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Abstract

A number of attempts have been made to combine Discourse Representation Theory with
type-logical grammar in order to obtain a compositional (bottom-up) framework for discourse
representation (e.g., Muskens[Mus94], van Eijck & Kamp[vEK97]). In those attempts, how-
ever, it is usually assumed that anaphoric links are given in advance of the construction of
discourse representation structures (DRSs). This assumption causes a difficulty, typically
dealing with plural anaphora, because generally suitable referents of plural pronouns are not
present before the construction, but should be created through the construction of DRSs.

To settle this difficulty, we shall propose a new type-logical framework of DRT in which
anaphoric linking takes place during the construction of DRSs (Run Time Anaphoric Linking).
The construction is bottom-up in the sense that it is based on the sequent calculus proof search
of Lambek calculus. We exploit quantifier types to represent the run time anaphoric linking
mechanism. We shall briefly illustrate how plural anaphora are treated in our framework. In
particular, we shall show that Summation and Abstraction, which are used to create suitable
antecedent discourse referents for plural pronouns in [KR93], are available in our type-logical
setting using the linear logic modality.

1 Introduction

Discourse Representation Theory (DRT, [Kam81], [Hei82], [KR93]) offers an attractive account of
anaphoric phenomena in discourse, and it explains some puzzles involving indefinites and anaphoric
pronouns such as donkey sentences very well. The standard DRT, however, relies on a procedural
account, that is, interpretation of discourse is explained by means of a set of interpretation rules
(DRS construction rules) that provides a top-down procedure to construct a Discourse Represen-
tation Structure (DRS) from a given sequence of sentences. Although the procedural explanation
is intuitively understandable and practically useful, it has been often pointed out from a theoret-
ical point of view that it does not give a mathematically clean semantics to natural languages,
due to the lack of compositionality. Hence, a number of attempts have been made to formu-
late a suitable compositional (bottom-up) DRT (e.g. [Zee89], [Ash93], [Mus94], [KKP95], [Mus96],
[vEK97]). The ways in which they achieve compositionality are more or less related to the theory
of Type-logical Categorial Grammar (see [Moo88], [Mor94], [Moo97], [Car98]) in that they assign
each word a meaning of higher-order type and the composition of those meanings are based on
function-application of typed lambda calculus which can be well described in terms of some type-
logics. Among those, [Mus94] explicitly refers to the theory of Lambek categorial grammar and
investigates the combination of these two theories.

In those attempts, however, it is usually assumed that anaphoric links are given in advance.
For example, the problem addressed in [vEK97] is the following:
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Assuming that an anaphoric indexing for a sentence is given, . . . , give an algorithm for
updating an available representation structure with the information from that sentence.
([vEK97], p.216)

In other words, the inputs to their compositional DRTs are supposed to be coindexed texts
such as

The [man who smiles]1 does not hate Bill. He1 respects Bill.(1)

Although this approach seems to work for certain restricted fragment of natural languages, it is
by no means obvious that we can always give an input text a coindexation indicating the intended
anaphoric links. Indeed, it would get in trouble when it came to handling plural anaphora. For
example, consider the following texts;

Susan has found most books which Bill needs. They are on his desk.(2)

In (2), the pronoun ‘They’ in the second sentence is naturally interpreted as referring to the
set of books which Susan has found and Bill needs. But there seems to be no principled way to
give the anaphoric indices to the text in advance of interpretation, because apparently there is
no overt expression which represents by itself the set of such books. Rather, the suitable referent
of the pronoun should be created through interpretation of the first sentence. We may, therefore,
reasonably claim that anaphoric links should be established at run time of interpretation, and
that a proper theory of discourse representation should offer a suitable mechanism of Run Time
Anaphoric Linking.

The main purpose of this paper is to propose an appropriate type-logical framework of DRT
which offers such a run time anaphoric linking mechanism. We do not assume that referential
expressions in input sentences are given anaphoric indices. In particular, a pronoun is represented
by a single lexical entry, rather than by an infinite number of lexical entries each of which corre-
sponds to one anaphoric index, as found in e.g. [Mus94] and [vEK97]. The mechanism consists of
two components. First, some expressions like indefinites introduce a new reference marker (RM,
hereafter) into the context(RM-introduction). Second, pronouns catch a RM (possibly) from the
context (RM-catching). The core of our proposal lies in the type-logical representation of these
two mechanisms by means of quantifier types.

Our framework is based on Lambek sequent calculus ([Lam58], [vB91]) and we make use of la-
bels and quantifier types. Since our use of quantifiers looks somewhat unusual, let us now explain
the ideas behind it. It comes from the following two sources.

1. Proof Search as Computation
It is widely known that bottom-up proof search in sequent calculi for certain logics offers com-
putational interpretations to those logics (see [MNPS91]). This paradigm has been successfully
applied to give a logical basis to certain logic programming languages, constraint programming
languages, concurrent process calculi, etc. For instance, proof search in linear logic naturally ex-
presses a concurrent computation involving multiple agents (or processes) (e.g. [AP91], [HM94],
[KY95]). According to this view of proof search as concurrent computation, we have the following
correspondence;

formula = agent (or process)
inference rule = transition rule

bottom-up proof search = computation.

For example, the following instance of −◦-left rule of linear logic

α � α B, Γ �
α, α −◦ B, Γ �

(where α denotes an atomic formula, Γ denotes a list of formulas, and −◦ denotes linear implication)
may be read in a bottom-up manner as: “agent α −◦ B receives an information token α from the
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context and then becomes B.” In this way, the inference rules determine the behavior of agents
(we say that the inference rules give agents their operational meanings).

In this paper, we shall apply the paradigm to Lambek calculus. Since a formula of Lambek
calculus represents a syntactic category, we have the following correspondence;

syntactic category = formula = agent (or process).

2. Labelled Deductive Systems
There is another influential view of logical-computational systems that the basic unit of logical
deduction (or computation) is a formula with a label, which is written of the form a :A and called
a declarative unit ([Gab96]). Here formula A represents the logical component of the declarative
unit, while label a expresses some additional information. In a type-logical setting, labels typi-
cally express semantic contents (by λ-terms) while formulas specify the types of their labels. In
connection with the proof-search-as-computation paradigm, we may consider the following corre-
spondence;

declarative unit = agent (or process)
label = semantic content of an agent

formula = behavioral feature of an agent.

In view of these two paradigms, our use of quantifiers may be explained as follows. As men-
tioned above, it is the inference rules that give agents their operational meanings. In the standard
sequent calculi, first-order quantifiers have the following inference rules (here we only consider the
left-rules);

A[t/x], Γ �
∀xA, Γ � ∀L

(t is an arbitrary term)

A[u/x], Γ �
∃xA, Γ � ∃L

(u does not occur in the lower sequent)

If we read these inference rules in a bottom-up manner, we can give quantified agents the following
operational meanings (cf. [KY95]);

∀xA : Choose an appropriate term t, possibly from the context, then execute A[t/x];
∃xA : Introduce a new free variable u, then execute A[u/x].

Our main idea is to use the existential quantifier to represent RM-introduction and the universal
quantifier to represent RM-catching so that they together constitute the run time anaphoric linking
mechanism. To achieve this, we allow a quantifier in a formula to bind a variable in a label, because
RMs, which we would like to bind, occur in labels.

In Section 2, we explain our basic ideas a bit more by concrete examples. Then, the ideas are
formalized as logical calculus Lq in Section 3 and Section 4. It is very crucial what exactly are
the ‘correct’ DRSs, because in our labelled sequent calculus the labels are taken to be ‘correct’
(λ-)DRSs and the constraints on the labels operation prevent illegal sentences and illegal readings
from being interpreted as DRSs. In Section 3, we shall give a precise definition of DRSs which are
‘correct’ in our sense (called strict DRSs), and their higher order versions (called legal λpDRSs,
or labels). In Section 4, we define labelled sequent calculus Lq, which offers us a deductive basis
for discourse interpretation. Lq satisfies the cut elimination property (Theorem 1).

In Section 5, we give Lq a computational interpretation, so that we can describe explicitly how
to construct a DRS from a given text. The interpretation is based on an operational semantics
which embodies a clear conception how the process of execution goes. Our main theorem is
the completeness of the operational semantics with respect to Lq (Theorem 2). It establishes
a tight correspondence between logical deduction (Lq sequent calculus) and computation (DRS
construction via operational rules).

In Section 6, several examples are considered in order to examine our calculus from a more
practical viewpoint. Lq uses Moortgat’s scoping operator ⇑ ([Moo88], [Moo91]) to represent
scoping expressions. The first example shows that the operator offers interesting mechanisms of
box-entering and box-leaving in the light of DRT. The second example shows that our calculus, a
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combination of DRT and type-logical grammar, offers a better account on the scope of indefinites
than purely type-logical frameworks, because DRT provides a strict distinction between indefinites
and other quantifiers while the pure type-logical grammar not. The third example shows that our
calculus naturally embodies certain sentential grammar principles. In particular, some special
cases of i-within-i effects are explained in our framework very naturally.

In Section 7, we briefly illustrate the treatment of plural anaphora in our framework. The
explanation in [KR93] is essentially based on two mechanisms: Abstraction and Summation. There
is no difficulty to incorporate these mechanisms into their theory because the explanation given
is completely procedural; it simply suffices to introduce new DRS construction rules which create
new RMs from DRSs which have already constructed. However, it is by no means a trivial matter
whether these mechanisms are available in type-logical settings as well. We shall show an extension
of our calculus which incorporates such mechanisms type-logically. Here the modality of linear
logic ([Gir87], [Gir95]) plays a central role. Using the modality, the mechanisms are represented
as daemon processes, which are reusable as many times as we like.

Section 8 concludes the paper with some discussions. The proofs of Theorem 1 (the cut
elimination theorem for Lq) and Theorem 2 (the operational completeness theorem) are given in
Appendix.

2 Basic Ideas

Traditional applicative categorial grammar has the following transition rules (operational rules);

(Receive-Left) (Γ1, a :A, b :A\B, Γ2) −→ (Γ1, b • a :B, Γ2);

(Receive-Right) (Γ1, b :B/A, a :A, Γ2) −→ (Γ1, b • a :B, Γ2).

where Γ1 and Γ2 stand for lists of declarative units of the form a : A. For the moment, let us
assume that labels are λ terms and b • a denote the normal form of ba in the above. These rules
characterize the operational behavior of slash types. Note that these rules corresponds to the left
inference rules of slashes in Lambek calculus, if we read these rules in a bottom-up manner;

(A � A) Γ1, B, Γ2 � C

Γ1, A, A\B, Γ2 � C

(A � A) Γ1, B, Γ2 � C

Γ1, B/A, A, Γ2 � C .

In order to motivate our use of quantifiers, let us see how the existing frameworks of compositional
DRT treat indefinites and pronouns. For example, [vEK97] introduces an infinite number of lexical
entries for indefinites and pronouns each of which corresponds to an anaphoric index; Below is a
slight simplification of the lexical entries for ‘a’ and ‘he’;

ai ⇒ λPQ.(ui; P (ui); Q(ui)) : ((s/(np\s))/n)
hei ⇒ λP.P (ui) : s/(np\s)

where the subscript i indicates an anaphoric index1. Since indices are given as part of the lexical
entries, ‘a’ and ‘he’ are infinitely ambiguous.

Our main idea is to bind each reference marker (RM) occurring in a lexical entry by a quantifier,
rather than to give it an index in advance. So we write the lexical entries for ‘he’ and ‘a’ become
as follows;

a ⇒ λPQ.(x; P (x); Q(x)) : ∃x((s/(np\s))/n)
he ⇒ x : ∀xnp.

Here RM x in the entry for ‘a’ is bound by an existential quantifier, while x in the entry for ‘he’
is bound by a universal quantifier. This reflects the operational difference between these items:
an indefinite introduces a new RM, while a pronoun catch a RM from the context. The next two
operational rules give these quantifiers their operational meanings.

1To be precise, [vEK97] gives the lexicon using the merging operator • instead of the simple sequencing operator
;. But this point is irrelevant to the present argument.
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(Introduce-RM) (Γ1, a :∃xA, Γ2) −→ (Γ1, a[u/x] :A, Γ2),
where RM u does not occur freely in the antecedent configuration;

(Catch-RM) (Γ1, a :∀xA, Γ2) −→ (Γ1, a[t/x] :A, Γ2),
where t is an arbitrary RM.

Note that these two rules are also based on the left inference rules for quantifiers of the standard
sequent calculus (ignoring labels);

Γ1, A[u/x], Γ2 � C

Γ1, ∃xA[x], Γ2 � C
where u does not occurs freely in the lower sequent;

Γ1, A[t/x], Γ2 � C

Γ1, ∀xA[x], Γ2 � C
where t is arbitrary.

Thus RM u introduced by (Introduce-RM) corresponds to an eigenvariable of the sequent calculus.

Having specified the operational behavior of types with labels, we are ready to describe how
the DRS construction looks like in our framework. Let us consider the following text;

A man entered. He smiled.(3)

We would like to construct a DRS expressing the semantic content of text (1). For the moment,
let us assume the following lexicon;

a ⇒ λPQ.(x; P (x); Q(x)) : ∃x((s/(np\s))/n)
no ⇒ λPQ.¬(x; P (x); Q(x)) : ∃x((s/(np\s))/n)
man ⇒ man : n
entered ⇒ entered : np\s
smiled ⇒ smiled : np\s
. ⇒ λpq.(p; q) : s\(txt/s)
he ⇒ x : ∀xnp

What we have to do first is to list the lexical entries corresponding to the words occurring in
the sentence in the same order;


λPQ.(x; P (x); Q(x)) :∃x((s/(np\s))/n)
man :n
entered :np\s
λpq.(p; q) :s\(txt/s)
x :∀xnp
smiled :np\s




.

Then, we successively apply the transition rules above to this list; (For each step of computa-
tion, relevant parts of the configuration are indicated by underlines.)



λPQ.(x; P (x); Q(x)) :∃x((s/(np\s))/n)
man :n
entered :np\s
λpq.(p; q) :s\(txt/s)
x :∀xnp
smiled :np\s




−→ (Introduce-RM)




λPQ.(u; P (u); Q(u)) :(s/(np\s))/n

man :n
entered :np\s
λpq.(p; q) :s\(txt/s)
x :∀xnp
smiled :np\s




−→ (Receive-Right)
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


λQ.(u; man(u); Q(u)) :s/(np\s)
entered :np\s
λpq.(p; q) :s\(txt/s)
x :∀xnp
smiled :np\s


 −→ (Receive-Right)




u; man(u); entered(u) :s
λpq.(p; q) :s\(txt/s)
x :∀xnp
smiled :np\s


 −→ (Receive-Left)


 λq.(u; man(u); entered(u); q) :txt/s

x :∀xnp
smiled :np\s


 −→ (Catch-RM)


 λq.(u; man(u); entered(u); q) :txt/s

u :np
smiled :np\s


 −→ (Receive-Right)

(
λq.(u; man(u); entered(u); q) :txt/s

smiled(u) :s

)
−→ (Receive-Right)

(u; man(u); entered(u); smiled(u) :txt)

In this way we obtain

u; man(u); entered(u); smiled(u).(4)

as one of the readings of (3) according to which ‘A man’ is the antecedent of ‘he’. Since (Catch-RM)
can choose an arbitrary RM to instantiate x, we also have

u; man(u); entered(u); smiled(v).(5)

as an interpretation of (3).
As (Introduce-RM) introduces a new RM which does not occur in the context, there is no

danger of variable clashes. Hence we do not have to use any complicated merging operation as in
[vEK97].

We should give an assurance that the following texts never yield DRSs representing the indi-
cated anaphoric links, which are obviously unacceptable.

*[No man]1 entered. He1 smiled.(6)

*He1 entered. [A man]1 smiled.(7)

*[A man]1 entered. She1 smiled.(8)

To achieve this, we impose certain constraints on application of (Receive-Left) and (Receive-
Right):

(Receive-Left) (Γ1, a :A, b :A\B, Γ2) −→ (Γ1, b • a :B, Γ2) and
(Receive-Right) (Γ1, b :B/A, a :A, Γ2) −→ (Γ1, b • a :B, Γ2)
are applicable only if b•a results in a ‘correct’ DRS (possibly λ-abstracted) with respect
to certain accessibility criteria (in the sense which will be clarified in the next section).

The DRS-construction for (6) proceeds almost in the same way as that for (3), except the very
last step of computation;(

λq.¬(u; man(u); entered(u); q) :txt/s

smiled(u) :s

)
	−→ (Receive-Right)

(¬(u; man(u); entered(u)); smiled(u) :txt)(9)
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Here, the application of (Receive-Right) gives rise to an occurrence of reference marker u which
violates the accessibility criterion, so the reading of text (6) according to which ‘No man’ antecedes
‘He’ is successfully ruled out. This criterion will be made clear in the next section.

In the same way, (7) is out due to the violation of the accessibility criteria. In (8) the gender
of ‘She’ disagrees with the indicated antecedent. In order to prevent the pronoun from being
linked with ‘A man’, we have to rule out DRSs which have inconsistent gender assignments during
computation. This could be easily achieved by imposing further constraints on application of
(Receive-Left) and (Receive-Right), but we will not consider such constraints in this paper because
of simplicity.

So far are our basic ideas. Of course things should be made precise in order to develop the
ideas further. In particular, of crucial importance is to give the precise definition of the ‘correct’
DRSs, because it plays the central role to rule out incorrect readings with illegal anaphoric links.

3 Discourse Representation Structures

The aim of this section is to give a precise definition of ‘correct’ DRSs. To do so, we follow the
approach of [vEK97], but our correct DRSs (called strict DRSs) are more restrictive than proper
DRSs of [vEK97] in that it is sensitive not only to the overlap of introduced RMs and fixed RMs,
but also the overlap of introduced or fixed RMs and classically bound RMs. We also consider
higher order generalization of strict DRSs using λ-calculus (called legal λpDRSs), which are also
simply called labels from the viewpoint of our labelled sequent calculus in the next section.

Definition 1 (Proto-DRSs ([vEK97])) Let A be a set of constant reference markers (or constants)
and U be a set of variable reference markers (or reference marker variables). U is ranged over by
u,v,x,y, . . . and A ∪ U by t, t1, t2, . . .. The language of Proto-DRSs (or pDRSs) is defined as
follows;

D ::= δv | � | P t1 · · · tn | v
.
=t | ¬D | (D1; D2).

Implication and disjunction are introduced as abbreviations;

1. D1 ⇒ D2
def⇔ ¬(D1;¬D2);

2. D1 ∨ D2
def⇔ ¬(¬D1;¬D2).

We indicate, borrowing notation from [KKP95], an introduced occurrence of a reference marker
v as δv, because we need to distinguish a marker (of type e) and a DRS consisting of an introduced
marker (of type T ) type-theoretically. However, we shall omit δ and simply write v whenever there
is no danger of confusion.

We need to distinguish three types of marker occurrences (see [vEK97]);

1. marker occurrences that get their reference fixed by the larger context,

2. marker occurrences that get introduced in the current context,

3. marker occurrences that get introduced in a subordinate context.

The following definition is given in [vEK97] to state the distinction in a rigorous way;

Definition 2 (var, fix, intro, cbnd, activ ([vEK97]))

1. var(P t1 · · · tn) = {ti|1 ≤ i ≤ n, ti ∈ U}, var(v
.
=t) =

{ {v, t} if t ∈ U,
{v} otherwise.

2. fix (fixed RMs), intro (introduced RMs), cbnd (classically bound RMs): pDRSs −→ PU are
defined as follows;

• fix(δv) = ∅, intro(δv) = {v}, cbnd(δv) = ∅;

7



• fix(�) = ∅, intro(�) = ∅, cbnd(�) = ∅;
• fix(P t1 · · · tn) = var(P t1 · · · tn), intro(P t1 · · · tn) = ∅, cbnd(P t1 · · · tn) = ∅;
• fix(v

.
=t) = var(v

.
=t), intro(v

.
=t) = ∅, cbnd(v

.
=t) = ∅;

• fix(¬D) = fix(D), intro(¬D) = ∅, cbnd(¬D) = intro(D) ∪ cbnd(D);

• fix(D1; D2) = fix(D1)∪(fix(D2)−intro(D1)), intro(D1; D2) = intro(D1)∪intro(D2), cbnd(D1; D2) =
cbnd(D1) ∪ cbnd(D2).

Definition 3 (cond ([vEK97])) cond : pDRSs −→ P(pDRSs) is defined as follows;

• cond(δv) = ∅;
• cond(�) = {�}, cond(P t1 · · · tn) = {P t1 · · · tn}, cond(v

.
=t) = {v .

=t}, cond(¬D) = {¬D};
• cond(D1; D2) = cond(D1) ∪ cond(D2).

Definition 4 (subordinate pDRSs) A pDRS D′ is said to be a subordinate pDRS of D if D
contains ¬D′ as subterm, or D′ is D itself.

In [vEK97], the notion of proper DRS is defined. The definition essentially says that a pDRS
D is proper if for every subordinate pDRS Di of D, fix(Di) and intro(Di) are disjoint and no
RM is introduced more than once in Di. For example, the following are not proper DRSs;

x;x; Px(10)

Px;x(11)

¬(Px);x(12)

On the other hand, The following are DRSs;

x; Qx;¬(x; Px)(13)

¬(x; Px);x(14)

If D is a proper DRS, we can replace a sub-DRS of the form D′;u with u; D′ without changing
its meaning (in terms of dynamic semantics). This means that every D can be represented in box
format as

intro(D)

cond(D)

For example, DRS (13) is represented in box format as

x

Qx

¬ x
Px

For our purpose, however, the constraint on proper DRS is still too liberal, because it says
nothing about the overlap of classically bound markers and fixed or introduced markers. We
have already seen in the previous section (example text (6)) one of the reasons why we have to
distinguish marker occurrences more strictly. We will see the other reasons in the later sections.
Now we introduce the notion of strict DRS.
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Definition 5 (Strict DRSs)

1. δv, �, P t1 · · · tn, v
.
=t, 〈t1 	= t2〉 are strict DRSs;

2. If D is a strict DRS, then ¬D is a strict DRS;

3. If D1 and D2 are strict DRSs, and (i) cbnd(D1) ∩ fix(D2) = ∅, (ii) (fix(D1) ∪ intro(D1) ∪
cbnd(D1))∩ intro(D2) = ∅ and (iii) (fix(D1)∪ intro(D1))∩ cbnd(D2) = ∅, then (D1; D2) is
a strict DRS, too.

The definition looks rather complicated, but the intuition can be made clear in terms of the two
conditions below: purity and the non-destructiveness. But before we come on to that, we have to
assure that the composition is still associative.

Proposition 1 If (D1; D2); D3 is a strict DRS, then so is D1; (D2; D3).

It is immediately observed that (D1; D2); D3 and D1; (D2; D3) have one and the same meaning
in terms of dynamic semantics. Therefore we can safely omit the parentheses of (D1; D2); D3 and
D1; (D2; D3) and denote them as D1; D2; D3.

Consider the following two conditions;

(Purity) A pDRS D is pure if fix(D), intro(D) and cbnd(D) are pairwise disjoint.

(Non-destructiveness) A pDRS D is non-destructive if D is not of the form D1;v; D2;v; D3,
i.e., no reference marker is introduced more than once.

In view of these conditions, our strict DRSs are characterized as follows;

Proposition 2 A pDRS D is strict if and only if every subordinate pDRS D′ of D is pure and
non-destructive.

Hence (13) and (14) are not strict DRSs because they are not pure. On the other hand, the
followings is a strict DRS in our sense;

(x; Px) ∨ (x; Qx).(15)

The following pDRS (9) given in the previous section,

(¬(u; man(u); entered(u)); smiled(u) :txt),

is ruled out because it is not pure. (u is classically bound and fixed at the same time.)
Now we consider a typed λ-calculus based on the language of pDRSs.

Definition 6 (λpDRSs)
1. The types T of λpDRS are constructed from e (for entities) and T (for transitions) using →,
thus;

T ::= e | T | T → T.

2. The constants of λpDRS are

• Reference markers u,v,. . . of type e;

• For each n ≥ 0, n-ary predicate symbols P, Q, . . . of type e → · · · e →︸ ︷︷ ︸
n times

T ;

• .
= : e → e → T ;

• � : T ;

• ¬ : T → T ;
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• ; : T → T → T ;

• δ : e → T (RM-introduction operator).

The terms of λpDRS are typed λ terms over the above constants and the set of λ-term variables
Vt for each type t ∈ T. λpDRS terms are denoted as a, b, c . . .. We shall, however, omit the details
(see [Bar92]).

As noted before, we often omit δ.
Note that the set V =

⋃
t∈T Vt of λ-term variables and the set U of reference marker variables

are disjoint: λx binds only λ-term variables, so no expression like λxM is allowed in our system.
As seen in the above definition, reference markers (including marker variables) behave as constants
from the viewpoint of λ-calculus.

Definition 7 (Linear terms, Relevant terms) A λ-term a is called linear if each λx in a binds
exactly one occurrence of x in a (see [Bar92]). A λ-term a is called relevant if each λx in a binds
at least one occurrence of x in a.

For example, λx.xx is relevant, while λxy.x is not.
Having introduced these notions, we can now define our central notion of legal λpDRS term.

The legal λpDRS terms serve as the labels of our labelled sequent calculus which will be defined
in the next section.

Definition 8 (Legal λpDRS terms) A λpDRS term is legal if

1. it is relevant,

2. it is in βη-normal form, and

3. it does not contain a non-strict pDRS as subterm.

The set of legal λpDRS terms is denoted by L.

Relevance is required to prove Lemma 1(3) and 2(2) which are in turn required to prove the
cut-elimination theorem (Theorem 1). The relevance condition might be considered too restrictive
at a first look, but we do not find any serious difficulty in practice, because usually a lexical entry
is described by a relevant λ-term, and the class of relevant λ-terms is closed under application,
substitution and βη-reduction. Moreover, our logical basis is Lambek calculus which lacks the
structural rules. Hence, due to the lack of weakening, logical deductions in the calculus do not
create non-relevant λ terms.

Definition 9 (a • b, λx • a) We define two partial binary operations on L; • : L×L −→ L and
λ • : V × L −→ L, as follows;

a • b = nf(ab) if ab is well-typed and nf(ab) ∈ L;
= undefined otherwise.

λx • a = nf(λx.a) if nf(λx.a) ∈ L;
= undefined otherwise.

where nf(a) denotes the βη-normal form of a.

a[b/ • x] is defined to be nf(a[b/x]) if nf(a[b/x]) ∈ L and is undefined otherwise (where a[b/x]
denotes the usual substitution of λ-calculus (see [Bar92])). The following lemma is quite useful,
together with the next one (Lemma 2 below), when we define our labelled calculus in the next
section.

Lemma 1

1. If a ∈ L, then x • a and a • x are defined.
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2. Let x ∈ FV (a). Then, λx • a ∈ L if and only if a ∈ L (where FV (a) denotes the set of
λ-term variables occurring freely in a).

3. if a, b and c are in L and (a• b)[c/ •x] is defined, then a[c/ •x] and b[c/ •x] are also defined.

Proof. (1) and (2) are easily shown. As for (3), observe that there is a βη-reduction sequence

a[c/ • x]b[c/ • x] −→βη · · · −→βη (a • b)[c/ • x]

by the confluency of λ-calculus. Hence it suffices to show that

(*) If d −→βη e and d contains an illegal pDRS, then so does e.

It easily follows from the relevance of d.

Definition 10 (Renamings, Injective Renamings, Variants ([vEK97])) A marker renaming is a
function θ : U −→ U , such that its domain Dom(θ) = {v ∈ U |v 	= θ(v)} is finite. θ is also denoted
as [v/u] if Dom(θ) = {u} and θ(u) = v. If X ⊆ U then θX = {θ(x)|x ∈ X}. A marker renaming
θ is injective on X if |X | = |θX |.

A marker renaming θ is extended to θ : λpDRSs −→ λpDRSs so that for a given a, aθ is
obtained by replacing each occurrences of x ∈ Dom(θ) in a with θ(x). Hence we may consider a
marker renaming θ as a partial function θ : L −→ L, and say that, given a ∈ L, aθ is defined if
aθ ∈ L. Note that marker renaming of a L-term might not result in a L-term (due to the strictness
condition).

a′ is said to be a variant of a if there is a marker renaming θ injective on the set of RMS
occurring in a such that aθ = a′; in this case, as easily seen, a is a variant of a′ as well.

Lemma 2

1. if a ∈ L and a′ is a variant of a, then a′ ∈ L.

2. if (a • b)θ is defined, then aθ and bθ are also defined.

Proof. (1) is easily shown. (2) follows from (*) in the proof of Lemma 1.

4 Sequent Calculus Lq

In this section we shall define sequent calculus Lq. Lq is based on the product-free Lambek
Calculus, enriched with Moortgat’s scoping operator (⇑) ([Moo88], [Moo91]) and quantifiers (∀,
∃). In addition, legal λpDRS terms, called labels in the rest of this paper, are attached to syntactic
categories. Thus, our calculus Lq may be understood as a sort of labelled sequent calculi. One
of the striking features of our calculus is that the (categorial) quantifiers bind reference marker
variables occurring in labels. The cut elimination theorem holds for Lq (Theorem 1).

Definition 11 (Syntactic Categories)

1. Basic syntactic categories(Bas). Our basic categories are s, np, n, txt and their predicational
counterparts; i.e. if p ∈ {s, np, n, txt}, k ≥ 0 and u1, . . . ,uk are RMs, then p(u1, . . . ,uk) ∈
Bas.

2. Quantifier-free syntactic categories(Qf).
Qf ::= Bas | Qf\Qf | Qf/Qf | Qf ⇑ Qf .

3. Syntactic categories(Cat).
A ∈ Cat if A is of the form Q1x1 · · ·QnxnB where B ∈ Qf , Qi ∈ {∀, ∃}, xi ∈ U(the set of
marker variables) for 1 ≤ i ≤ n, and xi 	≡ xj for i 	= j.
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Remark 1
1. In this paper we do not make use of predicational categories, thus we only use s, np, n, txt
as basic categories. However, predicational categories are useful to represent feature structures
and some grammatical constraints, hence we also include predicational categories in the formal
definition of syntactic categories.

2. In the present formalism, syntactic categories are always in prenex form, i.e., quantifiers do not
occur inside propositional connectives (\, /, ⇑). This is because our quantifiers may bind marker
variables occurring in labels, so if we allowed nested occurrences of quantifiers, we would have no
way to determine the scopes of quantifiers in labels.

To each syntactic category is assigned a semantic type of λpDRS, as follows;

Definition 12 (type) A function type : Cat −→ T is defined as follows;

• type(s(u1, . . . ,uk)) = type(txt(u1, . . . ,uk)) = T ;

• type(np(u1, . . . ,uk)) = e; type(n(u1, . . . ,uk)) = e → T ;

• type(A\B) = type(B/A) = type(A) → type(B);

• type(A ⇑ B) = (type(A) → type(B)) → type(B);

• type(∀xA) = type(∃xA) = type(A).

Definition 13 (Labels, Declarative units, Sequents) An element of L is called a label. A declar-
ative unit (or a unit) is of the form a :A where A ∈ Cat and a is a label of type type(A).

Γ, ∆, Π, . . . range over finite lists of units (including the empty list).
A sequent is of the form Γ � a :A.

Definition 14 (Bound reference markers, Free reference markers) Let a[u] : Q1x1 . . . QnxnA be
a unit, where Qi ∈ {∀, ∃} and A quantifier-free. Then u is bound in the unit if u = xi for some i.
Otherwise u is free in the unit.

The inference rules of system Lq are given in Figure 1.

Remark 2
1. In \L, /L and ⇑ L, it is implicitly assumed that the rules are applicable only if b • a is defined.
In the same way, ∀L is applicable only if a[t/x] ∈ L. On the other hand, it is assured by Lemma
1(1), (2) and Lemma 2(1) that a • x in \R, /R and ⇑ L, λx • xa in ⇑ R, a[u/x] in ∃RL and ∀R
are always defined.

2. For existential quantification, we have only one inference rule in which the introductions of ∃
to the left hand side and to the right hand side are synchronized. It is not desirable since the
expressivity of the calculus is too restricted. Hence it would be much better if we could divide the
rule into the following two;

Γ1, a[u/x] :A[u/x], Γ2 � c :C
Γ1, a :∃xA, Γ2 � c :C ∃L

Γ � a[u/x] :A[u/x]
Γ � a :∃xA

∃R

But then we would have to give up the cut elimination theorem (Theorem 1) and the operational
completeness theorem (Theorem 2). Since these two theorems are so fundamental in our frame-
work, we adopt the synchronized rule (∃LR).

3. \R and /R are equivalent to the following \R′ and /R′ under the assumption x ∈ FV (b);

x :A, Γ � b :B
Γ � λx • b :A\B \R′

,
Γ, x :A � b :B

Γ � λx • b :B/A
/R′

,
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a :A � a :A
Identity

Γ � a :A ∆1, a :A, ∆2 � c :C
∆1, Γ, ∆2 � c :C Cut

Γ � a :A ∆1, b • a :B, ∆2 � c :C
∆1, Γ, b :A\B, ∆2 � c :C

\L x :A, Γ � a • x :B
Γ � a :A\B \R(∗)

Γ � a :A ∆1, b • a :B, ∆2 � c :C
∆1, b :B/A, Γ, ∆2 � c :C

/L
Γ, x :A � a • x :B

Γ � a :B/A
/R(∗)

Γ1, a[u/x] :A[u/x], Γ2 � b[u/y] :B[u/y]
Γ1, a :∃xA, Γ2 � b :∃yB

∃LR(∗∗)

Γ1, a[t/x] :A[t/x], Γ2 � c :C
Γ1, a :∀xA, Γ2 � c :C ∀L

Γ � a[u/x] :A[u/x]
Γ � a :∀xA

∀R(∗∗)

Γ1, x :A, Γ2 � a • x :B ∆1, b • a :B, ∆2 � c :C
∆1, Γ1, b :A ⇑ B, Γ2, ∆2 � c :C

⇑ L(∗) Γ � a :A
Γ � λx • xa :A ⇑ B

⇑ R(∗)

(*) x does not occur in the lower sequent freely.
(**) u does not occur in the lower sequent freely.

Figure 1: Inference Rules of System Lq

For one direction, since x ∈ FV (a • x) always hold because of the relevance of a, we have

x :A, Γ � a • x :B
Γ � λx • (a • x) :A\B,

and as easily seen, λx• (a•x) = a (by the confluency of lambda calculus). For the other direction,
since we are assuming x ∈ FV (b), we see b = (λx• b)•x. Hence \R′ is a particular instance of \R.
We adopt, however, \R and /R for the official inference rules of Lq in order to make the number
of assumptions least.

The fundamental theorem of Lq is

Theorem 1 (Cut Elimination Theorem for Lq) If S is provable in Lq, then S has a cut-free
proof in Lq.

The proof is given in Appendix.

5 Operational Semantics for Lq

The sequent calculus Lq provides a way of categorial deduction. However, the calculus itself says
very little about how to compute DRSs from a given list of lexical entries. In order to describe how
the computation goes, we shall give an operational semantics to Lq in terms of a transition system.
The operational semantics should specify how a declarative unit behaves in the correlation to other
declarative units. Therefore the transition relation should be defined over the set of configurations,
rather than the set of units. We shall prove the completeness of the operational semantics with
respect to Lq, which will establish a tight correspondence between logic (Lq sequent calculus)
and computation (the operational rules).
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Definition 15 (Meta-variables, Meta-substitutions) We assume that the set W =
⋃

t∈T Wt of
(typed) meta-variables are given which is disjoint with U and V . For each type t, a meta-variable
Xt

0 ∈ Wt is fixed and called an initial meta-variable (in the sequel we simply write X0 to denote
Xt

0 for any t). A meta-substitution τ is a list of the form [a1/X1, . . . , an/Xn], where Xi is a meta-
variable, ai is a label possibly containing some meta-variables2 and Xi and ai are of the same
type. For τ above, Dom(τ) denotes the set {X1, . . . , Xn}. The empty list is denoted by [], and
the concatenation of two lists τ1 and τ2 is denoted by τ1 ◦ τ2. Given a label (possibly containing
meta-variables) a and a meta-substitution τ , aτ is defined as follows;

1. if τ = [], then aτ = a;

2. if τ = [b/X ], then xτ = x; Xτ = b; Y τ = Y (Y 	≡ X), (cd)τ = (cτ)(dτ); (λx.c)τ = λx.(cτ);

3. if τ = ([b/X ] ◦ τ ′), then aτ = (a[b/X ])τ ′.

Finally we define a • τ by

a • τ = nf(aτ) if nf(aτ) ∈ L;
= undefined otherwise.

Note that, according to the above definition, substitution of a label a may result in an increase
in the number of bound λ-term variables; for example (λy.X) • [y/X ] = (λy.X)[y/X ] = λy.y.
Hence the meta-substitution should be distinguished from the substitution in the sense of λ-
calculus.

Definition 16 (Configuration) A configuration is either a pair of the form (Γ � X :A; τ) or a pair
of the form (suc; τ), where A is a quantifier-free category, X is a meta-variable of type type(A)
and τ is a meta-substitution. An initial configuration is a configuration of the form (Γ � X0 :A; []).

u occurs freely in a configuration (Γ � X : A; τ) if either it occurs freely in Γ � X : A or it
occurs in some a ∈ Range(τ).

Informally, configuration (Γ � X : A; τ) describes the current state of computation, where Γ
represents the state of units, A represents the goal category toward which the computation goes,
and τ represents the state of the store; it may be considered as a type-logical reconstruction of
the Cooper’s storage. Once an initial configuration (Γ0 � X0 :A0; []) reaches (suc; τ), X0 • τ will
give the result.

The operational semantics is given based on the transition rules (called operational rules) on
configurations in Figure 2. Those rules are basically obtained by reading the inference rules of
Lq in a bottom-up manner. We attached to each operational rule the name of the corresponding
inference rule of Lq. In Figure 2, for readability, irrelevant parts of configurations are omitted
as . . .; thus (. . . , a : A, . . . � X : C; τ) abbreviates (Γ1, a : A, Γ2 � X : C; τ) for some Γ1 and Γ2.
Formally;

Definition 17 We simultaneously define two binary relations −→ (one-step reduction) and −→→
(multiple-steps reduction) on configurations as the least relations satisfying the operational rules

given in Figure 2, where inference figure
S1, . . . , Sn

S (n ≤ 0) means that if statement Si holds for
every 1 ≤ i ≤ n, then statement S also holds. (In Figure 2, Φ1, Φ2, . . . stand for configurations.)

Definition 18 (Reachability relation �→) Let Γ be a list of units. We say that Γ reaches a : A
(Γ �→ a :A) if (Γ � X0 :A; []) −→→ (suc; τ) and a = X0 • τ .

Remark 3
1. (Zoom-In), (Receive-Left) and (Receive-Right) embody a sub-computation mechanism. For
instance, (Receive-Left) should be read as:

2The set of labels containing meta-variables is defined in a natural way.
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(Introduce-RM) (∃L)
u does not occur freely in (. . . , a :∃xA, . . . � X0 :C; τ)

(. . . , a :∃xA, . . . � X0 :C; τ) −→ (. . . , a[u/x] :A[u/x], . . . � X0 :C; τ)

(Catch-RM) (∀L)
a[t/x] ∈ L

(. . . , a :∀xA, . . . � X :C; τ) −→ (. . . , a[t/x] :A[t/x], . . . � X :C; τ)

(Hypothesize-Left) (\R)

(. . . � X :A\B; τ) −→ (x :A, . . . � Y :B; τ ◦ [λx.Y/X ])
(∗)(∗∗)

(Hypothesize-Right) (/R)

(. . . � X :B/A; τ) −→ (. . . , x :A � Y :B; τ ◦ [λx.Y/X ])
(∗)(∗∗)

(Receive-Left) (\L)
(Γ � Y :A; []) −→→ (suc; τ ′) a = Y • τ ′ b • a is defined Y 	≡ X0

(. . . , Γ, b :A\B, . . . � X :C; τ) −→ (. . . , b • a :B, . . . � X :C; τ)

(Receive-Right) (/L)
(Γ � Y :A; []) −→→ (suc; τ ′) a = Y • τ ′ b • a is defined Y 	≡ X0

(. . . , b :B/A, Γ, . . . � X :C; τ) −→ (. . . , b • a :B, . . . � X :C; τ)

(Zoom-In) (⇑ L)
(Γ1, x :A, Γ2 � Y :B; []) −→→ (suc; τ ′) a • x = Y • τ ′ b • a is defined Y 	≡ X0

(. . . , Γ1, b :A ⇑ B, Γ2, . . . � X :C; τ) −→ (. . . , b • a :B, . . . � X :C; τ)
(∗)

(No-Scope) (⇑ R)

(. . . � X :A ⇑ B; τ) −→ (. . . � Y :A; τ ◦ [λx.xY/X ])
(∗)(∗∗)

(Success) (Identity)

(a :A � X :A; τ) −→ (suc; τ ◦ [a/X ])

(One-Step) Φ1 −→ Φ2

Φ1 −→→ Φ2

(Reflexivity) Φ1 −→→ Φ1

(Transitivity) Φ1 −→→ Φ2 Φ2 −→→ Φ3

Φ1 −→→ Φ3

(*) x a fresh λ variable which does not occur in the antecedent configuration.
(**) Y 	∈ Dom(τ) ∪ {X} and Y 	≡ X0.

Figure 2: Operational Rules for Lq
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“Suppose that we have configuration of the form (∆1, Γ, b : A\B, ∆2 � X : C; τ).
Then we may invoke a sub-computation starting from (Γ � Y :A; []), and if it reaches
(suc; τ ′), a = Y • τ ′ and b • a is defined, then stop the sub-computation and continue
the main computation at configuration (∆1, b • a :B, ∆2 � X :C; τ)”.

2. Note that (Introduce-RM) is only applied to configurations with initial meta-variables X0.
This means that we can use (Introduce-RM) only in the main computation and only before
(Hypothesize-Left), (Hypothesize-Right) and (No-Scope) are used (because we choose a fresh
meta-variable to invoke a subcomputation or to use the above three rules).

3. As a special case of (Receive-Left), we have the one which has already stated in Section 2;

(∆1, a :A, b :A\B, ∆2 � X :C; τ) −→ (∆1, b • a :B, ∆2 � X :C; τ)
if b • a is defined;

because it is always true that (a : A � Y : A; []) −→ (suc; [a/Y ]) and Y [a/Y ] = a. Similarly we
have

(∆1, b :B/A, a :A, ∆2 � X :C; τ) −→ (∆1, b • a :B, ∆2 � X :C; τ)
if b • a is defined.

These derived rules are also referred to as (Receive-Left) and (Receive-Right), respectively.

4. We may add the following operational rule for ⇑, which is also referred to as (Zoom-In);

(. . . , b :A ⇑ B, . . . � X :B; τ) −→ (. . . , x :A, . . . � Y :B; τ ◦ [b(λx.Y )/X ])
where x is a fresh variable which does not occur in the antecedent configuration.

It can be shown that adding this rule does not change the reachability relation. The reason for
this is that it corresponds to the following special case of inference rule ⇑ L of Lq sequent calculus;

Γ1, x :A, Γ2 � a • x :B b • a :B � b • a :B
Γ1, b :A ⇑ B, Γ2 � b • a :B

⇑ L(∗)

In practice, we usually use this new rule rather than the original one because this rule captures
the original intention of scoping operator ⇑ more clearly.

The following theorem states the exact correspondence between the Lq inference rules and the
operational rules.

Theorem 2 (Completeness of Operational Semantics for Lq) Let A be a quantifier-free cat-
egory. Γ �→ a : A if and only if Γ � a : ∃x1 . . . ∃xnA is provable in Lq for some marker variables
x1 . . .xn.

The theorem is proved in Appendix. Here it should be emphasized that the proof relies on the
cut elimination theorem (Theorem 1) very crucially.

6 Examples

Having set up the calculus and investigated its formal properties, let us now turn to the exam-
ination of the usefulness and the expressivity of our calculus in practice. We shall show some
examples of DRS construction. A close look at the actual process of DRS construction reveals
several interesting aspects of our calculus. Our basic lexicon is given in Figure 3. Our list is,
however, incomplete, and we occasionally use lexical entries which are not found in the list.

The first example is concerned with the use of the scoping operator. It best illustrates how
the storage mechanism contributes to the DRS construction as a whole.
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Consider the sentence (16).

A student read every book.(16)

Let us write Γ0 to denote the list;

λPQ.(x; P (x); Q(x)) : ∃x(np ⇑ s)/n
student : n
read : (np\s)/np
λPQ.(x; P (x)) ⇒ Q(x) : ∃x(np ⇑ s)/n
book : n

We begin with initial configuration (Γ0 � X0 : s; []). Since (16) consists of a single sentence, we
may take s as the goal category (of course, txt would do as well). Then, the derivation in Figure
4 yields the following DRS (17) corresponding to a reading in which the object takes wide scope
over the subject;

(v; book(v)) ⇒ (u; student(u); read(v)(u)).(17)

For the moment, we shall focus our attention to the transition from (d) to (e) by (Zoom-In) in
Figure 43. Using box format, the transition may be written as follows;

(d)




λQ.(u; student(u); Q(u)) : np ⇑ s
read : (np\s)/np

λQ. v
book(v)

⇒ Q(v) : np ⇑ s
� X0 :s; []


 −→ (Zoom-In)

(e)


 λQ.(u; student(u); Q(u)) : np ⇑ s

read : (np\s)/np
x : np

� Y :s; [λQ. v
book(v)

⇒ Q(v) (λx.Y )/X0]




By (Zoom-In) the unit λQ. v
book(v)

⇒ Q(v) : np ⇑ s sends its content (label) into the store

(meta-substitution) and then becomes x : np. Correspondingly the store changes its state from

the empty [] to [λQ. v
book(v)

⇒ Q(v) (λx.Y )/X0]. It looks as if we entered the box Q(v) by

(Zoom-In) while the outside DRS were kept in the store. Indeed, it may be seen that the rest of
computation is devoted to the construction of Q, and hence it proceeds completely in that box.
It may also be observed that it is (Success) rule that allows us to leave the box. In this way, the
scoping operator may be regarded as providing the box-entering mechanism from the viewpoint
of DRT. It should be emphasized that it is our computational interpretation of the connective
(operational rules with configurations) that makes it possible to view the operator from this new
perspective.

Using the notion of reachability, the result of computation may be described as

Γ0 �→ (v; book(v)) ⇒ (u; student(u); read(v)(u)) : s.(18)

Therefore, by Theorem 2,

Γ0 � (v; book(v)) ⇒ (u; student(u); read(v)(u)) : ∃x1 . . . ∃xns(19)

is provable for some x1, . . . ,xn in Lq. It is easily observed from the proof of Theorem 2 (in
Appendix) that what we have actually is

Γ0 � (v; book(v)) ⇒ (u; student(u); read(v)(u)) : ∃v∃us.(20)

We also obtain another reading of (16)

u; student(u); (v; book(v)) ⇒ (read(v)(u))(21)
3In the sequel, we only use (Zoom-In) in the extended sense of Remark 3(4) in the previous section.
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a �→ λPQ.(x; P (x); Q(x)) :∃x(np ⇑ s)/n
every �→ λPQ.(x; P (x)) ⇒ Q(x) :∃x(np ⇑ s)/n
no �→ λPQ.¬(x; P (x); Q(x)) :∃x(np ⇑ s)/n
the �→ λPQ(x;x

.
=y; P (x); Q(x)) :∀y∃x(np ⇑ s)/n

another �→ λPQ(x;x 	= y; P (x); Q(x)) :∀y∃x(np ⇑ s)/n
he �→ x :∀xnp
him �→ x :∀xnp
his �→ λPQ.(x; poss(y,x); P (x); Q(x)) :∀y∃x(np ⇑ s)/n
Bill �→ b :np
who �→ λPQv.(Q(v); P (v)) :(n\n)/(np\s)
who �→ λPQv.(Q(v); P (v)) :(n\n)/(s/np)
man �→ man :n
smiles �→ smiles :np\s
loves �→ loves :(np\s)/np
doesn’t �→ λPv.¬(P (v)) :(np\s)/(np\s)
if �→ λpq.(p ⇒ q) :(s/s)/s
. �→ λpq.(p; q) :s\(txt/s)
. �→ λpq.(p; q) :txt\(txt/s)
. �→ λp.p :s\txt
and �→ λpq.(p; q) :s\(s/s)
and �→ λPQv.(P (v); Q(v)) :(s/np)\((s/np)/(s/np))
and �→ λPQv.(P (v); Q(v)) :(np\s)\((np\s)/(np\s))
or �→ λpq.(p ∨ q) :s\(s/s)
or �→ λPQv.(P (v)) ∨ (Q(v)) :(s/np)\((s/np)/(s/np))
or �→ λPQv.(P (v)) ∨ (Q(v)) :(np\s)\((np\s)/(np\s))

Figure 3: Basic Lexicon
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(a)




λPQ.(x; P (x); Q(x)) : ∃x(np ⇑ s)/n

student : n
read : (np\s)/np
λPQ.(x; P (x)) ⇒ Q(x) : ∃x(np ⇑ s)/n
book : n

� X0 :s; []


 −→ (Introduce-RM)

(b)




λPQ.(u; P (u); Q(u)) : (np ⇑ s)/n
student : n
read : (np\s)/np
λPQ.(x; P (x)) ⇒ Q(x) : ∃x(np ⇑ s)/n

book : n

� X0 :s; []


 −→ (Introduce-RM)

(c)




λPQ.(u; P (u); Q(u)) : (np ⇑ s)/n

student : n
read : (np\s)/np
λPQ.(v; P (v)) ⇒ Q(v) : (np ⇑ s)/n

book : n

� X0 :s; []


 −→→ (Receive-Right)×2

(d)


 λQ.(u; student(u); Q(u)) : np ⇑ s

read : (np\s)/np
λQ.(v; book(v)) ⇒ Q(v) : np ⇑ s

� X0 :s; []


 −→ (Zoom-In)

(e)


 λQ.(u; student(u); Q(u)) : np ⇑ s

read : (np\s)/np
x : np

� Y :s; [λQ.(v; book(v)) ⇒ Q(v)(λx.Y )/X0]




−→ (Zoom-In)

(f)


 y : np

read : (np\s)/np

x : np
� Z :s;

[
λQ.(v; book(v)) ⇒ Q(v)(λx.Y )/X0

λQ.(u; student(u); Q(u))(λy.Z)/Y

]
 −→ (Receive-Right)

(g)
(

y : np
read(x) : np\s � Z :s;

[
λQ.(v; book(v)) ⇒ Q(v)(λx.Y )/X0

λQ.(u; student(u); Q(u))(λy.Z)/Y

])
−→ (Receive-Left)

(h)
(

read(x)(y) : s � Z :s;
[

λQ.(v; book(v)) ⇒ Q(v)(λx.Y )/X0

λQ.(u; student(u); Q(u))(λy.Z)/Y

])
−→ (Success)

(i)


suc;


 λQ.(v; book(v)) ⇒ Q(v)(λx.Y )/X0

λQ.(u; student(u); Q(u))(λy.Z)/Y
read(x)(y)/Z






Let τ be the meta-substitution in the final configuratin. Then,

X0τ = λQ.(v; book(v)) ⇒ Q(v)(λx.λQ.(u; student(u); Q(u))(λy.read(x)(y))
X0 • τ = nf(X0τ)

= (v; book(v)) ⇒ (u; student(u); read(v)(u)).

Figure 4: DRS construction for (16)
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by changing the order of two applications of (Zoom-In) rule in the above derivation.

We restricted our language of labels to strict DRSs, rather than proto-DRSs or proper DRSs
of [vEK97]. Now we shall see the importance of this restriction through the following examples.
They show that our way of combining DRT with type-logical grammar is really fruitful, not only
for DRT, but also for type-logical grammar; the former provides a theory of indefinites, which has
not been developed very well in the latter. Consider sentences (22) and (23).

Every man walks or talks.(22)

A man walks and talks.(23)

(22) has two readings, depending on whether the disjunction takes wide-scope over the universal
quantifier or not. On the other hand, the reading of (23) according to which the conjunction takes
wide-scope over the indefinite (i.e., there are two man involved, one walks and the other talks) is
infelicitous, and impossible if the sentence is read with an accent on ‘A’. Hence it may safely be
assumed that (23) has only one reading usually.

It is difficult to explain the difference between (22) and (23) in the framework of the standard
type-logical grammar, because traditionally indefinites are interpreted by means of existential
quantifiers, and the treatment of ‘a’ and that of ‘every’ are much alike (cf. [Mor94]). On the other
hand, our calculus clearly explains the difference between (22) and (23) because DRT provides a
proper way to treat indefinites. Here the non-destructiveness condition is crucial. For (22), our
Lq correctly computes the following two DRSs;

(u; man(u)) ⇒ (walks(u) ∨ talks(u))

((u; man(u)) ⇒ walks(u)) ∨ ((u; man(u)) ⇒ talks(u))

The first DRS corresponds to the reading in which ‘every’ takes wide scope over ‘or’, while the
second corresponds to one in which ‘or’ takes wide scope over ‘every’.

For (23), along the same lines, the following two might be expected;

u; man(u); walks(u); talks(u)

u; man(u); walks(u);u; man(u); talks(u)

The first one is perfectly a strict DRS. Hence we have this reading. But the second one
violates the non-destructiveness condition, hence it cannot be regarded as a strict DRS, therefore
we (successfully) rule out the reading in which ‘and’ takes wide scope over ‘a’.

In order to see another importance of the non-destructiveness condition, consider the following
sentence;

Bill and Sue own a donkey.(24)

(24) has two readings, one collective and the other distributive. For the present, we shall confine
our attention to its distributive reading. According to Muskens[Mus96], the reading obtains the
following DRS in his extended sense;

[u3|donkey u3; Bill owns u3]; [u3|donkey u3; Sue owns u3](25)

which may be written in our notation as

u3; donkey(u3); owns(u3)(b);u3; donkey(u3); owns(u3)(s).(26)

Muskens claims that (25) is a correct DRS, which gives the right predictions about truth conditions
and anaphora. However, (25) does not give the right contextual effect, since if (25) were correct
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the latter occurrence of u3, which represents the donkey Sue owns, would be accessible from the
succeeding discourse, but it obviously is not the case:

Bill and Sue own a donkey. It is pretty.(27)

In (27), if we read the first sentence distributively, ‘a donkey’ cannot antecede ‘it’: Neither Bill’s
donkey nor Sue’s donkey can be referred to by ‘it’ in the second sentence.

In our framework, on the other hand, there is no difficulty. (26) is not a strict DRS, because
it violates the non-destructiveness condition. The distributive reading of (24) should be recovered
by means of mechanisms dealing with plurals (See the next section).

Finally, let us see that our calculus embodies certain sentential grammar principles very nat-
urally. The grammar of English does not allow a circular coindexation. Consider the following
noun phrase with the indicated indices;

*[her1 mother]1(28)

It may be regarded as a special case of i-within-i effects. Our framework explains why the
above coindexation fails very naturally; We have

her �→ λPQ.(x; P (y,x); Q(x)) : ∀y∃x(np ⇑ s)/(n/np)
mother �→ mother : n/np4

as the lexical entries for ‘her’ and ‘mother’. Observe that, in every attempt to interpret (28), y is
instantiated by the RM to which ‘her’ refers, while x is instantiated by a new RM which represents
the entity the whole noun phrase denotes. Since ∀y precedes ∃x, (Catch-RM) for y should take
place before (Introduce-RM) for x, and since the latter operational rule always introduces a fresh
RM, the RM introduced cannot be identical with the RM to which y is resolved. Hence x and y
are always taken to be distinct.

More interestingly, our Lq correctly predicts that the coindexations in (29) and (30) are pos-
sible, while the one in (31) is not (unless a RM which represents either ‘his wife’ or ‘her husband’
has been introduced in the context independently of sentence (31));

Mary1 loves her1 husband.(29)

Her1 husband loves Mary1.(30)

*[His1 wife]2 loves [her2 husband]1.(31)

So far, so good. But is it possible to extend this explanation into the general theory of i-within-i
effects? More generally, is it possible to develop a categorial binding theory in our framework?
The author has made some attempts, but they are still work in progress. (For other categorial
approach to i-within-i effects, see [Jac94].)

7 Plural Anaphora: An Illustration

It is not always the case that an antecedent discourse referent of a pronoun is represented by
a single lexical entry. A typical example is the case of plural anaphora. In order to make an
appropriate anaphoric link between a plural pronoun and its antecedent discourse referent, we
sometimes have to create a new RM from RMs and DRSs which have been already constructed. It
is not so easy to do so in the existing frameworks of compositional DRT, such as [Zee89], [Mus94]
and [vEK97], because they assume that anaphoric links should be established in advance of DRS
construction. On the other hand, we do not make such assumptions, hence it is realistic to consider

4Since ‘mother’ is a relational noun, we have to assign category n/np, rather than n, to it. Correspondingly, we
need to assign to the possessive pronoun a lexical entry different from that given in Figure 3.
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Γ, a : !A, b :B, ∆ � c :C
Γ, b :B, a : !A, ∆ � c :C !Er

Γ, b :B, a : !A, ∆ � c :C
Γ, a : !A, b :B, ∆ � c :C !El

Γ, a : !A, a : !A, ∆ � c :C
Γ, a : !A, ∆ � c :C !C

Γ, ∆ � c :C
Γ, a : !A, ∆ � c :C !W

Γ, a :A, ∆ � c :C
Γ, a : !A, ∆ � c :C !D !Γ � c :C

!Γ � c : !C !R

Figure 5: Inference Rules for Linear Logic Modality

(Move-Left) (. . . , b :B, a : !A, . . . � X :C; τ) −→ (. . . , a : !A, b :B, . . . � X :C; τ);

(Move-Right) (. . . , a : !A, b :B, . . . � X :C; τ) −→ (. . . , b :B, a : !A, . . . � X :C; τ);

(Copy) (. . . , a : !A, . . . � X :C; τ) −→ (. . . , a : !A, a : !A, . . . � X :C; τ);

(Touch-Down) (. . . , a : !A, . . . � X :C; τ) −→ (. . . , a :A, . . . � X :C; τ);

(Suicide) (. . . , a : !A, . . . � X :C; τ) −→ (. . . , . . . � X :C; τ).

Figure 6: Operational Rules for Linear Logic Modality

such a RM-creation mechanism in our framework. In this section, we shall illustrate how to extend
our system to deal with plural anaphora.

In [KR93] suitable antecedent discourse referents of plural pronouns are created essentially by
means of two principles, that is, Summation and Abstraction. It is not our aim to examine whether
these principles are appropriate or not. Our aim is rather to show that these rules are basically
available in our type-logical framework, so that it makes sense to discuss the appropriateness of
these principles in the context of type-logical grammar5 These mechanisms are represented as a
sort of reactive processes, called daemons after the daemon-processes in Unix systems. Daemons
should be reusable as many times as we like (including 0 time). To express the reusability of
daemons we exploit the modality of (noncommutative) linear logic (see [Abr90], [Gir95]).

First we extend our categories so that !A is also a category if A is a category in the sense
of Section 4 (i.e. if A does not contain a modality). The inference rules for the modality are
given in Figure 5, and the operational rules in Figure 6 (we assume that for each configuration
(Γ � X : C; τ), C should be modality-free). The cut-elimination theorem (Theorem 1) and the
operational completeness theorem (Theorem 2) extend to this new calculus without any difficulty.

We extend our lexicon by adding those entries in Figure 7. Note that daemons are included
in the lexicon as if they were lexical entries. Three constants ⊕, Σ : ( ) and ∈ are newly intro-
duced, which designate summation operator, abstraction operator and set-membership relation,
respectively6. The intended meanings of these constants are found in [KR93].

Remark 4 For Σ operator, we make the following stipulation; expression Σu : (D) is legal only
if D is a duplex condition ([KR93], [vEK97]) of the form Qx(D1)(D2) where Q is a generalized

5We say ‘basically’ because we ignore the intricacies in the treatment of plurals (see, e.g., [KR93]).
6We assume that the types of these constants are naturally understood and the definitions of pDRSs, strict

DRSs λpDRSs and legal λpDRSs are suitably modified.

they �→ x : ∀xnp
and �→ λxyP.(z; z

.
=x ⊕ y; P (z)) : ∃xnp\((s/(np\s))/np)

Summation Daemon �→ λp.(z; z
.
=x ⊕ y; p) : !∀xy∃zs/s

Abstraction Daemon �→ λp.(p;y;y
.
=Σx : (p)) : !∀x∃ys/s

Distribution Daemon �→ λxP.(y;y ∈ x) ⇒ P (y) : !∃ynp\(np ⇑ s)

Figure 7: Lexicon (and Daemons) for Plurals
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quantifier, and u ∈ intro(D1) ∪ intro(D2) ∪ {x}. Otherwise Σu : (D) is illegal and a λpDRS
containing Σu : (D) is excluded from the set of labels L.

When Σu : (D) is legal, it is (semantically) interpreted as

Σu

intro(D1) ∪ intro(D2)

cond(D1) ∪ cond(D2)

in the framework of [KR93]. It might not be an elegant solution, but the point is that at least it
works!

In order to show the use of Summation Daemon, we shall consider the following example;

Mary hit John. He hit Bill. They cried.(32)

Let us confine our attention to the reading according to which the antecedent of ‘They’ is
the set which consists of Mary, John and Bill. In order to get a suitable RM, we need to use
Summation Daemon. Hence we put Summation Daemon into the initial configuration. It is
irrelevant where to put the daemon in the configuration, because it may move freely by (Move-
Left) and (Move-Right). In the derivation, we make two copies of Summation Daemon, then by
using (Touch-Down), (Catch-RM) and (Introduce-RM) several times, produce the following two
equations;

u = j ⊕ m
v = u⊕ b

Here, RM j represents John, m Mary, and b Bill. RM v serves as the suitable antecedent of
‘They’. Therefore, we obtain the intended DRS for (32);

hit(j)(m); hit(b)(j);u;u = j⊕ m;v;v = u⊕ b; cried(v) :txt.(33)

The whole process of the DRS construction is depicted in Figure 8.
In Section 6, we have explained that the distributive reading of

(24) Bill and Sue own a donkey.

should not be represented as

(26) u3; donkey(u3); owns(u3)(b);u3; donkey(u3); owns(u3)(s).

because it does not reflect the right contextual effect, and that our framework successfully rule
out it by the non-destructiveness criterion. The proper construction for the distributive reading
of (24) makes use of the non-boolean conjunction ‘and’ and Distribution Daemon, and yields the
following DRS;

u;u
.
=b ⊕ s; (v;v ∈ u) ⇒ (w; donkey(w); owns(w)(v))(34)

It should be observed that RM w is classically bound, hence that it is not accessible from the
subsequent discourse. In this respect our system works very well.

There still remains a problem, however. The following sentence has a distributive reading, too;

Bill likes and Sue dislikes a class.(35)

(i.e., there are two classes involved, one Bill likes and the other Sue dislikes.) But we have no way
to construct the right DRS representing the reading, because here Distribution Daemon does not
do. Probably some other mechanisms are needed to handle sentences like above.
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


j :np, hit : (np\s)/np,m :np, λpq.(p; q) :s\(txt/s)
x :∀xnp, hit : (np\s)/np,b :np, λpq.(p; q) :txt\(txt/s)
x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→→


 λq.(hit(j)(m); hit(b)(j); q) :txt/s

x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→ (Copy)




λq.(hit(j)(m); hit(b)(j); q) :txt/s
x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→→ (Move-Left)×2




λq.(hit(j)(m); hit(b)(j); q) :txt/s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→ (Touch-Down)




λq.(hit(j)(m); hit(b)(j); q) :txt/s
λp.(z; z = x ⊕ y; p) :∀xy∃zs/s

x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→→ (Catch-RM)×2, (Introduce-RM)




λq.(hit(j)(m); hit(b)(j); q) :txt/s
λp.(u;u = j ⊕ m; p) :s/s
x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→→ (Copy),(Move-Left)×2




λq.(hit(j)(m); hit(b)(j); q) :txt/s
λp.(u;u = j ⊕ m; p) :s/s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→→




λq.(hit(j)(m); hit(b)(j); q) :txt/s
λp.(u;u = j ⊕ m; p) :s/s
λp.(v;v = u⊕ b; p) :s/s
x :∀xnp, cried :np\s
λp.(z; z = x ⊕ y; p) : !∀xy∃zs/s

� X0 :txt; []


 −→ (Suicide)




λq.(hit(j)(m); hit(b)(j); q) :txt/s
λp.(u;u = j ⊕ m; p) :s/s
λp.(v;v = u⊕ b; p) :s/s
x :∀xnp, cried :np\s

� X0 :txt; []


 −→ (Catch-RM)




λq.(hit(j)(m); hit(b)(j); q) :txt/s
λp.(u;u = j ⊕ m; p) :s/s
λp.(v;v = u⊕ b; p) :s/s
v :np, cried :np\s

� X0 :txt; []


 −→→

(
hit(j)(m); hit(b)(j);u;u = j ⊕ m;v;v = u ⊕ b; cried(v) :txt � X0 :txt; []

)
−→ (Success)

(suc; [hit(j)(m); hit(b)(j);u;u = j⊕ m;v;v = u⊕ b; cried(v)/X0])

Figure 8: DRS construction for (32)
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8 Conclusion and Future Work

In this paper, we have proposed a new type-logical framework of DRT, in which anaphoric linking
takes place during the DRS construction. Our framework is based on sequent calculus proof
search of labelled Lambek calculus with quantifier types (Lq). Our attempt is distinguished from
the existing ones in that it does not assume that anaphoric coindexation is given in advance of
DRS construction. In particular, it allows us to represent mechanisms creating new RMs such as
Summation and Abstraction type-logically.

The fact that our calculus does not admit so-called Curry-Howard correspondence (see, e.g.,
[vB91]) might be regarded as a serious drawback of our proposal. The Curry-Howard correspon-
dence reveals a deep relationship between proofs and meanings (readings) in view of categorial
type logics. It seems that the practical importance of the correspondence essentially lies in the
following fact: in logics having the correspondence, a proof construction procedure for those logics
automatically offers a meaning composition mechanism. Although our calculus does not admit
such a correspondence due to the unusual use of quantifier types, we compensated the lack of
the correspondence by giving our logic a concrete computational interpretation in terms of oper-
ational semantics. The semantics allows us to explicitly describe how to compute the meaning
for a given text, and Theorem 2 assures that the computation still retains a tight correspondence
with the logic. Hence we claim that, at least from a practical point of view, the absence of the
Curry-Howard correspondence is not a serious difficulty of our framework.

A related question that might be raised is whether our framework can be safely said to be
compositional. It is surely true that the use of quantification over labels and the use of daemon
processes make it less clear in what sense our framework is compositional. However, at least we
can safely claim that our framework is based on a bottom-up mechanism which computes the whole
meaning (DRS) of a text from its components’ meanings by the inference rules of Lambek type
logical calculus.

We leave the following problems for future work;

Process Equivalence As suggested in the introduction, each unit (in particular, a lexical entry)
can be seen as a process in the sense of concurrent process calculi ([Hoa85], [Mil89]). Then
a natural question arises: what is the identity of a process? In other word, what makes two
processes A and B identical? It has been a central problem in the area of concurrent process
calculi to establish a suitable notion of process equivalence. It is important for our work as
well, because a proper equivalence notion allows us to translate a complex lexical entry into
a simpler one. One might expect the mutual derivability (A � B and B � A) would provide
such an equivalence. However, it should be carefully examined (cf. [KY93]).

Semantics Is it possible to give a suitable (model-theoretic) semantics to Lq? Apparently, we
could give our labels (DRSs) a semantics in terms of dynamic semantics (see, e.g., [vEK97])
could give our categories a monoid-based or relational semantics (see [vB91]), (but, of course,
completeness is another problem). However, in our setting, labels and categories are mutually
interacting, hence a separate treatment of labels and categories would miss the point. It
would be interesting if we could describe this intricate situation by purely semantic means.

Application of scoping (⇑) in discourse So far the use of the scoping operator ⇑ has been
limited to inter-sentential uses. Since the operator provides interesting mechanisms of box-
entering (Zoom-In) and box-leaving (Success) in terms of DRT, further applications may be
expected. Using categories something like A ⇑ txt, we can freely go into and out of various
discourse boxes. Are there any interesting applications?

Exploring Daemonism further We have used several daemons, hence our standpoint may be
called Daemonism. It should be contrasted with the Radical Lexicalism of usual type-logical
grammars (but [Car98] uses mechanisms similar to ours to deal with plurals). Our framework
is more flexible in that we are not confined to the strict function-argument structure, and
still remain in the realm of logic. Daemons are quite useful, and it is expected that other
useful daemons will be found ultimately.
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Skolem functions representing anaphora dependency Our system is, as it stands, not very
efficient due to the blind-instantiation nature of (Catch-RM). Hence it is natural to incor-
porate Skolemization mechanism into our setting, something like

a[u/x] :A[u/x], Γ � C

a :∀xA[x], Γ � c :C
u : fresh

a[f(u1, . . . ,un)/x] :A[f(u1, . . . ,un)/x], Γ � C

a :∃xA[x], Γ � c :C

where f is a new function symbol and u1, . . . ,un are all RMs occurring in the lower sequent.

Beside the efficiency problem, pre-unified units themselves are of particular interest; since
our quantifiers bind RMs, Skolem functions would represent constraints on RM-resolution,
i.e., anaphora dependency. Hence, if Skolemization technique is successfully implemented, it
would naturally lead us to a type-logical theory of underspecification (for the Skolemization
technique in resource logics, see, e.g., [LS94]).
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Appendix: Proof of Theorem 1 and Theorem 2

• Proof of Theorem 1 (Cut Elimination Theorem for Lq)

For a proof π of Lq, let len(π) be the number of occurrences of the inference rules in π (an axiom
counts as inference). Without mentioning, we will frequently use the fact that nf(nf(MN)[K/x]) =
nf(nf(M [K/x])nf(N [K/x])), so (M •N)[K/ • x] = (M [K/ • x]) • (N [K/ • x]) if either side of the
equation is defined (in L). First we prove several lemmas.

Lemma 3 Let Γ � c : B be a sequent where B is quantifier-free, z be a λ variable which occurs
only in quantifier-free units (i.e. units whose formula-parts are quantifier-free) in Γ � c : B,
and d be a label such that c[d/ • z] ∈ L. Suppose that Γ � c : B has a cut-free proof π. Then
Γ[d/ • z] � c[d/ • z] :B has a cut-free proof π′ such that len(π′) = len(π).

Proof. By induction on the length of the proof π.
(Case 1) π consists of an axiom Identity; Trivial.

(Case 2) The last inference of π is \R of the form;

x :A, Γ � a • x :B
Γ � a :A\B \R

Choose a λ variable x′ such that x′ 	∈ FV (d), x′ 	= z and x′ does not occur in the lower sequent.
Then, (a • x)[x′/ •x] ≡ a •x′ since x 	∈ FV (a), and a •x′ ∈ L by Lemma 1(1), so by the induction
hypothesis x′ : A, Γ � a • x′ : B has a cut-free proof π0 such that len(π0) = len(π) − 1. Since we
are assuming a[d/z] ∈ L, (a • x′)[d/ • z] ≡ (a[d/ • z]) • x′ ∈ L, by Lemma 1(1). Hence, again
by the induction hypothesis, x′ : A, Γ[d/ • z] � a[d/ • z] • x′ : B has a cut-free proof π1 such that
len(π1) = len(π)− 1. provable. Therefore we have a cut-free proof π′ of Γ[d/ • z] � a[d/ • z] :A\B
such that len(π′) = len(π).

(Case 3) The last inference of π is \L of the form;

Γ � a :A ∆1, b • a :B, ∆2 � c :C
∆1, Γ, b :A\B, ∆2 � c :C

\L

Assume c[d/ • z] ∈ L. Then ∆1[d/ • z], (b • a)[d/ • z] : B, ∆2[d/ • z] � c[d/ • z] : C is cut-free
provable by the induction hypothesis. This means (b[d/ • z]) • (a[d/ • z]) ≡ (b • a)[d/ • z] ∈ L, and
a[d/ • z] ∈ L by Lemma 1(3). Therefore by the induction hypothesis, Γ[d/ • z] � a[d/ • z] : A is
also cut-free provable. Thus our claim holds by \L.

(Case 4) The last inference of π is /L or /R; Similar to the above cases.

(Case 5) The last inference of π is ∃LR or ∀L or ∀R; Immediate from our assumption that the
succedent category B is quantifier-free and z occurs only in quantifier-free units.

(Case 6) The last inference of π is ⇑ L of the form;

Γ1, x :A, Γ2 � a • x :B ∆1, b • a :B, ∆2 � c :C
∆1, Γ1, b :A ⇑ B, Γ2, ∆2 � c :C

⇑ L(∗)

Assume c[d/ • z] ∈ L. Then ∆1[d/ • z], (b • a)[d/ • z] : B, ∆2[d/ • z] � c[d/ • z] : C is cut-free
provable by the induction hypothesis. This means (b[d/ • z]) • (a[d/ • z]) ≡ (b • a)[d/ • z] ∈ L, and
a[d/ • z] is in L by Lemma 1(3).

We may safely assume that x 	∈ FV (d) and x 	= z (otherwise replace x with x′ satisfying the
condition as in (Case 2)). Then (a•x)[d/ • z] ≡ a[d/ • z]•x ∈ L by Lemma 1(1). Therefore by the
induction hypothesis, Γ1[d/ • z], x : A, Γ2[d/bulletz] � a[d/ • z] : B is also cut-free provable. Thus
our claim holds by \L.
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Lemma 4 Let Γ � c :B a sequent and and θ be a marker renaming such that Dom(θ)∪Range(θ)
is disjoint with the set of bound marker variables occurring in Γ � c :B. Suppose that cθ ∈ L. If
Γ � c :B has a cut-free proof π, then Γθ � cθ :Bθ has a cut-free proof π′ such that len(π′) = len(π).

Proof. By induction on the length of the proof π.

(Case 1) π consists of an axiom Identity; Trivial.

(Case 2) The last inference of π is \L, \R, /L, /R, or ⇑ L; The proof is similar to that of Lemma
3 (this time use Lemma 2 instead of Lemma 1).

(Case 3) The last inference of π is ∀R of the form;

Γ � a[u/x] :A[u/x]
Γ � a :∀xA

∀R

Choose a RM u′ such that u′ 	∈ Range(θ) ∪ Dom(θ) and u′ does not occur in the lower sequent.
Since a[u/x][u′/u] ≡ a[u′/x] ∈ L by Lemma 2(1), we have a cut-free proof π′ of Γ � a[u′/x] :
A[u′/x] such that len(π′) = len(π)−1. Now a[u′/x]θ ≡ aθ[u′/x] and A[u′/x]θ ≡ Aθ[u′/x] by our
choice of u′ and the assumption x 	∈ Dom(θ) ∪ Range(θ), and aθ[u′/x] ∈ L since it is a variant
of aθ (by Lemma 2(1)). Hence, applying the induction hypothesis, we have a cut-free proof of
Γθ � aθ[u′/x] :Aθ[u′/x]. Therefore our claim holds by ∀R.

(Case 4) The last inference of π is ∀L; Immediate.

(Case 5) The last inference of π is ∃LR; Similar to (Case 4).

Lemma 5 Let π be a proof
π1. . .. . .. . ..

Γ � a :A

π2. . .. . .. . ..
∆1, a :A, ∆2 � c :C

∆1, Γ, ∆2 � c :C Cut

where π1 and π2 are cut-free. Then ∆1, Γ, ∆2 � c :C has a cut-free provable π̃ such that len(π̃) <
len(π).

Proof. By induction on length(π1) + length(π2).

(Case 1) π1 consists of an axiom a : A � a : A; In this case π2 itself is a cut-free proof of
∆1, Γ, ∆2 � c :C. Clearly len(π2) < len(π).

(Case 2) π2 consists of an axiom a :A � a :A; Similar to (Case 1).

In what follows we assume that len(π1) > 1 and len(π2) > 1.

(Case 3) a :A is not the principal formula of the last inference of π2 (i.e., the upper sequent of the
inference also contains a :A); We describe only a few cases.
Case(3-1) The last inference of π2 is \R; in this case π is the form

π1. . .. . .. . ..
Γ � a :A

π′
2. . .. . .. . ..

x :B, ∆1, a :A, ∆2 � b • x :C
∆1, a :A, ∆2 � b :B\C \R

∆1, Γ, ∆2 � b :B\C
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We may assume that x does not occur in Γ (otherwise replace x with a fresh variable using Lemma
3). Construct the following proof;

π1. . .. . .. . ..
Γ � a :A

π′
2. . .. . .. . ..

x :B, ∆1, a :A, ∆2 � b • x :C
x :B, ∆1, Γ, ∆2 � b • x :C

By the induction hypothesis, the lower sequent has a cut-free proof the length of which is less than
len(π)− 1. Hence, ∆1, Γ, ∆2 � b :B\C has a cut-free proof the length of which is less than len(π).

(Case 3-2) The last inference of π2 is ∀R; Similar to (Case 3-1), but this time use Lemma 4 instead
of Lemma 3.

(Case 4) a :A is not the principal formula of the last inference of π1; Similar to (Case 3).

Henceforth we assume that a :A is a principal formula of the last inferences of π1 and π2.

(Case 5) A is of the form B\D; then the last part of π is of the form

π′
1. . .. . .. . ..

x :B, Γ � a • x :D
Γ � a :B\D

π′
21. . .. . .. . ..

Π � b :B

π′
22. . .. . .. . ..

∆1, a • b :D, ∆2 � c :C
∆1, Π, a :B\D, ∆2 � c :C

∆1, Π, Γ, ∆2 � c :C

Since (a • x)[b/ • x] ≡ a • b ∈ L, we have a cut-free proof π′
1 of b : B, Γ � a • b : D such that

len(π′
1) = len(π′

1) by Lemma 3. Hence Π, Γ � a • b :D has proof

π′
21. . .. . .. . ..

Π � b :B

π′
1. . .. . .. . ..

b :B, Γ � a • b :D
Π, Γ � a • b :D .

Since len(π′
2)+ len(π′

1) < len(π1)+ len(π2), we may apply the induction hypothesis, and therefore
we have a cut-free proof π̃ of Π, Γ � a • b : D such that len(π̃) < len(π′

21 + len(π′
1) + 1. Hence

∆1, Π, Γ, ∆2 � c : has proof

π̃. . .. . .. . ..
Π, Γ � a • b :D

π′
22. . .. . .. . ..

∆1, a • b :D, ∆2 � c :C
∆1, Π, Γ, ∆2 � c :C

and len(π̃) + len(π′
22) < len(π′

21) + len(π′
1) + 1 + len(π′

22) < len(π1) + len(π2), we may apply the
induction hypothesis and we have a cut-free proof of ∆1, Π, Γ, ∆2 � c : the length of which is less
than len(π̃) + len(π′

22) < len(π).

(Case 6) A is of the form ∃xB; then the last part of π is of the form

π′
1. . .. . .. . ..

a[u/x] :C[u/x], Γ � b[u/x] :B[u/x]
a :∃xC, Γ � b :∃xB

π′
1. . .. . .. . ..

b[v/x] :B[v/x], ∆ � b[v/x] :D[v/x]
b :∃xB, ∆ � c :∃xD

a :∃xC, Γ, ∆ � c :∃xD
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Choose a RM w which does not occur freely in the lowest sequent. Since b[w/x] is a variant of b,
b[u/x][w/u] ≡ b[w/x] ∈ L by Lemma 2(1). Therefore, a[w/x] : C[w/x], Γ � b[w/x] : B[w/x] has
a cut-free proof of the same length by Lemma 4. Similarly, b[w/x] :B[w/x], ∆ � b[w/x] :D[w/x]
has a cut-free proof of the same length. Hence we have

a[w/x] :C[w/x], Γ � b[w/x] :B[w/x] b[w/x] :B[w/x], ∆ � b[w/x] :D[w/x]
a[w/x] :C[w/x], Γ, ∆ � c[w/x] :D[w/x]

and by the induction hypothesis, the lower sequent has a cut-free proof the length of which is less
than len(π′

1)+ len(π′
2)+ 1 = len(π)− 1. Therefore, a :∃xC, Γ, ∆ � c :∃xD has a cut-free proof the

length of which is less than len(π).

(Case 7) A is of the form ∀xB; then the last part of π is of the form;

π′
1. . .. . .. . ..

Γ � a[u/x] :B[u/x]
Γ � a :∀xB

π′
2. . .. . .. . ..

∆1, a[t/x] :B[t/x], ∆2 � c :C
∆1, a :∀xB, ∆2 � c :C

∆1, Γ, ∆2 � c :C

Since a[t/x] ∈ L, Γ � a[t/x] : B[t/x] also has a cut-free proof of the same length by Lemma 4.
Hence we have

π′
1. . .. . .. . ..

Γ � a[t/x] :B[t/x]

π′
2. . .. . .. . ..

∆1, a[t/x] :B[t/x], ∆2 � c :C
∆1, Γ, ∆2 � c :C

and by the induction hypothesis, our claim holds.

(Case 8) A is of the form B ⇑ D; then the last part of π is of the form

π′
1. . .. . .. . ..

Γ � a :B
Γ � λx • xa :B ⇑ D

π′
2. . .. . .. . ..

Π1, x :B, Π2 � b • x :D

π′′
2. . .. . .. . ..

∆1, (λx • xa) • b :D, ∆2 � c :C
∆1, Π1, λx • xa :B ⇑ D, Π2, ∆2 � c :C

∆1, Π1, Γ, Π2, ∆2 � c :C

The proof is similar to (Case 5). See the following proof figure;

π′′
1. . .. . .. . ..

Γ � a :B

π′
2. . .. . .. . ..

Π1, a :B, Π2 � b • a :D
Π1, Γ, Π2 � b • a :D

π′′
2. . .. . .. . ..

∆1, (λx • xa) • b :D, ∆2 � c :C
∆1, Π1, Γ, Π2, ∆2 � c :C

(Note that (λx • xa) • b ≡ b • a.)

Theorem 1 (Cut Elimination Theorem for Lq) If S is provable in Lq, then S has a cut-free
proof in Lq.

Proof. By induction on the number of cuts occurring in the proof of S. Use the previous lemma.

• Proof of Theorem 2 (Operational Completeness Theorem)
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Lemma 6 Suppose that Γ � c : C is cut-free provable where C does not contain a universal
quantifier ∀. If Γ contains a free occurrence of RM u, then c :C also contains a free occurrence of
u.

Proof. It is easily shown by induction on the length of the proof.

An (instance of) inference rule ∃LR is said to be canonical if it is of the form;

Γ1, a[u/x] :A[u/x], Γ2 � b :B
Γ1, a :∃xA, Γ2 � b :∃uB

∃LR(∗∗)
,

i.e., the label of the succedent unit does not change after the application of the inference.

Lemma 7 If Γ � c :C has a cut-free proof, then it also has a cut-free proof in which all instances
of ∃LR are canonical.

Proof. By induction on the length of the proof. We only consider the case when the last inference
is ∃LR;

Γ1, a[u/x] :A[u/x], Γ2 � b[u/y] :B[u/y]
Γ1, a :∃xA, Γ2 � b :∃yB

∃LR(∗∗)

Since b[u/y] does not contain y, Γ1, a[u/x] : A[u/x], Γ2 does not contain y by Lemma 6. Since
b[u/y][y/u] = b ∈ L, Γ1, a[y/x] : A[y/x], Γ2 � b : B has a proof of the same length with that
of Γ1, a[u/x] : A[u/x], Γ2 � b[u/y] : B[u/y] by Lemma 4 (Note that a[u/x][y/u] = a[y/x]). By
the induction hypothesis the sequent has a proof in which all instances of ∃LR are canonical.
Moreover,

Γ1, a[y/x] :A[y/x], Γ2 � b :B
Γ1, a :∃xA, Γ2 � b :∃yB

is canonical. Therefore our claim holds.

Theorem 2 (Completeness of Operational Semantics for Lq) Let A be a quantifier-free cat-
egory. Then Γ �→ a : A if and only if Γ � a : ∃x1 . . . ∃xnA is provable in Lq for some marker
variables x1 . . .xn.

Proof. (⇒) Let R ∈ {−→,−→→}. We prove the following four statements by induction on the
generation of Φ1RΦ2. Then statement (b) proves the theorem in one direction.

(a) Suppose that Φ1 ≡ (Γ1 � X :C1; τ1) and Φ2 ≡ (suc; τ2) and X 	≡ X0. Then Γ1 � X • τ2 :C1

is provable.

(b) Suppose that Φ1 ≡ (Γ1 � X0 :C1; τ1) and Φ2 ≡ (suc; τ2). Then Γ1 � X0 • τ2 :∃x1 . . . ∃xnC1

is provable for some x1 . . .xn (n ≥ 0).

(c) Suppose that Φ1 ≡ (Γ1 � X :C1; τ1), Φ2 ≡ (Γ2 � Y :C2; τ2) and Y 	≡ X0. If Γ2 � Y • (τ2 ◦τ ′) :
C2 is provable for a meta-substitution τ ′, then Γ1 � X • (τ2 ◦ τ ′) : ∃x1 . . .xnC1 is provable
for some x1 . . .xn (n ≥ 0). In particular, if X 	≡ X0, then we can take n = 0.

(d) Suppose that Φ1 ≡ (Γ1 � X0 : C1; τ1) and Φ2 ≡ (Γ2 � X0 : C2; τ2). If Γ2 � X0 • (τ2 ◦ τ ′) :
∃y1 . . .∃ymC2 is provable for a meta-substitution τ ′ and marker variables y1 . . .ym. Then
Γ1 � X0 • (τ2 ◦ τ ′) :∃x1 . . .xn∃y1 . . . ∃ymC1 is provable for some x1 . . .xn (n ≥ 0).

We describe several cases.
(Case 1) Success

(a :A � X :A; τ) −→ (suc; τ ◦ [a/X ])
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(case (a) or (b)) Since X • (τ ◦ [a/X ]) = a and a :A � a :A is an axiom, our claim holds.

(Case 2) Introduce-RM

u does not occur freely in (∆1, a :∃xA, ∆2 � X0 :C; τ)
(∆1, a :∃xA, ∆2 � X0 :C; τ) −→ (∆1, a[u/x] :A[u/x], ∆2 � X0 :C; τ)

(case (d)) Suppose that ∆1, a[u/x] :A[u/x], ∆2 � b :∃y1 . . .ymC is provable, where b = X0•(τ ◦τ ′).
Then,

∆1, a[u/x] :A[u/x], ∆2 � b :∃y1 . . .ymC

∆1, a :∃xA, ∆2 � b :∃u∃y1 . . .ymC .

So our claim holds.

(Case 3) Hypothesize-Left

(∆ � X :A\B; τ) −→ (x :A, ∆ � Y :B; τ ◦ [λx.Y/X ])

where Y 	≡ X0. (case (c)) Suppose that x :A, ∆ � b :B is provable, where b = Y •(τ ◦[λx.Y/X ]◦τ ′).
We can easily show that b contains a free occurrence of x, so λx • b is defined by Lemma 1(2).
Hence,

x :A, ∆ � b :B
∆ � λx • b :A\B

(Note that b = (λx • b) • x.) Since X • (τ ◦ [λx.Y/X ] ◦ τ ′) = (λx.Y ) • τ ′) = λx • b, our claim holds.

(Case 4) Receive-Left

(Γ � Y :A; []) −→→ (suc; τ ′) a = Y • τ ′ b • a is defined Y 	≡ X0

(∆1, Γ, b :A\B, ∆2 � X :C; τ) −→ (∆1, b • a :B, ∆2 � X :C; τ)

(case (c) or (d)) By the induction hypothesis Γ � a : A is provable. So if ∆1, b • a : B, ∆2 �
X • (τ ◦ τ ′) :∃y1 . . .ymC (m ≥ 0) is provable, ∆1, Γ, b :A\B, ∆2 � X • (τ ◦ τ ′) :∃y1 . . .ymC is also
provable.

(Case 5) Transitivity; We only consider the following case (other cases are easier);

(Γ1 � X0 :C1; τ1) −→→ (Γ2 � X0 :C2; τ2) (Γ2 � X0 :C2; τ2) −→→ (Γ3 � X0 :C3; τ3)
(Γ1 � X0 :C1; τ1) −→→ (Γ3 � X0 :C3; τ3)

(case (d)) Suppose that Γ3 � X0 • (τ3 ◦ τ ′) : ∃y1 . . .ymC3 is provable. Then, by the induction
hypothesis Γ2 � X0 • (τ3 ◦ τ ′) : ∃z1 . . . zky1 . . .ymC2 is provable for some z1 . . . zk. It is easy to
show that τ3 = τ2 ◦ τ ′′ for some τ ′′, hence τ3 ◦ τ ′ = τ2 ◦ τ ′′ ◦ τ ′. So, again by the induction
hypothesis, Γ1 � X0 • (τ3 ◦ τ ′) :∃x1 . . .xnz1 . . . zky1 . . .ymC1 is provable for some x1 . . .xn.

(⇐) Suppose that Γ � a :∃x1 . . . ∃xnA is provable in Lq for some x1 . . .xn. Then, by Theorem 1,
it has a cut-free proof, and by Lemma 7 it has a cut-free proof π in which all instances of ∃LR
are canonical. We can easily show that Γ �→ a :A by induction on len(π).
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