL

■ Theorem(Π_1 -Contraction): Let A be a closed inhabited Π_1 type (i.e. data type). Then there is a contraction map $cntr_A : A \multimap A \otimes A$ such that for any closed term t : A,

$$\operatorname{cntr}_A(t) \longrightarrow^* t' \otimes t',$$

where t' is $\beta\eta$ -equivalent to t.

Idea: For **B**, we have

 $\lambda z.$ if z then (true \otimes true) else (false \otimes false) : **B** \multimap **B** \otimes **B**

Data duplication is for free!

Turing Machines and Logspace Functions

- $f: \{0,1\}^* \longrightarrow \{0,1\}^*$ is logspace if f(w) can be computed within $O(\log n)$ workspace where n = |w|.
- Output may be polynomially large.
- The num of all possible config = $O(2^{k \log n}) = O(n^k)$ for some k. In particular, $L \subseteq P$.

P-completeness

- A language X ⊆ {0,1}* is logspace reducible to Y ⊆ {0,1}* if
 there exists a logspace function $f : {0,1}* → {0,1}*$ such that
 $w \in X \Leftrightarrow f(w) \in Y.$
- X is P-complete if $X \in P$ and each $Y \in P$ is logspace reducible to X.
- The hardest problems in P.
- If X is P-complete, then $X \notin L$ unless L = P.
- Circuit Value Problem (P-complete, Ladner 1975): Given a boolean circuit *C* with *n* inputs and 1 output, and *n* truth values $\vec{x} = x_1, \ldots, x_n$, is \vec{x} accepted by *C*?

Boolean Circuits: implicit vs. explicit sharing

Boolean Circuits in MLL

Projection: for any $e\Pi_1$ type C,

 $fst_C \equiv \lambda x$.let x be $y \otimes z$ in (let $w_C(z)$ be I in y)

● For any closed term $t \otimes u : A \otimes C$, $fst_C(t \otimes u) \longrightarrow^* t$.

Boolean values and connectives:

true	\equiv	$\lambda xy.x\otimes y$: 6	3
------	----------	-------------------------	-----	---

false
$$\equiv \lambda xy.y \otimes x$$
 : **B**

not
$$\equiv \lambda P x y . P y x$$
 : **B** \multimap **B**

or
$$\equiv \lambda P Q.\mathsf{fst}_{\mathsf{B}}(P \operatorname{true} Q)$$
 : $\mathsf{B} \multimap \mathsf{B} \multimap \mathsf{B}$

 $\mathsf{cntr} \quad \equiv \quad \lambda P.\mathsf{fst}_{\mathsf{B}\otimes\mathsf{B}}(P(\mathsf{true}\otimes\mathsf{true})(\mathsf{false}\otimes\mathsf{false})) \quad : \mathsf{B} \multimap \mathsf{B}\otimes\mathsf{B}$

Conditional

Lemma ($e\Pi_1$ -Conditional): Let

$$x_1:C_1,\ldots,x_n:C_n\vdash t_1,t_2:D$$

and the type $A \equiv C_1 \multimap \cdots \supset C_n \multimap D$ is $e \prod_1$. Then there is a conditional

$$b: \mathbf{B}, x_1: C_1, \ldots, x_n: C_n \vdash \text{ if } b \text{ then } t_1 \text{ else } t_2: D,$$

such that (if true then t_1 else $t_2) \longrightarrow t_1$ and (if false then t_1 else $t_2) \longrightarrow t_2$.

Proof: Let

if b then t else $u \equiv {\rm fst}_{\forall \vec{\alpha}.A}(b(\lambda \vec{x}.t)(\lambda \vec{x}.u))\vec{x}$

P-completeness of MLL

■ Theorem (Mairson2003, Mairson-Terui2004): There is a logspace algorithm which transforms a boolean circuit *C* with *n* inputs and *m* outputs into a term t_C of type $\mathbf{B}^n \to \mathbf{B}^m$, where the size of t_C is O(|C|):

As a consequence, the cut-elimination problem for IMLL is complete for P.

- Binary words $\{0,1\}^n$ represented by \mathbf{B}^n
- Any $f: \{0,1\}^n \longrightarrow \{0,1\}^m$ represented by a term $t_f: \mathbf{B}^n \multimap \mathbf{B}^m$.
- MLL captures all finite functions.

Remark

- IMLL proofs represent finite functions as size-efficient as boolean circuits.
- What about depth-efficiency?
- APNⁱ: the class of languages for which there are polynomial-size logⁱ-depth proof nets in unbounded fan-in MLL (here depth = the logical depth of cut-formulas).
- $st conn^i$: St-connectivity gates for graphs of degree *i*.
- Theorem (Terui 2004): $APN^i = AC^i(stconn^2)$.
- Circuit depth corresponds to the depth of cut-formulas.

Syntax of MALL

- Solution: We only consider the intuitionistic $(\forall, -\circ, \&)$ fragment IMALL.
- Terms of IMALL: linear lambda terms plus the following;
 (i) if t and u are terms and FV(t) = FV(u), then so is (t, u);
 (ii) if t is a term, then so are π₁(t) and π₂(t).
- Type assignment rules:

 $\frac{\Gamma \vdash t_1 : A_1 \quad \Gamma \vdash t_2 : A_2}{\Gamma \vdash \langle t_1, t_2 \rangle : A_1 \& A_2}$

$$\frac{x:A_i, \Gamma \vdash t:C}{y:A_1 \& A_2, \Gamma \vdash t[\pi_i(y)/x]:C} \ i = 1, 2$$

Reduction rule:

$$\pi_i \langle t_1, t_2 \rangle \longrightarrow t_i,$$

for i = 1, 2.

Normalization in IMALL

Normalization is exponential as it stands; let

$$t_0 \equiv \lambda x. \langle x, x \rangle$$
$$t_{i+1} \equiv \lambda x. t_i \langle x, x \rangle$$

• The size of $nf(t_i)$ is exponential in *i*; e.g.

$$t_{3} \equiv \lambda w.(\lambda x.(\lambda y.(\lambda z.\langle z, z \rangle)\langle y, y \rangle)\langle x, x \rangle)\langle w, w \rangle$$

$$\downarrow$$

$$\lambda w.(\lambda x.(\lambda y.\langle\langle y, y \rangle, \langle y, y \rangle)\langle x, x \rangle)\langle w, w \rangle$$

$$\downarrow$$

$$\lambda w.(\lambda x.\langle\langle \langle x, x \rangle, \langle x, x \rangle\rangle, \langle \langle x, x \rangle, \langle x, x \rangle\rangle)\langle w, w \rangle$$

$$\downarrow$$

$$\lambda w.\langle\langle \langle \langle w, w \rangle, \langle w, w \rangle\rangle, \langle \langle w, w \rangle, \langle w, w \rangle\rangle\rangle, \langle \langle w, w \rangle, \langle w, w \rangle\rangle, \langle \langle w, w \rangle, \langle w, w \rangle\rangle\rangle$$

Slices

How to avoid exponential explosion?

- *Either* restrict to lazy additives (with no positive & in the conclusion type)
- Or adopt nondeterministic cut-elimination with slices.
- \checkmark A slice of a term t is obtained by applying the slicing operation:

$$\langle u,v\rangle\mapsto\langle u
angle_1$$
, or $\langle u,v
angle\mapsto\langle v
angle_2$

as many times as possible.

Reduction rules for slices:

$$(\lambda x.t)u \xrightarrow{sl} t[u/x], \quad \pi_i \langle t \rangle_i \xrightarrow{sl} t, \quad \pi_i \langle t \rangle_j \xrightarrow{sl}$$
 fail, if $i \neq j$

Nondeterministic Cut-Elimination with Slices

Results in 8 normal forms:

 $\begin{aligned} \lambda x. \langle \langle \langle x \rangle_1 \rangle_1 \rangle_1 & \lambda x. \langle \langle \langle x \rangle_2 \rangle_1 \rangle_1 & \lambda x. \langle \langle \langle x \rangle_1 \rangle_2 \rangle_1 & \lambda x. \langle \langle \langle x \rangle_2 \rangle_2 \rangle_1 \\ \lambda x. \langle \langle \langle x \rangle_1 \rangle_1 \rangle_2 & \lambda x. \langle \langle \langle x \rangle_2 \rangle_1 \rangle_2 & \lambda x. \langle \langle \langle x \rangle_1 \rangle_2 \rangle_2 & \lambda x. \langle \langle \langle x \rangle_2 \rangle_2 \rangle_2 \end{aligned}$

Slicewise Checking

- Two slices t and u (of possibly different terms) are comparable if there is no context (i.e. a term with a hole) Φ such that $t \equiv \Phi[\langle t' \rangle_i], u \equiv \Phi[\langle u' \rangle_j]$, and $i \neq j$.
- **•** Example:

$$\langle \langle \langle (\lambda x.x) \rangle_1 \rangle_2 \rangle_1 \quad \langle \langle \langle yz \rangle_1 \rangle_2 \rangle_1 \qquad : \text{ comparable};$$

$$\langle \langle \langle (\lambda x.x) \rangle_1 \rangle_2 \rangle_1 \quad \langle \langle \langle (\lambda x.x) \rangle_1 \rangle_1 \rangle_1 \quad : \text{ incomparable};$$

 $\lambda x.x$ yz : comparable.

▲ Lemma (Slicewise Checking): Two terms t and u are equivalent iff for every comparable pair (t', u') of slices of t and u, $t' \equiv u'$.

Pullback

■ Lemma (Pullback): Let $t \rightarrow^{*} u$ and u' be a slice of u. Then there is a unique slice t' of t such that $t' \xrightarrow{sl} * u'$:

$$t \longrightarrow u$$

$$i slice_of \quad slice_of$$

$$t' \cdots \quad u'$$

CEP for IMALL is in coNP

- Given t, u, suppose we want to show $nf(t) \not\equiv nf(u)$.
- By Slicewise Checking Lemma, it is sufficient to show that there is a comparabale pair of slices (t', u') of nf(t) and nf(u) such that $t' \neq u'$.
- By Pullback Lemma, any slice of the normal terms nf(t) and nf(u). comes from a slice of the source terms t and u.
- Slices t' and u' can be obtained by the nondeterministic cut-elimination procedure with a suitable guess of slices, that works in quadratic time.
- Hence showing $nf(t) \neq nf(u)$ belongs to *NP*.
- I.e., CEP for IMALL belongs to CONP.

Encoding a coNP-complete Problem (1)

- Logical Equivalence Problem (coNP-complete): Given two boolean formulas, are they logically equivalent?
- **9** For any boolean formula C with n variables,

$$C \stackrel{\text{logspace}}{\Longrightarrow} t_C : \mathbf{B}^n \multimap \mathbf{B}^m.$$

• For each
$$1 \le k \le n$$
, let

$$\operatorname{ta}_k \equiv \lambda f \cdot \lambda x_1 \cdots x_{k-1} \cdot \langle f \text{ true } x_1 \cdots x_{k-1}, f \text{ false } x_1 \cdots x_{k-1} \rangle,$$

which is of type $\forall \alpha. (\mathbf{B}^{(k)} \multimap \alpha) \multimap (\mathbf{B}^{(k-1)} \multimap \alpha \& \alpha)$, and define

$$\operatorname{ta}(t_C) \equiv \operatorname{ta}_1(\cdots(\operatorname{ta}_n t_C)\cdots): \underbrace{\mathbf{B}\,\&\cdots\&\,\mathbf{B}}_{\operatorname{On}\,\Box}.$$

 2^n times

ta (t_C) can be built from C in logspace.

Encoding a coNP-complete Problem (2)

- The normal form of $ta(t_C)$ consists of 2^n boolean values, each of which corresponds to a 'truth assignment' to the formula C.
- Example: ta(or)

$$\begin{array}{lll} \mbox{ta}_1(\mbox{ta}_2\mbox{or}) &\equiv & (\lambda f.\langle f\mbox{true}, f\mbox{false}\rangle)((\lambda gx.\langle g\mbox{true}x, g\mbox{false}x\rangle)\mbox{or}) \\ &\longrightarrow & (\lambda f.\langle f\mbox{true}, f\mbox{false}\rangle)(\lambda x.\langle \mbox{or}\mbox{true}x, \mbox{or}\mbox{false}x\rangle) \\ &\longrightarrow & \langle \langle \mbox{or}\mbox{true}\mbox{true}, \mbox{or}\mbox{true}\mbox{false}\rangle, \langle \mbox{or}\mbox{false}\mbox{true}, \mbox{or}\mbox{false}\mbox{false}\rangle\rangle \\ &\longrightarrow & \langle \langle \mbox{true}\mbox{true}\mbox{true}\mbox{false}\rangle, \langle \mbox{or}\mbox{false}\mbox{true}\mbox{,or}\mbox{false}\mbox{false}\mbox{false}\rangle\rangle \\ &\longrightarrow & \langle \langle \mbox{true}\mbox{true}\mbox{,max}\mbox{true}\mbox{,max}\mbox{false}\mbox{false}\mbox{true}\mbox{,or}\mbox{false}\mbox$$

- Two formulas C and D with n variables are logically equivalent if and only if $ta(t_C)$ and $ta(t_D)$ reduce to the same normal form.
- Theorem (CONP-completeness of IMALL): The cut-elimination problem for IMALL is CONP-complete.

Remark (1)

- We do not claim that *the* complexity of MALL is CONP (If we considered the complement of CEP, the result would be NP-completeness).
- We do claim that additives have something to do with nondeterminism.

Remark (2)

Pullback Lemma:

$$t \longrightarrow u$$

$$i slice_of \quad slice_of$$

$$t' \cdots u'$$

is a syntactic counterpart of linearity in denotational semantics:

$$\bigcup a_i \sqsubset X \Longrightarrow F(\bigcup a_i) = \bigcup F(a_i)$$

Slicewise computation is only available in linear logic framework.

Remark (3)

- In reality, functional computation is never nondeterministic.

 $!(A \& B) \circ - \circ !A \otimes !B.$

Towards Infinite

- An MLL proof represents a finite function. What represents an infinite one?
- Analogy: A circuit C represents a finite predicate on $\{0,1\}^n$.
- A family $\{C_n\}_{n \in N}$ of boolean circuits (C_n has n inputs) represents an infinite predicate on $\{0,1\}^*$.
- Given an input w of length n, pick up C_n and evaluate $C_n(w)$.
- Such a family may represent a nonrecursive predicate.
- A family $\{C_n\}_{n \in N}$ is logspace uniform if

$$n \longrightarrow C_n.$$

• Theorem: $X \in P \iff$ there is a logspace uniform family $\{C_n\}_{n \in N}$ representing X.

Towards Logical Uniformity

- We could consider logspace uniform families of MLL proofs to capture P.
- But logspace uniformity is not a logical concept!
- Is there a purely logical notion of uniformity? \implies Generic exponentials (Lafont 2001)

Generic MLL(1)

• Types of **MGLL**:

$$A,B ::= \alpha \mid A \multimap B \mid \forall \alpha.A \mid !A$$

• Type assignment rules: **MLL** with generic promotion

$$\frac{x_1:A_1,\ldots,x_n:A_n\vdash t:B}{x_1:!A_1,\ldots,x_n:!A_n\vdash t:!B}$$
• Notation: $A^n \equiv \underbrace{A \otimes \cdots \otimes A}_{t}, A^0 \equiv \mathbf{1}.$

n times

Interpretation: MGLL → **MLL**

For each $n \in N$, define a "functor" $\langle n \rangle$ by

 $\begin{array}{rccc} \langle n \rangle : & \mathsf{MGLL} & \longrightarrow & \mathsf{MLL} \\ & & & & \\ & & & \\ \hline & & & \\ & & \frac{\Gamma \vdash A}{!\Gamma \vdash !A} & \mapsto & \frac{\Gamma \vdash A}{\Gamma^n \vdash A^n} \end{array}$

• Theorem: Let an MGLL proof t : A be given. Then

 $egin{array}{ccc} O(\log n) \ {
m space} \ & & & \\ n & & \Longrightarrow & & t\langle n \rangle : A\langle n
angle. \end{array}$

Every MGLL proof t describes a logspace uniform family of infinitely many MLL proofs.

$$t\langle 1\rangle, t\langle 2\rangle, t\langle 3\rangle, \ldots$$

Example

Generic Proof t	$x:!\mathbf{B},y:!\mathbf{B}\vdash$	$or(x,y): !\mathbf{B}$
$t\langle 1 angle$	$x\!:\!\mathbf{B}, y\!:\!\mathbf{B} \vdash$	or(x,y) : B
$t\langle 2 \rangle$	$x : \mathbf{B} \otimes \mathbf{B}, y : \mathbf{B} \otimes \mathbf{B} \vdash$	let x be $x_1\otimes x_2$ in
		let y be $y_1 \otimes y_2$ in
		$(or(x_1,y_1)\otimesor(x_2,y_2))\!:\!\mathbf{B}\otimes\mathbf{B}$
$t\langle n angle$	$x\!:\!\mathbf{B}^n,y\!:\!\mathbf{B}^n\vdash$	let x be $x_1\otimes \cdots \otimes x_n$ in
		let y be $y_1\otimes \cdots \otimes y_n$ in
		$(or(x_1,y_1)\otimes \cdots \otimes or(x_n,y_n))$: B^n

Representing words in MGLL

- W has no proof in MGLL.
- $W\langle n \rangle$ has proofs <u>w</u> representing $w \in \{0,1\}^n$.
- $\underline{010} \equiv \lambda f_1 \otimes f_2 \otimes f_3.\lambda x.(f_1 \text{false})(f_2 \text{true})(f_3 \text{false})x)): \mathbf{W}\langle 3 \rangle$

Representing predicates in MGLL(1)

■ An MGLL proof $t: \mathbf{W}^l \multimap \mathbf{B}$ represents a predicate $X \subseteq \{0, 1\}^*$ ⇔ for each word w of length n,

$$w \in X \iff t \langle n \rangle (\underbrace{\underline{w} \cdots \underline{w}}_{l \ times}) \to^* \text{true}$$

- Theorem: Every proof t: W^l → B in MGLL represents a P
 predicate.
- Proof: Given input w of length n, build $t\langle n \rangle$ in logspace, thus in polynomial time, and normalize $t\langle n \rangle (\underline{w} \cdots \underline{w})$ in quadratic time.

Representing predicates in MGLL(2)

- What about the converse?
- Theorem (Lafont2001): Every P predicate is representable in MGLL with additives.
- Theorem (Mairson-Terui2004): Every P predicate is representable in MGLL.
- Every P predicate can be programmed with a (generic) linear λ -term.
- Duplication-free program execution:
 - 1. Given an input w of length n, unfold t into MLL proofnet $t\langle n \rangle$.
 - 2. Normalize $t\langle n \rangle (\underline{w} \cdots \underline{w})$ (no sharing, no duplication, efficiently parallelizable)

Simulation of P Turing Machines (1)

- Polynomial clock n^k : N N $\langle X^k \rangle$
 - Already multiplicative in (Lafont 2001)
- One-step transition : Conf Conf
 (Lafont 2001) uses additives
- Iteration: $A \multimap ! (A \multimap A) \multimap \mathbf{N} \multimap A$
- Initialization, Acceptance-checking
 OK.
- It suffices to give a multiplicative encoding of one-step transition.

Simulation of P Turing Machines (2)

Consider a TM with 2 symbols and 2^n states. Then,

 $Conf \equiv \forall \alpha . ! (\mathbf{B} \multimap \alpha \multimap \alpha) \multimap ((\alpha \multimap \alpha)^5 \otimes \mathbf{B}^n)$

- **•** \mathbf{B}^n corresponds to the 2^n states.
- Usually one needs just 2 stacks $(\alpha \multimap \alpha)^2$, left-tape and right-tape, but we need 5.
- Difficulties:
 - 1. We cannot create a new tape cell.
 - 2. We cannot remove a redundant tape cell (as Weakening is available only for closed types).
- Solution: Use 5 stacks to represent each configuration: left-tape, right-tape, stocks of 0, stocks of 1, garbages.

Simulation of P Turing Machines (3)

(1) "Write 0 and move left"

left tape \downarrow		right tape
w_1 i_1	i_2	w_2
$\frac{\text{stocks of 0}}{w_3} 0$	1	$\frac{1}{w_4}$
garbages w ₅ i ₅		

left tape \downarrow		
w_1] [
stocks of 0		
w_3]	
garbages		
w_5	$i_5 i_1$	

	right tap
$0 i_2 $	w_2
	stocks o
1	w_4

(2) "Write 1 and move right"

Simulation of P Turing machines (4)

- One-step transition is obtained from:
 - 1. Lafont's ψ function to decompose a stack into the head and the tail
 - 2. Multiplicative conditional to branch according to the current state
 - 3. Combinatorial operations to rearrange 5 stacks

Multiplicative Soft Linear Logic

MSLL: MGLL with multiplexing (generalization of dereliction, weakening and contraction)

 $!X \multimap X^n$, for each $n \in N$

- Internalization of $\langle n \rangle$: MGLL \longrightarrow MSLL
- **W** itself has inhabitants.
- Satisfies polynomial time strong normalization:
 Any proof t of depth d strongly normalizes in time O(|t|^{d+2})
 (depth d counts nesting of ! promotions)
- A self-contained logical system of polynomial time (like LLL).

Conclusion

- Multiplicatives: all finite computations (including booleans, conditionals)
- Additives: nondeterminism
- Generic Exponentials: uniformity