
A Feasible Algorithm for Typing in
Elementary Affine Logic

Patrick Baillot�1 and Kazushige Terui��2

1 Laboratoire d’Informatique de Paris-Nord / CNRS, Universit´e Paris-Nord, France.
pb@lipn.univ-paris13.fr

2 National Institute of Informatics, Tokyo, Japan.
terui@nii.ac.jp

Abstract. We give a new type inference algorithm for typing lambda-terms in
Elementary Affine Logic (EAL), which is motivated by applications to complex-
ity and optimal reduction. Following previous references on this topic, the variant
of EAL type system we consider (denoted EAL�) is a variant where sharing is re-
stricted to variables and without polymorphism. Our algorithm improves over the
ones already known in that it offers a better complexity bound: if a simple type
derivation for the termt is given our algorithm performs EAL� type inference in
polynomial time in the size of the derivation.

1 Introduction

Linear logic (LL) has proved a fruitful logical setting in which computational com-
plexity can be brought into the picture of the proofs-as-programs correspondence, since
the early work [GSS92]. In particular Light linear logic ([Gir98]) and Soft linear logic
([Laf04]) are variants of LL in which all numerical functions programmed are poly-
nomial time. Another system, Elementary linear logic (ELL, see [Gir98,DJ03]) corre-
sponds to Kalmar elementary complexity.

Hence one can consider specific term calculi designed through the Curry-Howard
correspondence and program directly in these languages with the guaranteed complex-
ity bound ([Rov98,Ter01]). However this turns out in practice to be a difficult task, in
particular because these languages require managing specific constructs corresponding
to the logical modalities. Considering theaffine variant (i.e. with unrestricted weaken-
ing) of these systems is an advantage ([Asp98]) but does not suppress the difficulty.

An alternative point of view is to keep ordinary lambda-calculus and use the logic
as a type system: then if a program is well-typed the logic provides a way to execute it
with the guaranteed complexity bound. The difficulty is then moved to the problem of
type inference. This approach and the corresponding type inference problems have been
studied in [CM01,CRdR03] for Elementary affine logic (EAL) and [Bai02,Bai04] for

� Work partially supported by project CRISS ACISécurité informatique and project GEOCAL
ACI Nouvelles interfaces des mathématiques.

�� Work partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan. This work
was started during a visit of this author at Universit´e Paris-Nord, in september 2004.

Light affine logic (LAL). It was shown that type inference in the propositional fragments
of these systems is decidable.

Typing in EAL is actually also motivated by another goal (see [CM01,ACM00]):
EAL-typed terms can be evaluated with the optimal reduction discipline much more
easily than general terms, by using only the abstract part of Lamping’s algorithm. Thus
EAL has been advocated as a promising type system for performing efficient optimal
reduction, using the following strategy: given a term, first try to infer an EAL type and if
there is one then evaluate the term using Lamping’s abstract algorithm. To succeed, this
approach would require: an efficient type inference algorithm, evidence that the class
of EAL-typable terms is large enough and includes interesting programs, and finally a
proof that those terms are indeed evaluated in a faster way with Lamping’s algorithm.
Maybe intersection types could also be a useful tool in this direction ([Car04]).

However though the type inference problems for EAL and LAL have been shown
decidable the algorithms provided, either for EAL or LAL, are not really efficient. They
all run at least in exponential time, even if one considers as input a simply typed lambda-
term. Our goal is to improve this state-of-the-art by providing more efficient and possi-
bly simpler algorithms.

In this paper we propose a new algorithm for EAL typing, which is therefore a
contribution to the perspective of EAL-driven optimal reduction discussed above. This
is also a first step for designing an efficient inference procedure for Dual light affine
logic (DLAL, [BT04a]) which is a simplification of LAL and corresponds to Ptime
computation.

Contribution. Technically speaking the main difficulty with EAL typing is to find
out where in the derivation to place!-rules and to determinehow many of them to put.
This corresponds in proof-nets terminology to placingboxes. The algorithms in [CM01]
and [CRdR03] are based on two tactics forfirst placing abstract boxes andthen working
out their number using linear constraints. Our approach also uses linear constraints but
departs from this point of view by determining the place of boxesdynamically, at the
time of constraints solving. This method was actually already proposed in [Bai02] for
LAL typing but with several conditions; in particular the term had to be in normal form.
In the present work we show that in a system without sharing of subterms other than
variables (like DLAL, but unlike LAL), this approach is considerably simplified. In
particular it results that:

– one can use as intermediary syntax a very simple term calculus (introduced in
[AR02]) instead of proof-nets like in [Bai02];

– the procedure can be run in polynomial time, if one considers as input a simply
typed lambda-term (instead of an untyped lambda-term).

Outline. The paper will proceed as follows: in section 2 we introduce Elementary
affine logic and the type system EAL� we consider for lambda-calculus; in section 3
we describe the term calculus (pseudo-terms, or concrete syntax) we will use to denote
EAL� derivations and we prove a theorem (Theorem 8) on EAL� typability; finally in
section 4 we give an EAL� decoration algorithm (based on Theorem 8), prove it can be
run in polynomial time (4.2) and derive from it an EAL� type inference algorithm (4.3).

Acknowledgements. We are grateful to an anonymous referee who suggested im-
portant remarks about optimal reduction and possible improvement of the present work.

Notations. Given a lambda-termM we denote byFV (M) the set of its free vari-
ables. Given a variablex we denote byno(x,M) the number of occurrences ofx in
M . We denote by|M | the structural size of a termM . We denote substitution (without
capture of variable) byM [N/x]. When there is no ambiguity we will writeM [M i/xi]
for M [M1/x1, . . . ,Mn/xn].

Notations for lists:ε will denote the empty list and pushing elementa on list l will
be denoted bya :: l. The prefix relation on lists will be denoted by≤.

2 Typing in Elementary Affine Logic

The formulas of Intuitionistic multiplicative Elementary affine logic (Elementary affine
logic for short, EAL) are given by the following grammar:

A,B ::= α | A � B | !A | ∀α.A
We restrict here to propositional EAL (without quantification). A natural deduction

presentation for this system is given on Figure 1.

A � A
(var) Γ � B

Γ, A � B
(weak)

Γ1 � A (B Γ2 � A

Γ1, Γ2 � B
(appl)

Γ, A � B

Γ � A (B
(abst)

Γ � !A !A, . . . , !A, ∆ � B

Γ, ∆ � B
(contr)

Γ1 � !A1 · · · Γn � !An A1, . . . , An � B

Γ1, . . . , Γn � !B
(prom)

Fig. 1. Natural deduction for EAL.

We callerasure A− of an EAL formulaA the simple type defined inductively by:

α− = α, (!A)− = A−, (A � B)− = A− → B−.

Conversely, given a simple typeT we say that an EAL formulaA is adecoration of T
if we haveA− = T .

We will use EAL as a type system for lambda-terms, but in a way more constrained
than that allowed by this natural deduction presentation:

Definition 1. Let M be a lambda-term; we sayM is typable in EAL� with typeΓ �
M : A if there is a derivation of this judgment in the system from Figure 2.

Notice that the rule (contr) is restricted and an affinity condition is imposed on the rule
(prom). The effect is that it does not allowsharing of subterms other than variables.
This comes in contrast with the computational study of ELL carried out for instance in
[DJ03] but is motivated by several points:

– With our restrictions, terms and derivations correspond more closely to each other.
For instance, the size of a typed termM is always linear in the length (i.e. the
number of typing rules) of its type derivation.

– This approach where sharing is restricted to variables (and not arbitrary subterms)
is enough to define Dual Light Affine Logic (DLAL) typing ([BT04a]) which is
sufficient to capture polynomial time computation.

– It is not hard to see that our notion of EAL�-typability precisely coincides with the
EAL-typability for lambda-terms considered by Coppola and Martini in [CM01]
(see [BT04b]). As argued in their paper [CM01], sharing-free derivations are neces-
sary to be able to use EAL for optimal reduction with the abstract part of Lamping’s
algorithm.

– Finally: using sharing of arbitrary subterms would make type inference more diffi-
cult . . .

x : A � x : A
(var) Γ � M : B

Γ, x : A � M : B
(weak)

Γ1 � M1 : A (B Γ2 � M2 : A

Γ1, Γ2 � (M1)M2 : B
(appl)

Γ, x : A � M : B

Γ � λx.M : A (B
(abst)

x1 : !A, . . . , xn : !A, ∆ � M : B

x : !A,∆ � M [x/x1, . . . , xn] : B
(contr)

Γ1 � M1 : !A1 · · · Γn � Mn : !An x1 : A1, . . . , xn : An � M : B

Γ1, . . . , Γn � M [Mi/xi] : !B
(prom)

In the rule (prom), eachxi occurs at most once inM .

Fig. 2. Typing rules for EAL�.

3 Concrete syntax and box reconstruction

3.1 Pseudo-terms

In order to describe the structure of type derivations we need a term calculus more in-
formative than lambda-calculus. We will use the language introduced in [AR02] (called
concrete syntax in this paper), which is convenient because it has no explicit construct
neither for boxes, nor for contractions. It was stressed in this reference that this syntax
is not faithful for LAL: several type derivations (LAL proofs) correspond to the same
term. However it is faithful for EAL�, precisely because sharing is restricted to variables
and there is no ambiguity on the placement of contractions.

Let us introducepseudo-terms:

t, u ::= x | λx.t | (t)u | !t | !t
The basic idea is that! constructs correspond to main doors of boxes inproof-nets
([Gir87,AR02]) while! constructs correspond to auxiliary doors of boxes. But note that
there is no information in the pseudo-terms to link occurrences of! and! corresponding
to the same box.

There is a natural erasure map(.)− from pseudo-terms to lambda-terms consisting
in removing all occurrences of! and!. Whent− = M , t is called adecoration ofM .

For typing pseudo-terms the rules are the same as in Definition 1 and Figure 2, but
for (prom):

Γ1 � t1 : !A1 · · · Γn � tn : !An x1 : A1, . . . , xn : An � t : B

Γ1, . . . , Γn � !t [!ti/xi] : !B
(prom)

We want to give an algorithm to determine if a pseudo-term can be typed in EAL�:
this can be seen as a kind of correctness criterion allowing to establish if boxes can be
reconstructed in a suitable way; this issue will be examined in 3.2.

Actually, when searching for EAL� type derivations for (ordinary) lambda-terms
it will be interesting to consider a certain subclass of derivations. A type derivation in
EAL� is restricted if in all applications of the rule (prom),

(i) the subjectM of the main premisex1 : A1, . . . , xn : An �M : B is not a variable,
and

(ii) the last rules to derive auxiliary premisesΓi �Mi :!Ai (1 ≤ i ≤ n) are either (var)
or (appl).

A pseudo-term isrestricted if it is obtained by the following grammar:

a ::= x | λx.t | (t)t
t ::= !ma,

wherem is an arbitrary value inZ and!ma is defined by:

!ma = ! · · · !︸︷︷︸
m times

a if m ≥ 0; !ma = ! · · · !︸︷︷︸
−m times

a if m < 0.

We then have the following proposition (see [BT04b] for the proof):

Proposition 2.

1. (For lambda-terms) if Γ �M : A has a type derivation, then it also has a restricted
type derivation.

2. (For pseudo-terms) Every restricted derivation yields a restricted pseudo-term.

As a consequence, when a lambda-termM is typable in EAL� one can always find a
decoration ofM (of the same type) in the set of restricted pseudo-terms.

3.2 Box reconstruction

We will consider words over the languageL = {!, !}�.
If t is a pseudo-term andx is an occurrence of variable (either free or bound) int,

we definet〈x〉 as the word ofL obtained by listing the occurrences of!, ! holdingx in
their scope. More formally:

x〈x〉 = ε, (!t)〈x〉 = ! :: (t〈x〉),
(λy.t)〈x〉 = t〈x〉, (y might be equal tox) (!t)〈x〉 = ! :: (t〈x〉),
((t1)t2)〈x〉 = ti〈x〉 whereti is the subterm containingx.

We define a map:s : L → Z by:

s(ε) = 0, s(! :: l) = 1 + s(l), s(! :: l) = −1 + s(l).

We calls(l) thesum associated tol.
Let t be a pseudo-term. We say thatt satisfies thebracketing condition if

– for any occurrence of variablex in t:

∀l ≤ t〈x〉, s(l) ≥ 0,

– moreover ifx is an occurrence of free variable:

s(t〈x〉) = 0.

That is to say: if! is seen as an opening bracket and! as a closing bracket, int〈x〉 any
! matches a! (we will say thatt〈x〉 is weakly well-bracketed) and if x is freet〈x〉 is
well-bracketed.

We sayt satisfies thescope condition if: for any subtermλx.v of t, for any occur-
rencexi of x in v, v〈xi〉 is well-bracketed:

– ∀l ≤ v〈xi〉, s(l) ≥ 0,
– ands(v〈xi〉) = 0.

It is obvious that:

Lemma 3. If t is a pseudo-term which satisfies the scope condition, then any subterm
of t also satisfies this condition.

Proposition 4. If t is an EAL� typed pseudo term, then t satisfies the bracketing and
scope conditions.

Proof. By induction on the EAL� type derivations.

For instance the two following pseudo-terms arenot EAL � typable:

!λf.!((!f)(!f)!
3
x), !λf.!((!

2
f)(!f)!

2
x),

the first one because it does not satisfy bracketing, and the second one because it does
not satisfy the scope condition (because of the first occurrence off).

Now, we can observe the following property:

Lemma 5 (Boxing). If !u is a pseudo-term which satisfies the bracketing and scope
conditions then there exist v, u1, . . . , un unique (up to renaming of v’s free variables)
such that:

– FV (v) = {x1, . . . , xn} and for 1 ≤ i ≤ n, no(xi, v) = 1,
– !u = !v[!u1/x1, . . . , !un/xn],
– v and ui, for 1 ≤ i ≤ n, satisfy the bracketing condition.

Proof. We denote by!0 the first occurrence of! in the term considered:!0u. Denote by
!1, . . . , !n the occurrences of! matching!0 in the words!u〈x〉, wherex ranges over the
occurrences of variables in!u. Let ui, with 1 ≤ i ≤ n, be the subterms of!u such that
!iui is a subterm of!u, for 1 ≤ i ≤ n. Then it is clear that nou i is a subterm of auj,
for i �= j.

Let nowv be the pseudo-term obtained fromu by replacing each! iui by a distinct
variablexi. Let us show that insidet, no occurrence of variable inu i can be bound by a
λ in v. Indeed assume it was the case for an occurrencey in u i and letλy.w denote the
subterm oft starting withλy. Thenλy.w would be of the formλy.w ′{!ui/xi}, where
v1{v2/x} denotes the syntactic substitution ofx by v2 in v1 (i.e. possibly with variable
capture). One can check that the scope condition fort would then be violated, hence a
contradiction.

Therefore we have!u = !v[!u1/x1, . . . , !un/xn] (without variable capture), and by
definition of!i we know that for1 ≤ i ≤ n, v〈xi〉 is well-bracketed.

Finally let us assumex is an occurrence of free variable inv distinct fromx i, for
1 ≤ i ≤ n. Thenx is an occurrence of free variable in!u, and as!u is well-bracketed
we have thats(!u〈x〉) = 0, hencex is in the scope of a!0 matching!0. Then!0 must be
one of the!i, for 1 ≤ i ≤ n, hencex is in ui and thus does not occur inv, which gives
a contradiction. Therefore we haveFV (v) = {x1, . . . , xn}.

Let us show thatv satisfies bracketing. Lety be an occurrence of variable inv. If y
is free we already know thatv〈y〉 is well-bracketed. Ify is bound then!v〈y〉 = !u〈y〉.
So if l ≤ !v〈y〉 andl �= ε, thens(l) ≥ 1, therefore∀l ≤ v〈y〉, s(l) ≥ 0. Sov satisfies
the bracketing condition. It is easy to check that theu is also satisfy the bracketing
condition.

Given a pseudo-termt we call EAL type assignment for t a mapΓ from the vari-
ables oft (free or bound) to EAL formulas. EAL type assignments are simply called
assignments when there is no danger of confusion. This mapΓ is extended to a partial
map from subterms oft to EAL formulas by the following inductive definition:

Γ (!u) = !A, if Γ (u) = A,

Γ (!u) = A, if Γ (u) = !A, undefined otherwise,
Γ (λx.u) = A � B, if Γ (x) = A,Γ (u) = B,
Γ ((u1)u2) = B, if Γ (u2) = A andΓ (u1) = A � B, undefined otherwise.

Given a pair(t, Γ) of a pseudo-termt and an assignmentΓ (we omit Γ if it is
natural from the context) we say that(t, Γ) satisfies thetyping condition if:

– Γ (t) is defined (so in particular each subterm oft of the form(u 1)u2 satisfies the
condition above),

– for any variablex of t which has at least 2 occurrences we have:Γ (x) is of the
form !B for some formulaB.

Given an EAL� type derivation for a pseudo-termt there is a natural assignment
Γ obtained from this derivation: the value ofΓ on free variables is obtained from the
environment of the final judgment and its value on bound variables from the type of the
variable in the premise of the abstraction rule in the derivation.

Proposition 6. If t is an EAL� typed pseudo-term and Γ is an associated assignment
then (t, Γ) satisfies the typing condition.

Moreover it is easy to observe that:

Lemma 7. If (t, Γ) satisfies the typing condition and u is a subterm of t, then (u, Γ)
also satisfies the typing condition.

Now, the conditions on pseudo-terms we have listed up to now are sufficient to ensure
thatt is an EAL� typed pseudo-term:

Theorem 8. If t is a pseudo-term and Γ an assignment such that:

– t satisfies the bracketing and scope conditions,
– (t, Γ) satisfies the typing condition,

then t is typable in EAL� with a judgment ∆ � t : A such that: Γ (t) = A and ∆ is the
restriction of Γ to the free variables of t.

Proof. Let us use the following enumeration for the conditions:
(i) bracketing, (ii) scope, (iii) typing.
The proof proceeds by structural induction on the pseudo-termt. Let us just deal

here with the caset = !u. The complete proof can be found in [BT04b].
By the Boxing Lemma 5,t can be written ast = !v[!u1/x1, . . . , !un/xn] where

FV (v) = {x1, . . . , xn} and eachv〈xi〉 is well-bracketed. By Lemma 5 again, eachu i

satisfies (i).
By Lemmas 3 and 7 ast satisfies (ii) and (iii),ui also satisfies (ii) and (iii). Therefore

by induction hypothesis we get that there exists an EAL� derivation of conclusion:

∆i � ui : Ai,

whereAi = Γ (ui), for 1 ≤ i ≤ n.
Let us now examine the conditions forv. As t satisfies the bracketing condition and

by the Boxing Lemma 5, we get thatv satisfies (i). By the Boxing Lemma again we
know that all free variables ofv have exactly one occurrence. It is easy to check that as
t satisfies the scope condition (ii), so doesv.

Consider now the typing condition. Let̃Γ be defined asΓ but Γ̃ (xi) = Γ (!ui)
for 1 ≤ i ≤ n. If y has several occurrences inv then it has several occurrences in
t, henceΓ (y) = !B, so Γ̃ (y) = !B. If (v1)v2 is a subterm ofv then(v ′1)v

′
2, where

v′i = vi[!u1/x1, . . . , !un/xn], is a subterm oft andΓ̃ (v′i) = Γ (vi). Therefore as(t, Γ)
satisfies the typing condition, then so does(v, Γ̃).

As Γ (ui) = Ai andΓ (!ui) is defined we haveAi = !Bi andΓ̃ (xi) = Bi. Finally
asv satisfies conditions (i)–(iii), by i.h. there exists an EAL� derivation of conclusion:

x1 : B1, . . . , xn : Bn � v : C,

whereC = Γ̃ (v).
If ui anduj for i �= j have a free variabley in common then ast satisfies the typing

condition we haveΓ (y) = !B. We rename the free variables common to several of
theuis, apply a (prom) rule to the judgments onu i and the judgment onv, then some
(contr) rules and get a judgment:∆ ′ � t : !C. Hence the i.h. is valid fort.

4 A decoration algorithm

4.1 Decorations and instantiations

We consider the followingdecoration problem:

Problem 9 (decoration). Let x1 : A1, . . . , xn : An � M : B be a simply typed term;
does there exist EAL decorationsA′

i of theAi for 1 ≤ i ≤ n andB ′ of B such that
x1 : A′

1, . . . , xn : A′
n �M : B′ is a valid EAL� judgment forM?

For that we will need to find out the possible concrete terms corresponding toM . Ac-
tually following section 3.1 and Prop. 2 it is sufficient to search for a suitable term
in the set of restricted pseudo-terms, instead of considering the whole set of pseudo-
terms. To perform this search we will useparameters: n,m,k, Theparameterized
pseudo-terms are defined by the following grammar:

a ::= x | λx.t | (t)t, t ::= !na,

wheren is a parameter (and not an integer).
To parameterize types, we will also uselinear combinations of parameters c,d, . . .

defined by:
c ::= 0 | n | n + c.

Theparameterized types are defined by:

A ::= !cα | !c(A � A).

Given a parameterized pseudo-termt, aparameterized type assignmentΣ for t is a map
from the variables oft (free or bound) to the parameterized types.

We denote bypar(t) (par(A), resp.) the set of parameters occurring int (A, resp.),
and bypar(Σ) the union ofpar(Σ(x)) with x ranging over all the variables oft.

An instantiation φ for t is a mapφ : par(t) → Z. It allows to define a restricted
pseudo-termφ(t) obtained by substituting the integerφ(n) for each parametern. Sim-
ilarly, an instantiation φ for (t, Σ) is a mapφ : par(t) ∪ par(Σ) → Z. The mapφ
is naturally extended to the linear combinations of parameters. IfA is a parameterized
type such thatpar(A) ⊆ par(Σ) and moreoverφ(c) is non-negative whenever! cB oc-
curs inA, one can obtain an EAL typeφ(A) by substitutingφ(n) for each parametern
as above. For instance,φ(!n(!0α � !n+nα)) = !3(α � !6α) whenφ(n) = 3. An EAL
type assignmentφΣ for φ(t) is then obtained byφΣ(x) = φ(Σ(x)) whenφ(Σ(x)) is
defined for all variablesx of t.

We define thesize |A| of a parameterized formulaA as the structural size of its
underlying simple type (so the sum of the number of� connectives and atomic sub-
types), and|Σ| as the maximum of|Σ(x)| for all variablesx. Theerasure map (.)− is
defined for parameterized pseudo-terms and parameterized types analogously to those
for pseudo-terms and EAL types.

It is clear that given a lambda-termM there exists a parameterized pseudo-term
t such thatt− = M and all occurrences of parameter int are distinct. We denotet,
which is unique up to renaming of its parameters, byM and call it thefree decoration

ofM . Note that the size ofM is linear in the size ofM . Given a simple typeT , its free
decoration T is defined by:

α = !nα, A−◦B = !n(A−◦B),

where in the second case we have takenA andB with disjoint sets of parameters and
n a fresh parameter. Finally, asimple type assignment Θ for M is a map from the
variables ofM to the simple types. Itsfree decorationΘ is defined pointwise, by taking
Θ(x) = Θ(x), where all these decorations are taken with disjoint parameters.

The following picture illustrates the relationship among various notions introduced
so far:

pseudo-terms
EAL types

EAL typ. assign.

instantiation←−
param. pseudo-terms

param. types
param. typ. assign.

erasure−→←−
free

decoration

lambda-terms
simple types

simple typ. assign.

Given a simple type derivation of x1 : T1, . . . , xn : Tn � M : T , one can natu-
rally obtain a simple type assignmentΘ for M . Furthermore, it is automatic to build a
parameterized pseudo-termM and a parameterized type assignmentΘ for M . If φ is
an instantiation for(M,Θ) such thatφ(Ti) andφ(T) are defined (i.e.φ(n) ≥ 0 for all
n ∈ par(T1) ∪ · · · par(Tn) ∪ par(T)), thenφ(Ti) is a decoration ofTi for 1 ≤ i ≤ n
andφ(T) is a decoration ofT . Conversely, any decorations ofT i’s andT are obtained
through some instantiations for(M,Θ). Therefore, the decoration problem boils down
to the followinginstantiation problem:

Problem 10 (instantiation). Given a parameterized pseudo-termt and a parameterized
type assignmentΣ for it: does there exist an instantiationφ for (t, Σ) such thatφ(t)
has an EAL� type derivation associated toφΣ?

To solve this problem we will use Theorem 8 to find suitable instantiationsφ if there
exists any. For that we will need to be able to state the conditions of this theorem on
parameterized pseudo-terms; they will yield linear constraints. We will speak oflinear
inequations, meaning in fact both linear equations and linear inequations.

We will consider lists over parametersn. Let us denote byL ′ the set of such lists.
As for pseudo-terms we define fort a parameterized pseudo-term andx an occur-

rence of variable int, a list t〈x〉 in L′ by:

x〈x〉 = ε, ((t1)t2)〈x〉 = ti〈x〉 whereti is the subterm containingx,
(!na)〈x〉 = n :: (a〈x〉), (λy.t)〈x〉 = t〈x〉 (y might be equal tox).

The sums(l) of an elementl of L′ is a linear combination defined by:

s(ε) = 0, s(n :: l) = n + s(l).

Let t be a parameterized pseudo-term. We define theboxing constraints for t as the
set of linear inequationsC b(t) obtained fromt in the following way:

– bracketing: for any occurrence of variablex in t and any prefixl of t〈x〉, add the in-
equation:s(l) ≥ 0; moreover ifx is an occurrence of free variable add the equation
s(t〈x〉) = 0.

– scope: for any subtermλx.v of t, for any occurrencex i of x in v, add similarly the
inequations expressing the fact thatv〈xi〉 is well-bracketed.

It is then straightforward that:

Proposition 11. Given an instantiation φ for t, we have: φ(t) satisfies the bracketing
and scope conditions iff φ is a solution of C b(t).

Note that the number of inequations inC b(t) is polynomial in the size oft (hence also
in the size oft−).

In the sequel, we will need to unify parameterized types. For that, given 2 parame-
terized typesA andB we define their unification constraintsU(A,B) by:

U(!cα, !dα) = {c = d}
U(!c(A1 � A2), !d(B1 � B2)) = {c = d} ∪ U(A1, B1) ∪ U(A2, B2)

andU(A,B) = {FALSE} (unsolvable constraint) in the other cases.
LetΣ be a parameterized type assignment fort. Then we extendΣ to a partial map

from the subterms oft to parameterized types in the following way:

Σ(!na) = !n+cA if Σ(a) = !cA,
Σ(λx.u) = !0(A � B) if Σ(x) = A,Σ(u) = B,
Σ((u1)u2) = B, if Σ(u1) = !c(A � B), undefined otherwise.

We define thetyping constraints for (t, Σ) as the set of linear inequationsC typ(t, Σ)
obtained fromt,Σ as follows. WhenΣ(t) is not defined, thenC typ(t, Σ) = {FALSE}.
Otherwise:

(applications) for any subterm oft of the form(u 1)u2 with Σ(u1) = !c(A1 � B1)
andΣ(u2) = A2 add the constraintsU(A1, A2) ∪ {c = 0}.

(bangs) for any subterm oft of the form !nu with Σ(u) = !cA, add the constraint
n + c ≥ 0.

(contractions) for any variablex of twhich has at least 2 occurrences andΣ(x) = ! cA,
add the constraintc ≥ 1.

(variables) for anyc such that!cB is a subtype ofΣ(x) for some variablex of t, add
the constraintc ≥ 0.

We then have:

Proposition 12. Let t be a parameterized pseudo-term and Σ be a parameterized type
assignment for t. Given an instantiation φ for (t, Σ), we have: φΣ is defined and
(φ(t), φΣ) satisfies the typing condition iff φ is a solution of C typ(t, Σ).

Note that the number of inequations inC typ(t, Σ) is polynomial in(|t|+ |Σ|).
We defineC(t, Σ) = Cb(t) ∪ Ctyp(t, Σ). Using the two previous Propositions and

Theorem 8 we get the following result, which solves the instantiation problem:

Theorem 13. Let t be a parameterized pseudo-term, Σ be a parameterized type as-
signment for t, and φ be an instantiation for (t, Σ). The two following conditions are
equivalent:

– φΣ is defined and φ(t) is typable in EAL� with a judgment ∆ � φ(t) : A such that
φΣ(φ(t)) = A and ∆ is the restriction of φΣ to the free variables of φ(t),

– φ is a solution of C(t, Σ).

Moreover the number of inequations in C(t, Σ) is polynomial in (|t|+ |Σ|).
Finally, we obtain the following result, which solves the decoration problem:

Theorem 14. Let x1 : A1, . . . , xn : An � M : B be a simply typed term and let
Θ be the associated simple type assignment. There exist decorations A ′

i of the Ai for
1 ≤ i ≤ n and B′ of B such that x1 : A′

1, . . . , xn : A′
n � M : B′ is a valid EAL�

judgment iff there is a solution φ of C(M,Θ).
In this case each solution φ gives a suitable EAL� judgment x1 : A′

1, . . . , xn :
A′

n � M : B′. Moreover the number of inequations and the number of parameters in
C(M,Θ) are polynomial in (|M |+ |Θ|).

4.2 Solving the constraints

Now we turn our attention to the constraints and their solutions. Lett be a parameterized
pseudo-term andΣ be an assignment. We consider instead of the previous instantiation
maps with values inZ, maps with rational numbers as values:ψ : par(t) ∪ par(Σ)→
Q. If ψ is such a map andk is a non-negative integer we defined the mapkψ by:
(kψ)(n) = k.ψ(n), for any parametern.

Lemma 15. If ψ is a solution of C(t, Σ) and k is a strictly positive integer then kψ is
also a solution of C(t, Σ).

Proof. It is enough to observe that for any inequation ofC b(t) andCtyp(t, Σ) if ψ is a
solution then so iskψ:

– all inequations fromC b(t) and all those fromC typ(t, Σ) except the contraction
cases are homogeneous (no constant element in combinations) and ask ≥ 0 the
inequalities are preserved when multiplying both members byk;

– the inequations coming from the contraction cases inC typ(t, Σ) are of the form
m ≥ 1, so ask ≥ 1 we have: ifψ(m) ≥ 1 holds then so doeskψ(m) ≥ 1.

Recall that the problem of finding if a linear system of inequationsC admits a solu-
tion in Q can be solved in polynomial time in the size ofC and its number of variables.
Hence we have:

Proposition 16. The problem of whether the system C(t, Σ) admits a solution with
values in Z can be solved in time polynomial in (|t|+ |Σ|).
Proof. As the number of inequations and the number of parameters inC typ(t, Σ) are
polynomial in(|t| + |Σ|) and by the result we recalled above we have: one can decide
if Ctyp(t, Σ) admits a solution with values inQ in time polynomial in(|t|+ |Σ|).

Then, if there is no solution inQ there is no solution inZ. Otherwise ifψ is a solu-
tion in Q take fork the least multiple of the denominators ofψ(n), for all parameters
n. Then by Lemma 15,kψ is a solution inZ.

It then follows that:

Theorem 17. The decoration problem of Theorem 14 can be solved in time polynomial
in (|M |+ |Θ|).

4.3 Type inference

The procedure for EAL� decoration we have given can be extended to a type inference
procedure for EAL� in the way used in [CM01]: given an ordinary termM ,

– compute the principal assignmentΘ forM (giving the principal simple type),
– use the procedure of Theorem 14 to find ifM ,Θ admits a suitable EAL� decoration.

It follows from a result of [CRdR03] that:

Proposition 18. if M is EAL� typable and admits as principal simple type judgment
∆ � M : A, then M admits an EAL� type judgment which is a decoration of this
judgment.

See [BT04b] for a self-contained proof of this proposition.
As a consequence, searching for an EAL� decoration of the principal type judg-

ment ofM is sufficient to decide ifM is EAL� typable. It then follows from Theorem
17 that our EAL� type inference algorithm applied to a termM can be executed in
time bounded by a polynomial in(|M | + |Θ|) whereΘ is the principal (simple type)
assignment ofM .

Note, however, that this does not mean that the overall algorithm is polynomial time
in |M |, as the principal simple type assignment forM can have a size exponential in
|M |. Still, type inference in simples types can be performed in polynomial time if one
uses a representation with sharing for the types. Further work is needed to examine if
using a shared representation for types one can design an algorithm for EAL typing
polynomial w.r.t. the size of the untyped term.

4.4 Example

Let us consider a small example to illustrate our method: takeM = λy.λz.(y)(y)z (the
Church integer 2). The decorationM is given by:

M = !m1λy.!m2λz.!m3 [(!m4y1) !m5 [(!m6y2)!m7z]]

(we have distinguished the 2 occurrences ofy in y1 andy2). We get for the boxing
constraints:

Cb(M) =




m1 ≥ 0 (1) m2 ≥ 0 (8)
m1 + m2 ≥ 0 (2) m2 + m3 ≥ 0 (9)

m1 + m2 + m3 ≥ 0 (3) m2 + m3 + m4 = 0 (10)
m1 + m2 + m3 + m4 ≥ 0 (4) m2 + m3 + m5 ≥ 0 (11)
m1 + m2 + m3 + m5 ≥ 0 (5) m2 + m3 + m5 + m6 = 0 (12)

m1 + m2 + m3 + m5 + m6 ≥ 0 (6) m3 ≥ 0 (13)
m1 + m2 + m3 + m5 + m7 ≥ 0 (7) m3 + m5 ≥ 0 (14)

m3 + m5 + m7 = 0 (15)

where (1)–(7) express bracketing, (8)–(12) scope forλy and (13)–(15) scope forλz.

Now let us examine the typing constraints. We consider the principal typing assign-
ment:Θ(y) = α→ α,Θ(z) = α, which yieldsΘ(M) = (α→ α)→ (α→ α). Thus
we have:Θ(y) = !p1(!p2α � !p3α),Θ(z) = !p4α. We get for instance:

Θ(!m7z) = !m7+p4α
Θ(!m6y2) = !m6+p1(!p2α � !p3α)
Θ((!m6y2)!m7z) = !p3α
Θ(!m5((!m6y2)!m7z)) = !m5+p3α
Θ(!m4y1) = !m4+p1(!p2α � !p3α)
Θ((!m4y1) !m5 [(!m6y2)!m7z]) = !p3α
Θ(M) = !m1(!p1(!p2α � !p3α) � !m2(!p4α � !m3+p3α))

We obtain the following typing constraints (omitting some obvious constraints):

Ctyp(M) =




m7 + p4 ≥ 0 (16) m4 + p1 ≥ 0 (21)
m6 + p1 ≥ 0 (17) m4 + p1 = 0 (22)
m6 + p1 = 0 (18) p2 = m5 + p3 (23)

p2 = m7 + p4 (19) p1, . . . ,p4 ≥ 0 (24)
m5 + p3 ≥ 0 (20) p1 ≥ 1 (25)

PuttingCb(M) andCtyp(M) together we get thatC(M) is equivalent to:

{m1,m2,m3 ≥ 0; m2 + m3 = −m4 = −m6 = p1 ≥ 1;
m5 = 0; m3 + m7 = 0; p2 = p3 ≥ 0; p4 = p2 + m3}.

This finally gives the following (informally written) parameterized term and type with
constraints, which describe all solutions to this decoration problem:




M = !m1λy.!m2λz.!m3 [(!
m2+m3

y1) [(!
m2+m3

y2)!
m3
z]]

!m1(!m2+m3(!p2α � !p2α) � !m2(!p2+m3α � !p2+m3α))

constraints:{m1,m2,m3,p2 ≥ 0,m2 + m3 ≥ 1}.
Observe that this representation corresponds to several canonical forms (6 in this par-
ticular example) in the approach of Coppola and Ronchi della Rocca (see [CRdR03]).

5 Conclusion

We have given a new type inference algorithm for EAL� which is more efficient and
we think simpler than the previous ones. It generates a set of constraints which consists
of two parts: one which deals with placing suitable (potential) boxes and the other one
with typing the boxed term obtained. We believe the first part is not specific to EAL�

typing and could be used for typing with other Linear logic systems which require
determining boxes; what would need to be adapted to each case is the second (typing)
part. This was already stressed by Coppola and Martini for their EAL type inference
procedure ([CM04]). In particular we plan to study in this way second-order EAL typing
(assuming a system F type given) and DLAL typing ([BT04a]).

We have shown that the set of constraints needed in our algorithm is polynomial in
the size of the term and its simple type assignment. Finally we have also shown that by
using resolution of linear inequations over rationals our algorithm can be executed in
polynomial time with respect to the size of the initial term and its principal simple type
assignment.

References

[ACM00] A. Asperti, P. Coppola, and S. Martini. (Optimal) duplication is not elementary recur-
sive. InProceedings of POPL’00, pages 96–107, 2000.

[AR02] A. Asperti and L. Roversi. Intuitionistic light affine logic.ACM Transactions on
Computational Logic, 3(1):1–39, 2002.

[Asp98] A. Asperti. Light affine logic. InProceedings of LICS’98, pages 300–308, 1998.
[Bai02] P. Baillot. Checking polynomial time complexity with types. InProceedings of IFIP

TCS’02, pages 370–382, Montreal, 2002.
[Bai04] P. Baillot. Type inference for light affine logic via constraints on words.Theoretical

Computer Science, 328(3):289–323, 2004.
[BT04a] P. Baillot and K. Terui. Light types for polynomial time computation in lambda-

calculus. InProceedings of LICS’04, pages 266–275, 2004. Long version available at
http://arxiv.org/abs/cs.LO/0402059.

[BT04b] P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine logic
(long version). Technical Report cs.LO/0412028, arXiv, 2004. Available from
http://arxiv.org/abs/cs.LO/0412028.

[Car04] D. de Carvalho. Intersection types for light affine lambda calculus. InProceedings of
3rd Workshop on Intersection Types and Related Systems (ITRS’04), 2004. To appear
in ENTCS.

[CM01] P. Coppola and S. Martini. Typing lambda-terms in elementary logic with linear con-
straints. InProceedings of TLCA’01, volume 2044 ofLNCS, pages 76–90, 2001.

[CM04] P. Coppola and S. Martini. Optimizing optimal reduction. A type inference algorithm
for elementary affine logic.ACM Transactions on Computational Logic, 2004. To
appear.

[CRdR03] P. Coppola and S. Ronchi della Rocca. Principal typing in Elementary Affine Logic.
In Proceedings of TLCA’03, volume 2701 ofLNCS, pages 90–104, 2003.

[DJ03] V. Danos and J.-B. Joinet. Linear logic & elementary time.Information and Compu-
tation, 183(1):123–137, 2003.

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intuitionistic
derivations.Archive for Mathematical Logic, 33(6):387–412, 1995.

[Gir87] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
[Gir98] J.-Y. Girard. Light linear logic.Information and Computation, 143:175–204, 1998.
[GSS92] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic: A modular approach to

polynomial time computability.Theoretical Computer Science, 97:1–66, 1992.
[Laf04] Y. Lafont. Soft linear logic and polynomial time.Theoretical Computer Science,

318(1–2):163–180, 2004.
[Rov98] L. Roversi. A polymorphic language which is typable and poly-step. InProceedings of

the Asian Computing Science Conference (ASIAN’98), volume 1538 ofLNCS, pages
43–60, 1998.

[Ter01] K. Terui. Light affine lambda-calculus and polytime strong normalization. InPro-
ceedings of LICS’01, pages 209–220, 2001. Full version to appear inArchive for
Mathematical Logic.

