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Background (1)

Intuitionistic Light Affine Logic (Girard 98, Asperti 98): a

subsystem of Affine Logic (i.e. Linear Logic with unrestricted

weakening) which captures Polynomial Time:

f : {0, 1}∗ −→ {0, 1} is representable in LAL⇐⇒ f is

polytime.

Multiplicative Light Linear Logic (without weakening) also

captures Polynomial Time (Mairson and Terui 2003).

Nevertheless, LAL is still significant, as weakening is useful in

programming.
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Motivation (1)

What is the best proof syntax for LAL?

- Asperti’s calculus with explicit substitutions: too complicated

(27 rewriting rules)

- Proof nets: simple but space-consuming.

- Roveri’s notation (Roversi 99): simple, compact but not

accurate.

Light Affine Lambda Calculus λLA (Terui 2001): Simple,

compact and accurate, satisfies polynomial time strong

normalization. However, not as simple as pure λ-calculus...
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Motivation (2)

It is not realistic to think of λLA (or other proof syntax) as a

programming language; no one wants to use such a

complicated one! (in spite of (Roversi 99))

In reality, LAL should be used just as a sophisticated type

system for λ-calculus:

1. Programmar writes a program in λ-calculus.

2. Its typability in LAL is then checked automatically ([Baillot 2002]

shows typability in propositional LAL is decidable)

3. If it is typable, then polynomial time computability is

guaranteed.
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Motivation (3)

But in what sense? Is it necessary to translate a program into a

λLA term (or whatever) and apply LAL normalization

procedure?

- Not very economic; one would have to newly implement a λLA

evaluator.

I want to consider λ-calculus itself as a “real” term calculus for

LAL with subject reduction and polytime normalization.

Then, you can utilize some existing evaluator for λ-calculus.
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λ-calculus is bad, in general

Unfortunately, it fails in general: Even if a λ-term is typable in LAL, it
may take exponential time to normalize via β-reduction:

yi :!A−◦!A−◦!A � λx.yixx :!A−◦!A

z :!A � z :!A

y1 :!A−◦!A−◦!A, . . . , yn :!A−◦!A−◦!A, z :!A � (λx.y1xx)(· · · (λx.ynxx)z · · · ) :!A

y :!(!A−◦!A−◦!A), z :!!A � (λx.yxx)nz : §!A
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Our Goal

To define a subsystem of LAL (Dual Light Affine Logic) for

which λ-calculus itself can be considered as a term syntax:

- β-reduction satisfies subject reduction w.r.t. DLAL types.

- β-reduction satisfies polytime strong normalization.

- DLAL is expressive enough to represent all polytime functions.
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Syntax of λLA

Types:

A,B ::= α | A−◦B | ∀α.A | !A | §A.

!-discharged types: [A]!.

§-discharged type: [A]§.

Pseudo-terms:

t, u ::= x | λx.t | tu | !t | let u be !x in t | §t | let u be §x in t.

Notation: † stands for either ! or §.
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Type Assignment Rules of λLA

x :A � x :A Id
Γ1 � u :A x :A, Γ2 � t :C

Γ1, Γ2 � t[u/x] :C
Cut

Γ � t :C
∆, Γ � t :C Weak

x : [A]!, y : [A]!, Γ � t :C
z : [A]!, Γ � t[z/x, z/y] :C

Cntr

Γ1 � u :A1 x :A2, Γ2 � t :C
Γ1, y :A1 −◦ A2, Γ2 � t[yu/x] :C

−◦l x :A1, Γ � t :A2

Γ � λx.t :A1 −◦ A2
−◦r

x :A[B/α], Γ � t :C
x :∀α.A, Γ � t :C ∀l Γ � t :A

Γ � t :∀α.A
∀r, (α is not free in Γ)

x : [A]!, Γ � t :C
y :!A, Γ � let y be !x in t :C !l

x :B � t :A
x : [B]! �!t :!A !r

x : [A]§, Γ � t :C
y :§A, Γ � let y be §x in t :C

§l Γ, ∆ � t :A
[Γ]!, [∆]§ � §t :§A §r
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Reduction Rules of λLA

(β) (λx.t)u −→ t[u/x]

(§) let §u be §x in t −→ t[u/x]

(!) let !u be !x in t −→ t[u/x]

(com1) (let u be † x in t)v −→ let u be † x in (tv)

(com2) let (let u be † x in t) be † y in v −→ let u be † x in (let t be † y in v)

16/10/2003, Bertinoro – p.10/27



Main Properties of λLA

Subject Reduction Theorem:

Γ � t :A, t −→ u =⇒ Γ � u :A.

Church-Rosser Theorem:

t1 ←−∗ t0 −→∗t2 =⇒ t1 −→∗t3 ←−∗ t2 for some term t3.

Polynomial Time Strong Normalization Theorem:

Let t be of depth d.

t
n
−→∗u =⇒ n ≤ O(|t|2d+1

).

(in contrast to Safe Recursion-based Systems which are only

weakly (CBV) polytime.)
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From λLA to λ-calculus

In what follows, we assume that (§), (!), (com1), (com2) are

automatically applied, All terms are normal w.r.t.

(§), (!), (com1), (com2). There is only one reduction rule (β∗)
which consists in (β) followed by (§), (!), (com1), (com2).

Erasure ( )− : ΛLA −→ Λ

x− ≡ x

(λx.t)− ≡ λx.(t−)

(tu)− ≡ t−u−

(†t)− ≡ t−

(let u be † x in t)− ≡ t−[u−/x]

Why we need ! and § in term syntax? What’s wrong with

erasures?
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§ is Redundant in Typed Setting

§ and ! block illegal (non-stratified) reductions:

(§λx.t)v 
−→ §t[v/x], whereas

(λx.t−)v− −→ t−[v−/x].

let (λx.t) be §y in §yv 
−→ §(λx.t)v −→ §t[u/x], whereas

(λx.t−)v− −→ t−[v−/x]

In typed setting, however, we have

Lemma: uv is typable and (§, !, com)-normal =⇒ u ≡ x or

u1u2 or λx.u1.

Lemma: (let u be §y in v) is typable and (§, !, com)-normal

=⇒ u ≡ x or u1u2.

(§λx.t)v and let (λx.t) be §y in §yv are not typable.
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! Seems Necessary...

Assume u :!A−◦!A−◦!A and xi : A, and let

t0 ≡ u!x0!x0

t1 ≡ let (u!x1!x1) be !x0 in (u!x0!x0)

t2 ≡ let (u!x2!x2) be !x1 in (let (u!x1!x1) be !x0 in (u!x0!x0))

· · ·

|ti| is linear in i. However,

t−0 ≡ ux0x0

t−1 ≡ u(ux1x1)(ux1x1)

t−2 ≡ u(u(ux2x2)(ux2x2))(u(ux2x2)(ux2x2))

|t−i | is exponential in i.
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! Seems Necessary... (2)

“While every datum of type !A is eventually sharable, not all of

them are actually duplicable.” (Asperti 98)

Erasing operation wrongly duplicates all data of type !A.
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Key Idea: Small-Headedness

If the head of let! is always a variable, i.e.,

let y be !x in u

then for every typable t, |t−| ≤ |t|.
Call such terms small headed.

Our plan: Constrain types so that

- All typable terms are small headed, and

- Typable terms are closed under reduction.
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Preservation of Small-Headedness (1)

Good case:

(λx.let x be !y in t)!u −→ let !u be !y in t −→ t[u/y].

Bad case:

(λx.let x be !y in t)(u1u2) (SH) −→ let (u1u2) be !y in t (non-SH).

Observe

(λx!A.let x!A be !y in t)(uB−◦!A
1 uB

2 )!A

Types of the form B−◦!A should be excluded.
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Preservation of Small-Headedness (2)

Another bad case:

let (§u) be §x in §(let x be !y in t) (SH) −→ §(let u be !y in t) (non-SH).

Observe

let (§u)§!A be §x in §(let x!A be !y in t)

Types of the form §!A or !!A should be excluded.

We exclude ∀α.!A, too.

The only possible use of !: !A−◦B ≡ A⇒ B

Consider the subsystem of Light Affine Logic where the use of !

is restricted to !A−◦B.
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Syntax of Dual Light Affine Logic

Somewhat similar to Dual Intuitionistic Linear Logic of (Barber

and Plotkin 1997).

Types:

A,B ::= α | A−◦B | A⇒ B | §A | ∀α.A

Judgement: Γ;∆ � t :C
(Γ “!-discharged” or “intuitionistic,” while ∆ “non-discharged” or

“linear.”)

Pseudo-terms: Pure λ-terms
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Type Assignment Rules of DLAL

; x :A � x :A
(Id)

Γ1; ∆1 � u :A Γ2; x :A, ∆2 � t :C

Γ1, Γ2; ∆1, ∆2 � t[u/x] :C
(Cut1)

; y :B � u :A x :A, Γ; ∆ � t :C

y :B, Γ; ∆ � t[u/x] :C
(Cut2)

Γ; ∆ � t :C

Σ,Γ; Π, ∆ � t :C
(Weak)

x :A, y :A, Γ; ∆ � t :C

z :A, Γ; ∆ � t[z/x, z/y] :C
(Cntr)

Γ1; ∆1 � u :A Γ2; x :B, ∆2 � t :C

Γ1, Γ2; y :A −◦ B, ∆1, ∆2 � t[yu/x] :C
(−◦l) Γ; x :A, ∆ � t :B

Γ; ∆ � λx.t :A −◦ B
(−◦r)

; z :D � u :A Γ; x :B, ∆ � t :C

z :D, Γ; y :A ⇒ B, ∆ � t[yu/x] :C
(⇒ l)

x :A, Γ; ∆ � t :B

Γ; ∆ � λx.t :A ⇒ B
(⇒ r)

; Γ, x1 :B1, . . . , xn :Bn � t :A

Γ; x1 :§B1, . . . , xn :§Bn � t :§A (§)

Γ; x :A[B/α],∆ � t :C

Γ; x :∀α.A, ∆ � t :C
(∀l)

Γ; ∆ � t :A

Γ; ∆ � t :∀α.A
(∀r), α is not free in Γ, ∆
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Comments on DLAL

Rules for Intuitionistic implication are abbreviations of

[A]!,Γ � B

!A,Γ � B

Γ �!A−◦B

D � A
[D]! �!A B,Γ � C

[D]!, !A−◦B,Γ � C

Intuitionistic Modus Ponens has limitation on contexts:

;D � A Γ;∆ � A⇒ B

D,Γ;∆ � B

Dereliction (from linear to intuitionistic context) is synchronous

and accompanied by §-promotion:

; Γ,∆ � A

Γ; §∆ � §A
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DLAL is Expressive Enough

Data types are all representable in DLAL:

N ≡ ∀α.!(α−◦ α)−◦ §(α−◦ α)

≡ ∀α.(α−◦ α)⇒ §(α−◦ α).

Theorem: All polynomial time functions are representable with

type W −◦ §dW in DLAL (where W is a type for binary words).

Proof: Read (Asperti and Roversi 2001) and observe that the

only place where non-intuitionistic ! appears is in Coercion:

coerc : N −◦ §!N.
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Modified Coercion

Lemma: There is a term coerc′ : (N ⇒ A)⇒ (N −◦ §A) such

that t and coerc′(t) are extentionally equivalent for every

t : N ⇒ A.

Ex) In DLAL, we have

mult : N ⇒ (N −◦ §N)

coerc′(mult) : N −◦ §(N −◦ §N)

mult′ : N −◦N −◦ §§N (by coercion for §).

.... Suc

; N � N ; A � A

N ; N ⇒ A � A

; N ⇒ A � N ⇒ A

;� (N ⇒ A) −◦ (N ⇒ A)

; N ⇒ A � N ⇒ A

.... Zero

;� N ; A � A

; N ⇒ A � A

; N ⇒ A, (N ⇒ A) −◦ (N ⇒ A) � A

N ⇒ A; §((N ⇒ A) −◦ (N ⇒ A)) � §A
N ⇒ A; ((N ⇒ A) −◦ (N ⇒ A)) ⇒ §((N ⇒ A) −◦ (N ⇒ A)) � §A
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Proving Main Properties of DLAL (1)

DLAL may be considered as type assignment for λLA, too.

Lemma (Subject Reduction for λLA w.r.t. DLAL): Let t : λLA.

Γ;∆ � t :A in DLAL, t −→ u =⇒ Γ;∆ � u :A in DLAL.

Lemma (Small-Headedness): (let u be !x in v) is typable in

DLAL and (§, !, com)-normal =⇒ u ≡ x.

Lemma (Erasing is linear and preserves Types):

1. Let t : λLA.

Γ;∆ � t :A in DLAL =⇒ Γ;∆ � t− :A and |t−| ≤ |t|.
2. Let t : λ-term,

Γ;∆ � t :A in DLAL =⇒ Γ;∆ � t̃ :A for some t̃ : λLA such

that (t̃)− ≡ t and |t| ≤ |t̃|.
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Proving Main Properties of DLAL (2)

Lemma (λLA simulates λ): Let t be a (§, !, com)-normal

λLA-term.

t0 u0

t u

�(β)

�−
� � � � � � � ��(β∗) �

�

�

�

�

�

�

�

�−

Proof: By induction on t.
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Main Properties of DLAL (1)

Subject Reduction Theorem: Let t : λ-term.

Γ;∆ � t :A, t −→ u =⇒ Γ;∆ � u :A.

Proof: There is a λLA-term t̃ s.t. Γ;∆ � t̃ :A and

t u

t̃ ũ

�(β)

�−
� � � � � � � ��(β∗) �

�

�

�

�

�

�

�−

By Subject reduction for λLA, Γ;∆ � ũ :A. So Γ;∆ � u :A.
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Main Properties of DLAL (2)

Polynomial Time Strong Normalization Theorem:

Let � t : A and A be Π1 and of depth d.

t
n
−→∗u =⇒ n ≤ O(|t|2d+1

).

Proof:
t u

t̃ ũ

�(β)
� � � � � � � � � �� �(β)

�−
� � � � � � � � ��(β∗)

� � � � � � � � � �� � � � � � � � ��(β∗) �

�

�

�

�

�

�

�−
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