A Feasible Algorithm for Typingin
Elementary Affine Logic

Patrick Baillot!' and Kazushige Tertii?

1 Laboratoire d’Informatique de Paris-Nord / CNRS, Univer$ttiris-Nord, France.
pb@i pn. uni v-pari sl3.fr
2 National Institute of Informatics, Tokyo, Japan.
terui@ii.ac.jp

Abstract. We give a new type inference algorithm for typing lambda-terms in
Elementary Affine Logic (EAL), which is motivated by applications to complex-
ity and optimal reduction. Following previous references on this topic, the variant
of EAL type system we consider (denoted EAls a variant where sharing is re-
stricted to variables and without polymorphism. Our algorithm improves over the
ones already known in that it offers a better complexity bound: if a simple type
derivation for the ternt is given our algorithm performs EALtype inference in
polynomial time in the size of the derivation.

1 Introduction

Linear logic (LL) has proved a fruitful logical setting in which computational com-
plexity can be brought into the picture of the proofs-as-programs correspondence, since
the early work [GSS92]. In particular Light linear logic ([Gir98]) and Soft linear logic
([Laf04]) are variants of LL in which all numerical functions programmed are poly-
nomial time. Another system, Elementary linear logic (ELL, see [Gir98,DJ03]) corre-
sponds to Kalmar elementary complexity.

Hence one can consider specific term calculi designed through the Curry-Howard
correspondence and program directly in these languages with the guaranteed complex-
ity bound ([Rov98,Ter01]). However this turns out in practice to be a difficult task, in
particular because these languages require managing specific constructs corresponding
to the logical modalities. Considering thffine variant (i.e. with unrestricted weaken-
ing) of these systems is an advantage ([Asp98]) but does not suppress the difficulty.

An alternative point of view is to keep ordinary lambda-calculus and use the logic
as a type system: then if a program is well-typed the logic provides a way to execute it
with the guaranteed complexity bound. The difficulty is then moved to the problem of
type inference. This approach and the corresponding type inference problems have been
studied in [CM01,CRdRO03] for Elementary affine logic (EAL) and [Bai02,Bai04] for

* Work partially supported by project CRISS AGkcurité informatique and project GEOCAL
ACI Nouvelles interfaces des mathématiques.
** Work partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan. This work
was started during a visit of this author at Univexdftaris-Nord, in september 2004.

Light affine logic (LAL). It was shown that type inference in the propositional fragments
of these systems is decidable.

Typing in EAL is actually also motivated by another goal (see [CM01,ACMO0O0])):
EAL-typed terms can be evaluated with the optimal reduction discipline much more
easily than general terms, by using only the abstract part of Lamping’s algorithm. Thus
EAL has been advocated as a promising type system for performing efficient optimal
reduction, using the following strategy: given a term, first try to infer an EAL type and if
there is one then evaluate the term using Lamping'’s abstract algorithm. To succeed, this
approach would require: an efficient type inference algorithm, evidence that the class
of EAL-typable terms is large enough and includes interesting programs, and finally a
proof that those terms are indeed evaluated in a faster way with Lamping’s algorithm.
Maybe intersection types could also be a useful tool in this direction ([Car04]).

However though the type inference problems for EAL and LAL have been shown
decidable the algorithms provided, either for EAL or LAL, are not really efficient. They
all run at least in exponential time, even if one considers as input a simply typed lambda-
term. Our goal is to improve this state-of-the-art by providing more efficient and possi-
bly simpler algorithms.

In this paper we propose a new algorithm for EAL typing, which is therefore a
contribution to the perspective of EAL-driven optimal reduction discussed above. This
is also a first step for designing an efficient inference procedure for Dual light affine
logic (DLAL, [BT04a]) which is a simplification of LAL and corresponds to Ptime
computation.

Contribution. Technically speaking the main difficulty with EAL typing is to find
outwherein the derivation to placérules and to determingow many of them to put.

This corresponds in proof-nets terminology to pladioges. The algorithms in [CMO01]

and [CRdRO03] are based on two tacticsfiost placing abstract boxes atiten working

out their number using linear constraints. Our approach also uses linear constraints but
departs from this point of view by determining the place of bakgsmmically, at the

time of constraints solving. This method was actually already proposed in [Bai02] for
LAL typing but with several conditions; in particular the term had to be in normal form.

In the present work we show that in a system without sharing of subterms other than
variables (like DLAL, but unlike LAL), this approach is considerably simplified. In
particular it results that:

— one can use as intermediary syntax a very simple term calculus (introduced in
[ARO2]) instead of proof-nets like in [Bai02];

— the procedure can be run in polynomial time, if one considers as input a simply
typed lambda-term (instead of an untyped lambda-term).

Outline. The paper will proceed as follows: in section 2 we introduce Elementary
affine logic and the type system EAlwe consider for lambda-calculus; in section 3
we describe the term calculysséudo-terms, or concrete syntax) we will use to denote
EAL™ derivations and we prove a theorem (Theorem 8) on EAlpability; finally in
section 4 we give an EALdecoration algorithm (based on Theorem 8), prove it can be
run in polynomial time (4.2) and derive from it an EAltype inference algorithm (4.3).

Acknowledgements. We are grateful to an anonymous referee who suggested im-
portant remarks about optimal reduction and possible improvement of the present work.

Notations. Given a lambda-termi/ we denote byt'V (M) the set of its free vari-
ables. Given a variable we denote bywo(x, M) the number of occurrences ofin
M. We denote by | the structural size of a terd/. We denote substitution (without
capture of variable) by/[N/xz]. When there is no ambiguity we will writ&/ [M ; /x;]
for M[Ml/Il, ceey]\/[n/xn]

Notations for listse will denote the empty list and pushing elemeran list will
be denoted by :: [. The prefix relation on lists will be denoted by,

2 Typingin Elementary Affine Logic

The formulas of Intuitionistic multiplicative Elementary affine logic (Elementary affine
logic for short, EAL) are given by the following grammar:

A,B:=a|A—oB|!A|Va.A

We restrict here to propositional EAL (without quantification). A natural deduction
presentation for this system is given on Figure 1.

I'+B
ara V) TAF § Wweak)
INFA—oB IyFA A+ B
b B (appl) TF4A B @t
I'H1A 1A,.. A, A+ B (contr)
I AF B
I 1A, - DL k1A, Al,...,AnI—B(rom)
... .. I.F B P

Fig. 1. Natural deduction for EAL.

We callerasure A~ of an EAL formulaA the simple type defined inductively by:
a =q, (A" =A", (A—-B) =A" - B".

Conversely, given a simple type we say that an EAL formula is adecoration of T’
if we haveA— =T.

We will use EAL as a type system for lambda-terms, but in a way more constrained
than that allowed by this natural deduction presentation:

Definition 1. Let M be a lambda-term; we sayf is typable in EAL* with typeI" -
M : Aif there is a derivation of this judgment in the system from Figure 2.

Notice that the rule (contr) is restricted and an affinity condition is imposed on the rule
(prom). The effect is that it does not allosharing of subterms other than variables.
This comes in contrast with the computational study of ELL carried out for instance in
[DJO3] but is motivated by several points:

— With our restrictions, terms and derivations correspond more closely to each other.
For instance, the size of a typed tet is always linear in the length (i.e. the
number of typing rules) of its type deation.

— This approach where sharing is restricted to variables (and not arbitrary subterms)
is enough to define Dual Light Affine Logic (DLAL) typing ([BT04a]) which is
sufficient to capture polynomial time computation.

— ltis not hard to see that our notion of EAttypability precisely coincides with the
EAL-typability for lambda-terms considered by Coppola and Martini in [CMO01]
(see [BT04b]). As argued in their paper [CMO01], sharing-free derivations are neces-
sary to be able to use EAL for optimal reduction with the abstract part of Lamping’s
algorithm.

— Finally: using sharing of arbitrary subterms would make type inference more diffi-
cult...

I'-M:B

(var) Ta:AFM:B

rz:AFx: A (weak)

FlFMliA—OB FQFMQIA (appl) Fﬁc:AFM:B

I, o (M)M: 2 B T oM 4B @Y

x1: A, o VAJAR M2 B
x: VA A Mlz/x1,...,z0] : B

(contr)

=M 1A - M, 'A, x1: A0 Ay M B

In the rule (prom), each; occurs at most once if/.

(prom)

Fig. 2. Typing rules for EAL.

3 Concrete syntax and box reconstruction

3.1 Pseudo-terms

In order to describe the structure of type derivations we need a term calculus more in-
formative than lambda-calculus. We will use the language introduced in [AR02] (called
concrete syntax in this paper), which is convenient because it has no explicit construct
neither for boxes, nor for contractions. It was stressed in this reference that this syntax
is not faithful for LAL: several type derivations (LAL proofs) correspond to the same
term. However it is faithful for EALL, precisely because sharing is restricted to variables
and there is no ambiguity on the placement of contractions.

Let us introducepseudo-terms:

tous=x| Azt | (tu |t |

The basic idea is thdtconstructs correspond to main doors of boxeprioof-nets
([Gir87,AR02]) while! constructs correspond to auxiliary doors of boxes. But note that
there is no information in the pseudo-terms to link occurrencésnd! corresponding

to the same box.

There is a natural erasure map~ from pseudo-terms to lambda-terms consisting
in removing all occurrences dfind!. Whent — = M, t is called adecoration of M.
For typing pseudo-terms the rules are the same as in Definition 1 and Figure 2, but
for (prom):
bty 1Ay o LabEty A, x1:Ay,...,2p: Ay Ft: B
Fl,...,Fn 1t [Ttl/xz] iy

(prom)

We want to give an algorithm to determine if a pseudo-term can be typed in*EAL
this can be seen as a kind of correctness criterion allowing to establish if boxes can be
reconstructed in a suitable way; this issue will be examined in 3.2.

Actually, when searching for EALtype derivations for (ordinary) lambda-terms
it will be interesting to consider a certain subclass of derivations. A type derivation in
EAL™ isrestricted if in all applications of the rule (prom),

(i) the subjectV/ of the main premise; : Ai,...,x, : A, = M : Bisnotavariable,
and

(ii) the last rules to derive auxiliary premisés+ M; :!A; (1 < i < n) are either (var)
or (appl).

A pseudo-term isestricted if it is obtained by the following grammar:
az=x|Axt] ()t
t==1"q,
wherem is an arbitrary value iz, and! ™« is defined by:
mg= 1.1 q ifm>0 ma= 1---1 a ifm<D0.
—~—~ —~—
m times —m times
We then have the following proposition (see [BT04b] for the proof):
Proposition 2.

1. (For lambda-terms) if I" = M : A hasatypederivation, thenit also hasarestricted
type derivation.
2. (For pseudo-terms) Every restricted derivation yields a restricted pseudo-term.

As a consequence, when a lambda-térfris typable in EAL* one can always find a
decoration of\/ (of the same type) in the set of restricted pseudo-terms.

3.2 Box reconstruction

We will consider words over the language= {!,1}*.

If t is a pseudo-term andis an occurrence of variable (either free or bound),in
we definet(x) as the word ofZ obtained by listing the occurrences!of holdingz in
their scope. More formally:

x{xr) = e
(Ay.t)(x) =t{x), (y might be equal ta) (
((t1)t2)(x) = t;{x) wheret; is the subterm containing.

We defineamaps : £ — Z by:
s(e)=0, s(l=D)=1+s), s('=1)=-1+s(l).

We call s(7) thesum associated td.
Lett be a pseudo-term. We say thaatisfies thdvracketing condition if

— for any occurrence of variablein ¢:
VI < t(z), s(l) >0,
— moreover ifz is an occurrence of free variable:

s(t{x)) = 0.

That is to say: ifl is seen as an opening bracket dras a closing bracket, it{z) any
I matches d (we will say thatt(x) is weakly well-bracketed) and if x is freet(x) is
well-bracketed.

We sayt satisfies thescope condition if: for any subterm\z.v of ¢, for any occur-
rencez; of x in v, v(z;) is well-bracketed:

=Vl <w(xy), s(l)>0,
— ands(v{z;)) = 0.

It is obvious that:

Lemma 3. If ¢ is a pseudo-term which satisfies the scope condition, then any subterm
of ¢ also satisfies this condition.

Proposition 4. If ¢ is an EAL* typed pseudo term, then ¢ satisfies the bracketing and
scope conditions.

Proof. By induction on the EAL type derivations.

For instance the two following pseudo-terms aoe EAL * typable:

WLHAHEHTE), U HINT),

the first one because it does not satisfy bracketing, and the second one because it does
not satisfy the scope condition (because of the first occurrengg of
Now, we can observe the following property:

Lemma5 (Boxing). If lu is a pseudo-term which satisfies the bracketing and scope
conditions then there exist v, u1, ..., u, unique (up to renaming of v's free variables)
such that:

- FV(v) ={x1,...,z,}andfor 1 <i <n,no(z;,v) =1,
= lu=Wluy/x1, ..., un/xn),
— v and u,, for 1 < i < n, satisfy the bracketing condition.

_Proof. We denote by, the fi_rst occurrence dfin the term considered;u. Denote by
'1,..., 1, the occurrences dfmatching! in the wordslu(z), wherex ranges over the
occurrences of variables ln. Let u;, with 1 < ¢ < n, be the subterms df: such that

liu; is a subterm ofu, for 1 <4 < n. Then it is clear that na; is a subterm of a,
fori #£ j.

Let nowwv be the pseudo-term obtained franby replacing each;u; by a distinct
variablez;. Let us show that inside no occurrence of variable in; can be bound by a
Ainv. Indeed assume it was the case for an occurrgrnice: ; and lethy.w denote the
subterm oft starting with\y. Then\y.w would be of the form\y.w’{lu; /z;}, where
v1{va/x} denotes the syntactic substitutioroby v» in v; (i.e. possibly with variable
capture). One can check that the scope condition feould then be violated, hence a
contradiction.

Therefore we havey = v[luy /z1, ..., u, /z,] (Without variable capture), and by
definition of!; we know that forl < i < n, v(z;) is well-bracketed.

Finally let us assume is an occurrence of free variable indistinct fromz ;, for
1 < ¢ < n. Thenz is an occurrence of free variable im, and adw is well-bracketed
we have that(lu(z)) = 0, hencer is in the scope of & matching!y. Then!, must be
one of the!;, for 1 < i < n, hencer is in u; and thus does not occur in which gives
a contradiction. Therefore we ha¥d/ (v) = {z1,...,z,}.

Let us show that satisfies bracketing. Letbe an occurrence of variableinIf y
is free we already know that(y) is well-bracketed. Ify is bound therv(y) = lu(y).
Soifl < lv(y) andl # ¢, thens(l) > 1, thereforevi < v(y), s(I) > 0. Sowv satisfies
the bracketing condition. It is easy to check that thes also satisfy the bracketing
condition.

Given a pseudo-terrhwe call EAL type assignment for ¢ a mapI” from the vari-
ables oft (free or bound) to EAL formulas. EAL type assignments are simply called
assignments when there is no danger of confusion. This niafs extended to a partial
map from subterms afto EAL formulas by the following inductive definition:

rtu) =14, if I'(u) = A,

I'(lu) = A, if I'(u) = !4, undefined otherwise

I'hxw) =A—B, if'(x)=AT(u)=B,

I'((u1)u2) = B, if I'(uz) = AandI'(u;) = A — B, undefined otherwise

Given a pair(t, I") of a pseudo-term and an assignmert (we omit I" if it is
natural from the context) we say th@t I") satisfies theyping condition if:

— I'(t) is defined (so in particular each subterm af the form(u)us satisfies the
condition above),

— for any variabler of ¢t which has at least 2 occurrences we haliér) is of the
form | B for some formulab.

Given an EAL type derivation for a pseudo-teriithere is a natural assignment
I" obtained from this dération: the value ofl” on free variables is obtained from the
environment of the final judgment and its value on bound variables from the type of the
variable in the premise of the abstraction rule in the derivation.

Proposition 6. If ¢ isan EAL* typed pseudo-term and I” is an associated assignment
then (¢, I") satisfies the typing condition.

Moreover it is easy to observe that:

Lemma?7. If (¢,1") satisfies the typing condition and « is a subterm of ¢, then (u, I")
al so satisfies the typing condition.

Now, the conditions on pseudo-terms we have listed up to now are sufficient to ensure
thatt is an EAL* typed pseudo-term:

Theorem 8. If t isa pseudo-termand I" an assignment such that:

— t satisfies the bracketing and scope conditions,
— (t, I') satisfies the typing condition,

then ¢ istypable in EAL* with a judgment A I ¢ : A suchthat: I'(¢t) = A and A isthe
restriction of I" to the free variables of ¢.

Proof. Let us use the following enumeration for the conditions:

(i) bracketing, (ii) scope, (iii) typing.

The proof proceeds by structural induction on the pseudo-tetret us just deal
here with the case= !u. The complete proof can be found in [BT04b].

By the Boxing Lemma 5¢ can be written a$ = 'v[lu; /x4, ..., u,/2,] where
FV(v) = {z1,...,z,} and each(x;) is well-bracketed. By Lemma 5 again, each
satisfies (i).

By Lemmas 3 and 7 assatisfies (ii) and (iii)u; also satisfies (ii) and (iii). Therefore
by induction hypothesis we get that there exists an EMErivation of conclusion:

AZF’U%AZ,

whereA; = I'(u;), for1 <i < n.

Let us now examine the conditions farAs ¢ satisfies the bracketing condition and
by the Boxing Lemma 5, we get thatsatisfies (i). By the Boxing Lemma again we
know that all free variables af have exactly one occurrence. It is easy to check that as
t satisfies the scope condition (i), so daes

Consider now the typing condition. Let be defined ag™ but I'(z;) = I'(lw;)
for 1 < ¢ < n. If y has several occurrences#nthen it has several occurrences in
t, hencel'(y) = !B, soI'(y) = !B. If (v1)vy is a subterm ofy then (v})v}, where
v = vi[luy /1, . . ., Tun /2,], is @ subterm of and I"(v}) = I'(v;). Therefore agt, I')
satisfies the typing condition, then so doéesf).

As I'(u;) = A; andI'(lu;) is defined we havel; = !B; andf(xi) = B;. Finally
asw satisfies conditions (i)—(iii), by i.h. there exists an EAtlerivation of conclusion:

r1:B1,...,xp : B, Fv:C,

whereC = I'(v).

If u; andu; for i # j have a free variablg in common then assatisfies the typing
condition we havel(y) = !B. We rename the free variables common to several of
thew;s, apply a (prom) rule to the judgments @pand the judgment on, then some
(contr) rules and get a judgment’ ¢ : !C. Hence the i.h. is valid fot.

4 A decoration algorithm

4.1 Decorationsand instantiations
We consider the followinglecoration problem:

Problem9 (decoration). Letxy : Ay,..., 2, : A, b M : B be a simply typed term;
does there exist EAL decorationt of the A; for 1 < i < n andB’ of B such that
1 Ay, AL M B’ is avalid EALS judgment forM ?

For that we will need to find out the possible concrete terms correspondiig #c-

tually following section 3.1 and Prop. 2 it is sufficient to search for a suitable term
in the set of restricted pseudo-terms, instead of considering the whole set of pseudo-
terms. To perform this search we will uparameters: n, m, k, Theparameterized
pseudo-terms are defined by the following grammar:

a:=x | Ax.t| (L), t == 1"a,

wheren is a parameter (and not an integer).
To parameterize types, we will also useear combinations of parametersc, d, . ..
defined by:

c:=0|n|n+c.

The parameterized types are defined by:
A== |I°(A — A).

Given a parameterized pseudo-terraparameterized type assignment X for ¢ is a map
from the variables of (free or bound) to the parameterized types.

We denote byar(t) (par(A), resp.) the set of parameters occurring (@, resp.),
and bypar(X') the union ofpar(X'(x)) with 2 ranging over all the variables of

An instantiation ¢ for ¢ is @ mape : par(t) — Z. It allows to define a restricted
pseudo-terny(t) obtained by substituting the integéfn) for each parametas. Sim-
ilarly, aninstantiation ¢ for (¢, X) is a map¢ : par(t) U par(X) — Z. The mapp
is naturally extended to the linear combinations of parametertidfa parameterized
type such thapar(A) C par(X) and moreoves(c) is non-negative whenevet B oc-
curs inA, one can obtain an EAL typg(A) by substitutings(n) for each parametet
as above. For instancg(!™ (I"a — ")) = I*(a — 1°a) whené(n) = 3. An EAL
type assignment X’ for ¢(t) is then obtained by X' (z) = ¢(X(x)) wheng(X'(x)) is
defined for all variables of ¢.

We define thesize |A| of a parameterized formuld as the structural size of its
underlying simple type (so the sum of the number-efconnectives and atomic sub-
types), andX| as the maximum of¥'(z)| for all variablesx. Theerasuremap (.) ~ is
defined for parameterized pseudo-terms and parameterized types analogously to those
for pseudo-terms and EAL types.

It is clear that given a lambda-ter there exists a parameterized pseudo-term
t such thatt— = M and all occurrences of parametertiare distinct. We denotg
which is unique up to renaming of its parametersAByand call it thefree decoration

of M. Note that the size aff is linear in the size of/. Given a simple typd, its free
decoration T is defined by:

a="a A—oB=""(A—B),

3

where in the second case we have takeand B with disjoint sets of parameters and
n a fresh parameter. Finally, @ample type assignment © for M is a map from the
variables of) to the simple types. Itee decoration © is defined pointwise, by taking
O(z) = O(x), where all these decorations are taken with disjoint parameters.

The following picture illustrates the relationship among various notions introduced
so far:

pseudo-terms | . wantiation] P2ram: pseudo-terms €MUY€ [1ambda-terms

EAL types instantiation param. types <f— simple types
EAL typ. assign param. typ. assign decg‘?:ﬁo simple typ. assigr|.
Given a simple type desmtion of z1 : T1,...,z, : T, = M : T, one can natu-

rally obtain a simple type assignmesitfor M. Furthermore, it is automatic to build a
parameterized pseudo-terhi and a parameterized type assignmerfor M. If ¢ is

an instantiation fof M, ©) such that(T;) and¢(T) are defined (i.e¢(n) > 0 for all

n € par(Ty) U - --par(T,) Upar(T)), thens(T;) is a decoration of ; for 1 < i < n
ando(T) is a decoration of’. Conversely, any decorations Bf's andT are obtained
through some instantiations fo#/, ©). Therefore, the decoration problem boils down
to the followinginstantiation problem:

Problem 10 (instantiation). Given a parameterized pseudo-teriand a parameterized
type assignment’ for it: does there exist an instantiatignfor (¢, X) such thatp(t)
has an EAL type derivation associated #o~'?

To solve this problem we will use Theorem 8 to find suitable instantiatidhthere
exists any. For that we will need to be able to state the conditions of this theorem on
parameterized pseudo-terms; they will yield linear constraints. We will spelaheaf
inequations, meaning in fact both linear equations and linear inequations.

We will consider lists over parameteis Let us denote by’ the set of such lists.

As for pseudo-terms we define folm parameterized pseudo-term anen occur-
rence of variable in, a list¢(x) in £’ by:

x(r) = ¢ ((t1)t2) ()
(Pa)(@) =0 (a(z)), (Ayt)(z)

The sums(!) of an element of £’ is a linear combination defined by:

s(e) =0, s(m:l)=n+s().

t;{x) wheret; is the subterm containing,
t(z) (y might be equal ta).

Lett be a parameterized pseudo-term. We defindtixeng constraints for ¢ as the
set of linear inequationd®(t) obtained fromt in the following way:

— bracketing: for any occurrence of variahién ¢ and any prefix of ¢(x), add the in-
equation:s(l) > 0; moreover ifx is an occurrence of free variable add the equation
s(t{x)) = 0.

— scope: for any subterthe.v of ¢, for any occurrence ; of z in v, add similarly the
inequations expressing the fact thét:;) is well-bracketed.

It is then straightforward that:

Proposition 11. Given an instantiation ¢ for ¢, we have: ¢(t) satisfies the bracketing
and scope conditionsiff ¢ is a solution of Cb(t).

Note that the number of inequations(fi(t) is polynomial in the size of (hence also
in the size oft ™).

In the sequel, we will need to unify parameterized types. For that, given 2 parame-
terized typesA and B we define their unification constraint§ A, B) by:

U(a,'%) = {c=d}
U(1°(A; —o A2),19(B) — By)) = {c =d} UU(A;, B;) UU(As, By)

andU (A, B) = {FALSE} (unsolvable constraint) in the other cases.
Let X be a parameterized type assignmentfarhen we extend to a partial map
from the subterms afto parameterized types in the following way:

Y("a) =1""°4 if Y(a) =1°4,
Y(Mzwu) =1°A— B) if Y(z)=A,X(u) =B,
X((ur)u2) = B, if X(u1) =1°(A — B), undefined otherwise

We define theyping constraintsfor (¢,) as the set of linear inequatio6$'? (¢,)
obtained fromy, X as follows. When¥(t) is not defined, thef *v? (¢, &) = {FALSE}.
Otherwise:

(applications) for any subterm ot of the form (u 1)us with X'(u;) = 1°(4; — By)
andX(uz) = Az add the constraint§(A;, A2) U {c = 0}.

(bangs) for any subterm ot of the form!™u with X¥'(u) = !°A, add the constraint
n+c>0.

(contractions) for any variabler of ¢t which has atleast 2 occurrences ang:) = ! “ A,
add the constraint > 1.

(variables) for anyc such that®B is a subtype of’(x) for some variable: of ¢, add
the constraint > 0.

We then have:

Proposition 12. Let ¢ be a parameterized pseudo-term and X be a parameterized type
assignment for ¢. Given an instantiation ¢ for (¢, %), we have: ¢X is defined and
(o(t), X)) satisfies the typing conditioniff ¢ isa solution of Ct¥7 (¢, 30).

Note that the number of inequationsdi¥?(t, X) is polynomial in(|t| + | Z|).
We defineC(t, &) = C(t) U C%P(t, X). Using the two previous Propositions and
Theorem 8 we get the following result, which solves the instantiation problem:

Theorem 13. Let ¢ be a parameterized pseudo-term, X' be a parameterized type as-
signment for ¢, and ¢ be an instantiation for (¢, X). The two following conditions are
equivalent:

— ¢X isdefined and ¢(t) istypablein EAL* with ajudgment A - ¢(¢) : A such that
PX(p(t)) = Aand Aistherestriction of X to the free variables of ¢(t),
— ¢isasolutionof C(t, X).
Moreover the number of inequationsin C(t, X') is polynomial in (|| + | X]).
Finally, we obtain the following result, which solves the decoration problem:

Theorem 14. Let 2y : Ay,...,z, : A, & M : B be a simply typed term and let
© be the associated simple type assignment. There exist decorations A/, of the A; for
1 <i<nandB of Bsuchthatz, : A},...,z, : A, - M : B’ isavalid EAL*
judgment iff thereis a solution ¢ of C(M, O©).

In this case each solution ¢ gives a suitable EAL* judgment z; : A},...,z, :
Al + M : B'. Moreover the number of inequations and the number of parametersin
C(M, ©) arepolynomial in (|M| + |O)).

4.2 Solving the constraints

Now we turn our attention to the constraints and their solutions: heta parameterized
pseudo-term and’ be an assignment. We consider instead of the previous instantiation
maps with values iz, maps with rational numbers as valugs: par(t) U par(X) —

Q. If ¢ is such a map ané is a non-negative integer we defined the niajp by:

(k) (n) = k.4(n), for any parameten.

Lemma15. If ¢ isa solution of C(¢, ') and k is a strictly positive integer then ki is
also asolution of C(¢, X0).

Proof. It is enough to observe that for any inequatiorC8ft) andCtvr (¢, X0) if ¢ is a
solution then so i%1):

— all inequations fromC®(t) and all those fronC*¥?(t, X) except the contraction
cases are homogeneous (no constant element in combinations) and &sthe

inequalities are preserved when multiplying both memberk; by
— the inequations coming from the contraction case§ ‘iff (¢,) are of the form

m > 1, so ask > 1 we have: ify(m) > 1 holds then so dodsy)(m) > 1.

Recall that the problem of finding if a linear system of inequati®asimits a solu-
tion in Q can be solved in polynomial time in the size(b&nd its number of variables.
Hence we have:

Proposition 16. The problem of whether the system C(¢, ') admits a solution with
valuesin Z can be solved in time polynomial in (|¢| + | X]).

Proof. As the number of inequations and the number of parametef$“n¢, X) are
polynomial in(|t| 4+ | X'|) and by the result we recalled above we have: one can decide
if CtvP(t, X)) admits a solution with values i@ in time polynomial in(|t| + | 2]).

Then, if there is no solution i there is no solution iZ.. Otherwise ify is a solu-
tion in Q take fork the least multiple of the denominatorsn), for all parameters
n. Then by Lemma 15 is a solution inZ.

It then follows that:

Theorem 17. The decoration problem of Theorem 14 can be solved in time polynomial
in([M|+10)).

4.3 Typeinference

The procedure for EAL decoration we have given can be extended to a type inference
procedure for EAL in the way used in [CMO01]: given an ordinary teri,

— compute the principal assignmedtfor M (giving the principal simple type),
— use the procedure of Theorem 14 to find4f © admits a suitable EAL decoration.

It follows from a result of [CRARO03] that:

Proposition 18. if M is EAL* typable and admits as principal simple type judgment
A M : A, then M admits an EAL* type judgment which is a decoration of this
judgment.

See [BT04b] for a self-contained proof of this proposition.

As a consequence, searching for an EAdecoration of the principal type judg-
ment of M is sufficient to decide if\/ is EAL* typable. It then follows from Theorem
17 that our EAL type inference algorithm applied to a terhd can be executed in
time bounded by a polynomial iffM| + |©]) where© is the principal (simple type)
assignment of\/.

Note, however, that this does not mean that the overall algorithm is polynomial time
in | M|, as the principal simple type assignment fdrcan have a size exponential in
|M|. Still, type inference in simples types can be performed in polynomial time if one
uses a representation with sharing for the types. Further work is needed to examine if
using a shared representation for types one can design an algorithm for EAL typing
polynomial w.r.t. the size of the untyped term.

4.4 Example

Let us consider a small example to illustrate our method: #dke \y.\z.(y)(y)z (the
Church integer 2). The decoratidd is given by:

M o= 1™ \gy 1202)\ P8 [(1™,) RS [(1M6,)17 5]]

(we have distinguished the 2 occurrenceg @f y; andys). We get for the boxing
constraints:

mi + mo > 0(2) mso + ms >0 (9)

mj + ms + ms 20(3) mo + ms + my :0(10)

Cb(ﬁ): mj + mo + Mg + My Z 0(4) ms + mgs + msy 20(11)
mj + mso + Mg + msy 20(5)m2+m3+m5+m6:()(12)
m1—|—m2+m3—|—m5+m6>0(6) ms 20(13)

mj + mg +mg +ms +my >0(7) msz + ms >0 (14)

ms + ms + msy :0(15)

where (1)-(7) express bracketing, (8)—(12) scope\ipand (13)—(15) scope foxz.

Now let us examine the typing constraints. We consider the principal typing assign-
ment:6(y) = a — o, 6(z) = a, which yieldsO(M) = (a — a) — (o — «). Thus
we haveBO(y) = IP* (IP2a — IP2q), O(z) = P*a. We get for instance:

§(|m7z) — |m7+Pa,

@(!mng) _ !ma+p1(!p2a S !paa)

O((I™ey)I™7 2) =Py

@(!ms((!mey)!m7z)) — |Ms5+P3

@(!m4yl) — !m4+p1(!p2a % !paa)

B((I™mayy) 15[(1Moo) 1™ 2]) = 1Py

(M) = IML(PL(IP2 o P8y o |M2(|Pag o |MaHPsy))

myz + pg > 0 (16) my+p1 > 0 (21)

mg + p1 > 0 (17) my +p1 = 0 (22)
Cv"(M)={mg+pi= 0 (18) pz =ms+ps(23)
p2 =m7+Ppa(19) Pp1,...,ps> 0 (24)

ms + p3 > 0 (20) P1 > 1 (25)

PuttingC®(M) andC*¥? (M) together we get that(]) is equivalent to:
{m;, mz, m3 > 0; mz + mg = —my = —mg = p; > 1;
ms = 0; m3 + m7 = 0; p2 = p3 > 0; p4 = p2 + m3}.

This finally gives the following (informally written) parameterized term and type with
constraints, which describe all solutions to this decoration problem:

Tmz+mg

M = "1)y ™2 Nz ™3] (]

!m1(!m2+m3(!pza_0!pza)_o!mz(!p2+m3a_o!pz+maa))

1) [y T2]]

constraints{ms, my, ms, p2 > 0,mz + mgz > 1}.

Observe that this representation corresponds to several canonical forms (6 in this par-
ticular example) in the approach of Coppola and Ronchi della Rocca (see [CRARO03]).

5 Conclusion

We have given a new type inference algorithm for EAWhich is more efficient and

we think simpler than the previous ones. It generates a set of constraints which consists
of two parts: one which deals with placing suitable (potential) boxes and the other one
with typing the boxed term obtained. We believe the first part is not specific to*EAL
typing and could be used for typing with other Linear logic systems which require
determining boxes; what would need to be adapted to each case is the second (typing)
part. This was already stressed by Coppola and Martini for their EAL type inference
procedure ([CMO04]). In particular we plan to study in this way second-order EAL typing
(assuming a system F type given) and DLAL typing ([BT04a]).

We have shown that the set of constraints needed in our algorithm is polynomial in
the size of the term and its simple type assignment. Finally we have also shown that by
using resolution of linear inequations over rationals our algorithm can be executed in
polynomial time with respect to the size of the initial term and its principal simple type
assignment.

References

[ACMOQ] A. Asperti, P. Coppola, and S. Martini. (Optimal) duplication is not elementary recur-
sive. InProceedings of POPL’ 00, pages 96—-107, 2000.

[ARO2] A. Asperti and L. Roversi. Intuitionistic light affine logicACM Transactions on
Computational Logic, 3(1):1-39, 2002.

[Asp98] A. Asperti. Light affine logic. IfProceedings of LICS 98, pages 300-308, 1998.

[Bai02] P. Baillot. Checking polynomial time complexity with types. Rroceedings of IFIP
TCS 02, pages 370-382, Montreal, 2002.

[Bai04] P. Baillot. Type inference for light affine logic via constraints on wortlseoretical
Computer Science, 328(3):289-323, 2004.

[BTO4a] P. Baillot and K. Terui. Light types for polynomial time computation in lambda-
calculus. InProceedings of LICS 04, pages 266—275, 2004. Long version available at
http://arxiv.org/abs/cs.LO/0402059.

[BT04b] P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine logic
(long version). Technical Report ¢s.LO/0412028, arXiv, 2004. Available from
http://arxiv.org/abs/cs.LO/0412028.

[Car04] D. de Carvalho. Intersection types for light affine lambda calculuBrdeeedings of
3rd Workshop on Intersection Types and Related Systems (ITRS 04), 2004. To appear
in ENTCS.

[CMO1] P. Coppola and S. Martini. Typing lambda-terms in elementary logic with linear con-
straints. InProceedings of TLCA 01, volume 2044 of NCS, pages 76-90, 2001.

[CM04] P. Coppola and S. Martini. Optimizing optimal reduction. A type inference algorithm
for elementary affine logic.ACM Transactions on Computational Logic, 2004. To
appeatr.

[CRARO03] P. Coppola and S. Ronchi della Rocca. Principal typing in Elementary Affine Logic.
In Proceedings of TLCA' 03, volume 2701 oL NCS pages 90-104, 2003.

[DJO3] V. Danos and J.-B. Joinet. Linear logic & elementary tirrdormation and Compu-
tation, 183(1):123-137, 2003.

[DJS95] V. Danos, J.-B. Joinet, and H. Schellinx. On the linear decoration of intuitionistic
derivations.Archive for Mathematical Logic, 33(6):387-412, 1995.

[Gir87] J.-Y. Girard. Linear logicTheoretical Computer Science, 50:1-102, 1987.

[Gir98] J.-Y. Girard. Light linear logicInformation and Computation, 143:175-204, 1998.

[GSS92] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic: A modular approach to
polynomial time computabilityTheoretical Computer Science, 97:1-66, 1992.

[LafO4] V. Lafont. Soft linear logic and polynomial timeTheoretical Computer Science,
318(1-2):163-180, 2004.

[Rov98] L. Roversi. A polymorphic language which is typable and poly-stepraoeedings of
the Asian Computing Science Conference (ASIAN'98), volume 1538 oLNCS, pages
43-60, 1998.

[Ter01] K. Terui. Light affine lambda-calculus and polytime strong normalizationPrta
ceedings of LICS 01, pages 209-220, 2001. Full version to appeadichive for
Mathematical Logic.

