
Pure lambda calculus as a term
syntax for light affine logic

(Joint work with Patrick Baillot)

Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics, Tokyo

16/10/2003, Bertinoro – p.1/27



Background (1)

Intuitionistic Light Affine Logic (Girard 98, Asperti 98): a

subsystem of Affine Logic (i.e. Linear Logic with unrestricted

weakening) which captures Polynomial Time:

f : {0, 1}∗ −→ {0, 1} is representable in LAL⇐⇒ f is

polytime.

Multiplicative Light Linear Logic (without weakening) also

captures Polynomial Time (Mairson and Terui 2003).

Nevertheless, LAL is still significant, as weakening is useful in

programming.

16/10/2003, Bertinoro – p.2/27



Motivation (1)

What is the best proof syntax for LAL?

- Asperti’s calculus with explicit substitutions: too complicated

(27 rewriting rules)

- Proof nets: simple but space-consuming.

- Roveri’s notation (Roversi 99): simple, compact but not

accurate.

Light Affine Lambda Calculus λLA (Terui 2001): Simple,

compact and accurate, satisfies polynomial time strong

normalization. However, not as simple as pure λ-calculus...

16/10/2003, Bertinoro – p.3/27



Motivation (2)

It is not realistic to think of λLA (or other proof syntax) as a

programming language; no one wants to use such a

complicated one! (in spite of (Roversi 99))

In reality, LAL should be used just as a sophisticated type

system for λ-calculus:

1. Programmar writes a program in λ-calculus.

2. Its typability in LAL is then checked automatically ([Baillot 2002]

shows typability in propositional LAL is decidable)

3. If it is typable, then polynomial time computability is

guaranteed.

16/10/2003, Bertinoro – p.4/27



Motivation (3)

But in what sense? Is it necessary to translate a program into a

λLA term (or whatever) and apply LAL normalization

procedure?

- Not very economic; one would have to newly implement a λLA

evaluator.

I want to consider λ-calculus itself as a “real” term calculus for

LAL with subject reduction and polytime normalization.

Then, you can utilize some existing evaluator for λ-calculus.

16/10/2003, Bertinoro – p.5/27



λ-calculus is bad, in general

Unfortunately, it fails in general: Even if a λ-term is typable in LAL, it
may take exponential time to normalize via β-reduction:

yi :!A−◦!A−◦!A � λx.yixx :!A−◦!A

z :!A � z :!A

y1 :!A−◦!A−◦!A, . . . , yn :!A−◦!A−◦!A, z :!A � (λx.y1xx)(· · · (λx.ynxx)z · · · ) :!A

y :!(!A−◦!A−◦!A), z :!!A � (λx.yxx)nz : §!A

16/10/2003, Bertinoro – p.6/27



Our Goal

To define a subsystem of LAL (Dual Light Affine Logic) for

which λ-calculus itself can be considered as a term syntax:

- β-reduction satisfies subject reduction w.r.t. DLAL types.

- β-reduction satisfies polytime strong normalization.

- DLAL is expressive enough to represent all polytime functions.

16/10/2003, Bertinoro – p.7/27



Syntax of λLA

Types:

A,B ::= α | A−◦B | ∀α.A | !A | §A.

!-discharged types: [A]!.

§-discharged type: [A]§.

Pseudo-terms:

t, u ::= x | λx.t | tu | !t | let u be !x in t | §t | let u be §x in t.

Notation: † stands for either ! or §.

16/10/2003, Bertinoro – p.8/27



Type Assignment Rules of λLA

x :A � x :A Id
Γ1 � u :A x :A, Γ2 � t :C

Γ1, Γ2 � t[u/x] :C
Cut

Γ � t :C
∆, Γ � t :C Weak

x : [A]!, y : [A]!, Γ � t :C
z : [A]!, Γ � t[z/x, z/y] :C

Cntr

Γ1 � u :A1 x :A2, Γ2 � t :C
Γ1, y :A1 −◦ A2, Γ2 � t[yu/x] :C

−◦l x :A1, Γ � t :A2

Γ � λx.t :A1 −◦ A2
−◦r

x :A[B/α], Γ � t :C
x :∀α.A, Γ � t :C ∀l Γ � t :A

Γ � t :∀α.A
∀r, (α is not free in Γ)

x : [A]!, Γ � t :C
y :!A, Γ � let y be !x in t :C !l

x :B � t :A
x : [B]! �!t :!A !r

x : [A]§, Γ � t :C
y :§A, Γ � let y be §x in t :C

§l Γ, ∆ � t :A
[Γ]!, [∆]§ � §t :§A §r

16/10/2003, Bertinoro – p.9/27



Reduction Rules of λLA

(β) (λx.t)u −→ t[u/x]

(§) let §u be §x in t −→ t[u/x]

(!) let !u be !x in t −→ t[u/x]

(com1) (let u be † x in t)v −→ let u be † x in (tv)

(com2) let (let u be † x in t) be † y in v −→ let u be † x in (let t be † y in v)

16/10/2003, Bertinoro – p.10/27



Main Properties of λLA

Subject Reduction Theorem:

Γ � t :A, t −→ u =⇒ Γ � u :A.

Church-Rosser Theorem:

t1 ←−∗ t0 −→∗t2 =⇒ t1 −→∗t3 ←−∗ t2 for some term t3.

Polynomial Time Strong Normalization Theorem:

Let t be of depth d.

t
n
−→∗u =⇒ n ≤ O(|t|2d+1

).

(in contrast to Safe Recursion-based Systems which are only

weakly (CBV) polytime.)

16/10/2003, Bertinoro – p.11/27



From λLA to λ-calculus

In what follows, we assume that (§), (!), (com1), (com2) are

automatically applied, All terms are normal w.r.t.

(§), (!), (com1), (com2). There is only one reduction rule (β∗)
which consists in (β) followed by (§), (!), (com1), (com2).

Erasure ( )− : ΛLA −→ Λ

x− ≡ x

(λx.t)− ≡ λx.(t−)

(tu)− ≡ t−u−

(†t)− ≡ t−

(let u be † x in t)− ≡ t−[u−/x]

Why we need ! and § in term syntax? What’s wrong with

erasures?
16/10/2003, Bertinoro – p.12/27



§ is Redundant in Typed Setting

§ and ! block illegal (non-stratified) reductions:

(§λx.t)v 
−→ §t[v/x], whereas

(λx.t−)v− −→ t−[v−/x].

let (λx.t) be §y in §yv 
−→ §(λx.t)v −→ §t[u/x], whereas

(λx.t−)v− −→ t−[v−/x]

In typed setting, however, we have

Lemma: uv is typable and (§, !, com)-normal =⇒ u ≡ x or

u1u2 or λx.u1.

Lemma: (let u be §y in v) is typable and (§, !, com)-normal

=⇒ u ≡ x or u1u2.

(§λx.t)v and let (λx.t) be §y in §yv are not typable.

16/10/2003, Bertinoro – p.13/27



! Seems Necessary...

Assume u :!A−◦!A−◦!A and xi : A, and let

t0 ≡ u!x0!x0

t1 ≡ let (u!x1!x1) be !x0 in (u!x0!x0)

t2 ≡ let (u!x2!x2) be !x1 in (let (u!x1!x1) be !x0 in (u!x0!x0))

· · ·

|ti| is linear in i. However,

t−0 ≡ ux0x0

t−1 ≡ u(ux1x1)(ux1x1)

t−2 ≡ u(u(ux2x2)(ux2x2))(u(ux2x2)(ux2x2))

|t−i | is exponential in i.

16/10/2003, Bertinoro – p.14/27



! Seems Necessary... (2)

“While every datum of type !A is eventually sharable, not all of

them are actually duplicable.” (Asperti 98)

Erasing operation wrongly duplicates all data of type !A.

16/10/2003, Bertinoro – p.15/27



Key Idea: Small-Headedness

If the head of let! is always a variable, i.e.,

let y be !x in u

then for every typable t, |t−| ≤ |t|.
Call such terms small headed.

Our plan: Constrain types so that

- All typable terms are small headed, and

- Typable terms are closed under reduction.

16/10/2003, Bertinoro – p.16/27



Preservation of Small-Headedness (1)

Good case:

(λx.let x be !y in t)!u −→ let !u be !y in t −→ t[u/y].

Bad case:

(λx.let x be !y in t)(u1u2) (SH) −→ let (u1u2) be !y in t (non-SH).

Observe

(λx!A.let x!A be !y in t)(uB−◦!A
1 uB

2 )!A

Types of the form B−◦!A should be excluded.

16/10/2003, Bertinoro – p.17/27



Preservation of Small-Headedness (2)

Another bad case:

let (§u) be §x in §(let x be !y in t) (SH) −→ §(let u be !y in t) (non-SH).

Observe

let (§u)§!A be §x in §(let x!A be !y in t)

Types of the form §!A or !!A should be excluded.

We exclude ∀α.!A, too.

The only possible use of !: !A−◦B ≡ A⇒ B

Consider the subsystem of Light Affine Logic where the use of !

is restricted to !A−◦B.

16/10/2003, Bertinoro – p.18/27



Syntax of Dual Light Affine Logic

Somewhat similar to Dual Intuitionistic Linear Logic of (Barber

and Plotkin 1997).

Types:

A,B ::= α | A−◦B | A⇒ B | §A | ∀α.A

Judgement: Γ;∆ � t :C
(Γ “!-discharged” or “intuitionistic,” while ∆ “non-discharged” or

“linear.”)

Pseudo-terms: Pure λ-terms

16/10/2003, Bertinoro – p.19/27



Type Assignment Rules of DLAL

; x :A � x :A
(Id)

Γ1; ∆1 � u :A Γ2; x :A, ∆2 � t :C

Γ1, Γ2; ∆1, ∆2 � t[u/x] :C
(Cut1)

; y :B � u :A x :A, Γ; ∆ � t :C

y :B, Γ; ∆ � t[u/x] :C
(Cut2)

Γ; ∆ � t :C

Σ,Γ; Π, ∆ � t :C
(Weak)

x :A, y :A, Γ; ∆ � t :C

z :A, Γ; ∆ � t[z/x, z/y] :C
(Cntr)

Γ1; ∆1 � u :A Γ2; x :B, ∆2 � t :C

Γ1, Γ2; y :A −◦ B, ∆1, ∆2 � t[yu/x] :C
(−◦l) Γ; x :A, ∆ � t :B

Γ; ∆ � λx.t :A −◦ B
(−◦r)

; z :D � u :A Γ; x :B, ∆ � t :C

z :D, Γ; y :A ⇒ B, ∆ � t[yu/x] :C
(⇒ l)

x :A, Γ; ∆ � t :B

Γ; ∆ � λx.t :A ⇒ B
(⇒ r)

; Γ, x1 :B1, . . . , xn :Bn � t :A

Γ; x1 :§B1, . . . , xn :§Bn � t :§A (§)

Γ; x :A[B/α],∆ � t :C

Γ; x :∀α.A, ∆ � t :C
(∀l)

Γ; ∆ � t :A

Γ; ∆ � t :∀α.A
(∀r), α is not free in Γ, ∆

16/10/2003, Bertinoro – p.20/27



Comments on DLAL

Rules for Intuitionistic implication are abbreviations of

[A]!,Γ � B

!A,Γ � B

Γ �!A−◦B

D � A
[D]! �!A B,Γ � C

[D]!, !A−◦B,Γ � C

Intuitionistic Modus Ponens has limitation on contexts:

;D � A Γ;∆ � A⇒ B

D,Γ;∆ � B

Dereliction (from linear to intuitionistic context) is synchronous

and accompanied by §-promotion:

; Γ,∆ � A

Γ; §∆ � §A
16/10/2003, Bertinoro – p.21/27



DLAL is Expressive Enough

Data types are all representable in DLAL:

N ≡ ∀α.!(α−◦ α)−◦ §(α−◦ α)

≡ ∀α.(α−◦ α)⇒ §(α−◦ α).

Theorem: All polynomial time functions are representable with

type W −◦ §dW in DLAL (where W is a type for binary words).

Proof: Read (Asperti and Roversi 2001) and observe that the

only place where non-intuitionistic ! appears is in Coercion:

coerc : N −◦ §!N.

16/10/2003, Bertinoro – p.22/27



Modified Coercion

Lemma: There is a term coerc′ : (N ⇒ A)⇒ (N −◦ §A) such

that t and coerc′(t) are extentionally equivalent for every

t : N ⇒ A.

Ex) In DLAL, we have

mult : N ⇒ (N −◦ §N)

coerc′(mult) : N −◦ §(N −◦ §N)

mult′ : N −◦N −◦ §§N (by coercion for §).

.... Suc

; N � N ; A � A

N ; N ⇒ A � A

; N ⇒ A � N ⇒ A

;� (N ⇒ A) −◦ (N ⇒ A)

; N ⇒ A � N ⇒ A

.... Zero

;� N ; A � A

; N ⇒ A � A

; N ⇒ A, (N ⇒ A) −◦ (N ⇒ A) � A

N ⇒ A; §((N ⇒ A) −◦ (N ⇒ A)) � §A
N ⇒ A; ((N ⇒ A) −◦ (N ⇒ A)) ⇒ §((N ⇒ A) −◦ (N ⇒ A)) � §A

N ⇒ A;N � §A 16/10/2003, Bertinoro – p.23/27



Proving Main Properties of DLAL (1)

DLAL may be considered as type assignment for λLA, too.

Lemma (Subject Reduction for λLA w.r.t. DLAL): Let t : λLA.

Γ;∆ � t :A in DLAL, t −→ u =⇒ Γ;∆ � u :A in DLAL.

Lemma (Small-Headedness): (let u be !x in v) is typable in

DLAL and (§, !, com)-normal =⇒ u ≡ x.

Lemma (Erasing is linear and preserves Types):

1. Let t : λLA.

Γ;∆ � t :A in DLAL =⇒ Γ;∆ � t− :A and |t−| ≤ |t|.
2. Let t : λ-term,

Γ;∆ � t :A in DLAL =⇒ Γ;∆ � t̃ :A for some t̃ : λLA such

that (t̃)− ≡ t and |t| ≤ |t̃|.

16/10/2003, Bertinoro – p.24/27



Proving Main Properties of DLAL (2)

Lemma (λLA simulates λ): Let t be a (§, !, com)-normal

λLA-term.

t0 u0

t u

�(β)

�−
� � � � � � � ��(β∗) �

�

�

�

�

�

�

�

�−

Proof: By induction on t.

16/10/2003, Bertinoro – p.25/27



Main Properties of DLAL (1)

Subject Reduction Theorem: Let t : λ-term.

Γ;∆ � t :A, t −→ u =⇒ Γ;∆ � u :A.

Proof: There is a λLA-term t̃ s.t. Γ;∆ � t̃ :A and

t u

t̃ ũ

�(β)

�−
� � � � � � � ��(β∗) �

�

�

�

�

�

�

�−

By Subject reduction for λLA, Γ;∆ � ũ :A. So Γ;∆ � u :A.

16/10/2003, Bertinoro – p.26/27



Main Properties of DLAL (2)

Polynomial Time Strong Normalization Theorem:

Let � t : A and A be Π1 and of depth d.

t
n
−→∗u =⇒ n ≤ O(|t|2d+1

).

Proof:
t u

t̃ ũ

�(β)
� � � � � � � � � �� �(β)

�−
� � � � � � � � ��(β∗)

� � � � � � � � � �� � � � � � � � ��(β∗) �

�

�

�

�

�

�

�−

16/10/2003, Bertinoro – p.27/27


	Background (1)
	Motivation (1)
	Motivation (2)
	Motivation (3)
	$lambda $-calculus is bad, in general
	Our Goal
	Syntax of LALC 
	Type Assignment Rules of LALC 
	Reduction Rules of LALC 
	Main Properties of LALC 
	From LALC  to $lambda $-calculus
	$S $ is Redundant in Typed Setting
	! Seems Necessary...
	! Seems Necessary... (2)
	Key Idea: Small-Headedness
	Preservation of Small-Headedness (1)
	Preservation of Small-Headedness (2)
	Syntax of Dual Light Affine Logic
	Type Assignment Rules of DLAL
	Comments on DLAL
	DLAL is Expressive Enough
	Modified Coercion
	Proving Main Properties of DLAL (1)
	Proving Main Properties of DLAL (2)
	Main Properties of DLAL (1)
	Main Properties of DLAL (2)

