Under consideration for publication in Math. Struct. in Comp. Science

Intuitionistic Phase Semantics is Almost
Classical

Max I. Kanovich!, Mitsuhiro Okada? and Kazushige Terui®

Y Department of Computer Science,

Queen Mary, University of London,

Mile End Rd., London E1 /NS

mik@dcs.qmul.ac.uk

and Department of Computer and Information Science,
University of Pennsylvania,

mazkanovQ@cis.upenn.edu

2 Department of Philosophy, Faculty of Letters, Keio University,
2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
matsu@abelard.flet.keio.ac.jp

3 National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.
terut@nii.ac.jp

Received 23 September 2005

We study the relationship between classical phase semantics for classical linear logic
(LL) and intuitionistic phase semantics for intuitionistic linear logic (ILL). We prove
that (i) every intuitionistic phase space is a subspace of a classical phase space, and (ii)
every intuitionistic phase space is phase isomorphic to an “almost classical” phase space.
Here, by an “almost classical” phase space we mean a phase space having a
double-negation-like closure operator. Based on these semantic considerations, we give a
syntactic embedding of propositional ILL into LL.

1. Introduction

Linear logic (LL, (Girard 1987)) is a refinement of classical and intuitionistic logics.
It inherits constructivity from intuitionistic logic and duality (exemplified by involutive
negation and de Morgan laws) from classical logic through a careful handling of the
structural inference rules. An intuitionistic version, called intuitionistic linear logic (ILL),
is also considered (Lafont 1988; Abrusci 1990; Troelstra 1992). Although it lacks duality,
it is sometimes handier than LL in some applications in functional/logic programming
(see e.g. (Abramsky 1993; Hodas and Miller 1994)).

Given two forms of linear logic, it is natural to ask what is the relationship between
them. A partial solution is given by Schellinx (Schellinx 1991). He shows by a syntactic
argument that LL is conservative over ILL as far as the propositional formulas without L
and 0 are concerned. This should be contrasted with the traditional (non-linear) situation,
where classical logic and intuitionistic logic are quite different even without absurdity



(contradiction) and negation, as witnessed by Peirce’s law: ((A — B) — A) — A. While
Schellinx’s approach is purely syntactic, we take a semantic approach to this problem in
this paper.

There is a canonical semantics for linear logic that completely characterizes provability,
that is phase semantics (Girard 1987; Girard 1995). It has been used to show various
properties of linear logic, such as undecidability (Lafont 1996; Lafont and Scedrov 1996),
cut-elimination, strong normalization (Okada 1996; Okada 1999; Okada 2002), and de-
cidability of some fragments (Lafont 1997; Okada and Terui 1999). In our recent work,
it is used to give a necessary and sufficient condition for structural rules to admit cut
elimination (Terui 2005). Accordingly to the two forms of linear logic, there are two forms
of phase semantics: classical and intuitionistic ones (see (Abrusci 1990; Troelstra 1992;
Ono 1994; Okada 1996) for the latter).

The aim of this paper is to analyse the delicate distinction between LL and ILL
in terms of phase semantics. Recall that an intuitionistic phase space is a commutative
monoid M endowed with a closure operator Cl : p(M) — o(M). A classical phase space
(M., 1) is an intuitionistic phase space where the closure operator is defined by double-
negation: Cl(X) = x11L. Given a classical phase space (M., 1) and a submonoid M; C
M., one naturally obtains an intuitionistic phase space (M;,Cl;) by taking Cl;(X) =
xtin M; for X C M;. Call the latter a subspace of (M., L). In addition, one can
imagine that the closure operator Cl; thus defined happens to coincide with the double
negation operator, namely Cl;(X) = xtdin M; = XJ'J', where L is not necessarily a
subset of M;. In that case, we call (M;, Cl;) quasi-classical. With these notions, our main
results can be stated as follows:

(i) Every intuitionistic phase space is a subspace of a classical phase space.
(i) Every intuitionistic phase space is phase isomorphic to a quasi-classical phase space.

Here, by phase isomorphic we mean that two spaces have the same algebraic structure.

The result (i) on the one hand establishes a relationship between classical and intu-
itionistic phase spaces, and on the other hand gives a new definition of intuitionistic
closure operatort: CI(X) = X L1 A7 The result (ii) yields a completeness theorem for
ILL with respect to a rather special class of phase models: quasi-classical phase models.
Furthermore, these results suggest a new view of ILL as a “submonoid-restriction” of
LL. In fact, it leads to a syntactic embedding of ILL to LL. Let ¢(po) be a formula
whose intuitive meaning is that (the interpretation of) py is a “submonoid” of (the inter-
pretation of) T. In the presence of the assumption ¢(pg), a formula of the form A & po
can be interpreted as a “submonoid-restriction” of A. Based on this idea, we define a
translation A° for any formula A of ILLwhich is in full accordance with the subspace
relation between intuitionistic and classical phase models. We then prove:

(iii) For every formula A of ILL, A is provable in ILL if and only if ¢(py) —o A° is
provable in LL.

It should be stressed that while Schellinx’s conservation result is only concerned with a

T This idea was suggested by J.-Y. Girard.



fragment of ILL without L and 0, our result covers the full range of the propositional
ILL formulas.

The rest of this paper is organized as follows. In Section 2, we recall the syntax and
phase semantics for ILL and LL. In Section 3, we introduce the central notions of this
paper: subspace, quasi-classical phase space and phase isomorphism. In Section 4, we
prove our main result, called the three layered representation theorem, which integrates
(i) and (ii) above. In Section 5, we turn to the syntax and give a faithful embedding of
ILL into LL. In Section 6, we conclude the paper with a number of open problems.

2. Preliminaries

In this section, we recall the syntax of ILL and phase semantics for both ILL and LL.
A proof of the completeness theorem for ILL is also outlined for later use. We refer to
(Girard 1987; Girard 1995) for the syntax of LL.

Definition 2.1. The set of formulas of ILL is defined as follows;

— Propositional variables p,q,r, ... are formulas of ILL.
— 1, L, T, 0 are formulas of ILL.
— If A and B are formulas of ILL, then so are AQ B, A—o B, A& B, A® B and !A.

Finite multisets of formulas are denoted by Greek capitals T, A, .... If T stands for
Ay, ... A, then T denotes 'Ay,...,!A,. A sequent of ILL is of the form I' b A with
|A| < 1. The inference rules of ILL are given in Figure 1.

There seems to be no natural way of introducing the inference rules for %® and 7 in
the intuitionistic framework, hence we do not count them as intuitionistic connectives.
On the other hand, we keep constant L (the unit for %) in ILL, because it has natural
inference rules. However, having L in ILL is not strictly necessary (and several authors
exclude it from ILL), since it can be replaced with an arbitrary but fixed propositional
variable.

Next, we introduce phase semantics for ILL in the style of (Troelstra 1992). The
interpretation of exponentials (!,?) is due to (Girard 1995).

Let (M,-,e) be a commutative monoid, with ¢ being its neutral element. For any
X,Y C M, we define:

X YV:i={z-y|zeX,yeY}.

Definition 2.2. An intuitionistic phase space (M,-,e,Cl) consists of a commutative
monoid (M,-,€) and a closure operator Cl, that is a mapping from the subsets of M to
themselves such that for all X, Y C M:

(Cl1) X C Cl(X),

(C12) CI(CI(X)) C CI(X),

(Cl13) X CY = CIl(X) CClY),

(CY) Cl(X)-Cl(Y) CClX-Y).

A set X C M is said to be closed if X = CI(X). The set of all closed sets in M is denoted
by C(M).
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Here !T" stands for a multisets of formulas of the form !A;,...,!A,.

Fig. 1. Inference Rules of Intuitionistic Linear Logic (ILL)

Remark 2.3. The first three azioms (Cl1)—(Cl3) together with CI(0) =0 form the
Kuratowsky’s axiomatic definition of topological spaces. It is worthwhile to observe that

under our considerations CIl() is generally non-empty.

Definition 2.4. Given an intuitionistic phase space (M,-,e,Cl), we define the following

operations over sets X,Y C M:

XY = ClI(X-Y) 1 = Cl({e})
X&Y = XnY T = M
XaY = Cl(XUY) 0 = CU0)
X oY = {zeM |VzeX(z-z€Y)}
X = Cci(XnI), wherel :={ze€l|z -z=uz}.

These operations are defined exactly in the same way as in classical phase semantics.
Notice that we do not introduce an operation (a set) associated to L; it will be treated

through a valuation operator.

Example 2.5. Let (N,+,0) be the additive monoid of natural numbers. For any X C N,

define Cliq(X) and Cl<(X) as follows:

Clld(X) = X,
Cl<(X) := {neN|ImeX(n<m)}.



Then one can easily see that both (N,+,0,Cliq) and (N,+,0,Cl<) are intuitionistic
phase spaces.

Definition 2.6. An intuitionistic phase model (M, -, e, Cl,v) is an intuitionistic phase
space (M,-,e,Cl) with a valuation v that maps each propositional variable to a closed
subset of M, and, in addition, assigns a closed subset of M to constant L.

The valuation v is naturally extended to all formulas of ILL wusing the operations in
Definition 2.4. A formula A is satisfied in model (M,-,e,Cl,v) if and only if e€v(A).

By definition, a closure operator determines the family of closed sets. Conversely, a
closure operator is sometimes determined by a certain family of closed sets.

Definition 2.7. Given an intuitionistic phase space (M,-,e,Cl), a family {Ga}aca of
closed sets is called a co-basis if for any X CM:

CI(X) = | Ga
{a€A| XCGa}

In fact, the (possibly uncountable) family of all closed sets forms a trivial co-basis. In
some cases, however, one might like to have a countable (or even finite) co-basis. The
next theorem states a sufficient condition for a family of sets to be a co-basis.

Theorem 2.8. Let (M,-,e) be a commutative monoid and {G,}aca be a family of
subsets of M. Suppose that for every G, and y € M, {y} —o G, is also a member of the
family {G4}aca. Then operator CI defined by:

ClX)= (] Ga

{a€A| XCGa}

satisfies (C11)—(Cl4) to be a closure operator on M.
Proof. (Cl11) — (C13) are all immediate. We claim that Cl above satisfies the following
property:
(CI4) X - CI(Y) C CU(X - Y) for any X,Y C M.
(Cl4) is derived by using (Cl4’) twice:
Cl(X)-Cl(Y) C ClCl(X)-Y)
C CUCIX - Y)) =CUX-Y).

To show (Cl4’), let X - Y C G with § € A. Then for any = € X,
Y C {2} - Gs.
Since {z} — G € {Ga}aca by assumption,
ﬂ Go C{z} —oG5.
{a€A|YCGa}

Therefore,

fr}- () Ga.CGs

{a€A|YCGa}



for any x € X and Gg D X -V, that is sufficient to show our claim. ]
It is known that intuitionistic phase semantics is complete for ILL.

Theorem 2.9 (cf. (Abrusci 1990; Troelstra 1992)). For any formula A, A is prov-
able in ILL if and only if A is satisfied in every intuitionistic phase model.

Moreover, this statement can be strengthened as follows; A is provable in ILL if and
only if A is satisfied in every intuitionistic phase model that has a countable co-basis.

Proof (Outline). We define the canonical model (My, -, €, Cly,vo) for ILL as follows;

— My consists of finite multisets I' of ILL formulas. Here we ignore the multiplicity of
formulas of the form !B; for instance we identify !B,!B,!C, % with !B,!C,!C, X.

— T A=TA.

— ¢ = () (the empty multiset).

— [CFE]={A | A,'+ = is provable in ILL}.

Let G be {[T' F E] | ' F E is a sequent of ILL}. By definition G is countable. Further-

more, for every [['FZ] € G and A € My, {A} = [I'F Z] =[A,T F E] € G. Therefore,

by Theorem 2.8, it induces a closure operator Cly defined by

Clo(X):= () [FFEZ]L

XC[I+HE]
Finally, define
vo(g) = [Fadl;
vo(L) = [F 1]

to complete the definition of the canonical model for ILL.
It is readily seen that I = {z € 1|z -x = z} exactly consists of the elements of the
form !T". The following lemma establishes the proof of Theorem 2.9:

Lemma 2.10. For any ILL formula B, we have B € vy(B) C [ + B]. In particular,
€ € vp(B) implies that B is provable in ILL.

Proof. By induction on the complexity of B (see (Okada 1996)). 0
Remark 2.11. If one replaces the definition of [T F Z] with
[T+ZE]={A | AT F E is cut-free provable in ILL},
one obtains the cut-elimination theorem at the same time (Okada 1996).
Finally, let us just mention phase semantics for LL.

Definition 2.12. A classical phase space (M, - e, L) consists of a commutative monoid
(M,-,€) and a distinguished subset L of M.

We write X1 to denote X —o L. A set X CM is called a closed set (or a fact) if

X = X141 I a classical phase space, one also defines the following operations over sets
X, Y CM:

x®y = ((xLt.ylht 72X = (x+ .



Every classical phase space (M, -, e, L) may be viewed as an intuitionistic phase space.
Indeed, it is easily verified that the double negation operator

cl(x) = xt4d

satisfies the conditions (Cl1)—(Cl4). On the contrary, it is not the case that every intu-
itionistic phase space can be viewed as a classical one.

Example 2.13. The intuitionistic phase space (N,+,0,Cl<) given in Example 2.5 can-
not be viewed as a classical phase space. Suppose that there is L C N such that Cl<(X) =

xidi for all X C N. Since L is a closed set, it must be ), N, or of the form {0, ..., k} for
some k € N. The first two are clearly impossible (we would then have xili_n for any
nonempty X in both cases). The last one is also impossible, because it would imply that
k+1¢ xi for any nonempty X, and thus we would not have {k:+1}J'J' ={0,...,k+1}.
Hence there is no such L.

3. Subspace, Quasi-Classical and Phase Isomorphism

In this section, we introduce three important notions: subspace, quasi-classical phase
space and phase isomorphism. We also prove some basic properties of them.

Definition 3.1. Let My = (M,-,e,Cly) be an intuitionistic phase space. Then My =
(Ms,-,e,Cls) is called a subspace of My (written My & M1) if
— (Ms,-,¢) is a submonoid of (M,-,¢), and
— ClQ(X) = Cll(X) n M2 fO?" any X g MQ.
It is then easy to verify the following:

Theorem 3.2. Every subspace of an intuitionistic phase space is an intuitionistic phase
space.

Proof. Let (Ms,-,e,Cl2) be a subspace of (My,-,e,Cly). It is easy to show that Cly
satisfies (Cl1) — (Cl13). The property (Cl4) is a consequence of the following facts:
Ch(X)-Ch(Y) € Ch(X-Y)
Ms-Ms C My

O

Corollary 3.3. Every subspace of a classical phase space is an intuitionistic phase space.
Namely, if (M.,-,e,1) is a classical phase space and M is a submonoid of M., then
(M,-,e,Cl) with

clx)=xttnum
for X C M is an intuitionistic phase space.
Example 3.4. Consider a classical phase space (Z,+,0,1), where (Z,+,0) is the ad-

ditive monoid of integers and L is the set of nonpositive integers. Then one can eas-
ily see that xil = {n € Z|3Im € X(n < m)} for any X C Z. Hence we have
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xtltan= Cl<(X) for every X C N. This means that (N,+,0,Cl<) is a subspace of
(Z7 +7 07 J-)'

Does the converse of Corollary 3.3 also hold? That is to say, can every intuitionistic
phase space be represented as a subspace of some classical phase space? A positive answer
will be given in Section 4.

We now consider a subclass of the intuitionistic phase spaces which are of special
interest,.

Definition 3.5. An intuitionistic phase space (M,-,e,Cl) is called a quasi-classical
phase space if it is a subspace of a classical phase space (M.,-,e,1) and

ci(x) =xt4
for every X C M.

The closure operator Cl of a quasi-classical phase space (M, -, &, Cl) looks almost like
a classical double-negation operator, the only difference being that L is not necessarily
a subset of M. The following lemma gives a simple condition for a subspace of a classical
phase space to be quasi-classical.

Lemma 3.6. Let (M,,-, ¢, L) be a classical phase space and let (M, -, e, Cl) be a subspace
of (M.,-,e,1). Then (M, -, e,Cl) is quasi-classical if and only if ML =

Proof. If (M, -,e,Cl) is quasi-classical, then ML = Cl(M) = M by definition. Con-
versely, if M 11 _ , we have

il ol gy
for every X C M. Therefore, C’l(X):XJ'J'ﬂM:XJ'J'. U

Example 3.7. The intuitionistic phase space (N,+,0,Cliq) in Example 2.5 is quasi-
classical. To show this, define a classical phase space (]\7, +,0,1) as follows:
— N:=NU(N x p(N))U{/}. ) i
— Forn,me N, X,)YCNandx € N, let n+m :=n+m;
n+(m,X)=(m,X)+n:=n+m,X);
(n, X)+(m,Y):=/;J/+rx=a+:=/.
— L :={(n,X)n € X}.
Then, we have (0,X) € xi for every X C N. Therefore, XL does not contain an
element of the form (n,Y") or «/ (since \/ & L ). Moreover, if n € XJ'J', then (n,X) € L
(since (0,X) € XJ'), that means n € X. Thus we have X114 = X = Clia(X). This
shows that (N, +,0,Cl;q) is quasi-classical.
One can similarly prove that (N, +,0,Cl<) is quasi-classical.

It is not known whether every intuitionistic phase space is quasi-classical or not. On
the other hand, we shall see in the next section that every intuitionistic phase space
is phase isomorphic to a quasi-classical one. Here, the notion of phase isomorphism is
defined as follows.



Definition 3.8. Let M; = (Mi,-,&,Cly) and My = (Ms,-,e,Cly) be intuitionistic
phase spaces. A function F : C(M;) — C(Mz) is called a phase isomorphism from M,
to Mo if it is bijective and preserves the operations and constants given in Definition
2.4. Namely, for any closed sets X, Y € C(M,),

FX%Y) = FX)xFY) forxe{®, &, &, —o};
F(hX) = LF(X);
Fle1) = ¢ for c€ {1,0,T}.

Here, the operations and constants in M, are indexed by i (fori=1,2).

Example 3.9. The intuitionistic phase space (N, +,0,Cl<) in Ezample 2.5 is phase iso-
morphic to (Z,+,0,Cl.), where the latter closure operator Cl. is defined by Cl'.(X) =
Cl<(X)U{n|n < 0} for any X C Z. In fact, there is a phase isomorphism F from the
former to the latter, defined by F(X) = X U {n|n < 0} for any closed set X.

It is easy to see that if F' is a phase isomorphism, then so is F~'. As expected, we
have:

Theorem 3.10. Let M, = (M;,-,¢,Cly) and My = (Ms,-,e,Cl2) be intuitionistic
phase spaces and F' be a phase isomorphism from M; to M,. Given a valuation vy for
My, define a valuation vs for My by

v2(p) = F(vi(p));
va(L) = F(vi(L1)).

l_

Then, for any formula A, vy satisfies A (¢ € v (A)) if and only if v satisfies A (¢ € v2(A4)).
Proof. 1t is readily seen that vy(A) = F(vi(A)) for any formula A. Now, observe that

~—

eev(A)iff 1; Cv1(A4) iff 1 = v (A & 1). From this, we have:
661)1(14) < 11:U1(A&1)
< F(1;)=F(vi(A&1))
= 1hy=wv(A&1)
< e €v(A).

O

The above theorem in particular entails that there is an intuitionistic phase space
which is not phase isomorphic to any classical phase space. Otherwise, any ILL formula
satisfied in all classical phase models would be satisfied in all intuitionistic phase models
too. However, we know that LL is not conservative over ILL (see Section 5).

4. Three Layered Representation

In this section, we prove our main theorem, the three-layered representation theorem
(Theorem 4.1), which well summarizes the relationship between intuitionistic and clas-
sical phase semantics. According to the theorem, every intuitionistic phase space M is
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naturally endowed with a three-layered structure:
ME M, C M,

where M, is quasi-classical and M, is classical. Furthermore, there is a phase isomor-
phism from M, to M. The size of M. is not unexpectedly large; in fact, it has a bound
in terms of the size of M and a given co-basis for M.

Theorem 4.1 (Three-Layered Representation). Let M = (M, -,&,Cl) be an intu-
itionistic phase space and let {G}aca be a co-basis. Then there exist a quasi-classical
phase space M, = (M,,-,¢,Cl,) and a classical phase space M, = (M., -, ¢, L) satis-
fying the following;
(i) M is a subspace of M,, and M, is a subspace of M,; specifically,
— forany XCM: Cl(X)= xil N M, and
— for any X, CM,: Cl,(X,) = XqJ'J'.
(ii) There is a phase isomorphism from M, to M.
(iii) The cardinal number of M, is bounded by |M| - |A| - No, with |X| representing the
cardinal number of X; in particular, whenever both M and A are countable, so is the
resulting M..

Before proving the theorem, let us derive some consequences from it. The first one is
the converse of Corollary 3.3:

Corollary 4.2. Every intuitionistic phase space is a subspace of a classical phase space.

Intuitionistic phase semantics is not just complete, but also countably complete for
ILL; namely, for every unprovable formula A, there is a countable intuitionistic phase
space which invalidates A. The next corollary ensures that this property remains true
even though one takes into account the size of the outer classical phase space of which
the intuitionistic phase space in question is a subspace.

Corollary 4.3. For any formula A of ILL, A is provable in ILL if and only if A is
satisfied in every intuitionistic phase model (M,v) such that M is a subspace of a
countable classical phase space.

Proof. By the property (iii) above and the second statement of Theorem 2.9. O

Finally, we have a completeness theorem for ILL with respect to the quasi-classical
phase models:

Corollary 4.4. Every intuitionistic phase space is phase isomorphic to a quasi-classical
phase space. As a consequence, a formula A is provable in ILL if and only if A is satisfied
in every quasi-classical phase model.

Proof of Theorem 4.1. As a monoid M, we take the set of all pairs of the form (z, ®),
where z is an element of M and ® is a finite multiset of closed sets from {G4}aca. The
monoid product on M, is defined as:

(aj"l)) : (y,E) = (m-y,‘I)LtJE),
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where W represents the multiset union. It is readily seen that (g, ?) is the neutral element
of M.. The construction ensures the requirement (iii) to be satisfied.

The original M is intended to be identified with the set M x {(}, a submonoid of M..
More precisely, we will use the following mapping;:

X = X x {0},
which represents a natural isomorphism between M and M x {f}. Accordingly, M = (M, -, ¢, Cl)

is identified with M = (M-, e,Cl), where Cl is defined by CI(X) := CI(X).
The desired 1L C M, is defined by

0. := {(z,®) | zeCl(h),® arbitrary};
1 {(z,{Ga}) | x€Gu, a€ A} UO..

This completes the definition of M. = (M,,-,&,L). One can easily verify that the set 0.
is indeed the smallest closed set in M. More specifically, we have:

Lemma 4.5. 0. - M. C 0.. Hence 0. ¢ ML =¢LL1.

Proof. Suppose that (z,®) € 0. and (y,¥) € M.. Since z € CI(()), we have z -y €
ClL(0) - Cl({y}) C CL(D - {y}) = ClL(D). Hence (z,®) - (y,¥) € 0. O

Let us now show that M is a subspace of M..
Lemma 4.6. For any X C M: xilc C/'l_(\i) U 0.
Proof. First of all, observe that:
(e {Ga}) € X+ M

for any Go D X.Indeed, for any (z,0) € X we have 2 € Gq. Therefore, (¢, {Gq })-(2,0) =
(z,{Ga}) € L.

Now, suppose that (z, ¥) is an element of )Z'J'J', and X CG,, for some «. From (1), it
follows that

(2,0) - (e,{Ga}) = (2, ¥ W{Ga}) € L. (2)
For empty ¥, it means directly that z € G. Therefore,
z € (| Ga=ClUX),

{a€A| XCGa}

—~—

and hence (z,¥) € CI(X).
For non-empty ¥, (2) implies that z € CI((). Therefore, (z,¥) € 0. ]

Lemma 4.7. For any XCM: CI(X)U0, C xil

—~—

Proof. Since 0. C pLd C xidi by Lemma 4.5, it suffices to show that CI(X) C

xii Suppose that (z,0) € C/’l_(s?) and (y,®) € X1 our goal is to show that (y,®) -
(z,0) = (y -z, ®) € L. There are two cases to be considered.
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— & = {G,} for some «. Then, for any z € X,

(ya{Ga}) . (Z>w) = (yZ;{Ga}) e 1.

By the definition of L, we obtain that yz € G,. Therefore, {y}-X C G,. By properties
(Cl1)—(Cl4), {y}-Cl(X) C G,. Since z € CI(X), we have y - x € G,. Therefore, we
conclude that:

(ya (P) ) (1’,0) = (y-a:, {Ga}) €l

— & is not a singleton. For any z€ X,
(y,(I)) ' (Zaw) = (yzaq)) € J-:

which means that y-z € CI(0)). Therefore, {y}-X C CI(D). By properties (Cl1)—(Cl4),
{y}-Cl(X) C CI(D). Since = € CI(X), we have y - z € CI((). Therefore, we conclude
that:

(y,(I)) ' (CE,@) = (yw,@) €0.C 1.

U
Bringing together Lemmas 4.6 and 4.7, we obtain:
cix)vo, = x4 3)
for every X C M. Since C/’l_(;?) C M and 0. = %ﬂ M, we have:
ci(x)=xttnar (4)

This shows that M is a subspace of C M.. Now, define M, = (M,,-,¢,Cl,;) by
M, := MuUoO,;
— 1l
cl(x,) = Xpttnm, for X, C M,

__Observe that M, is a submonoid of M., because we have M-M C ]Tf, 0.-0. C 0. and
M -0. C 0. by Lemma 4.5. Therefore, it is clear that M C M, C M_.. Furthermore, we
have:

Lemma 4.8. For any X, C M,: XqJ'J' = (X, HM)J'J'.

Proof. Obviously, we have (X, N M)J'J' C XqJ'J'. On the other hand,

il

; X, nMuo)tt

(
(X,NM)U @J'J')J'J' (byLemmad4.5)
(X, N Ut

x,nmtL.

N N

(
(
(
(

O

Lemma 4.9. Cl,(X,) = (Xq)J'J' for any X, C M. Therefore M, is quasi-classical.
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Proof. We have MqJ'J' =Mmil = /l(\]\j) U0, = M UO,. = M,, by Lemma 4.8 and
(3). Therefore, our claim follows by Lemma 3.6. [

Finally, it remains to show that there is a phase isomorphism from M, to M. For any
X, C My, let F(Xy):=X,NM.

Lemma 4.10. F is a bijection from C(M,) to C(M).

Proof. For any closed set X, = XqJ'J' in M, we have

F(X,) = Xt ndr = (x,ndntLn = Ci(x, n M),

by Lemma 4.8 and (4). Hence F' is a function from C(M,) to C(M). Conversely, for any
closed set Y in M, we have

v=civ)=vittnm=rrtd,

by (4). Hence F is surjective. Finally, for any closed sets X,,Y; in M,, F(X,) = F(Y,)
implies (X, N M)J'J' = (¥, n M)J'J'. Hence X, =Y, by Lemma 4.8. Therefore, F' is
injective. ]

Lemma 4.11. F preserves the operations and constants given in Definition 2.4.

Proof. Since all cases are more or less similar, we consider just a few of them. In the
sequel, the operations in M, are indexei by ¢ andAJ X,Y range over C(M,).
First, note that (X -Y)NM = (XN M) - (Y N M). Therefore,

F(X®,V) = (x-v)ttnar
= (X -Y)nM)EL M (by Lemma 4.8)
= (xnM)-(vnaytltnar
CUF(X)-F(Y)) (by (4))
= F(X)® F(Y).

Second, note that Z —, Y = 711 —o, Y for any Z C M, and Y € C(My). Therefore,

X —, V)N M

(Xn M)J'J' —, Y)N M (by Lemma 4.8)
(XN M) —, )N M

XNM)— (Y NM)

= F(X) - F(Y).

F(X —,Y) =

(
(
(
(
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Finally, note that I, = I. Therefore,

F(,X) = (xnIi)ttnar
= (XnI,nM)LL M (by Lemma 4.8)
= xnMnhtLnnr
CUF(X)NT) (by (4))
= IF(X).

O

This establishes the requirement (ii). To get the precise form of Theorem 4.1 it remains
to take into account our natural isomorphism between M and the original M.

Remark 4.12. It can be read off from the definition of M, that if C1(0) = 0, then M
Jjust coincides with M. It follows that every intuitionistic phase space with C1(0) = 0 is
quasi-classical.

5. An Embedding of ILL into LL

Based on the semantic insights we have obtained so far, we now give a syntactic embed-
ding of ILL into LL. Before doing so, we remark that LL is already conservative over
ILL as far as the propositional formulas without 0 and L are concerned:

Theorem 5.1 ((Schellinx 1991)). Let A be a formula of ILL which does not contain
0 or L. Then A is provable in ILL if and only if it is provable in LL.

Therefore, there is no need of translation for this fragment. On the other hand, in the
presence of 0 or L (or second order quantifiers), LL is not conservative over ILL, as
witnessed by the following:

(p—ol)—ol)—op;
(T—1) = ((p—0)—-0)—op.

These ILL formulas are provable in LL but not in ILL. Our embedding is intended to
cover the full propositional logic ILL including 0 and L.

Definition 5.2. Let py be a distinguished propositional variable. we define

¢(po) := ('Po)®!(Po ® po —o po)-

To each formula A of ILL, we associate another formula A° of ILL as follows;

q¢° = q&po, for a propositional variable q
c® = c&po, force {T,L1}
d° = d, for d € {1,0}

(A—-B)° = (A°—-oB°)&po

)
(AxB)° = A°xB°, for x € {®, &, ®}
(14)° = 14°.



In addition, we define
(A1,...,A,)° = A3,... A
Lemma 5.3.

1 For every n > 0, the following is provable in ILL:

@(po),po, --+»Do F DPo-
—_———

n times

2 The following is a derived rule in ILL:

(p(po),Al &po,,An&pgl_B

n*

@(pO):Al &p07"'7An&p0 F B&pO
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Proof. 1. By induction on n. For n = 0 it follows from !py F pg. The case n = 1
is immediate. For n > 2, one can derive ¢(po),po,Po, I F po from v(po),po, I’ F po as

follows:

Po,Po - o ®@po @(po),po, T F po

©(po),Po ® Po —° Po, Po, Po, L' F po

@(PO):ZDO:PO: Itk Po
2. From 1 one derives

@(pO)aAl &p07 N 7An &pO I_p0
by the &l rule. Hence the &r rule yields the desired sequent.

Remark 5.4.

O

1 Intuitively, the formula @(A) asserts that “(the interpretation of) A is a submonoid
(of the domain of the phase space in question).” In fact, p(A) is satisfied in an
intuitionistic phase model (M,-,e,Cl,v) whenever v(A) is a submonoid of M (cf.
Lemma 5.10), although the converse is not always true. It is interesting to note that

— (1) and ¢(T) are provable in ILL, and

— v(1) and v(T) are closed submonoids of M, the former being the smallest, and

the latter being the largest.

2 The suffiz &py may be viewed as S4-modality O in the presence of the assumption
©(po). The derived rule of Lemma 5.3(2) exactly corresponds to the right rule for O,

while the &l rule corresponds to the left rule for O.

Lemma 5.5. For every formula A of ILL, ¢(pg) F A°—o(A°&po) and p(po) F (A°&py)—o

A° are provable in ILL.

Proof. The latter is trivial, while the former is proved by induction on the complexity

of A.

Using this, the soundness of the embedding can be easily established.

O

Lemma 5.6. Let I' - = be a sequent of ILL. If T" = is provable in ILL, then ¢(pg),T'° -

=° is provable in ILL.
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Proof. By induction on the length of the proof of I' - =. For instance, when the last
inference rule is —or of the form
ACy,...,C,FB
Cr,...ChFA—oB ",

our claim can be shown as follows. By the induction hypothesis, we have
v(po), A°,CY,...,Cy F B°.
By the rules &I and —or,
v(po), Cy & po,...,Cr & po - A° —o B°.
By Lemma 5.3,
¢(po), C7 & po, ..., C7 & po F (A% — B®) & po.

Finally by Lemma 5.5, we obtain the desired sequent ¢(pg), CY,...,C2 F (A°— B°)&po.

[

To prove the faithfulness of the embedding, we exploit the three layered structure of
intuitionistic phase models. Since the general construction given in the previous section
fails to satisfy the required properties (in particular, v(1) = LN M,), we explicitly build
a canonical model endowed with a three layered structure.

First, define a classical phase space M, = (M., -, &, 1) by

M. = {(T;A)|T', A are multisets of ILL formulas}
([ 4)- (1) = (I, 54,10)
e = (0;0)
0. := {(T;A)TF 0is provable in ILL, A arbitrary}
1 = {(I;C)|T'F C is provable in ILL} U0O,.

As in the proof of Theorem 2.9, the multiplicity of formulas of the form !B is ignored.
Note that if (I'; A) € 0., then (T, X; ®) € 0. for arbitrary ¥ and ®. In fact, if T' - 0 is
provable, then so is T, ¥ I 0. Hence (T', X; ®) € 0.

Second, define an intuitionistic phase space M, = (M,,-,&,Cl,) by

M = {(T;0)|T is a multiset of ILL formulas}
M, = MUO,
ol (x) = x+i.

We then have:
Lemma 5.7. M, is a quasi-classical subspace of M..

Proof. (My,-,€) is a submonoid of (M.,-,¢), because M - M C M, M -0, C 0. and
0.-0. C 0.

To show that Cl, is a well-defined closure operator on (M, -,¢), first observe that
®;T) e MqJ'. Indeed, for any (T;(0) € M, we have

(T;0) - (0; T) = (I;T) € L,
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and for any (T'; A) € 0., we have
(T5A)-(0;T) = (T5A,T) €0 C L.
Finally, we show that MqJ'J' C My, that is sufficient to ensure that xtln M, =
XL ret (T;A) € MqJ'J'. If A is empty, (I'; A) € M, holds trivially. Otherwise, ovserve

that (T; A, T) € L, because (§;T) € MqJ' By the definition of L, (I'; A, T) € 0.. Hence
(T';A) € 0. C M,. [

Define a canonical valuation v, for M, by

[A] = {(T;0)|TF A is provable} UO,;
vp) = [pl;
(L) = [L].

One can show that (§; A) € [A] L and thus [[A]]J'J' C [A] for any formula A. Therefore,
vy surely assigns a closed set to each propositional variable.
Furthermore, we have:

Lemma 5.8. v,(L) = LN M,.
Proof. Observe the following:

(T;0) € vy(L) <= TF Lis provable
<— TI'F isprovable
— (I;0) e 1.

O

On the other hand, the following can be proved by the standard method (see (Okada
1996)).

Lemma 5.9. For any formula A, (4;0) € v,(A) C [A]. In particular, if £ € v,(A), then
F A is provable in ILL.

Define a valuation v, for M. by

ve(po) = My;

ve(r) = wy(r),
where r is a propositional variable other than p,. Since M, = MqJ'J' and vg(r) =
Uy (r)'LJ', v, is surely a valuation for M..
Lemma 5.10.

1 ¢(po) is satisfied in (M,,-,e, L, v.).
2 wv,(A) = v.(A°) for every formula A of ILL.

Proof. The first statement is easily verified based on the fact that M, is a submonoid
of M.,.
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The second one is proved by induction on the complexity of A. For instance,

vg(A—oB) = v,(A) —oqvg(B) = vc(A°%) —o4 v.(B°)
= (v.(A%) —ocv.(B°)) N M, = ve((A° — B°) & po) = v.((A — B)°).

Here, it should be noted that X —o, Y = {y € M |Vx € X(z-y € Y)} and X —. Y =
{y € M Vx € X(z-y €Y)}. Hence X —, Y = (X —o.Y) N M,. We also have

ve(L) =L NM, =v.(L&pg) =vc(L®).
by Lemma 5.8. [
We finally end up with the main result of this section:

Theorem 5.11. A formula A of ILL is provable in ILL iff ¢(pg) —o A° is provable in
LL.

Proof. Lemma 5.6 gives one direction. To show the other direction, suppose that
©(po) —o A° is provable in LL. By the soundness of classical phase semantics, p(pg) —o A°
is satisfied in the classical phase model (M., &, L,v.). Since € € v.(¢(po)) by Lemma
5.10 (1), we have ¢ € v.(A°). Hence ¢ € v4(A) by Lemma 5.10 (2). Therefore, A is
provable in ILL by Lemma 5.9. [

6. Conclusion

LL and ILL are almost equivalent, though there are certainly some differences. To clarify
the delicate relationship between them, we have made a phase semantic analysis. The
outcome is a tight connection, perhaps a tighter one than expected, between intuitionistic
and classical phase spaces. In particular, it has been shown that every intuitionistic phase
space is a subspace of a classical one, and phase isomorphic to a quasi-classical one.

Besides the original motivation, these results give us a rather simple definition of
intuitionistic closure operator as C1(X) = X Ll Remarkably, it does not involve any
“big” (second-order, impredicative) quantifications in contrast to the closure operators in
(Abrusci 1990; Okada 1996). We hope that our simpler definition will find an interesting
application in the study of linear logic.

In Section 5, we have given an embedding of ILL into LL. It is interesting to observe
that it is nothing but a linear analogue of Godel’s embedding of intuitionistic logic into
modal logic S4 (in view of &po as a modal operator). A difference is that, while one
has to introduce an extra modal operator O in the case of intuitionistic logic, our modal
operator &pg is already definable in ILL. This is due to the rich expressive power of
linear logic.

Finally, we leave the following questions as open problems:

1 Isevery intuitionistic phase space quasi-classical? We conjecture it is not, but it seems
difficult to give a concrete counterexample.

2 Does the embedding theorem (Theorem 5.11) extend to the second-order setting?

3 Do our main results hold for substructural logics other than linear logic?
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