
Archive for Mathematical Logic manuscript No.
(will be inserted by the editor)

Kazushige Terui

Light Affine Lambda Calculus and Polynomial
Time Strong Normalization

Received: date / Revised version: date – c© Springer-Verlag 2004

Abstract. Light Linear Logic (LLL) and Intuitionistic Light Affine Logic (ILAL)
are logics that capture polynomial time computation. It is known that every poly-
nomial time function can be represented by a proof of these logics via the proofs-
as-programs correspondence. Furthermore, there is a reduction strategy which
normalizes a given proof in polynomial time. Given the latter polynomial time
“weak” normalization theorem, it is natural to ask whether a “strong” form of
polynomial time normalization theorem holds or not.

In this paper, we introduce an untyped term calculus, called Light Affine
Lambda Calculus (λla), which corresponds to ILAL. λla is a bi-modal λ-calculus
with certain constraints, endowed with very simple reduction rules. The main
property of λla is the polynomial time strong normalization: any reduction strat-
egy normalizes a given λla term in a polynomial number of reduction steps, and
indeed in polynomial time. Since proofs of ILAL are structurally representable
by terms of λla, we conclude that the same holds for ILAL.

1. Introduction

In [9], Girard introduced Light Linear Logic (LLL) as an intrinsically poly-
time logical system: every polynomial time function is representable by an
LLL proof, and every LLL proof (of lazy conclusions) is normalizable in
polynomial time. Later on, Asperti [1] introduced a simplified system, called
Light Affine Logic, by adding the full (unrestricted) weakening rule to LLL.
Its intuitionistic fragment (ILAL) has been particularly well investigated
(see [2]), because it allows a compact term notation for proofs and has clear
relevance to functional programming issues.

Light Logics provide an implicit characterization of polynomial time; in
contrast with their precursor, Bounded Linear Logic [10], the syntax of Light
Logics do not contain any polynomials. Moreover, the characterization is
purely logical; in contrast with those implicit characterizations of polynomial
time which are mostly based on safe recursion or data ramification (see [6,

Kazushige Terui: National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-
ku, 101-8430 Tokyo, Japan. e-mail: terui@nii.ac.jp

This is a full version of the paper [21] presented at LICS 2001.

Key words or phrases: Light logics – Lambda calculus – Polynomial time



2 Kazushige Terui

14,13,11,7]), Light Logics do not contain any built-in data types, and the
characterization result is about the complexity of cut-elimination, which
is of purely logical nature. It naturally extends to a consistent naive set
theory, in which one can reason about polynomial time concepts [9,23].
Also notably, Light Logics are endowed with various semantics [12,3,16],
which could lead to a semantic understanding of polynomial time.

An important problem remains to be settled, however. By inspecting the
normalization theorem given by [9], one observes that what is actually shown
is the polynomial time weak normalization, namely, that there is a specific
reduction strategy which normalizes a given LLL proof in polynomial time.
The same is true of ILAL [1,2]. It has been left unsettled whether the
polynomial time strong normalization holds for these Light Logics, namely,
whether any reduction strategy normalizes a given proof in polynomial time.
The primary purpose of this paper is to give a solution to this problem.

Having such a property will be theoretically important in that it gives
further credence to Light Logics as intrinsically polytime systems. It will
be practically important, too. Through the Curry-Howard correspondence,
the proofs of Light Logics may be considered as feasible programs. In this
context, the property will ensure that the programs can be executed in
polynomial time independent of evaluation strategies.

For our purpose, it is reasonable to begin with ILAL, because it is
simpler than LLL as a logical system. However, the existing term calculi
proposed for ILAL either have a complicated notion of reduction defined
by more than 20 rewriting rules [1,20], or involve notational ambiguity [19,
2]1. Therefore, it is desirable to have a simple and accurate term calculus
for ILAL. Such a simple calculus will provide a clearer intuition on the
computational aspect of Light Logics. That is our secondary purpose2.

In this paper, we introduce a new term calculus, called Light Affine
Lambda Calculus (λla) (in Section 2). It amounts to a simple modification
of λ-calculus with modal and let operators. The main advantage of λla is
operational simplicity; it has only five reduction rules and each rule has
a clear meaning. Although λla is untyped, all the well-formed terms are
normalizing. We then re-introduce ILAL as a Curry-style type assignment
system for λla and prove the subject reduction theorem (in Section 3).
There are a number of reasons for adopting a Curry-style presentation:

1. First of all, to design a truly polytime (rather than just polystep) poly-
morphic calculus, one has to give up a Church-style term syntax with
embedded types: a universal quantifier may bind an arbitrary number

1 See the remark in Section 9.1 of [2]. To compensate this ambiguity, the latter
paper presents a proofnet syntax for ILAL.

2 Another approach is to identify a well-behaved fragment of ILAL for which
the ordinary lambda calculus works perfectly well. This line of research is pursued
by [4].



Title Suppressed Due to Excessive Length 3

of type variable occurrences, and thus iterated type instantiations (Λ
reductions) may easily cause exponential growth in the size of types.3

2. An untyped polytime calculus deserves investigation in its own right.
3. The notion of well-formedness, rather than typability, neatly captures

the syntactic condition for polynomial time normalizability.
4. Last but not least, typability in ILAL is presumably intractable4, while

well-formedness can be checked very easily (in quadratic time).

In this setting, we prove our main theorems (in Sections 4 and 5):

– The Polystep Strong Normalization Theorem: every reduction sequence
in λla has a length bounded by a polynomial in the size of the initial
term (when the term depth is fixed).

– The Polytime Strong Normalization Theorem: every reduction strategy
(given as a function oracle) induces a normalization procedure which
terminates in polynomial time.

Since proofs of ILAL are structurally representable by terms of ILAL
(where formulas are erased), we can conclude that the same theorem holds
for ILAL.

We finally discuss some related issues, such as the relationship with the
safe recursion approach, polynomial time strong normalization for LLL, a
lowerbound for normalization and decision problems for type inference (in
Section 6).

2. Light Affine Lambda Calculus

In this section, we present λla. We begin by introducing the pseudo-terms
and several basic notions in 2.1, then move on to the well-formed terms in
2.2. Finally, the reduction rules are given in 2.3.

2.1. Pseudo-Terms

Let x, y, z . . . range over term variables.

Definition 1. The set PT of pseudo-terms is defined by the following gram-
mar:

t, u ::= x | λx.t | tu | !t | let !x = u in t | §t | let §x = u in t.

In addition to λ-abstraction and application, we have two modal opera-
tors (!, §) and two let operators (let-!, let-§). Pseudo-terms !t and §t are called
!-box and §-box respectively. It is suggestive to think of them as “boxes” in
the literal sense:

3 Proofnets (of LLL) contain formulas. Hence proofnets themselves are not nor-
malizable in polynomial time. A solution suggested by [9] is to work with untyped
proofnets (with formulas erased) in the actual computation. When the conclusion
is lazy, the formulas can be automatically recovered after normalization, and such
formulas are not exponentially large. Our approach is essentially the same, but
we start by a type-free setting, then consider typing afterwards.

4 The problem is undecidable for System F in the Curry style [24].



4 Kazushige Terui

x.let !x be !y in yy

let !x be !y in yy

!x

λ

yy

x y y

ε

0

00 01

011010000

Fig. 1. Term Tree and Addresses

! t § t .

With boxes thus drawn, each pseudo-term is stratified into layers. For in-
stance, (let !x =!y in §!(λz.zx))z is stratified into three layers as follows:

(let !x =! y in § ! λz.zx )w.

In the sequel, symbol † stands for either ! or §. Pseudo-terms (λx.t) and
(let †x = u in t) bind each occurrence of x in t. As usual, pseudo-terms
are considered up to α-equivalence, and subject to the variable convention;
namely, the bound variables are chosen to be different from the free vari-
ables, so that variable clash is never caused by substitution. The notation
t[u/x] denotes the pseudo-term obtained by substituting u for the free oc-
currences of x in t. FV (t) denotes the set of free variables in t. FO(x, t)
denotes the number of free occurrences of x in t, and FO(t) denotes the
number of all free variable occurrences in t.

Each pseudo-term t can be represented as a term tree, and each subterm
occurrence u in t can be pointed by its address, i.e., a word w ∈ {0, 1}∗
which describes the path from the root to the node corresponding to u in
the term tree. For example, the term tree for (λx.let !y =!x in yy) and the
addresses in it are illustrated in Figure 1. We write w � v when w is a prefix
of v.

The size |t| of a pseudo-term t is the number of nodes in its term tree.
Since pseudo-terms are untyped, |t| is not significantly different from the
length of the string representation of t. Given a pseudo-term t and an address
w, the depth of w in t is the number of !-boxes and §-boxes enclosing the
subexpression at w. The depth of t is the maximum depth of all addresses
in it.

A context Φ is a pseudo-term with a hole •. If Φ is a context and t is a
pseudo-term, then Φ[t] denotes the pseudo-term obtained by substituting t
for • in Φ.

2.2. Well-Formed Terms

The well-formed terms are obtained by imposing certain conditions on the
pseudo-terms. To begin with, let us give an informal description.



Title Suppressed Due to Excessive Length 5

First, the base of our calculus is affine: each λ may bind at most one free
variable. That is to say, λ is in charge of abstraction and cancellation, but
not of duplication. Moreover, the λ-binding relation may not cross a box.
For instance, the binding below is not allowed:

λx. ! xt

The effect is that λ- and !-components do not interleave each other.
Second, let operators must respect stratification: for each pair of a let

operator and a variable it binds, the binding relation must cross exactly one
box, as follows:

let !x = t in § xxy ! xu

To see why this condition is needed, define

ω1 ≡ λx.(let !y = x in y!y),
ω2 ≡ λx.(let !y = x in !(y(!y)).

These pseudo-terms clearly violate the above condition; in ω1 the binding
relation indicated below does not cross a box, while in ω2 the one indicated
below crosses two boxes.

λx.(let !y = x in y! y ) λx.(let !y = x in! y! y )

These terms causes non-termination of reductions. In fact, anticipating the
reduction rules in Figure 2, we see that the following pseudo-terms are not
normalizing:

ω1!ω1
(β)−→ let !y =!ω1 in y!y
(!)−→ ω1!ω1 −→ · · ·

ω2!ω2
(β)−→ let !y =!ω2 in !(y!y))
(!)−→ !(ω2!ω2) −→ · · ·

Note that the above condition reflects the lack of the dereliction and
digging principles in Light Logics:

– Dereliction: !A−◦A,
– Digging: !A−◦!!A.

Third, a !-box may contain at most one free variable. This is to rule out
a pseudo-term like

2 ≡ λx.(let !y = x in ! yy ),



6 Kazushige Terui

which causes an exponential explosion:

2n(!z)
(β)−→ 2n−1(let !y =!z in !yy)
(!)−→ 2n−1(!zz)
(β)−→ 2n−2(let !y =!zz in !yy)
(!)−→ 2n−2(!(zz)(zz))
−→∗ !(zz · · · · · · z︸ ︷︷ ︸

2n times

).

This condition intuitively means that a !-box is to be duplicated, but not
to duplicate another !-box. It reflects the lack of the monoidalness in Light
Logics (which distinguishes Light Logics from Elementary Logics [9,8]):

– Monoidalness: !A⊗!B−◦!(A⊗B).

Since the last condition is too severe, we need another modal operator
§ as a compensation. A §-box may contain an arbitrary number of free
variables. Instead, let-§ may not bind more than one free variable. In other
words, a §-box is to duplicate something, but not to be duplicated. Two
modalities ! and § are related by the following conditions: a let-! operator
may bind a free variable in a §-box (corresponding to the weak dereliction
principle !A−◦§A that holds in Light Logics), whereas a let-§ operator may
not bind a free variable in a !-box.

Let us now give a formal definition. Here, it is convenient to classify
variables into three groups: undischarged, !-discharged, and §-discharged vari-
ables. These are to be bound by λ-abstraction, let-! operator and let-§ op-
erator, respectively. In the sequel, � stands for disjoint union.

Definition 2. Let X, Y, Z range over the finite sets of variables. The 4-ary
relation t ∈ TX,Y,Z (saying that t is a well-formed term with undischarged
variables from X, !-discharged variables from Y and §-discharged variables
from Z) is defined as follows (in writing t ∈ TX,Y,Z , we implicitly assume
that X, Y and Z are mutually disjoint):

1. x ∈ TX,Y,Z ⇐⇒ x ∈ X.
2. λx.t ∈ TX,Y,Z ⇐⇒ t ∈ TX�{x},Y,Z, FO(x, t) ≤ 1.
3. tu ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z , u ∈ TX,Y,Z .
4. !t ∈ TX,Y,Z ⇐⇒ t ∈ TY,∅,∅, FO(t) ≤ 1.
5. §t ∈ TX,Y,Z ⇐⇒ t ∈ TY �Z,∅,∅.
6. let !x = t in u ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z , u ∈ TX,Y �{x},Z.
7. let §x = t in u ∈ TX,Y,Z ⇐⇒ t ∈ TX,Y,Z , u ∈ TX,Y,Z�{x}, FO(x, u) ≤ 1.

We say that t is a well-formed term, or simply a term, if t ∈ TX,Y,Z for
some X, Y and Z.

Note that clause 2 above embodies the affinity of λ-abstraction, clause 4
embodies the no-more-than-one-variable condition on !-boxes. In the mean-
time, the statement 3 of the next lemma ensures that the stratification
condition on !- and §- boxes is satisfied.



Title Suppressed Due to Excessive Length 7

Lemma 1. Let t ∈ TX,Y,Z .
1. If X ⊆ X ′, Y ⊆ Y ′ and Z ⊆ Z ′, then t ∈ TX′,Y ′,Z′ .
2. If x �∈ FV (t), then t ∈ TX\{x},Y \{x},Z\{x}.
3. Let x ∈ FV (t). Then x occurs at depth 0 iff x ∈ X. x occurs at depth 1

iff x ∈ Y ∪ Z. x never occurs at depth > 1.

Proof. By induction on t.

Lemma 2. (Substitution)
1. t ∈ TX�{x},Y,Z and u ∈ TX,Y,Z =⇒ t[u/x] ∈ TX,Y,Z .
2. t ∈ TX,Y �{x},Z, u ∈ TY,∅,∅ and FO(u) ≤ 1 =⇒ t[u/x] ∈ TX,Y,Z .
3. t ∈ TX,Y,Z�{x} and u ∈ TY ∪Z,∅,∅ =⇒ t[u/x] ∈ TX,Y,Z .

Proof. By induction on t.

Example 1. We write λ!x.t to denote λx.let !y = x in t[y/x] with y fresh.
1. While ω1 and ω2 in the previous subsection are not well-formed, ω3 ≡

λx.(let !y = x in §yy) is well-formed.
2. For each natural number n, we have Church numeral n ∈ T defined by

n ≡ λ!x.§λz. (x · · · (x
︸ ︷︷ ︸
n times

z) · · · ).

3. For each word w ≡ i0 · · · in ∈ {0, 1}∗, we have w ∈ T defined by

w ≡ λ!x0.λ
!x1.§λz.(xi0 · · · (xinz) · · · ).

Observe that n’s and w’s are of depth 1.
4. Suc ≡ λn.λ!f.let §h = n!f in §λy.f(hy) ∈ T .

Remark 1. As discussed in Section 3 of [1], a naive use of box notation causes
ambiguity, and in conjunction with naive substitution, it causes a disastrous
effect on complexity.

While Asperti solved this problem by using a more sophisticated box
notation §(t)[u1/x1, . . . , un/xn], our solution is more implicit and based on
a conceptual distinction between discharged and undischarged variables.

Asperti’s box §(tx1x2)[y/x1, y/x2] (with y of !-type) corresponds to
(let !x = y in §(txx)) in our syntax. Observe that variable y, which is exter-
nal to the §-box, is shared in the former, while variable x, which is internal
to the §-box, is shared in the latter. This is parallel to the difference be-
tween the contraction inference rule of Asperti’s ILAL and that of Girard’s
LLL; the former contracts !-formulas, while the latter contracts discharged
formulas.

Remark 2. There is a quadratic time algorithm for well-formedness checking.
Let t be a pseudo-term, and X and Y be the sets of its free variables at
depth 0 and at depth 1, respectively. Then t is well-formed iff t ∈ TX,Y,∅ (by
Lemma 1 and the fact that t ∈ TX,Y,Z implies t ∈ TX,Y ∪Z,∅). The latter can
be recursively checked with at most |t| recursive calls, and each call involves
a variable occurrence check at most once (corresponding to Clauses 2, 4
and 7 of Definition 2). Therefore the algorithm runs in time O(n2), given a
term of size n.



8 Kazushige Terui

Name Redex Contractum
(β) (λx.t)u t[u/x]
(§) let §x = §u in t t[u/x]
(!) let !x =!u in t t[u/x]

(com) (let †x = u in t)v let †x = u in (tv)
let †y = (let †x = u in t) in v let †x = u in (let †y = t in v)

Fig. 2. Reduction Rules

2.3. Reduction Rules

Definition 3. The reduction rules of λla are given in Figure 2. We say

that t reduces to u at address w by rule (r), and write as t
w,(r)−−−→ u, if

t ≡ Φ[v1], u ≡ Φ[v2], the hole • is located at w in Φ, and v1 is an (r)-redex
whose contractum is v2.

Note that the address w uniquely determines the rule (r) to be used.
When the address w or the rule (r), or both, are irrelevant, we write as

t
(r)−−→ u, t

w−→ u and t −→ u, respectively. The depth of a reduction is the
depth of its redex.

A finite sequence σ of addresses w0, . . . , wn−1 is said to be a reduc-
tion sequence from t0 to tn, written as t0

σ−→∗tn, if there are pseudo-terms
t1, . . . , tn−1 such that

t0
w0−−→ t1

w1−−→ · · · wn−1−−−→ tn.

If every reduction in σ is an application of rule (r), then σ is called an

(r)-reduction sequence and written as t0
σ,(r)−−−→∗ tn (or simply as t0

(r)−−→∗ tn).
The length of σ is denoted by |σ|.

The well-formed terms are closed under reduction:

Proposition 1. If t ∈ TX,Y,Z and t −→ u, then u ∈ TX,Y,Z .

Proof. We prove the following by induction on Φ: if Φ[t] ∈ TX,Y,Z and
Φ[t]→ Φ[u], then

(1) Φ[u] ∈ TX,Y,Z and
(2) FO(x, Φ[u]) ≤ FO(x, Φ[t]) for every x ∈ X ∪ Z.

When Φ ≡ • and the reduction is of the form

t ≡ let !x =!v1 in v2
(!)−→ v2[v1/x] ≡ u,

then v2 ∈ TX,Y �{x},Z, v1 ∈ TY,∅,∅ and FO(v1) ≤ 1. Hence v2[v1/x] ∈ TX,Y,Z

by Lemma 2. (2) is obvious since no variable in v1 belongs to X ∪ Z.
If Φ ≡ λy.Φ′, then Φ′[t] ∈ TX�{y},Y,Z and FO(y, Φ′[t]) ≤ 1. By the

induction hypothesis, Φ′[u] ∈ TX�{y},Y,Z and FO(y, Φ′[u]) ≤ 1. Therefore
λy.Φ′[u] ∈ TX,Y,Z . (2) is obvious.

Other cases are similar.



Title Suppressed Due to Excessive Length 9

(1)

ω3!ω3
(β)−→ (let !y =!ω3 in §yy)

(!)−→ §ω3ω3

(β)−→ §(let !y = ω3 in §yy).

(2)

(λ!x.t)!u ≡ (λx.let !y = x in t[y/x])!u

(β)−→ let !y =!u in t[y/x]

(!)−→ t[u/x]

(3)

Suc 2
(β)−→ λ!f.let §h = (λ!x.§λz.x(xz))!f in §λy.f(hy)

−→∗ λ!f.let §h = §λz.f(fz) in §λy.f(hy)

(§)−→ λ!f.§λy.f((λz.f(fz))y)

(β)−→ λ!f.§λy.f(f(fy)) ≡ 3

Fig. 3. Examples of normalization

Example 2.

1. We have seen in Example 1 that the term ω3 ≡ λx.(let !y = x in §yy) is
well-formed. In contrast to ω1!ω1 and ω2!ω2 described before, ω3!ω3 is
normalizing (or better, dead-locking). See Figure 3 (1).

2. (λ!x.t)!u reduces to t[u/x] as in Figure 3 (2).
3. The term Suc in Example 1 surely represents the successor for Church

numerals. In fact, the term Suc 2 reduces to 3, as illustrated in Fig-
ure 3 (3).

Remark 3. The stratified structure of a term is strictly preserved by reduc-
tion. In particular, the depth of a term never increases, since in reduction
rules (β), (§) and (!) a subterm u is substituted for a variable x occurring
at the same depth, and (com) does not affect the stratified structure.

Reduction rules (β) and (§) are strictly size-decreasing, since they never
involve duplication. (com) preserves the size. The only reduction rule that
is potentially size-increasing is (!). Nevertheless, it is also strictly size-
decreasing at the depth where the redex is located. The size increases only
at deeper layers.



10 Kazushige Terui

3. Type Assignment

The purpose of this section is to present Intuitionistic Light Affine Logic
(ILAL) as a type assignment system for λla and to prove the subject
reduction theorem.

In 3.1, we introduce ILAL in a sequent calculus style. It is, however,
difficult to prove the subject reduction theorem directly for it. The main
difficulty is that it does not satisfy the subterm typability. To overcome this,
we introduce a natural deduction system ILALN in 3.2. It is equivalent to
ILAL as far as closed terms are concerned, and it does satisfy the subterm
typability. Once having defined the suitable formalism ILALN , it is easy
to prove the subject reduction theorem. This is accomplished in 3.3.

3.1. ILAL as a Type Assignment System

Let α, β range over the type variables.

Definition 4. The types (formulas) of ILAL are given by the following
grammar:

A, B ::= α | A−◦B | ∀α.A | !A | §A.

A !-discharged type is an expression of the form [A]!. A §-discharged type
is an expression of the form [A]§.

In the sequel, †nA abbreviates † · · · †
︸ ︷︷ ︸

n times

A.

A declaration is an expression of the form x : A or x : [A]†. A finite
set of declarations is denoted by Γ , ∆, etc. Let Γ be a set of declarations
x1 : A1, . . . , xn : An in which all types are undischarged. Then [Γ ]† denotes
x1 : [A1]†, . . . , xn : [An]†. If Γ contains a declaration with a discharged type,
then [Γ ]† is undefined.

Definition 5. The type inference rules of ILAL are given in Figure 4. A
pseudo-term t is typable in ILAL if Γ � t :A is derivable for some Γ and
A by those inference rules. Likewise, a pseudo-term t is of type A if � t :A
is derivable.

As expected, we have:

Proposition 2. Every typable pseudo-term is a term. More exactly, if −→x :
−→
A,−→y :

−→
[B]!,−→z :

−→
[C]§ � t :D, is derivable, then t ∈ T{−→x },{−→y },{−→z }.

Proof. By induction on the length of the typing derivation. In the case of
(Cut) and (−◦l), apply Lemma 2(1).

Example 3. Let int ≡ ∀α.!(α −◦ α) −◦ §(α −◦ α) and bint ≡ ∀α.!(α −◦
α)−◦!(α −◦ α) −◦ §(α −◦ α). Then we have � n : int for each n ∈ N and
� w :bint for each w ∈ {0, 1}∗.



Title Suppressed Due to Excessive Length 11

x :A � x :A
Id

Γ1 � u :A x :A,Γ2 � t :C

Γ1, Γ2 � t[u/x] :C
Cut

Γ � t :C
∆, Γ � t :C

Weak
x : [A]!, y : [A]!, Γ � t :C

z : [A]!, Γ � t[z/x, z/y] :C
Cntr

Γ1 � u :A1 x :A2, Γ2 � t :C

Γ1, y :A1 −◦ A2, Γ2 � t[yu/x] :C
−◦l x :A1, Γ � t :A2

Γ � λx.t :A1 −◦ A2
−◦r

x :A[B/α], Γ � t :C

x :∀α.A,Γ � t :C
∀l

Γ � t :A
Γ � t :∀α.A

∀r, (α is not free in Γ )

x : [A]!, Γ � t :C

y :!A, Γ � let !x = y in t :C
!l

x :B � t :A
x : [B]! �!t :!A

!r

x : [A]§, Γ � t :C

y :§A,Γ � let §x = y in t :C
§l Γ, ∆ � t :A

[Γ ]!, [∆]§ � §t :§A §r

In rule (!r), x :B can be absent. In rule (§r), Γ and ∆ can be empty.

Fig. 4. Type Assignment System ILAL

An example of an untypable well-formed term is ω3!ω3. To see the reason,
define the erasure of a λla term to be a λ-term obtained by applying the
following operations as much as possible:

†u �→ u,

let †x = u in t �→ t[u/x].

As easily seen, if a term is typable in ILAL, then its erasure is typable
in System F (in the Curry style). Now, ω3!ω3 cannot be typed in ILAL,
because its erasure is (λx.xx)(λx.xx), a term which cannot be typed in
System F.

Remark 4. Unlike the ordinaly lambda calculus, λla does not need types to
ensure normalization. Nevertheless, types are useful in several ways:

– Types are used to avoid deadlocks, such as (†t)u and let †x = (λx.t) in u.
– Some types, typically data types such as int and bint, constrain the

shape of normal terms. For instance, all normal terms of type int are of
the form n for some n ≥ 0 (or λx.(let !z = x in §z), which may be seen
as an η-variant of 1). More generally, all normal terms of type §kint are
of the form §kn (or an η-variant of §k1).

– Lazy types, i.e., those which do not contain a negative occurrence of ∀,
constrain the depth of normal terms. If a term t is normal and of lazy
type A, then it means that � t :A can be derived without using the (∀l)



12 Kazushige Terui

inference rule, which has an effect of hiding some information on the
derivation. Thus all uses of the ! and § inference rules in the derivation
are recorded within A. Hence the depth of t is necessarily bounded by
the depth of A. Note that the standard data types such as int, bint,
booleans and lists of booleans are all lazy.

– The above suggests that in order to normalize a term of lazy type of
depth d, one does not have to take care of redices at depth > d, which
will be removed anyway by reductions at lower depths before arriving
at the normal form. In this way, lazy types help us detect redundant
redices.

The expressive power of ILAL, hence of λla, is witnessed by:

Theorem 1 (Girard[9], Roversi[19]). Every function f : {0, 1}∗ −→
{0, 1}∗ that is computable in polynomial time is represented by a term of
type bint−◦ §dbint for some d.

See [2] for a detailed exposition. Neergaard and Mairson [18] improve
the above theorem by showing that a function in DTIME[nk] can be rep-
resented by a proof-net of depth O(log k). The converse will be taken up in
Section 5.

3.2. Natural Deduction System ILALN

ILAL does not satisfy the subterm typability; for example, §(xx) can be
typed as x : [A]! � §(xx) : §A with A ≡ ∀α.α, but it is clear that its subterm
xx cannot be typed. This makes difficult to prove the subject reduction
theorem directly for ILAL. For this reason, we introduce a type system
ILALN in natural deduction style, which does satisfy the subterm typabil-
ity. Then we show that ILAL and ILALN are equivalent as far as closed
terms are concerned.

The inference rules of ILALN are given in Figure 5.

Lemma 3. If x :µ, Γ � t :A is derivable in ILALN and x �∈ FV (t), where
µ is either a nondischarged or a discharged type, then Γ � t :A is derivable
in ILALN . The same property holds for ILAL, too.

Proof. By induction on the derivation.

Lemma 4. The following rules are derivable in ILALN :

Γ � t :C
∆, Γ � t :C

(Weak)
x : [A]!, y : [A]!, Γ � t :C

z : [A]!, Γ � t[z/x, z/y] :C
(Cntr)

Γ � u :A x :A, Γ � t :C
Γ � t[u/x] :C

(Cut)

∆ � u :A x : [A]!, [∆]!, Γ � t :C FO(u) ≤ 1
[∆]!, Γ � t[u/x] :C

(Cut!)



Title Suppressed Due to Excessive Length 13

x :A,Γ � x :A
(Ax)

Γ � t :A −◦ B Γ � u :A

Γ � tu :B
(−◦E)

x :A,Γ � t :B FO(x, t) ≤ 1

Γ � λx.t :A −◦ B
(−◦I)

Γ � t :∀α.A
Γ � t :A[B/α]

(∀E)
Γ � t :A α �∈ FV (Γ )

Γ � t :∀α.A
(∀I)

Γ � u :!A x : [A]!, Γ � t :B

Γ � let !x = u in t :B
(!E)

Γ � t :A FO(t) ≤ 1

[Γ ]!, ∆ �!t :!A
(!I)

Γ � u : §A x : [A]§, Γ � t :B FO(x, t) ≤ 1

Γ � let §x = u in t :B
(§E)

Γ, Σ � t :A

[Γ ]!, [Σ]§, ∆ � §t : §A (§I)

Fig. 5. Natural Deduction System ILALN

∆, Π � u :A x : [A]§, [∆]!, [Π ]§, Γ � t :C
[∆]!, [Π ]§, Γ � t[u/x] :C

(Cut§)

Proof. (Weak) By induction on the derivation.
(Cntr) By induction on the derivation. Actually we show that contraction
is derivable not only for !-discharged formulas but also for nondischarged
and §-discharged formulas.
(Cut) By induction on the derivation of x :A, Γ � t :C.
(Cut!) By induction on the derivation of x : [A]!, [∆]!, Γ � t : C. Let us
show the critical case. Suppose that t ≡!t′ and the last inference rule in the
derivation is of the form:

x : A, ∆ � t′ : C′ FO(t′) ≤ 1
x : [A]!, [∆]!, Γ �!t′ :!C′ (!I)

.

By (Cut), ∆ � t′[u/x] :C is derivable in ILALN . By assumption, FO(u) ≤ 1
and FO(t′) ≤ 1, hence FO(t′[u/x]) ≤ 1. Therefore we can apply (!I) to
obtain [∆]!, Γ �!t′[u/x] :!C′.
(Cut§) By induction on the derivation of x : [A]§, [∆]!, [Π ]§, Γ � t :C.

Lemma 5. If Γ � t : A is derivable in ILAL, then it is also derivable in
ILALN .

Proof. By induction on the derivation, using derived rules (Weak), (Cntr)
and (Cut) in Lemma 4.

A variable substitution is a function θ from the set of term variables to
itself. tθ denotes the term obtained by replacing each free variable x in t
with θ(x). Γθ denotes the set of declarations obtained from Γ by replacing
each variable x with θ(x). It may decrease the number of declarations due



14 Kazushige Terui

to unification. For example, If Γ ≡ x : A, y : A and θ(x) = θ(y) = z, then
Γθ ≡ z :A.

Lemma 6. Suppose that Γ � t : A is derivable in ILALN . Then there are
Γ ′, t′ and a variable substitution θ such that

– Γ ′ � t′ :A is derivable in ILAL,
– Γ ′θ ≡ Γ and t′θ ≡ t.

Proof. By induction on the derivation. We only deal with several critical
cases.
(Case 1) The last inference is (−◦E) of the form:

Γ � t :A−◦B Γ � u :A
Γ � tu :B

(−◦E)

By the induction hypothesis, there are Γ ′
1, Γ ′

2, t′, u′ and variable substitu-
tions θ1 and θ2 such that

– Γ ′
1 � t′ :A−◦B and Γ ′

2 � u′ :A are derivable in ILAL,
– Γ ′

1θ1 ≡ Γ ′
2θ2 ≡ Γ , t′θ1 ≡ t and u′θ2 ≡ u.

Without loss of generality, we may assume that FV (Γ ′
1) and FV (Γ ′

2) are
disjoint. From these, Γ ′

1, Γ
′
2 � t′u′ : B is derivable in ILAL. A suitable

variable substitution θ is defined by

θ(x) = θ1(x), if x ∈ FV (Γ ′
1);

= θ2(x), otherwise.

(Case 2) The last inference is (−◦I) of the form:

x :A, Γ � t :B FO(x, t) ≤ 1
Γ � λx.t :A −◦B

(−◦I)

By the induction hypothesis, there are x1 :A, . . . , xn :A, Γ ′, t′ and a variable
substitution θ such that

– x1 :A, . . . , xn :A, Γ ′ � t′ :B is derivable in ILAL,
– θ(x1) = · · · = θ(xn) = x, Γ ′θ ≡ Γ and t′θ ≡ t.

Since FO(x, t) ≤ 1, there is at most one xi such that xi ∈ FV (t′). By
Lemma 3, xi :A, Γ ′ � t′ :B is derivable in ILAL. Rename xi as x. Then we
can apply (−◦r) to derive Γ ′ � λx.(t′[x/xi]) :A −◦B in ILAL.
(Case 3) The last inference is (!E) of the form:

Γ � u :!A x : [A]!, Γ � t :B
Γ � let !x = u in t :B

(!E)

By the induction hypothesis, there are Γ ′
1, x1 : [A]!, . . . , xn : [A]!, Γ ′

2, t′, u′

and variable substitutions θ1 and θ2 such that

– Γ ′
1 � u′ :!A and x1 : [A]!, . . . , xn : [A]!, Γ ′

2 � t′ :B are derivable in ILAL,
– θ(x1) = · · · = θ(xn) = x, Γ ′

1θ1 ≡ Γ ′
2θ2 ≡ Γ , u′θ1 ≡ u and t′θ2 ≡ t.



Title Suppressed Due to Excessive Length 15

We may assume that FV (Γ ′
1), FV (Γ ′

2) and {x1, . . . , xn} are disjoint. By
(Cntr), (!l) and (Cut), Γ ′

1, Γ
′
2 � let !x = u′ in (t′[x/x1, . . . , x/xn]) is deriv-

able in ILAL. A suitable variable substitution θ can be defined as in (Case
1).

As a consequence, we obtain:

Theorem 2 (Equivalence between ILAL and ILALN). � t :A is deriv-
able in ILAL if and only if it is derivable in ILALN .

Proof. By Lemma 5 and Lemma 6.

3.3. Subject Reduction Theorem

We prove the subject reduction theorem for ILALN by employing the tech-
nique described in [5]. The following definition is a refinement of Definition
4.2.1 in [5].

For any set Γ of declarations, define a binary relation >Γ on types by

∀α.A >Γ A[B/α],
A >Γ ∀α.A, if α �∈ FV (Γ ).

Denote the reflexive transitive closure of >Γ by ≥Γ . It is easy to see that
whenever Γ � t :A and A ≥Γ B, Γ � t :B is derivable.

Lemma 7 (Generation lemma). The following hold for ILALN :

1. Γ � x :A =⇒ x :B ∈ Γ for some B ≥Γ A.
2. Γ � λx.t :A =⇒ x :B, Γ � t :C for some B and C such that B−◦C ≥Γ A,

and FO(x, t) ≤ 1.
3. Γ � tu :A =⇒ Γ � t :B −◦ C and Γ � u :B for some B and C ≥Γ A.
4. Γ � let !x = u in t : A =⇒ Γ � u :!B and x : [B]!, Γ � t : C for some B

and C ≥Γ A.
5. Γ �!t : A =⇒ ∆ � t : C for some C and ∆ such that !C ≥Γ A and

[∆]! ⊆ Γ , and FO(t) ≤ 1.
6. Γ � let §x = u in t :A =⇒ Γ � u : §B and x : [B]§, Γ � t :C for some B

and C ≥Γ A, and FO(x, t) ≤ 1.
7. Γ � §t : A =⇒ ∆, Σ � t : C for some C, ∆ and Σ such that §C ≥Γ A

and [∆]!, [Σ]§ ⊆ Γ .

Proof. By induction on derivations. Note that (∀I) and (∀E) are the only
inference rules that do not change the subject t. These rules are handled by
means of ≥Γ .

Theorem 3 (Subject Reduction for ILALN). If Γ � t : A is derivable
in ILALN and t −→ u, then Γ � u :A is derivable in ILALN .

Proof. The proof is parallel to that of Proposition 1. We prove the following
by induction on Φ: if Γ � Φ[t] : A is derivable in ILALN and Φ[t] → Φ[u],
then



16 Kazushige Terui

(1) Γ � Φ[u] :A and
(2) FO(x, Φ[u]) ≤ FO(x, Φ[t]) for each x such that either x : A ∈ Γ or

x : [A]§ ∈ Γ for some A.

Suppose that Φ ≡ • and the reduction is of the form

t ≡ let !x =!v1 in v2
(!)−→ v2[v1/x] ≡ u.

By Generation Lemma (4) and (5), we have:

x : [B]!, Γ � v2 : C for some B and C ≥Γ A,
∆ � v1 :D for some ∆ and D such that [∆]! ⊆ Γ and D ≥Γ B.

From the latter, it follows that ∆ � v1 :B. By (Cut!) of Lemma 4, we derive
Γ � v2[v1/x] :C, and thus Γ � v2[v1/x] :A. (2) is obvious, because any free
variable in v1 is !-discharged in Γ .

When t is a (β) redex, argue as in the proof of Theorem 4.2.5 in [5].
Other cases are similar.

Corollary 1 (Subject Reduction for ILAL). If Γ � t :A is derivable in
ILAL and t −→ u, then Γ � u :A is derivable in ILAL.

Proof. The general case is reducible to the case of closed terms, by using
the following facts:

x :A, Γ � t :B ⇐⇒ Γ � λx.t :A −◦B

x : [A]†, Γ � t :B ⇐⇒ y :†A, Γ � let †x = y in t :B.

Hence the corollary follows from Theorem 2 and Theorem 3.

4. Proving the Polystep Strong Normalization Theorem

In this section, we prove the polystep strong normalization theorem. The ba-
sic idea is very simple: to reduce polystep strong normalization to polystep
weak normalization, by showing that any reduction sequence can be trans-
formed (standardized) into a longer one which is subject to the outer-layer-
first strategy. Since the latter sequence is polynomially bounded by Girard-
Asperti’s result [9,1], we can conclude that any sequence is polynomially
bounded as well. Unfortunately, this argument does not work for λla itself,
since standardization in λla may shorten the reduction sequence. To avoid
this, we first introduce an auxiliary term calculus, and show any reduction
sequence in λla can be translated into another in the auxiliary calculus
in 4.1. Then we show the standardization theorem in 4.2. Finally, we ac-
commodate Girard-Asperti’s polynomial time weak normalization theorem
to our setting in 4.3.



Title Suppressed Due to Excessive Length 17

4.1. An Extended Calculus with Explicit Weakening

Suppose that t
(r)−−→ u and consider the following reduction sequence of

length two:

(λx.y)!t
(r)−−→ (λx.y)!u

(β)−→ y.

It is not outer-layer-first. If one standardizes it, i.e., transforms it into an
outer-layer-first one, then the result is

(λx.y)!t
(β)−→ y,

a shorter reduction sequence of length one, and the standardization argu-
ment breaks down. The failure may be ascribed to implicit weakening in-
volved by λ-abstraction. We avoid this by introducing an extended calculus
where weakening is explicit.

The set PT w of extended pseudo-terms is defined to be the set PT aug-
mented with subexpressions of the form let = t in u (explicit weakening).
To define a new well-formedness relation t ∈ T w

X,Y,Z , we modify Definition 2
as follows.
(1) Replace clauses 2, 6, and 7 with:

2’ λx.t ∈ T w
X,Y,Z ⇐⇒ t ∈ T w

X�{x},Y,Z, FO(x, t) = 1.
6’ let !x = t in u ∈ T w

X,Y,Z ⇐⇒ t ∈ T w
X,Y,Z , u ∈ T w

X,Y �{x},Z , FO(x, u) ≥ 1.
7’ let §x = t in u ∈ T w

X,Y,Z ⇐⇒ t ∈ T w
X,Y,Z , u ∈ T w

X,Y,Z�{x}, FO(x, u) = 1.

Namely, we require that λ and let-§ bind exactly one variable and let-! binds
at least one variable.
(2) Add the following clause:

8’ let = t in u ∈ T w
X,Y,Z ⇐⇒ t ∈ T w

X,Y,Z , u ∈ T w
X,Y,Z .

We say that t is a (well-formed) extended term if t ∈ T w
X,Y,Z for some X , Y ,

Z.
The reduction rules in Figure 2 are extended to PT w with the following

modifications:

– Extend (com) to the new let operator.
– Add a new reduction rule ( ): let = u in t −→ t.

Reduction rules other than ( ) are called proper. A reduction sequence is
proper if it consists of proper reductions.

Lemmas 1 and 2 hold for T w, too. In addition, we have

Proposition 3. If t ∈ T w
X,Y,Z , t

(r)−−→ u and (r) is proper, then u ∈ T w
X,Y,Z .

Now we consider a translation of λla terms into extended terms.

Lemma 8. For every term t, there is an extended term tw such that tw
( )−−→∗ t

and |tw| ≤ 4|t|.



18 Kazushige Terui

Proof. By induction on t. When t ≡ λx.u and FO(x, u) = 0, define tw to be
λx.(let = x in uw). When t ≡ (let †x = v in u) and FO(x, u) = 0, define
tw to be let †x = vw in (let = §x in uw). Other cases are straightforward.

Theorem 4 (Translation into the extended calculus). Let t0 be a term
and let t0

σ−→∗t1 be a reduction sequence in λla. Then there are extended
terms t′0, t′1 and a proper reduction sequence τ such that |σ| ≤ |τ |, |t′0| =
O(|t0|) and

t0
σ−→∗ t1∗

( )

�




�




∗
( )

t′0
τ−→∗ t′1.

The proof is based on permutation of reduction sequences. Each step of
permutation is supported by the following two lemmas.

Lemma 9. Let t0 be an extended term. If t0
( )−−→ t1

(com)−−−−→ t2, then

t0
(com)−−−−→∗ t′1

(com)−−−−→ t′′1
( )−−→ t2

for some t′1 and t′′1 .

Proof. Let u be the contractum of the first reduction (at address w0) and
v be the redex of the second reduction (at address w1) in t1. One can
distinguish four cases: (i) u and v are separated (w0 �� w1 and w0 �� w1), (ii)
u contains v (w0 � w1), (iii) v properly contains u (w0 � w100 or w0 � w11),
(iv) u and v overlap (w0 = w10). In the first three cases, permutation is
straightforward and does not change the length of a reduction sequence. In
the case (iv), we apply the permutation rule in Figure 6(a), which says that
the reduction sequence in solid line may be replaced with the other one in
broken line.

Lemma 10. Let t0 be an extended term. If t0
( )−−→ t1

(r)−−→ t2, where (r) is
neither (com) nor ( ), then

t0
(com)−−−−→∗ t′1

(r)−−→ t′′1
( )−−→∗ t2

for some t′1 and t′′1 .

Proof. As before, one can distinguish four cases, and the critical case is (iv):
two reductions overlap. In this case, use the permutation rules in Figure 6
(b) and (c).

Proof of Theorem 4. We argue step by step as follows:

(1) If t0
( )−→ t1

ν,(com)−−−−−→∗ t2, then t0
ν′,(com)−−−−−→∗ t′1

( )−→ t2,



Title Suppressed Due to Excessive Length 19

(a)

Ψ [let = u1 in (let ∗ = u2 in t)] Ψ [let ∗ = u2 in t]

let ∗ = u2 in Ψ [t]

let = u1 in (Ψ [let ∗ = u2 in t]) let = u1 in (let ∗ = u2 in Ψ [t])

�( )

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

(com)

�

(com)

� � � � � � ��(com)
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

( )

where ∗ is either †x or and Ψ is either (•)v or (let ∗ = • in v).

(b)

(let = t in (λy.u))v (λy.u)v u[v/y]

let = t in ((λy.u)v) let = t in (u[v/y])

�( )

�

�

�

�

�

�

�

��
(com)

�(β)

� � � � � � � � � � � � � � � � � � � � � � � � � ��(β)
�

�

�

�

�

�

�

�

�
( )

(c)

let †y = (let = t in †u) in v let †y = †u in v

v[u/x]

let = t in (let †y = †u in v) let = t in (v[u/x])

�( )

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

(com)

�

(†)

� � � � � � ��(†) �

�

�

�

�

�

�

�

�

�

�

�

�

�

( )

(d)

(let !x =!t in (λy.u))v (λy.u[t/x])v u[t/x][v/y]

let !x =!t in (λy.u)v let !x =!t in u[v/y] u[v/y][t/x]

�(!)

�

�

�

�

�

�

�

�

�

��

(com)

�(β)

� � � � � � ��(β)
� � � � � � � � � � � ��(!)

≡

Fig. 6. Permutation Rules



20 Kazushige Terui

where |ν| ≤ |ν′|. This is proved by induction on |ν|, using Lemma 9.

(2) If t0
τ,( )−−−→∗ t1

ν,(com)−−−−−→∗ t2, then t0
ν′,(com)−−−−−→∗ t′1

τ ′,( )−−−→∗ t2,

where |τ | = |τ ′| and |ν| ≤ |ν′|. This is proved by induction on |τ |, using (1).

(3) If t0
τ,( )−−−→∗ t1

(r)−−→ t2 with (r) proper, then t0
ν′
−→∗ t′1

( )−→∗ t2,

where ν′ is proper and |ν′| ≥ 1. This is proved by induction on |τ |, using
Lemma 10 and (2).

(4) If t0
( )−→∗ t1

ν−→∗ t2 with ν proper, then t0
ν′
−→∗ t′1

( )−→∗ t2,

where ν′ is proper and |ν| ≤ |ν′|. This is proved by induction on |ν|, using
(3).

Now given a term t0 and a reduction sequence t0
σ−→∗t1, we apply

Lemma 8 to obtain a suitable extended term t′0 such that t′0
( )−→∗ t0. Then

the theorem immediately follows from (4).

4.2. Standardization Theorem

A reduction sequence σ is standard if it can be partitioned into subsequences
σ0; σ1; . . . ; σ2d, where σ2i+1 consists of (!)-reductions at depth i and σ2i

consists of other reductions at depth i for i ≤ d.

Theorem 5 (Standardization). Let t0 be an extended term and t0
σ−→∗t1

be a proper reduction sequence. Then there is a standard proper reduction
sequence

t0
τ−→∗t1

such that |σ| ≤ |τ |.

The proof is again based on permutation of reduction sequences. Each
step of permutation is supported by the following two lemmas.

Lemma 11. Let t0 be an extended term and t0
(r0)−−→ t1

(r1)−−→ t2 be a proper
reduction sequence. Suppose that the first reduction is at depth d0, the second
reduction at depth d1 and d0 > d1. Then there is a reduction sequence

t0
(r1)−−→ t′1

σ,(r0)−−−−→∗ t2,

such that the first reduction is at depth d1 and all reductions in σ are at
depth d0. Moreover, |σ| ≥ 1.

Proof. As in the proof of Lemma 9, we can distinguish four cases, and the
critical case is (iii): the redex of (r1) properly contains the contractum of
(r0) (note that (ii) and (iv) are impossible). For example, let us consider
the following reduction sequence, where the second reduction is (!):

let !x =!Φ[u] in v
(r0)−−→ let !x =!Φ[u′] in v

(!)−→ v[Φ[u′]/x].



Title Suppressed Due to Excessive Length 21

It can be transformed into

let !x =!Φ[u] in v
(!)−→ v[Φ[u]/x]

σ,(r0)−−−−→∗ v[Φ[u′]/x].

Note that v contains at least one x by definition of the extended terms,
therefore we always have |σ| ≥ 1. Other cases are straightforward.

Lemma 12. Let t0 be an extended term and let t0
(!)−→ t1

(r)−−→ t2 be a proper
reduction sequence, where (r) is not (!) and two reductions are at the same
depth d. Then there is a reduction sequence

t0
(com)−−−−→∗ t′1

(r)−−→ t′′1
(!)−→ t2,

such that every reduction in it is at depth d.

Proof. The most critical is the case where (r) is (β) and two reductions
overlap. In this case, use the permutation rule in Figure 6(d). The equiv-
alence between u[t/x][v/y] and u[v/y][t/x] is easily checked (recall that we
have adopted the variable convention, so that x does not occur in v and y
does not occur in t).

Proof of Theorem 5.
(1) Every proper reduction sequence t0 −→∗u can be transformed into the
following one without decreasing the length:

t0
τ0−→∗ t1

τ1−→∗ · · · tn
τn−→∗ u,

where τi consists of reductions at depth i (0 ≤ i ≤ n). This is proved by a
step-by-step argument similar to the proof of Theorem 4, using Lemma 11.
(2) For every i ≤ n−1, the reduction sequence ti

τi−→∗ ti+1 can be transformed
into

ti
τ ′

i−→∗ t′i
τ ′′

i−−→∗ ti+1,

where τ ′′
i consists of (!) reductions and τ ′

i consists of other reductions. This
is proved by induction on the number of (!) reductions in τi, using Lemma
12.

4.3. Polystep Weak Normalization Theorem

Here we accommodate the polystep weak normalization theorem of [9,1] to
our setting. In our case, the length of a reduction sequence may slightly
exceed the size of the final term, because we have the commuting reduction
rule (com).

Theorem 6 (Polystep Weak Normalization). Let t be an extended term
of depth d and σ be a standard proper reduction sequence t

σ−→∗u. Then
|u| ≤ |t|2d

and |σ| ≤ |t|2d+1
.



22 Kazushige Terui

Lemma 13. Let t be an extended term with the size |t| ≥ 2. Let σ be a
proper reduction sequence t

σ−→∗u that consists of (!) reductions at some
fixed depth i. Then |u| ≤ |t|(|t| − 1).

Proof. We only consider the case i = 0, as other cases are similar. We
assume that there is no (com) redex of the form

(∗) let !y = (let !x =!u1 in !u2) in u3

at depth 0. It does not cause loss of generality, because we can always find
extended terms t′ and u′ which does not contain a redex of the form (*)
and

t
σ−→∗ u

∗
(com)




�




�

∗
(com)

t′ τ−→∗ u′.

The following notion is useful to estimate the potential size growth caused by
(!) reductions. To each extended term t, we associate its unfolding �t ∈ PT w

as follows:

�x ≡ x

�(tu) ≡ �t�u

�(λx.t) ≡ λx.�t

�(†t) ≡ †t
�(let !x =!t in u) ≡ let !x = !t!t · · ·!t︸ ︷︷ ︸

n times

in �u, where n = FO(x, �u).

�(let †x = t in u) ≡ let †x = �t in �u, if t �≡!t′ or †x �≡!x.

For every extended term v, we claim:

(1) FO(�v) ≤ |v|.
(2) |v| ≤ |�v| ≤ |v|(|v| − 1).

(3) if v
(!)−→ v′ at depth 0, then |�v′| ≤ |�v|.

The lemma follows from (2) and (3):

|u| ≤ |�u| ≤ |�t| ≤ |t|(|t| − 1).

Claim (1) is proved by induction on v. If v ≡ †u, then FO(�v) =
FO(†u) ≤ | † u|. If v ≡ let !x =!u1 in u2, then

FO(�v) = FO(!u1) · FO(x, �u2) + FO(�u2)− FO(x, �u2)
≤ FO(�u2) ≤ |u2| ≤ |v|,

because FO(!u1) ≤ 1 by well-formedness. Other cases are easier.



Title Suppressed Due to Excessive Length 23

The first half of Claim (2) is obvious. The second half is proved by
induction on v, using (1). If v ≡ †u, then |�v| = |v| ≤ |v|(|v| − 1). If
v ≡ let !x =!u1 in u2, then

|�v| ≤ |!u1| · FO(x, �u2) + |�u2|
≤ |!u1| · |u2|+ |u2|(|u2| − 1)
≤ |u2|(|!u1|+ |u2| − 1)
≤ |v|(|v| − 1).

Claim (3) is intuitively clear, as all !-boxes which are to be duplicated
are already duplicated by unfolding. It can be formally proved by induction
on v. (Note that Claim (3) would not be true if v contained a subterm of
the form (*).)

Lemma 14. Let σ be a proper reduction sequence t
σ−→∗u which consists of

reductions at some fixed depth i. Then |σ| ≤ |t|2.

Proof. Given an extended term v, denote by |v|i the size of v at depth i.
Given v and its subterm u of the form u ≡ (let ∗ = u1 in u2) at depth i,
where ∗ is either or †x, we define

comi(u, v) := |v|i − |u2|i.

Define comi(v) to be the sum of all comi(u, v)’s with u ranging over all such
occurrences of let-expressions in v. We claim:

(1) |v|i + comi(v) ≤ |v|2.
(2) If v

(r)−−→ v′ by a reduction at depth i, then |v′|i + comi(v′) < |v|i +
comi(v).

The lemma follows from these two.
To show (1), observe that v contains at most |v| − 1 let-expressions and

comi(u, v) ≤ |v| for each u. Hence

|v|i + comi(v) ≤ |v|i + (|v| − 1) · |v| ≤ |v|2.

Claim (2) can be established with the following observations. In case that
(r) is (β), (§) or (!), |v|i strictly decreases and comi(v) never increases (see
Remark 3). In case that (r) is (com), |v|i does not change and comi(v)
strictly decreases.

Proof of Theorem 6. Suppose that σ is partitioned into

t ≡ t0
σ0−→∗ σ1−→∗ t1

σ2−→∗ σ3−→∗ t2 · · · td
σ2d−−→∗ u,

where σ2i+1 consists of (!)-reductions at depth i and σ2i consists of other
reductions at depth i (for i ≤ d). By applying Lemma 13 repeatedly, we
immediately obtain |td| ≤ |t|2

d

. (Without loss of generality, we may assume



24 Kazushige Terui

that |ti| ≥ 2 for 0 ≤ i ≤ d − 1.) Therefore |u| ≤ |t|2d

. To give a bound on
the length of σ, we further show

|t0|+ |t1|+ · · ·+ |td| ≤ |t0|2
d

by induction on d. When d = 0, it is trivial. When d > 0,

|t0|+ · · ·+ |td−1|+ |td| ≤ |t0|2
d−1

+ |td|
≤ |t0|2

d−1
+ |td−1|(|td−1| − 1)

≤ |t0|2
d−1

+ |t0|2
d−1

(|t0|2
d−1 − 1) = |t0|2

d

,

by using the induction hypothesis twice as well as Lemma 13. From this
and Lemma 14,

|σ| ≤ |t0|2 + |t1|2 + · · ·+ |td|2

≤ (|t0|+ |t1|+ · · ·+ |td|)2

≤ (|t0|2
d

)2 = |t0|2
d+1

.

5. Main Results

Now we are in a position to state the main results of this paper.

Theorem 7 (Polystep strong normalization). For every term t0 of size
s and depth d, the following hold:

1. Every reduction sequence from t0 has a length bounded by O(s2d+1
).

2. Every term to which t0 reduces has a size bounded by O(s2d

).

Proof. Let t0
σ−→∗t1 be a reduction sequence in λla. By Theorem 4, there

are extended terms u0, u1 and a proper reduction sequence u0
τ−→∗u1 such

that |u0| = O(|t0|), |t1| ≤ |u1| and |σ| ≤ |τ |. By Theorem 5, there is a
standard reduction sequence u0

ν−→∗ u1 longer than τ . By Theorem 6,

|σ| ≤ |τ | ≤ |ν| ≤ |u0|2
d+1

= O(s2d+1
),

and
|t1| ≤ |u1| ≤ |u0|2

d

= O(s2d

).

Corollary 2 (Church-Rosser property). If t0 is a term and t1 ←−∗

t0 −→∗t2, then t1 −→∗t3 ←−∗ t2 for some term t3.



Title Suppressed Due to Excessive Length 25

input t
loop

query to oracle f to obtain f(t)
if f(t) is defined

then let t := t′ such that t
f(t)−−→ t′

else output t and halt
end loop.

Fig. 7. Algorithm normalizef

Proof. By showing local confluence, which is straightforward.

To make precise what we mean by polynomial time strong normalization,
we give the following definitions. A reduction strategy for T is a partial
function f : T −→ {0, 1}∗ such that f(t) gives an address of a redex in t
whenever t is reducible, and is undefined otherwise. We can think of a Turing
machine normalizef with function oracle f whose behavior is described in
Figure 7.

Corollary 3 (Polynomial time strong normalization). For any reduc-
tion strategy f for T , normalizef terminates in time O(s2d+2

), given a term
t0 of size s and depth d as input. It outputs the unique normal form of t0.

Proof. Observe that each step of reduction t −→ t′ is carried out in quadratic
time. In fact, the worst case, namely the case of (!)-reduction, consists in
substituting a subterm of size ≤ |t| for at most |t| variable occurrences. As
each term in the reduction sequence has size ≤ s2d

, the total runtime can
be estimated by O(s2d·2 · s2d+1

) = O(s2d+2
).

The following is a restatement of Girard-Asperti’s result [9,1].

Theorem 8. Every term t of type bint −◦ §dbint represents a function
g : {0, 1}∗ −→ {0, 1}∗ which is computable in time O(n2d+3

).

Proof. Recall that all w’s are of depth 1, so that the depth of tw is constant
when w ranges over {0, 1}∗. Without loss of generality, we may assume that
the depth is equal to the depth of §dbint, i.e., d + 1 (just ignore the deeper
layers, which do not contribute to the normal form; see Remark 4 (4)). By
Corollary 3, the normal form of tw is computed in time O(|tw|2d+3

), thus
in time O(|w|2d+3

). The normal form should be (a variant of) §dw′ (see
Remark 4 (2)), and such w′ is uniquely determined by the Church-Rosser
property.

Corollary 4 (Characterization of the Polynomial Time Functions).
A function g : {0, 1}∗ −→ {0, 1}∗ is computable in polynomial time if and
only if it is represented by a λla term of type bint−◦ §dbint for some d.



26 Kazushige Terui

6. Concluding Discussion

We have introduced an untyped term calculus λla. An advantage of λla
over other existing term calculi for ILAL [1,20,19,2] lies in its simplicity; in
particular, λla is free from explicit substitutions, which are essential in [1].
Although explicit substitutions are often useful in giving fine control over
the substitution operation, they complicate syntax too much and make the
operational intuition unclear. By contrast, our syntax adopts the standard
notion of substitution, and henceforth succeeds in reducing 27 rewriting
rules of [1] to just 5, all of which have a clear operational meaning. The
simplicity of λla allows us to prove the basic properties such as Church-
Rosser and subject reduction in a highly convincing way.

We have reformulated ILAL as a type assignment system for λla, and
proved the subject reduction theorem in Section 3. It basically means that
proofs of ILAL are structurally representable by terms of λla, and cut-
elimination in ILAL is in full accordance with normalization in λla. We
have also proved the polynomial time strong normalization theorem for λla.
It says that terms of λla are normalizable in polynomial time independently
of which reduction strategy we take. These two results together imply the
polynomial time strong normalization for ILAL.

In what follows, we discuss several related issues.

Light Logics and the safe recursion approach. Our main theorem suggests a
sharp distinction between λla and the polytime functional systems based
on safe recursion [13,11,7], because normalization in the latter systems is
at best weakly polytime; although every term of type bint → bint denotes
a polynomial time function, it admits of an exponentially long reduction
sequence. An interesting consequence is that there cannot be a reduction-
preserving embedding of the safe recursion systems into λla. It should be
contrasted with the result of [17], which shows that safe recursion with non-
contractible safe variables is indeed interepretable in ILAL.

Polynomial time strong normalization for LLL. It is a delicate question
whether LLL satisfies the polynomial time strong normalizability, because
it depends on what are counted as redices. It seems that LLL does satisfy
the property with the proviso that only the ready cuts (in the sense of [9]) are
counted as redices. But it already limits the range of admissible reduction
strategies considerably.

In the meantime, there is no doubt that LLL without additives is strongly
polytime. It is shown in [15] that LLL without additives is expressive enough
to represent all polynomial time functions.

Lowerbound for normalization. We have obtained an upperbound O(s2d+2)
for normalization. On the other hand, Neergaard and Mairson [18] have
observed that there is also a considerably tight lowerbound. To see this,
observe that the squaring function n2 can be represented by a term of type



Title Suppressed Due to Excessive Length 27

Type Checking Typability Inhabitation
ILAL0 yes yes yes
ILAL no ? no

Table 1. Decision Problems for ILAL

int −◦ §2int, and thus the function n2d

is represented with depth 2d + 1;
whatever algorithm one uses for normalization, it takes at least n2d

steps on
Turing machines to write down the output. Therefore, we have a lowerbound
O(s2d

) for normalization of terms of depth 2d + 1.
It seems possible to sharpen both of these two bounds.

Decision Problems for Type Inference. As for decidability of type inference,
one can ask the following questions both for ILAL and ILAL0, where the
latter is ILAL without second order quantifiers:

Type Checking: Given a term t and type A, does � t :A hold?
Typability: Given a term t, is there any type A such that � t :A holds?
Inhabitation: Given a type A, is there any term t such that � t :A holds?

The answers are summarized in Table 1.
The decidability of type checking and typability for ILAL0 is shown

by Roversi [20]; although his term calculus is different from ours, his re-
sult can be accommodated to ours. The undecidability of type checking for
ILAL follows from the undecidability of the same problem for System F .
It is shown in [24] that the semi-unification problem, which is known to
be undecidable, is reducible to type checking of assersions of the following
form:

� λbc.b(λx.cxx) :(∀γ.(γ → γ)→ β)→ ∀−→α .A→ β,

where A is quantifier-free and ∀−→α .A is its universal closure. We can show
that the above assersion holds in System F if and only if the following one
holds in ILAL:

� λbc.b(λ!x.let §d = c in §dxx) :(∀γ.(!γ −◦ §γ)−◦ β)−◦ ∀−→α .§A′ −◦ β,

where A′ is A with → replaced by −◦. Therefore, type checking for ILAL
is undecidable.

It is open whether typability for ILAL is decidable or not. As for in-
habitation problems, see [22].

Acknowledgements. We are indebted to Professor Harry Mairson and Professor
Mitsuhiro Okada for helpful suggestions and stimulating discussions. Our thanks
are also due to Daniel de Carvalho for his careful reading of the earlier version.



28 Kazushige Terui: Title Suppressed Due to Excessive Length

References

1. A. Asperti. Light affine logic. In Proceedings of LICS’98, 1998.
2. A. Asperti and L. Roversi. Intuitionistic light affine logic (proof-nets, normal-

ization complexity, expressive power, programming notation). ACM Trans-
actions on Computational Logic, 3(1):137 – 175, 2002.

3. P. Baillot. Stratified coherence spaces: a denotational semantics for light linear
logic. Theoretical Computer Science, 2004. to appear.

4. P. Baillot and K. Terui. Light types for polynomial time computation in
lambda-calculus. In Proceedings of LICS 2004, to appear.

5. H. P. Barendregt. Lambda calculi with types. In S. Abramsky, Dov M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science, Volume 2, pages 117–309. Oxford University Press, 1992.

6. S. Bellantoni and S. Cook. New recursion-theoretic characterization of the
polytime functions. Computational Complexity, 2:97–110, 1992.

7. S. Bellantoni, K.-H. Niggl, and H. Schwichtenberg. Ramification, modality
and linearity in higher type recursion. Annals for Pure and Applied Logic,
104:17–30, 2000.

8. V. Danos and J.-B. Joinet. Linear logic & elementary time. Information and
Computation, 183(1):123–137, 2003.

9. J.-Y. Girard. Light linear logic. Information and Computation, 14(3):175–204,
1998.

10. Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic:
A modular approach to polynomial time computability. Theoretical Computer
Science, 97:1–66, 1992.

11. M. Hofmann. Safe recursion with higher types and BCK algebra. Annals of
Pure and Applied Logic, 104:113–166, 2000.

12. M. Kanovich, M. Okada, and A. Scedrov. Phase semantics for light linear
logic. Theoretical Computer Science, 294(3):525–549, 2003.

13. D. Leivant. A foundational delineation of poly-time. Information and Com-
putation, 110(2):390–420, 1994.

14. D. Leivant and J.-Y. Marion. Ramified recurrence and computational com-
plexity I: Word recurrence and poly-time. In P. Clote and J. Remmel, editors,
Feasible Mathematics II, pages 320 – 343. Birkhauser, 1994.

15. H. Mairson and K. Terui. On the computational complexity of cut-elimination
in linear logic. In Proceedings of ICTCS 2003, pages 23–36. LNCS 2841, 2003.

16. A. S. Murawski and C.-H. L. Ong. Discreet games, light affine logic and ptime
computation. In Proceedings of CSL 2000, pages 427–441. Springer-Verlag,
LNCS 1862, 2000.

17. A. S. Murawski and C.-H. L. Ong. On an interpretation of safe recursion in
light affine logic. Theoretical Computer Science, 318:197–223, 2004.

18. P. Neergaard and H. Mairson. LAL is square: Representation and expressive-
ness in light affine logic. Presented at the Fourth International Workshop on
Implicit Computational Complexity, 2002.

19. L. Roversi. A P-time completeness proof for light logics. In Proceedings of
CSL’99, pages 469–483. Springer-Verlag, LNCS 1683, 1999.

20. L. Roversi. Light affine logic as a programming language: a first contribu-
tion. Internatinal Journal of Foundations of Computer Science, 11(1):113–
152, March 2000.

21. K. Terui. Light affine lambda calculus and polytime strong normalization. In
Proceedings of LICS2001, pages 209–220, 2001.

22. K. Terui. Light Logic and Polynomial Time Computation. PhD thesis, Keio
University, March 2002. Available at http://research.nii.ac.jp/∼terui.

23. K. Terui. Light affine set theory: a naive set theory of polynomial time. Studia
Logica, 77:9–40, 2004.

24. J. B. Wells. Typability and type checking in system F are equivalent and
undecidable. Annals of Pure and Applied Logic, 98:111–156, 1999.


