
Linear Intersection Types
for Implicit Computational

Complexity
Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics

Sougou Kenkyu Daigakuin Daigaku

17/03/2006, Keio – p.1/33



Motivation

Verification of computational complexity:

17/03/2006, Keio – p.2/33



Motivation

Verification of computational complexity:

Given a program M, if one can give it a certificate, (eg. typing

derivation, ordering, polynomial interpretation) then M can be

evaluated in, say, Ptime.

17/03/2006, Keio – p.2/33



Motivation

Verification of computational complexity:

Given a program M, if one can give it a certificate, (eg. typing

derivation, ordering, polynomial interpretation) then M can be

evaluated in, say, Ptime.

Nowadays there are plenty of Ptime systems.

17/03/2006, Keio – p.2/33



Motivation

Verification of computational complexity:

Given a program M, if one can give it a certificate, (eg. typing

derivation, ordering, polynomial interpretation) then M can be

evaluated in, say, Ptime.

Nowadays there are plenty of Ptime systems.

They are all extensionally complete (enough functions), but

intensionally too poor (few algorithms).

17/03/2006, Keio – p.2/33



Motivation

Verification of computational complexity:

Given a program M, if one can give it a certificate, (eg. typing

derivation, ordering, polynomial interpretation) then M can be

evaluated in, say, Ptime.

Nowadays there are plenty of Ptime systems.

They are all extensionally complete (enough functions), but

intensionally too poor (few algorithms).

More expressive systems are definitely called for...
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Motivation

Difficulties in complexity verification: we have to deal with

Asymptotic properties (infinitely many runs)

Dynamic properties (eg. �-reduction)

Intersection types: Dynamic �� Static

Standard intersection types:

SN = Typability

Linear intersection types: in addition,

Normalization length = Derivation size

Hope this will help complexity verification...
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Outline

In this talk, we only consider pure lambda calculus.

1. General picture: how hopeless our situation is

2. Linear intersection types:

derivation size = normalization length

3. Application: a proof of

Ptime = [Church � Scott in ����Æ���� ]
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Preliminary

�: the set of untyped lambda terms.

� � ��� ���.

Fix a Church-coding of binary words in � , eg.

����� � ���������������������������

Any � � � represents a partial function �� �� ��� :

�� �	� � 	� if �	 ���	�

� � otherwise.

A type system � (such as System F) determines a set 	 
 � of

typable terms.

Usually, such 	 is r.e.
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Lambda-characterizations of ��

	 
 � is P-sound if

� � 	 �� �� � ���
Examples: ���� �

17/03/2006, Keio – p.6/33



Lambda-characterizations of ��

	 
 � is P-sound if

� � 	 �� �� � ���
Examples: ���� �

	 is extensionally P-complete if in addition

� � �� �� �� � 	 �� � �� ��

Examples: ��� (Bellantoni-Cook 92) translated into �,

����	� (Leivant-Marion 94), ��� (Girard 98),


�� (Lafont 04), ���� (Baillot-Terui 04)

17/03/2006, Keio – p.6/33



Lambda-characterizations of ��

	 
 � is P-sound if

� � 	 �� �� � ���
Examples: ���� �

	 is extensionally P-complete if in addition

� � �� �� �� � 	 �� � �� ��

Examples: ��� (Bellantoni-Cook 92) translated into �,

����	� (Leivant-Marion 94), ��� (Girard 98),


�� (Lafont 04), ���� (Baillot-Terui 04)

	 is intensionally P-complete if in addition

�� � �� ��� � 	 �
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Extensional vs Intensional P-completeness

Intensional P-completeness implies extensional one.
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Extensional vs Intensional P-completeness

Intensional P-completeness implies extensional one.

Extensional P-completeness is very easy to achieve: it is

basically sufficient if the following are typable:

polynomials

one-step transitions of TM

(restricted) iteration scheme

But so what?

Intensional P-completeness is desired...
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Intensional P-completeness is not r.e.

��: the set of terms representing a polynomial time function:

� � �� � �� � ���

17/03/2006, Keio – p.8/33



Intensional P-completeness is not r.e.

��: the set of terms representing a polynomial time function:

� � �� � �� � ���
Fact: �� is neither r.e. nor co-r.e.

17/03/2006, Keio – p.8/33



Intensional P-completeness is not r.e.

��: the set of terms representing a polynomial time function:

� � �� � �� � ���
Fact: �� is neither r.e. nor co-r.e.

Proof: Reduction of Hilbert’s 10th problem.

17/03/2006, Keio – p.8/33



Intensional P-completeness is not r.e.

��: the set of terms representing a polynomial time function:

� � �� � �� � ���
Fact: �� is neither r.e. nor co-r.e.

Proof: Reduction of Hilbert’s 10th problem.

For any polynomial 
 ���� � � � ���� with integer coefficients,

there is �� that works on unary integers as follows:

�� ��� � �

�� ��� �� � � if ���� � � � � �� � ��
 ���� � � � � ��� � �

� 	 ��� ��� otherwise.
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Intensional P-completeness is not r.e.

�� ��� � �

�� ��� �� � � if ���� � � � � �� � ��
 ���� � � � � ��� � �

� 	 ��� ��� otherwise.

�� can be considered as a program on binary words by:

����� � �� � � � ���� �� �

� ���	


������� � � � ���� �� �

� ���	


� � �

�� � �� iff 
 ���� � � � ���� � � admits an integer solution.

Hence �� is not r.e (nor co-r.e).
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Intensional P-completeness is not r.e.

Intensional P-completeness cannot be achieved via standard

type systems.

The same holds even if � is replaced by, say, �� (System F

typable terms).

Cf. Given � � �� , it is decidable in Ptime whether � is

typable in DLAL (Atassi-Baillot-Terui 2006).

We are looking for a better approximation of ��.
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Subclasses of ��

��� : the class of Ptime strongly normalizable lambda terms:

� � ��� �

�	 ��� for any reduction sequence

�	 ���� �� � � � ����

� and ���� are polynomial in �	�.
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Subclasses of ��

�: feasible reduction strategy (such as leftmost, innermost):

given � , � picks up a redex of � , if any, in Ptime.

���: the class of Ptime �-normalizable lambda terms � :

�	 ��� for the R-reduction sequence

�	 ��� �� ��� � � � ����

with �� in normal form

� and ���� are polynomial in �	�.

Finally,

��� ��

�

��feasible strategy

����
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Subclasses of ��

��� � ���	�� 
 ��� 
 ��� 
 ��
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Subclasses of ��

��� � ���	�� 
 ��� 
 ��� 
 ��

��� ���� are neither r.e. nor co-r.e.

���� � ���

��� �� ��� , ��� � �����	���
�.
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Intersection types

First introduced by (Coppo-Dezani 80)
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Intersection types

First introduced by (Coppo-Dezani 80)

Later on, various systems have been considered:

With � (CDV, Coppo-Dezani-Venneri 81),

With subtyping (BCD, Barendregt-Coppo-Dezani 83),

With expansion variables (System I, Kfouly-Wells 03), etc.
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Intersection types and linearity

Idempotency: � � � � �.
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Intersection types and linearity

Idempotency: � � � � �.

Contraction: � � � � �.

Weakening: � � � � �.

Linear intersection types satisfy neither of them.

Affine intersection types satisfy Weakening but not

Idempotency/Contraction.

Relationship with linear logic is suggested by (Regnier 92,

Mairson-Møller 04, Carlier-Wells 04).
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Type system ����

� Variables: �� �

� Intersections: ��� ��� �� � � � ���� � � ��

� Types: ����� ��� � � � �Æ�

� Environments: 
���� ��� ��� � ��� � � � � �� � ���

(Multiset. ��� � � � � �� not necessarily distinct.)

� Type inference rules:

�� � � � � � � �

�����

�� � � ��� � � � � � � �� �� � 	 � �� 
 �����

� � ���� � �� � � � � � �� �Æ	

��Æ��

�� �� � �� � � � � ��� �Æ	 �� �  � �� � � � �� �  � ��

������ � � � ��� �� � 	

��Æ��
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Strength of logic

SN = Typability in ����. Then what’s the difference from the

standard one?
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Strength of logic

SN = Typability in ����. Then what’s the difference from the

standard one?

Normalization length = Derivation size in ����.

What is the strength of a logic?

Explicit typing: How many terms it types.

����Æ � SimTyp � SysF

Implicit typing: How short typing derivations are.

Connection with propositional proof systems?
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Type system ����

� � 
 �� � �� � is a derivation for 
 �� � �.

� �� � there are 
� � such that � � 
 �� � �.

�� � : the number of � and applications in the term � .

��� : the number of ��Æ�� and ��Æ�� in the derivation �.

Lemma: � �� �� ��� � �� �.

Lemma: � is in nf �� there is � such that � �� and

��� � �� �.
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Derivation size bounds normalization cost

Subject Reduction Theorem: � � 
 �� � � and � �� � ��

��
� 
 � � � � and ��� � ����.

�� � ��� � � � �� � ���....

� � �

���� � �� � � � � ��� �Æ�

....

 � �� � � �

....

 � ��

������ � �

	�

....

 � �� � � �

....

 � ��....

� ���� � �
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	�
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Derivation size bounds normalization cost

Subject Reduction Theorem: � � 
 �� � � and � �� � ��

��
� 
 � � � � and ��� � ����.

�� � ��� � � � �� � ���....

� � �

���� � �� � � � � ��� �Æ�

....

 � �� � � �

....

 � ��

������ � �

	�

....

 � �� � � �

....

 � ��....

� ���� � �

Corollary: If � �� , then

1. � strongly normalizes in ��� steps.

2. � ���� �� �� � � ���.
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Normalization cost bounds derivation size

We refine Møller-Neergaard’s simple proof of SN � Typability.

Difficulty 1: Subject expansion does not hold in general.

������� ��� �� �� �� ����

� might not have derivation (eg. � � )

If � is in nf, then � has a derivation.

Difficulty 2: Redex might be located above intersections. Then

the derivation size increase too much.

� � ��....

� � �� � � �

� � ��....
� � ��

� � �� � � � � ���....

�	�

�� � ��....

� � �� � � �

�� � ��....

� � ��

� � �� � � � � ���....
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Normalization cost bounds derivation size

Consider the following perpetual reduction strategy:

� 	 �� ���

������ �� �
� � ������

� �	 �� ��� � �
� �

�������
�� �
� �������
��

� �	 �� ���  in nf

������ �� �
� � ��

�� �
� ��

����� �
� �����

� �
� �

� ���

�� �
� � ���

��

Weak Subject Expansion Theorem: If � �� (with �

“canonical”) and � ��� � , then there is a “canonical” �� such

that ��
�� and ���� � ���� �� �� �.

17/03/2006, Keio – p.21/33



Characterization of ����

Theorem 1: � �� ��� strongly normalizes in length ���

and size ���.
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Beyond ����

��� is too small to be of practical interest.
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��� is too small to be of practical interest.

Iteration of if-then-else not allowed in ��� .

Let � � ������ � � � ���	 � �
�� ��. Then

��� �������
���� ������ � � � ��
�

��� �

takes  �� steps.

�� ����� ����� � � ���	����� �
�������

��� � � � ����

takes  �	�� steps.
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Beyond ����

��� is too small to be of practical interest.

Iteration of if-then-else not allowed in ��� .

Let � � ������ � � � ���	 � �
�� ��. Then

��� �������
���� ������ � � � ��
�

��� �

takes  �� steps.

�� ����� ����� � � ���	����� �
�������

��� � � � ����

takes  �	�� steps.

In particular, ��� �� ��� .
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Beyond ����

Let � be a feasible reduction strategy.

An (abstract) size function ! � Derivations �� � is admissible

for ����� if for any �� such that �	 ������,

1. � ��� �� !��� � ����

2. (�� ��� ��� �
 ��
) �� !���� � !��
�

Theorem: � � ��� �

1. there is a size function ! admissible for �����

2. ��	��	� has polynomial size derivations w.r.t. !.

In practice, we have to find suitable size function ! for each

term � to be analyzed.
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Case Study: a ramified Ptime system

Recall (Leivant-Marion 94) characterizes �� based on

lambda-calculus with pairing and some constants, where

Lower tier: word algebra terms ", ��"�, ����"��, . . . of base type #

Higher tier: Church words: �����������������, . . .

� � ��� � represented by

�� � ���� ��� �� ��� #

where � � #� � � � � #.
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Case Study: a ramified Ptime system

We consider a logical variant based on pure lambda-calculus

with linear polymorphism and linear recursive types, where

Lower tier: Scott words of type ���$�����Æ � �Æ ���Æ ��Æ �

Higher tier: Church words of type ������ �� ��� �� �

(with �� � ����Æ�)
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The system��
��Æ����

����Æ���� : Intuitionistic affine linear logic with


 �� � � � �� �� �
�


 �� � ����


 �� � ����


 �� � ��%&��


 �� � %�$��%&��


 �� � $��%


 �� � $��%


 �� � %�$��%&��

where % is purely linear, i.e., without �, and � occurs at most

once in %.
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Scott numerals

For simplicity, we consider unary numerals rather than words.

Church numerals of type �� � ������ ��� �� �

nonlinear, support iteration

Scott numerals of type �� � ���$���� �Æ ���Æ ��Æ �

linear, support basic functions

� � ��'�' � ��

� � � ��'�� � ��

!() � �����'��� � �� �Æ��

*+, � ����������� � �� �Æ��

)#, � ����
�������	��
��� � ��
� �Æ��
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Representation of ��

Theorem: Any � � �� can be represented by a closed term

�� �	� �	� .

Proof: we have

Polynomials: �� � ��

Transitions of TMs based on: 	� �	�

Iteration: �� � �	� �	��� �	� �	��

�
 ��� . How to show 
 ��� ?
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Pruned size of derivations

Pruned size !��� defined by:

When � is �-.+�, !��� � �.

!��� � !���� � � when � is

.... ��

� � � �� � � �  � � �� � � � �

� � ���� � �� � � � � ��� �Æ�

��Æ!�

!��� � !���� ����!����� � � � � !����� � �
�� ��� � � � �
�� ���,
when � is

.... ��

� �� � � � �� � � � � ��� �Æ�

.... ��

� �� �  � �� � � �

.... ��

� �� �  � ��

� �� � �� � � �  � �� � � � �

��Æ"�

where �� consists of redundant types (to be explained later).
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Normalization bound

Given � � �� � �� and  � �� , there is

an intersection type derivation � ��.

Strategy �: First reduce all redices with !-type:

� �����
then reduce the rightmost ������� with � in nf.

After ��, the pruned size ! is admissible for �:

�� ��� �� !���� � ����

(�� ��� ��� ���� �����) �� !���� � !������

the latter because of

If ������� is the redex to be reduced, � is in nf and does

not contain a free variable of redundant type.
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Normalization bound

If �� ���, !���� is polynomial in ����.

By finite dispatching, the size function !� admissible for �����

can be obtained.

Theorem:

� �	� �	� in ����Æ���� �� � � ���
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Summary

��, ��� , ��� not r.e.

Linear intersection types: suitable for verifying dynamic

properties statically

��� = terms having polysize derivations in ����.

Showed [Church � Scott] belongs to ��� by using linear

intersection types and an abstract size function.

Hope it will lead to automatic verification of practical Ptime

functions (like Quick-sort, Mutual-division) using intersection

types and abstract size functions.
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