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What is ludics?

Ludics (Girard 01): pre-logical framework upon which logic is

built and various phenomena are analyzed.

Keywords: Monism, existentialism, interaction/orthogonality:

Game Semantics �� Ludics �� Proof Theory

strategies designs proofs

� �orthogonality �

arenas behaviours types

Goal: Logical reconstruction of computability and complexity

theory based on ludics
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Why ludics?

Ingredients of computability theory

Alphabet �

Words � � ��

Languages � � ��

Language classes � � ��
�
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Why ludics?

Ingredients of computability theory correspond in logic to

Alphabet � Logical rules

Words � � �� Proofs

Languages � � �� Sets of proofs

Language classes � � ��
�

(Restricted) proof systems

How to specify a language / a set of proofs?

- Via typing: �� � 	 � � �


static, cf. regular expressions �� ����

- Via normalization: �� � ���� � �������


dynamic, cf. finite automata
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Why ludics?

Ludics is endowed with a canonical notion of acceptance:

For any closed net �, either � � � or � �

Orthogonality:

��� �� ���� � �

�� = the language accepted by �.

Alphabet � Actions

Words � � �� Designs

Languages � � �� Behaviours

Language classes � � ��
�

Restriction on �

Regular expressions vs. Finite automata

�� Typing vs. Interaction
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Computational ludics

We reformulate the original ludics. Why?
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We reformulate the original ludics. Why?

Working with absolute addresses (loci) is like programming

with machine codes.
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Computational ludics

We reformulate the original ludics. Why?

Working with absolute addresses (loci) is like programming

with machine codes.

� We introduce a term calculus (following Curien’s concrete

syntax)

Designs are infinite, while algorithms must be finitely

presented.

� We introduce design generators that give finite

descriptions to some infinite designs.

Girard’s designs are cut-free and identity-free. Lack of

computational power.

� We incorporate cuts and identities into designs.
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Part I: Architecture of ludics

Behaviours: semantic types, reducibility candidates,

�

Designs: proofs, strategies, processes

�

Generators: proof search instructions
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Well-behaved frag. of simply typed �-calculus

Types: � ��� 	 � �  �

Positive terms 
 and negative terms � are defined by:


 � ��� �� ����������

� �� ��
� � � � � ��
�

� ���������� ���  � ���� � � � 
��
� �
 �

Reduction: the arity � always agrees.

��� � � � ��
 ��� � � ��� � 
 ������ � � � � ����	

������ � � ��� is a redex if �� is not a variable.

������ � � ��� is �-expandible if some �� (of non-atomic type)

is a variable .
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Towards ludics

Designs in ludics:

Type-free; arity agreement is ensured in another way.

Infinitary (coinduitive).

Various actions (rather than the single pair �/@)

Daimon (immediate termination)

Additive superimposition: �� ��� ��� � � � �
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Towards ludics

Girard/Curien’s original designs:

Extensions of normal and �-long lambda terms.

Actions built from ramifications � � �� �� �.

Our designs:

Extensions of arbitrary terms

Actions built from a given signature.

Signature � � ��� ���:

� is a set of names,

�� � � � � gives an arity to each name.
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Computational designs

The sets of c-designs are coinductively defined by:


 ��� � Daimon

� 
 Divergence

� �������� � � � � ��� Proper positive action

� ���  Variable

�

�
������
� Proper negative action

where ����� � �, �� � �� � � � � ��
������
� is built from �������
�
���. Compare it with:


 ��� ������ � � � ��

� ���  � �� � � � ��
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Computational designs

�������� � � � � ��� is a cut if �� is not a variable.

 is an identity if it occurs as �������� � � � � � � � � � ���

Reduction rule:

�
�

������
�� ������ � � � � ��� � 
������� � � � � ����	�

Compare it with

��� � � � ��
 ��� � � ��� � 
 ������ � � � � ����	
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Standard c-designs

C-designs have to be identifed up to �-equivalence.


 is total if 
 �� 
.

� is linear if for any subterm �������� � � � � ���,

������, . . . , ������ are pairwise disjoint.

� is standard if it is linear, total, cut-free, identity-free and has

finitely many free variables.

Fact: If 
 is standard, then 
 � � or 
 � ������ � � � � ���

where none of ��� � � � � �� is a variable.

Fact: The standard c-designs over the signature ��� �� �� � ��

exactly correspond to Girard’s original designs.
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Architecture of ludics: computation

Behaviours: Orthogonality

�

Designs: Reduction-based normalization

�

Generators: Krivine’s abstract machines
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Normalization

Reduction rule: �
�

������
�� ��� ���� � 
�� �����	�


 � � if 
 �� � and � is neither a cut nor 
.

By corecursion, it can be extended to �� 		:

��
 		 � � if 
 � �;

� �������		� � � � � ����		� if 
 � ������ � � � � ���;

� 
 if 
 �;

��		 � �

��
�

������
�		 �

�
��������
�		�

Non-effective: it works on infinite designs; renaming and

substitution involved.
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What are data?

Examples: integers, words, trees, lists, records, etc.

Data must be:

- structured (eg. list = head + tail)

- linearly duplicable (“linear” = “machine-like”)

- compressable (eg. binary int.  hexadecimal int.)

Fix a unary name �� �.

The set of data designs is coinductively defined by

� ��� ��������� � � � � ��� � � ��

Notation: �� �, ��� ��� �������� ���
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Data: examples

Natural numbers

�	 � �����

�� 	 � ������	�
Ordinals

�	 � ������	��

Words, labelled binary trees, and lists:

�	 � ��	
� ����
	
� � � 
�����

����	 � �������
	�� ������� � !��
	 � ������ 
	� !	��

�		 � ��	
�

�� �� "�	 � �������� "	��
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Functions on Data

Discriminators. Given �� (a variable � � ���
 or ��#��
�) for

each � � $,

�	
�


 �������� � ��#�����
�


 �����������#���

Given � ������� � � � � ��� with � � $,

��	
�


 �������� � ��#������
�


 �����������#��

� ��#�� �
�


 �����������#�� ������ � � � � ���

� ��#����������� � � � � ����	���#��

� �������� � � � � ����	�

Predecessor: 
�%��	 � �	������ �	 � ����&�� &��
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Functions on Data

Duplicator. A linear c-design '!(�	 s.t. for any finite datum �,

��'!(��			 ����	���� ���
Cf. Linear duplicator in �-calculus

'!(��� � )�*%  � ���� � ����� ����

 � ��
�� � ��
��� ��
��

'!(��� � )�*%  � ���� � ����� ����

 � ����#� � "% &� � &� � '!(��#�

�� ����&��� ����&��

Cut is essential for finite generation.

Q: Does '!( duplicate �	?
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Functions on Data

General recursion scheme: Given a linear c-design +� for each

� � $, there exists a linear c-design , :

��, �������� �%	 		 � ��+��, ���� �%	� � � � � , ���� �%	� �%	 		

for every � � $ and finite data �%.
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Architecture of ludics: computation

Behaviours: Orthogonality

�

Designs: Reduction-based normalization

�

Generators: Krivine’s abstract machines
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Design generators

Generator: - � �.�� .�� /�, where .� and .� are disjoint sets

of states, / is a function on . � .� � .�:

/�*�� = �, 
 or *�� ���*
�
� � � � � � *�� �

/�*�� =  or

�
������*
�
�

Generators are like designs, but may contain loops. A design is

obtained by unfolding a generator.

Krivine’s abstract machine directly works on generators

�� Effective computation
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Architecture of ludics: computation

Behaviours: Orthogonality

�

Designs: Reduction-based normalization

�

Generators: Krivine’s abstract machines
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Orthogonality

From now on, we considery only linear c-designs.


 is closed if it has no free variables: either � or a cut.


 is atomic if ,0 �
 � � ��
. � is atomic if ,0 ��� � �.

For atomic 
 and � , 
�� if 
 ����	 � �.

Behaviour: a set � of total linear c-designs of the same polarity

such that

��� � ��
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Analytical theorems

Associativity:

��� ����#�� � � � � ���#�	 		 � �� ��� 		� ����		�#�� � � � � ����		�#�	 		.

Stability: If ���
��� are compatible, then ��
�

��� ��		 �
�

�������		.

�-long normal form: ��� 		� is ��� 		 with identity  replaced by fax

��� �
�

��#�� � � � � #��������#��� � � � � ��#����

Separation: ��� 		� � ��1 		� if and only if �� � 1�.

Only up to “2�-equivalence.”
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Architecture of ludics: computation

Behaviours: Orthogonality

�

Designs: Reduction-based normalization

�

Generators: Krivine’s abstract machines
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What are logical connectives?

Requirements for logical connectives:

Have a dual

Admit internal completeness

Induce behaviour constructors (semantics) and logical

inference rules (syntax)

�-ary logical connective � � ������
��
 such that $ is finite

and ���
 � ��� � � � � �
.

Examples: � � ������� �����
,

&

� �3��� ��
.
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Logical connectives

Behaviours built by logical connectives:

����� � � � ���� � �

�
����	��

����� � � � � ������
���

����� � � � ���� � ������ � � � � ���� ��
��

where �� � �� � � � � � �� ,

����� � � � ���� � �����4�� � � � �4�� � 4� ����  � 5 � 6
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Logical connectives

Examples: � � ������� �����
,

&

� �3��� ��
.

Let � � �, 	� � ��, � �
&

, and � � 3.

������ � �	���� � 	�����
��

������ � ��������

������ � �	���
���� � �	���
����

&

����� � �����������
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Internal completeness

Surface incarnation.

���� consists of ‘head normal’ l-designs ���� �4� in �

���� consists of ‘head optimal’ l-designs

�
� ������
� in �.

Internal completeness theorem:

1. ������ � � � ������ �
�

����	��
����� � � � � �����.

2. ������ � � � ������ �
�

� ��������
�
��
��� � � � � ��
�
��
��� 	
�.

Examples:

� � ������� � 	���� � 	����

� � ������� � ������

�� ������
 � �������� �������

�

&

������ & �

&

��� �����
�����
���	
�
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Part II: Some topics

1. Data specification

2. Designs and automata

3. Types and completeness

4. WIP: Unique interpretation

5. WIP: Nondeterminism in ludics

6. WIP: Focalization
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Data specification via interaction

Given a set � of data designs, there are two ways to specify �

1. Via typing: Find a syntactic type � s.t.

	 � � � �� � � ��

2. Via interaction: Find a c-design 
 s.t.


�� �� � � ��

i.e., ��
��� � �.

(��
��� consists of material �-free designs in 
�)

In the latter case, we say � is accepted by 
 .

Theorem: Any (possibly infinite) set of finite data can be

accepted.
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Data specification via interaction

Theorem: Any set of finite data can be accepted.

Proof idea:

Given a datum �, build a counter design �� such that

���% �� % � �

for every datum % (Cf. Faggian 05).

Any ��� and ��� are compatible.


 �
�
��� � � � �
 accepts �:


�% �� % � ��


 is not finitely generated.
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Designs and automata

Finite automaton 4 corresponds to design �� :

�� � ��������� � ������ � �	
�
�

�� � ��������� � ������ � �	
���

�� � ��������� � ������ � �	
�
�
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Designs and automata

Finite automaton 4 corresponds to design �� :

�� � ��������� � ������ � �	
�
�

�� � ��������� � ������ � �	
���

�� � ��������� � ������ � �	
�
�

�� ������
	�	 � �� ��������
	��	
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�

�� � ��������� � ������ � �	
���

�� � ��������� � ������ � �	
�
�

�� ������
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	��	
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�
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Designs and automata

Finite automaton 4 corresponds to design �� :

�� � ��������� � ������ � �	
�
�

�� � ��������� � ������ � �	
���

�� � ��������� � ������ � �	
�
�

�� ������
	�	 � �� ��������
	��	

�� �� �����
	�	

�� �� ����
	�	

�� �� ���	
�	

�� �

���� �� � � ������� �  �.
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Acceptance via finitely generated designs

Theorem: For any language �,

1. � is accepted by a finitely generated standard design

�� � is regular.

2. � is accepted by a finitely generated design �� � is r.e.

Proof idea of 1: Cut-free designs ! finite automata

Restriction to languages is essential.

Proof idea of 2.

� Krivine’s machine works effectively on finite generators.

� Constructors, discriminators, general recursion schema are

available.
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Types and completeness

The types are coinductively defined by:

� ��� ����� � � � ����

� ��� ����� � � � ����

Type �
interpretation�

completeness

�derivation

Behaviour �� �� Proof set �Æ

����� � � � ��	�
� � ������ � � � ��
�
��

�Æ � �
 � 	 
 � � is derivable
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Proof system

Positive sequent: 
 	 � � ��� � � � � � � ��

Negative sequent: � 	 � � ��� � � � � � � ����
Inference rules:

� 	
��� � 	 �

� 	 ���
���

4� 	 ������ � � � 4� 	 ������

&���4�� � � � �4�� 	 ��� � � � ���� & � ����� � � � ����
��� ������

�
� 	 �� �� � ���
����	���
� ������
� 	 �� ����� � � � ����

���

where �� � �� � � � � � �� , ��� � ��� � � � � ���� .

Variable-free polarized MALL can be embedded.
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Types and completeness

Interpretation is compositional: ��

&

��� � ��

&

��
Derivation is continuous: '��

�� "�� �
�� '��"��, where

'��"� � "��.� � .� is immediately derivable from sequents in "
�

Completeness: Continuous construction meets compositional

one.

Interpretations and proof sets are not unique.

Least behaviours/proof sets: ���, �Æ�

Greatest behaviours/proof sets: ���, �Æ�

Full completeness theorem: for every type �,
����� � �Æ�� ����� � �Æ��
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Types and completeness

Key observations:

Internal completeness implies continuity of logical

connectives: For any chain �� � �� � �� � � ���
�

��
���

&
� �

��
�

��

&

�
���

Syntactic completeness:


 	�� � � � �� 
�� for all � 	� ��

Syntactic completeness implies “compositionality” of proof

sets:
�	  � �� # � ��Æ� � ��Æ�� ���Æ�
� �#	�
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WIP: Unique interpretation?

Our � is defined based on termination:


�� �� 
 ����	 �� � � � terminates

What happens if it is defined on safety?


�� �� 
 ����	 �� � � � doesn’t deadlock

Melliès and Vouillon (LICS05) observed (in the context of

lambda calculus): if � is defined based on safety, then

recursive types admit unique interpretation.

Question: what happens if one does the same on ludics?

A crucial step towards logical understanding of infinitary

automata theory.
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WIP: Nondeterminism in ludics

One can also consider a nondeterministic generator, which

generates a set of designs.

It provides a means of controlled proof search.

Our slogan: designs are deterministic (as proofs), while

generators can be nondeterministic (as proof search).

Behaviours: stable theory

�

Designs: deterministic

�

Generators: nondeterministic
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WIP: Focalization

Focalization: �� �4 ��� can be considered as a single

connective #���4���.

In ludics: Internal completeness implies

����� � �������� !� �#�������� �

for any negative behaviours ������.

More generally,������ 2������ � � � � � 2������
��� !� ����2� � � � 2�����
���

Together with full completeness, does it lead to another proof

of the focalization theorem?
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Conclusion

Our contribution:

A handy syntax with cuts and identities. Cuts are important

for expressive power, while identities are for efficiency.

A full completeness theorem in an infinitary setting.

An analysis of data in ludics.

An exact characterization of cut-freely acceptable

languages.

It is now time to analyze computability/complexity properties in

ludics.

Computational Ludics – p.42/42


	What is ludics?
	Why ludics?
	Why ludics?
	Computational ludics
	Part I: Architecture of ludics
	large Well-behaved frag. of simply typed $lambda $-calculus
	Towards ludics
	Towards ludics
	Computational designs
	Computational designs
	Standard c-designs
	Architecture of ludics: computation
	Normalization
	What are data?
	Data: examples
	Functions on Data
	Functions on Data
	Functions on Data
	Architecture of ludics: computation
	Design generators
	Architecture of ludics: computation
	Orthogonality
	Analytical theorems
	Architecture of ludics: computation
	What are logical connectives?
	Logical connectives
	Logical connectives
	Internal completeness
	Part II: Some topics
	Data specification via interaction
	Data specification via interaction
	Designs and automata
	Acceptance via finitely generated designs
	Types and completeness
	Proof system
	Types and completeness
	Types and completeness
	WIP: Unique interpretation?
	WIP: Nondeterminism in ludics
	WIP: Focalization
	Conclusion

