Computational Ludics

Kazushige Terui
National Institute of Informatics, Tokyo
Laboratoire d’Informatics de Paris Nord, CNRS

email: terui@nii.ac.jp

-

Computational Ludics — p.1/4



What 1sludics?
B

Ludics (Girard 01): pre-logical framework upon which logic is
built and various phenomena are analyzed.

Keywords: Monism, existentialism, interaction/orthogonality:

Game Semantics <= Ludics <= Proof Theory

strategies designs proofs
N Jlorthogonality )
arenas behaviours types

Goal: Logical reconstruction of computability and complexity
theory based on ludics

-
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Why ludics?
=

#® |Ingredients of computability theory

Alphabet Y
Words w e X
Languages L CX*

Language classes C C 2

o -
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Why ludics?
=

® |Ingredients of computability theory correspond in logic to

Alphabet Y Logical rules
Words w €€ X*  Proofs
Languages L CY* Sets of proofs

Language classes C C 2> (Restricted) proof systems

® How to specify a language / a set of proofs?
- Viatyping: {w : Fx:FE}
static, cf. regular expressions a + ab*a
- Via normalization: {7 : o(7) | Taccept }
dynamic, cf. finite automata

o -
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Why ludics?
B

® Ludics is endowed with a canonical notion of acceptance:
For any closed net 7, either = || Y or 7 1)

#® Orthogonality:
olnm <— o(m) | K

® o =the language accepted by o.

Alphabet )y Actions
Words w e X* Designs
Languages L CX* Behaviours

Language classes C C 2> Restriction on o

® Regular expressions vs. Finite automata
L — Typing vs. Interaction J
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Computational ludics

-

® We reformulate the original ludics. Why?
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Computational ludics
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® We reformulate the original ludics. Why?

o Working with absolute addresses (loci) is like programming
with machine codes.
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Computational ludics

- .

® We reformulate the original ludics. Why?

o Working with absolute addresses (loci) is like programming
with machine codes.
= We introduce a term calculus (following Curien’s concrete
syntax)

» Designs are infinite, while algorithms must be finitely
presented.
= We introduce design generators that give finite
descriptions to some infinite designs.

o Girard’s designs are cut-free and identity-free. Lack of
computational power.
= We incorporate cuts and identities into designs.

o -
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Part |: Architecture of ludics

- .

Behaviours: semantic types, reducibility candidates,

i

Designs: proofs, strategies, processes

i

Generators: proof search instructions

o -
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Well-behaved frag. of ssmply typed \-calculus

-

9

¥

=

Types: 7= |7 =T

Positive terms P and negative terms N are defined by:

P* = (NP7 TN LN

NT1—>...Tn—>L - T ‘ )\x’{l L. ZC:LnPL

Reduction: the arity n always agrees.
(A1~ xn.P)Ny--- Ny —> P[Ni/x1,..., Np/xy]

(Nog)Ny --- N, is aredex if Ny is not a variable.

(Ng)Ny - - - Ny, is n-expandible if some N; (of non-atomic type)
IS a variable x.

-
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Towardsludics
|7 #® Designs in ludics: T

o Type-free; arity agreement is ensured in another way.
» Infinitary (coinduitive).

» Various actions (rather than the single pair \/@)

o Daimon (immediate termination)

o Additive superimposition: N; + Ny + N3 + - - -

o -
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Towardsludics

-

® Girard/Curien’s original designs:
o Extensions of normal and »n-long lambda terms.

s Actions built from ramifications I € Ps(N).

® Our designs:

o Extensions of arbitrary terms

# Actions built from a given signature.
#® Signature A = (A, ar):

A Is a set of names,
ar : A — N gives an arity to each name.

o -
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Computational designs

- .

® The sets of c-designs are coinductively defined by:

P = »x Daimon
| Q Divergence

| Nola(Ny,...,N,) Proper positive action

N == x Variable
| D> a(Z,) Py Proper negative action
e wherear(a) =n, Ty =x1,...,Ty

® Y a(Z,).P,is built from {a(Z,).P, }ac 4. COmpare it with:

P = (No)Nan

L N = x|Axy---z,.P J
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Computational designs

® Nola(Ny,...,Ny,)isacutif Ny is not a variable.

°

x is an identity if it occurs as Ng|a(N1,...,z,..., Ny)

® Reduction rule:
(O a(Zy).Py) |a{N1,...,Np) — Py|Ni/z1,...,Np/zs].
® Compare it with

()\xl LUnP)Nl Nn — P[Nl/xl,,Nn/xn]

o -
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°

Standard c-designs
B

C-designs have to be identifed up to a-equivalence.
P is total if P £ (.

T is linear if for any subterm Ny|a(Ny, ..., N,),
fv(Ny), ..., fu(N,) are pairwise disjoint.

T is standard if it is linear, total, cut-free, identity-free and has
finitely many free variables.

Fact: If P is standard, then P ="« or P = x|a(Ny,...,Ny)
where none of N¢,..., N, Is a variable.

Fact: The standard c-designs over the signature (P;(N),| |)
exactly correspond to Girard’s original designs.

-
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Architecture of ludics. computation

- .

Behaviours: Orthogonality

i

Designs: Reduction-based normalization

i

Generators: Krivine's abstract machines

o -
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Nor malization

- .

® Reduction rule: (3" a(Z,).P,) |a(N,) — P,[N,/7].
® PlQifP—* (@ and (Q is neither a cut nor ().

® By corecursion, it can be extended to | |:

[P] = 1k if P "
= zla([N],...,[N.]) if Py z|a(Ny,...,N,);
= O If P,

2] = u=;

[>_a(%e).Pa] = > a(Za).[Fu].

® Non-effective: it works on infinite designs; renaming and

L substitution involved. J
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What are data?

Examples: integers, words, trees, lists, records, etc.

Data must be:
- structured (eg. list = head + tall)
- linearly duplicable (“linear” = “machine-like”)
- compressable (eg. binary int. — hexadecimal int.)

Fix a unary name 1€ A.

The set of data designs is coinductively defined by
d :="1(z).xlald,...,d), a € A.

Notation: =%  1a(N) =1 (2).z|a(N)

-
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Data: examples

-

® Natural numbers

O*
n+1* = 1suc(n®)

1zero

® Ordinals

w* = Tsuc(w™).

® Words, labelled binary trees, and lists:

e = il leaff = tleaf,,
(iw)* = 7Tsuc;{w*), (node;(t,u))* = 1 node;{t*,u*),
I* = tnil;
L (d::1)* = tcons{d,l*).

-
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Functions on Data

=

Discriminators. Given N, (a variable x; € {Z,} or 1 (y).FP,) for
eacha € K,

[513] ZK a(fa> > N, = T(y>m|¢<ZK a(fa)-NaH/<y>>°

Given d =ta(dy,...,d,) witha € K,

|d] 2k alZa) > Na d[} (2 K a(Za) -Na|l(y))

() )
T(Y)- (K a(Ta)-Na|d(y)) [aldy, . . ., dn)
(¥)

Predecessor: Pred|z] = [z](zero > 0* + suc(z) > z2).



Functions on Data

- .

® Duplicator. A linear c-design Dup|z] s.t. for any finite datum d,

[Dupld]] =t pair(d, d).

® Cf. Linear duplicator in A-calculus

Dupg(x) = case x =true = true® true
r = false = false ® false
Dupn(z) = case x =zero = zero® zero
r =suc(y) = let z1 ® zo = Dupn(y)

in suc(z1) ® suc(zs)

® Cutis essential for finite generation.
L ®» Q: Does Dup duplicate w*? J
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Functions on Data

- -

® General recursion scheme: Given a linear c-design H, for each
a € K, there exists a linear c-design F

—

[F[tald), e] | = [HalFldy, €], ..., Fldn,é], €] ]

for every a € K and finite data é.

o -
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Architecture of ludics. computation

- .

Behaviours: Orthogonality

i

Designs: Reduction-based normalization

i

Generators: Krivine's abstract machines

o -
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Design generators

- .

#® Generator: G = (ST,57,¢), where ST and S~ are disjoint sets
of states, / is a functionon S = ST U S~

e ((sT) =24, Qorsyla(sy,...,
e ((sT)=zord a(Z,).sf

® Generators are like designs, but may contain loops. A design is
obtained by unfolding a generator.

Sn)

® Krivine’s abstract machine directly works on generators
— Effective computation

o -
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Architecture of ludics. computation

- .

Behaviours: Orthogonality

i

Designs: Reduction-based normalization

i

Generators: Krivine's abstract machines

o -
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© o o o @

Orthogonality
B

From now on, we considery only linear c-designs.

P is closed if it has no free variables: either » or a cut.
P is atomic if FV(P) C {xq}. N is atomic if FV(N) = 0.
For atomic P and N, PLN if P|[N/xg] | "

Behaviour: a set T of total linear c-designs of the same polarity
such that
T+ =T.

-
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Analytical theorems

=

Associativity:
[[T[Nl/yla SR 7Nn/yn] ]] — [[ [[T]H [[Nl]]/yl, RN [[Nn]]/yn] ]]
Stability: If {7} };ca are compatible, then [(),c, T3] = (), x 73]

n-long normal form: 1], is [1'] with identity x replaced by fax

n(x) = alyr, -, yn)-zl@an(yi), ..., n(yn)).

Separation: [T], =< [U], if and only if T+ C U+.

Only up to “Bn-equivalence.”

-
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Architecture of ludics. computation

- .

Behaviours: Orthogonality

i

Designs: Reduction-based normalization

i

Generators: Krivine's abstract machines
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What arelogical connectives?

=

Requirements for logical connectives:

# Have a dual

o Admit internal completeness

» Induce behaviour constructors (semantics) and logical
Inference rules (syntax)

® n-ary logical connective a = {a(%,) }ocx Such that K is finite

and {7,} C{x1,...,z,}.

K Examples: & = {7‘(‘1(231),7'('2(5132)}, ¥ = {p(xl,mz)}.

o -
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L ogical connectives

-

® Behaviours built by logical connectives:

a(Ni,...,No) = (| aNi, ..., Ny, )™
a(Zq)E
a(P,...,P,) = (a(Pi,...,Pi)t,

where £, = z;,,...,x;_,

(M. M) = {mofa(My,..., My): My € My, 1<k <m}

o -
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L ogical connectives

-

9o Examples: & = {7T1(I1),7T2(5132)}, ¥ = {ga(:cl,xg)}.
® lete=&, 4, =7, 0=79,and e = 3.

SN, M) = (11(N) Up(M))*
®< 7M> — '<1\Ivl\/I>LL

&P, Q) = (u®PH)" N ((Q )"
?(P,Q) = (o(P7,Q"))"



|nternal completeness

-

#® Surface incarnation.
|P|;, consists of ‘head normal’ I-designs xg|a(

—

yinP

IN|., consists of ‘head optimal’ I-designs ) __ a(Z,).F, in N.

® Internal completeness theorem:
1. ‘@<N1, .. 7Nn>|h = Ua(fa)éoz E<Ni1, .. 7Nim>-
2. [a(P1,...,Pp)la =2, a(Za). [P /ziy, ... , P [y, ]

® Examples:

& (N, M), = u(N)Uw(M)
| ® (N, M) (N, M)
| & (P, Q)¢ m1(x0). P 4+ m2(x0)-Q
L % (P, Q)| ® (x1,32). [P /1, QF /]

-
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o g A~ W b oPE

Part |1: Sometopics

Data specification

Designs and automata

Types and completeness

WIP: Unique interpretation
WIP: Nondeterminism in ludics

WIP: Focalization

-
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Data specification via interaction
.

f ® Given a set D of data designs, there are two ways to specify
1. Via typing: Find a syntactic type D s.t.

—Fd:D < deD,
2. Via interaction: Find a c-design P s.t.
Pld < d € D,

i.e., ||P*|| = D.
(||P*|| consists of material "k-free designs in P+)

#® |n the latter case, we say D is accepted by P.

® Theorem: Any (possibly infinite) set of finite data can be

L accepted. J
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Data specification via interaction

- .

® Theorem: Any set of finite data can be accepted.

® Proof idea;

o Given a datum d, build a counter design d¢ such that
dle <— e=d

for every datum e (Cf. Faggian 05).
» Any df and d5 are compatible.
e P=J{d°:de D} accepts D:

Ple <— e € D.

® P is not finitely generated.

o -
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Designs and automata

-

® Finite automaton M corresponds to design Q);:

Qr = z|l{a(z).Qr + b(x).Qq + nil.Q)
Qr = z|l{a(z).Qq+ b(z).Qr + nil>k)
Qo = z|l(a(z).Qq+b(x).Qq + nil.Q)




Designs and automata

-

® Finite automaton M corresponds to design Q);:

Qr = z|l{a(z).Qr + b(x).Qq + nil.Q)

Qr = z|l{a(z).Qq+ b(z).Qr + nil>k)

Qo = z|l{a(z).Qq+b(x).Qq + nil.Q)
Qrl(aba)”/z] = Qr[ta((ba)”)/z]



Designs and automata

-

® Finite automaton M corresponds to design Q);:

Qr = z|l{a(z).Qr + b(x).Qq + nil.Q)

Qr = z|l{a(z).Qq+ b(z).Qr + nil>k)

Qo = z|l{a(z).Qq+b(x).Qq + nil.Q)
Qrl(aba)”/z] = Qr[ta((ba)”)/z]

—" Qr[(ba)"/z]



Designs and automata

-

Qr
QF
Qo

Q1[(aba)”™/x]

_>*
_>*

XL

XL

XL

® Finite automaton M corresponds to design Q);:

L{a(x).QF + b(x).Qq + nil.Q)
L{a(x).Qq + b(x).Q1 + nil b X)
L{a(x).Qq + b(x).Qq + nil.Q2)

Q1[ta((ba)”)/x]

Q
Q

Fl(ba)”/x]
1[(a)”/x]



Designs and automata

-

Qr
QF
Qo

Q1[(aba)”™/x]

® Finite automaton M corresponds to design Q);:

= z|l{a(z).Qr + b(x).Qq + nil.Q2)
= x|l {a(x).Qq + b(x).Qr + nilbX)
= x|l {a(z).Qq + b(x).Qq + nil.)

= Qr[ta((ba)”)/x]
—* Qr[(ba)" /7]
—* Qrl(a)" /]
—*  Qr[tnil/z]



Designs and automata

-

Qr
QF
Qo

Q1[(aba)”™/x]

*

*

*

LLL Lo

® Finite automaton M corresponds to design Q);:

z|d{a(x).QF + b(x).Qq + nil.2)
r|l{a(z).Qq + b(x).Qr + nil»K)
z|l{a(x).Qq + b(x).Qq + nil.Q)

Qr[ta((ba)”) /]
Qr[(ba)” /]
Qr[(a)” /]
Qr[tnil/z]

o



Designs and automata

-

® Finite automaton M corresponds to design Q);:

Qr = zll{a(z).Qr + b(z).Qq + nil.Q)
Qr = z|l{a(z).Qq + b(x).Qr + nilbX)
RQa = z|l{a(x).Qq+ b(zr).Qq + nil.Q)
Qrl(aba)”/z] = Qr[ta((ba)*)/x]

—" Qr[(ba)"/7]

—" Qrl(a)" /2]

—* Qpl[tnil/z]

—* X

L ® Qrld <= d=(ab)"a, n > 0.



Acceptance via finitely generated designs

|7 ® Theorem: For any language L, T

1. L Is accepted by a finitely generated standard design
< L Is reqgular.
2. L is accepted by a finitely generated design <— L is r.e.

® Proof idea of 1. Cut-free designs ~ finite automata
Restriction to languages is essential.

® Proof idea of 2.
= Krivine’s machine works effectively on finite generators.

< Constructors, discriminators, general recursion schema are
available.

o -
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Types and completeness

-

® The types are coinductively defined by:

= a(Ng,...,Np)
N == «Py,...,Pyn)
Type T

interpretation/ \derivation
completeness

Behaviour T*  — Proof set T°

® a(Nqy,....N,)* =a(Nj,...,N?)
® T°={P| F P:Tisderivable}

o -
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Proof system
-

® Positive sequent: P21 : Pq,...,z, : Py,
® Negative sequent: N Fxzq:Pq,..., 2, : Py, N

® Inference rules:

e TTI—|_@(:)F (w)

-

My +=1T1,N;; oo My FITq,N; .
- — (@, a(Za))
zla{My, ..., Mp,)FT1,...., T,z :a(Nqg,...,Ny)

{P,F T, %5 : Pola@,)ca
S a(Za)PatT,a(Py,...,Pn) (a)

—

where Zq = TjyyeeeyLj P, = Pil,...,P

im'

L ® Variable-free polarized MALL can be embedded. J
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Types and completeness

=

Interpretation is compositional: (P%Q)®* =P*?®Q°*

Derivation is continuous: Dv(|J'S;) = T Dv(S;), where
Du(S) = SU{Sy : Sy Is immediately derivable from sequents in §}.
Completeness: Continuous construction meets compositional

one.

Interpretations and proof sets are not unique.
» Least behaviours/proof sets: T7, T}

» Greatest behaviours/proof sets: T, T

Full completeness theorem: for every type T,

Tl =Tg,  [TLl=TL. B
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Types and completeness

-

® Key observations:

» Internal completeness implies continuity of logical
connectives: For any chain Po C P; C Py ---

o) v o)

# Syntactic completeness:
P+rzg:P < PLNforall N ¢ P+

» Syntactic completeness implies “compositionality” of proof
sets:

\— (Fz:Py: Qg C [PF/z, Q5 /yl™ J
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WIP: Unigue interpretation?

Our _L is defined based on termination:
P1N <= P|N/xy]| —— ---terminates
What happens if it is defined on safety?
P1N <= P|N/xy| —— ---doesn’'t deadlock

Mellies and Vouillon (LICS05) observed (in the context of
lambda calculus): if L is defined based on safety, then
recursive types admit unique interpretation.

Question: what happens if one does the same on ludics?

A crucial step towards logical understanding of infinitary
automata theory. J
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WIP: Nondeterminism in ludics

-

® One can also consider a nondeterministic generator, which
generates a set of designs.

® |t provides a means of controlled proof search.

® Our slogan: designs are deterministic (as proofs), while
generators can be nondeterministic (as proof search).

Behaviours: stable theory

i

Designs: deterministic

i

Generators: nondeterministic

o -
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WIP: Focalization
-

Focalization: L ® (M & N) can be considered as a single
connective ©(L, M, N).

In ludics: Internal completeness implies
&L, T &M, N))| = |o(L, M, N)| .

for any negative behaviours L, M, N,.

More generally,

(1 Bi(N), 1 B (M) | = By Bu(N)

Together with full completeness, does it lead to another proof
of the focalization theorem?

-
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Conclusion

- .

® Our contribution:

» A handy syntax with cuts and identities. Cuts are important
for expressive power, while identities are for efficiency.

o A full completeness theorem in an infinitary setting.

# An analysis of data in ludics.

» An exact characterization of cut-freely acceptable
languages.

® Itis now time to analyze computability/complexity properties in
ludics.

o -
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