
Kazushige Terui Light Affine Set Theory:
A Naive Set Theory of

Polynomial Time

Abstract. In [7], a naive set theory is introduced based on a polynomial time logical

system, Light Linear Logic (LLL). Although it is reasonably claimed that the set theory

inherits the intrinsically polytime character from the underlying logic LLL, the discussion

there is largely informal, and a formal justification of the claim is not provided sufficiently.

Moreover, the syntax is quite complicated in that it is based on a non-traditional hybrid

sequent calculus which is required for formulating LLL.

In this paper, we consider a naive set theory based on Intuitionistic Light Affine Logic

(ILAL), a simplification of LLL introduced by [1], and call it Light Affine Set Theory

(LAST). The simplicity of LAST allows us to rigorously verify its polytime character.

In particular, we prove that a function over {0, 1}∗ is computable in polynomial time if

and only if it is provably total in LAST.

Keywords: naive set theory, polynomial time, linear logic, light logic, substructural logics.

1. Introduction

In [7], Light Linear Logic (LLL) is introduced as a subsystem of Linear Logic
[8] and it is proved that its proofs exactly correspond to the polynomial time
functions in the sense of the Curry-Howard correspondence. Furthermore,
in the appendix of the same paper, LLL is enriched with the unrestricted
comprehension principle to result in a consistent naive set theory. However,
the syntax of the set theory is quite complicated in that it is based on a non-
traditional hybrid sequent calculus which is required for formulating LLL.
Later on, a simplified logical system with the same computational power,
called Intuitionistic Light Affine Logic (ILAL), is introduced by adding the
unrestricted weakening rule to the intuitionistic fragment of LLL[1]. Al-
though LLL and ILAL have been well studied (see, e.g., [12, 3, 15, 2, 16]),
the set theories associated to them have not been fully explored yet. As a
matter of fact, the LLL-based set theory is outlined and the fundamental
theorem, called the fixpoint theorem, is proved in [7], but its main feature,
namely expressivity over polytime computation, is discussed only in an in-
formal way.

Presented by Name of Editor; Received December 1, 2002

Studia Logica 0: 1–32, 2004.
c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

2 Kazushige Terui

The aim of this paper is to complement Girard’s work and to formally
verify the intrinsically polytime character of the set theories based on Light
Logics. We consider a naive set theory based on ILAL (rather than on
LLL, as it is much simpler than LLL), and call it Light Affine Set Theory
(LAST). The theory is consistent, has a fixpoint for every formula, and is
undecidable (Section 2). Natural numbers and arithmetic operations such as
addition and multiplication are definable in it, and the light induction prin-
ciple is supported (Section 3). We then show that every polytime function is
provably total in it (Section 4). The converse also holds; every provably total
function in LAST is polytime computable. To show this, we give an inter-
pretation of LAST proofs as terms of Light Affine Lambda Calculus (λla,
[21]), that is an untyped term calculus based on the ideas of Light Logics
and satisfies the polynomial time (strong) normalization theorem. As a con-
sequence, we obtain a complete characterization of polytime: a function is
computable in polynomial time if and only if it is provably total in LAST
(Section 5).

Naive set theories have been investigated in the framework of contraction-
free logics (see, e.g., [9, 10, 13, 23, 20]). Although such a theory is descrip-
tively rich (as it numeralwise represents all recursive functions [20]), they
are proof-theoretically very weak (as its consistency is established by the
induction up to ω).∗ To overcome this weakness, several extensions have
been considered (see, e.g., [24, 19, 17]). While LAST can be seen as one of
such extensions, it has a distinctive feature: it precisely captures a compu-
tationally interesting class of functions, the polynomial time functions.

2. Fundamentals of Light Affine Set Theory

We first describe the syntax of LAST (in 2.1), then overview its basic no-
tions and properties, such as cut-elimination and its consequences (in 2.2),
equality and basic set-theoretic operations (in 2.3), the fixpoint theorem (in
2.4) and the undecidability of LAST (in 2.5). We owe most materials below
to [7] and [20], except the last undecidability result. All the results of this
section hold for the modality-free fragment of LAST, i.e., Grishin’s naive
set theory based on a contraction-free logic too.

∗In this respect, contraction-free set theories are analogous to Robinson’s system Q
in arithmetic. Both are descriptively rich, but yet to be extended, either by restricted
contraction or by induction schema, to gain computational power.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 3

2.1. Syntax

The following definition comes from the appendix of [7], except that the
underlying logic is ILAL [1, 2] rather than LLL.

Definition 2.1 (Light Affine Set Theory LAST). The terms and formulas
of LAST are defined simultaneously as follows:
• Term variables x, y, z, . . . are terms;
• If A is a formula and x is a term variable, then {x|A} is a term;
• If t and u are terms, then t ∈ u is a formula;
• If A and B are formulas, then so are A−◦B, !A and §A;
• If A is a formula and x is a term variable, then ∀x.A is a formula.

We use t, u, v, . . . to denote terms, A,B,C, . . . to denote formulas, and
Γ,∆,Σ, . . . to denote multisets of formulas. If Γ stands for A1, . . . , An, then
!Γ stands for !A1, . . . , !An. §Γ is defined analogously. The notation !dA
stands for ! · · ·!

︸︷︷︸

d times

A and §dA for § · · · §
︸ ︷︷ ︸

d times

A. A variable x is bound in {x|A}

and ∀x.A. Following the standard convention (see [18]), we identify two
formulas/terms which differ only in the names of bound variables; e.g.,
∀x.A ≡ ∀y.(A[y/x]). Notation u[t/x] is used to denote the term which
is obtained from u by substituting t for all free occurrences of x. A similar
substitution notation is used for formulas.

The inference rules of LAST are listed in Figure 1.†

Other connectives of Linear/Affine Logic, such as ∃, ⊗ (multiplicative
conjunction), ⊕ (additive disjunction) and 0 (absurdity), can be defined in
the spirit of [1]. Fix an arbitrary closed term t0 (e.g., {x|x ∈ x}) and define:

A⊗B ≡ ∀x.((A−◦B −◦ t0 ∈ x)−◦ t0 ∈ x);
A⊕B ≡ ∀x.((A−◦ t0 ∈ x)−◦ (B −◦ t0 ∈ x)−◦ t0 ∈ x);

0 ≡ ∀x.t0 ∈ x;
∃y.A ≡ ∀x.(∀y.(A−◦ t0 ∈ x)−◦ t0 ∈ x),

where x is a fresh variable which does not occur in A and B.‡ We further
define A ◦−◦ B ≡ (A−◦B)⊗ (B −◦A), ¬A ≡ A−◦ 0 and t �∈ u ≡ ¬(t ∈ u).
Note that negation is defined in terms of 0 rather than ⊥. These definitions

†Γ, ∆, . . . are multisets. So the exchange rule is implicitly assumed.
‡Additive conjunction & and constants �, 1 ⊥ could also be defined. But they are not

used in this paper.

4 Kazushige Terui

Identity and Cut:

A
 A (Id)
Γ1
 A A,Γ2
 C

Γ1,Γ2
 C
(Cut)

Structural Rules:
Γ
 C
A,Γ
 C (Weak)

!A, !A,Γ
 C
!A,Γ
 C (Contr)

Linear Implication:
Γ1
 A B,Γ2
 C
A−◦B,Γ1,Γ2
 C

(−◦l) A,Γ
 B
Γ
 A−◦B (−◦r)

Modalities:
B
 A
!B
!A (!), B can be absent.

Γ,∆
 A
!Γ, §∆
 §A (§)

Comprehension:
A[t/x],Γ
 C

t ∈ {x|A},Γ
 C (∈ l)
Γ
 A[t/x]

Γ
 t ∈ {x|A} (∈ r)

Set Quantifiers:
A[t/x],Γ
 C
∀x.A,Γ
 C (∀l) Γ
 A

Γ
 ∀x.A (∀r), x is not free in Γ

Figure 1. Inference Rules of Light Affine Set Theory (LAST)

satisfy the basic laws of Linear/Affine Logic:

A−◦B −◦ A⊗B (A−◦B −◦ C)−◦ (A⊗B −◦ C)
A−◦ A⊕B (A−◦ C)−◦ (B −◦ C)−◦ (A⊕B −◦ C)
A−◦ ¬A−◦ 0 0−◦A
A[t/x]−◦ ∃x.A A−◦ C implies (∃x.A)−◦ C if x �∈ FV (C).

As in Linear Logic, contraction is allowed only for !-prefixed formulas. The
modality ! is, however, properly weaker than that of Linear Logic in that
it does not satisfy dereliction (axiom T of Modal Logic): !A −◦ A, digging
(axiom 4): !A−◦!!A and monoidalness (axiom K): !A⊗!B−◦!(A ⊗ B). The
dereliction principle, in the presence of unrestricted comprehension, leads to
inconsistency; let D be a formula which satisfies D ◦−◦ !¬D,§ then we can
derive 0 as follows:

§D is essentially Russell’s paradox; define R ≡ {x|!(x �∈ x)} and D ≡ R ∈ R.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 5

D
!¬D

!¬D
 D
¬D, !¬D
 0
!¬D, !¬D
 0

(der)

!¬D
 0
D
 0

 ¬D

!¬D

!¬D
 D
¬D, !¬D
 0
!¬D, !¬D
 0

(der)

!¬D
 0

 0

The monoidalness principle is consistent but leads to exponential explosion
of the cut-elimination procedure.¶ The status of the digging principle is less
clear; although the principle itself is consistent [5], it causes inconsistency in
conjunction with weak dereliction (axiom D): !A−◦?A in the classical setting
[7]. Since the lack of monoidalness is too severe, an auxiliary modality § is
introduced as a compensation. It satisfies monoidalness: §A⊗§B−◦§(A⊗B)
and stratified dereliction: !A −◦ §A. We refer to the introduction of [7] for
further detail.

2.2. Some Basic Facts

To begin with, LAST enjoys cut-elimination:

Theorem 2.2 (Cut-Elimination, cf. Girard [7]). If A is provable in LAST,
then it is cut-free provable in LAST.

A proof will be outlined in Section 5. As a consequence, we have

Corollary 2.3 (Consistency of LAST). LAST does not prove 0.

Corollary 2.4.
(1) Disjunction Property: If A ⊕ B is provable, then either A or B is
provable.

(2) Existence Property: If ∃x.A is provable, then A[t/x] is provable for
some term t.

(3) Modality Property: If !A or §A is provable, then A is provable.

2.3. Equality and Set Theoretic Operations

Next, we must define the notion of equality. Unfortunately, the standard
extensional equality

t =e u ≡ ∀x(x ∈ t ◦−◦ x ∈ u)¶If we allow monoidalness for !, we immediately obtain Elementary Affine Set Theory,
which is of independent interest. In particular, the provably total functions of that theory
will be exactly the elementary recursive functions (cf. [7, 6]).

6 Kazushige Terui

is too weak in LAST, as it does not satisfy the basic properties of equality.
Alternatively, we adopt the following Leibniz equality which is given in [7]:

Definition 2.5 (Leibniz Equality). t = u ≡ ∀x(t ∈ x−◦ u ∈ x).

It should be remarked that Leibniz equality can be considered as an
internal representation of syntactic identity ≡:

Proposition 2.6. t = u is provable in LAST iff t and u are syntactically
identical.

Proof. LAST proves ∀x(t ∈ x −◦ u ∈ x), t ∈ x
 u ∈ x. Hence if t = u
is provable, then t ∈ x
 u ∈ x is also provable. By the cut-elimination
theorem, it should be an axiom. Hence t and u should be syntactically
identical. The other direction is immediate.

For example, LAST does not prove {x|A ⊕ B} = {x|B ⊕ A}. The
following basic properties are easily verified:

Proposition 2.7. The following formulas are provable in LAST;
(1) t = t.
(2) t = u−◦ (A[t/x] −◦A[u/x]).
(3) t = u−◦ u = t.
(4) t = u⊗ u = r −◦ t = r.
(5) t = u−◦ t = u⊗ t = u.

Note that statement (5) above means that contraction is freely available
for all equational formulas. LAST proves t = u −◦ t =e u, but not the
converse, as it is inconsistent [10] (see [17] for a detailed argument).

In what follows, we use the following abbreviations: ∀x ∈ t.A ≡ ∀x(x ∈
t −◦ A); ∃x ∈ t.A ≡ ∃x(x ∈ t ⊗ A); ∃!x.A ≡ ∃x(A ⊗ ∀y(A[y/x] −◦ y = x));
∃!x ∈ t.A ≡ ∃x ∈ t(A⊗ ∀y(A[y/x]−◦ y = x)).

Let us define some set theoretic operations.

Definition 2.8.

∅ ≡ {x|0}; {t} ≡ {x|x = t};
{t, u} ≡ {x|x = t⊕ x = u}; {t1, . . . , tn} ≡ {x|x = t1 ⊕ · · · ⊕ x = tn};
t ∪ u ≡ {x|x ∈ t⊕ x ∈ u}; 〈t, u〉 ≡ {{t}, {t, u}};

〈t1, . . . , tn〉 ≡ 〈· · · 〈〈t1, t2〉, t3〉 · · · , tn〉.

Proposition 2.9. The following are provable in LAST;
(1) t �∈ ∅.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 7

(2) t ∈ {u} ◦−◦ t = u.
(3) t ∈ {u, v} ◦−◦ t = u⊕ t = v.
(4) 〈t, u〉 = 〈r, s〉 ◦−◦ t = r ⊗ u = s.

Proof. As for (1), derive t ∈ {x|0}
 0 from 0
 0 by rule (∈ l). (2) and
(3) are by definition. The proof of (4) is familiar in the case of the standard
axiomatic set theory, and we can repeat just the same argument in LAST,
since contraction is available for all equational formulas. A complete proof
can be found in [20].

2.4. Fixpoint Theorem

One of the most fascinating features of naive set theory is that any formula
has a fixpoint:

Theorem 2.10 (Fixpoint Theorem, Girard[7], Shirahata[20]).
(1) For any formula A, there exists a term f such that
t ∈ f ◦−◦ A[f/y, t/x] is provable for any t.

(2) More generally, for any formula A, there exists a term f such
that 〈t1, . . . , tn〉 ∈ f ◦−◦ A[f/y, t1/x1, . . . , tn/xn] is provable for any
t1, . . . , tn.

Proof. As for the first claim, define

s ≡ {z | ∃u∃v(z = 〈u, v〉 ⊗A[{w | 〈w, v〉 ∈ v}/y, u/x])};
f ≡ {w | 〈w, s〉 ∈ s},

where u, v and w are fresh variables. Then we can derive the desired prop-
erty. A complete proof can be found in [20]. The second claim is just a
generalization of the first.

2.5. Undecidability of LAST

Propositional ILAL is decidable [22], whereas second order ILAL is un-
decidable [14] (see also [22]). In this section, we prove that LAST is also
undecidable.

In [20], Shirahata defines a numeral n for each natural number n by
0 ≡ ∅; S(t) ≡ t∪ {t}; n ≡ Sn(0). Then he proves the following fact with the
help of the fixpoint theorem:

Theorem 2.11 (Shirahata[20]). Every total recursive function is numeral-
wise representable in (the modality-free fragment of) LAST; i.e., for every
k-ary recursive function φ, there exists a term f such that

8 Kazushige Terui

• for any �n ∈ Nk, φ(�n) = m implies that
 〈�n,m〉 ∈ f and
 ∀x(〈�n, x〉 ∈
f −◦ x = m) are provable.‖

In what follows, we extend this result to weak numeralwise representabil-
ity of all recursively enumerable predicates. Let N∗ be the fixpoint

x ∈ N∗ ◦−◦ x = 0⊕ ∃y ∈ N∗(x = S(y)).

Then we have

Lemma 2.12.
 t ∈ N∗ is provable in LAST if and only if t is a numeral n.

Proof. The “if” direction is proved by induction on n. When n = 0, we
have

 0 = 0

 0 = 0⊕ ∃y ∈ N∗(0 = S(y))

 0 ∈ N∗ .

When n = m + 1, by the induction hypothesis,
 m ∈ N∗ is provable in
LAST. Therefore we derive:

 m ∈ N∗
 S(m) = S(m)

 m ∈ N∗ ⊗ S(m) = S(m)

 ∃y ∈ N∗(S(m) = S(y))

 S(m) = 0⊕ ∃y ∈ N∗(S(m) = S(y))

 S(m) ∈ N∗ .

The “only-if” direction is proved by induction on the size of t (i.e., the
number of symbols in t). Suppose that
 t ∈ N∗ is provable. Then either

 t = 0 or
 ∃y ∈ N∗(t = S(y)) is provable by the disjunction property.
In the former case, t is syntactically equivalent to 0 by Proposition 2.6. In
the latter case, there is some term u such that
 u ∈ N∗ and
 t = S(u)
are provable by the existence property. Thus t is syntactically equivalent to
S(u), and hence the induction hypothesis applies to u. It follows that u ≡ m
for some m ∈ N. Therefore t ≡ m+ 1.

‖This result is analogous to the numeralwise representability of recursive functions in
Robinson’s Q, but the proof here is much simpler, because we do not have to elaborate
coding of sequences and Gödel’s β-function. We just have to write down a recursive
definition of each function. Then existence of the corresponding term is automatically
assured by the fixpoint theorem. This simplicity is one of the main advantages of having
unrestricted comprehension.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 9

Theorem 2.13 (Weak numeralwise representability of r.e. predicates). For
every k-ary recursively enumerable predicate ψ ⊆ Nk there exists a (modality-
free) formula A of LAST such that

〈n1, . . . , nk〉 ∈ ψ ⇐⇒
 A[n1/x1, . . . , nk/xk]

for any 〈n1, . . . , nk〉 ∈ Nk.

Proof. There is a total recursive predicate ξ ⊆ Nk+1 such that 〈�n〉 ∈ ψ ⇐⇒
there exists m ∈ N such that 〈�n,m〉 ∈ ξ. It is an easy consequence of The-
orem 2.11 that there is a formula B of LAST which (weakly) numeralwise
represents ξ. Now,

〈�n〉 ∈ ψ ⇐⇒ there exists m ∈ N such that 〈�n,m〉 ∈ ξ
⇐⇒ there exists m ∈ N such that
 B[�n/�x,m/y]
⇐⇒
 ∃y ∈ N∗.B[�n/�x].

The last equivalence follows from the existence property and the previous
lemma.

Note that the converse holds trivially, since we have a semi-decision
procedure for checking if a formula A satisfies
 A[�n/�x]. Therefore, the
weakly numeralwise representable predicates in (the modality-free fragment
of) LAST are exactly the r.e. predicates.

Since the class of recursively enumerable predicates exceeds the class of
recursive (decidable) predicates, we may conclude:

Corollary 2.14. LAST is undecidable (and so is the modality-free frag-
ment of LAST).∗∗

3. Arithmetic

In this section, we investigate natural numbers and their properties in
LAST. We define the set of natural numbers (in 3.1), then show that a
restricted form of induction, called light induction, is available in LAST (in
3.2). Using light induction, we show that addition and multiplication are
provably total (in 3.3).

∗∗The undecidability of Grishin’s set theory was independently proved by Cantini [5].

10 Kazushige Terui

3.1. Natural Numbers

The previous definition of natural numbers based on unordered pairs is not
satisfactory, because it does not yield S(x) = S(y) −◦ x = y. Alternatively,
we define natural numbers based on ordered pairs as in [7]:

Definition 3.1 (Natural Numbers). 0 ≡ ∅; S(t) ≡ 〈∅, t〉; n ≡ Sn(0).

This definition yields the desired properties:

Proposition 3.2. The following are provable in LAST:
(1) S(t) �= 0.
(2) S(t) = S(u) ◦−◦ t = u.

Proof. (1) Suppose S(t) = 0, which is equivalent to 〈∅, t〉 = ∅. But {∅} ∈
〈∅, t〉 whereas {∅} �∈ ∅, a contradiction.
(2) By Proposition 2.7 (2) and Proposition 2.9 (4).

Next, we internally define the set of natural numbers in LAST:

Definition 3.3. N ≡ {x|∀α.!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ x ∈ α)}.

The term N surely represents the set of natural numbers in the usual
sense:

Proposition 3.4.
(1) 0 ∈ N is provable in LAST.
(2) t ∈ N−◦ S(t) ∈ N is provable in LAST.
(3) t ∈ N is provable in LAST if and only if t ≡ n for some n ∈ N.

Proof. 1. As follows.

0 ∈ α
 0 ∈ α

 0 ∈ α−◦ 0 ∈ α

 §(0 ∈ α−◦ 0 ∈ α)

!∀y(y ∈ α−◦ S(y) ∈ α)
 §(0 ∈ α−◦ 0 ∈ α)

!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ 0 ∈ α)

 ∀α.!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ 0 ∈ α)

 0 ∈ N

2. As follows.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 11

0 ∈ α � 0 ∈ α

t ∈ α � t ∈ α S(t) ∈ α � S(t) ∈ α

t ∈ α −◦ S(t) ∈ α, t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), t ∈ α � S(t) ∈ α

0 ∈ α,∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � S(t) ∈ α

∀y(y ∈ α −◦ S(y) ∈ α), 0 ∈ α −◦ t ∈ α � 0 ∈ α −◦ S(t) ∈ α

!∀y(y ∈ α −◦ S(y) ∈ α), §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈ α)

!∀y(y ∈ α −◦ S(y) ∈ α)2, !∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � §(0 ∈ α −◦ S(t) ∈ α)

!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) �!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(t) ∈ α)

∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ S(t) ∈ α)

t ∈ N � S(t) ∈ N

3. The “if” direction follows from 1 and 2 above. As for the “only-if”
direction, observe that the last part of the cut-free proof of t ∈ N must be
of the following form:

....
0 ∈ α, ∀y(y ∈ α−◦ S(y) ∈ α)n
 t ∈ α
∀y(y ∈ α−◦ S(y) ∈ α)n
 0 ∈ α−◦ t ∈ α

!∀y(y ∈ α−◦ S(y) ∈ α)
 §(0 ∈ α−◦ t ∈ α)

!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ t ∈ α)

 ∀α.!∀y(y ∈ α−◦ S(y) ∈ α)−◦ §(0 ∈ α−◦ t ∈ α)

 t ∈ N

for some n ≥ 0. From this, we conclude that t ≡ m for some m ≤ n.

3.2. Light Induction

With N defined above, a certain restricted form of induction is available:

Proposition 3.5 (Light Induction). The following inference rule is deriv-
able in LAST:

Γ
 A[0/x] B,A[y/x]
 A[S(y)/x]
§Γ, !B, t ∈ N
 §A[t/x] ,

where y does not occur in A and B, and B may be absent.

Proof. See the following derivation.

B, A[y/x] � A[S(y)/x]

B, y ∈ {x|A} � S(y) ∈ {x|A}
B � ∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A})
!B �!∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A})

Γ � A[0/x]

Γ � 0 ∈ {x|A}
A[t/x] � A[t/x]

t ∈ {x|A} � A[t/x]

Γ, 0 ∈ {x|A} −◦ t ∈ {x|A} � A[t/x]

§Γ, §(0 ∈ {x|A} −◦ t ∈ {x|A}) � §A[t/x]

§Γ, !B, !∀y(y ∈ {x|A} −◦ S(y) ∈ {x|A}) −◦ §(0 ∈ {x|A} −◦ t ∈ {x|A}) � §A[t/x]

§Γ, !B, ∀α.!∀y(y ∈ α −◦ S(y) ∈ α) −◦ §(0 ∈ α −◦ t ∈ α) � §A[t/x]

§Γ, !B, t ∈ N � §A[t/x]

12 Kazushige Terui

In what follows, we are particularly interested in those sequents of the
form �u ∈ N
 §pA (p ≥ 0), where �u ∈ N stands for a sequence of the form
u1 ∈ N, . . . , un ∈ N. For such sequents, the following useful principles are
available:

Proposition 3.6.
(1) Coercion: t ∈ N−◦ §p!qt ∈ N is provable for any p ≥ 1 and q ≥ 0.
(2) N-Contraction: The following inference rule is derivable in LAST:

t ∈ N, t ∈ N, �u ∈ N
 §pA
t ∈ N, �u ∈ N
 §p+1A

for any p ≥ 0.

Proof. (1) For any p ≥ 1 and q ≥ 0, we have
 §p−1!q0 ∈ N and §p−1!qx ∈
N
 §p−1!qS(x) ∈ N. Hence the desired formula is obtained by light induc-
tion.
(2) We have
 0 ∈ N ⊗ 0 ∈ N and x ∈ N ⊗ x ∈ N
 S(x) ∈ N ⊗ S(x) ∈ N.
Hence by light induction, it holds that t ∈ N
 §(t ∈ N ⊗ t ∈ N). On the
other hand, we have

§(t ∈ N⊗ t ∈ N), §�u ∈ N
 §p+1A

by assumption and rule (§). Hence the desired sequent is obtained by (Cut)
and coercion.

3.3. Addition and Multiplication

The graphs of addition and multiplication are defined by fixpoint:

Definition 3.7. Let add be a term which satisfies

〈x, y, z〉 ∈ add ◦−◦ (y = 0⊗ x = z)⊕
∃y′∃z′(y = S(y′)⊗ z = S(z′)⊗ 〈x, y′, z′〉 ∈ add).

Such a term exists by the fixpoint theorem. Similarly, let mult be a term
which satisfies

〈x, y, z〉 ∈ mult ◦−◦ (y = 0⊗ z = 0)⊕
∃y′∃z′(y = S(y′)⊗ 〈z′, x, z〉 ∈ add⊗ 〈x, y′, z′〉 ∈ mult).

Lemma 3.8. The following are provable in LAST:
(1) 〈x, 0, z〉 ∈ add ◦−◦ x = z.
(2) 〈x,S(y), z〉 ∈ add ◦−◦ ∃z′(z = S(z′)⊗ 〈x, y, z′〉 ∈ add).
(3) 〈x, 0, z〉 ∈ mult ◦−◦ z = 0.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 13

(4) 〈x,S(y), z〉 ∈ mult ◦−◦ ∃z′(〈z′, x, z〉 ∈ add⊗ 〈x, y, z′〉 ∈ mult).

Proof. Argue within LAST.
(1) Assume x = z. Then we have 0 = 0 ⊗ x = z, hence 〈x, 0, z〉 ∈ add.
Conversely, assume 〈x, 0, z〉 ∈ add. Then either 0 = 0⊗ x = z or ∃y′∃z′(0 =
S(y′)⊗z = S(z′)⊗〈x, y′, z′〉 ∈ add). But the latter is impossible, as 0 = S(y′)
implies a contradiction by Proposition 3.2 (1). Therefore, we have x = z.
(2) Assume that z = S(z′) ⊗ 〈x, y, z′〉 ∈ add for some z′. Since we have
S(y) = S(y), it follows that ∃y′∃z′(S(y) = S(y′)⊗z = S(z′)⊗〈x, y′, z′〉 ∈ add).
Therefore, 〈x,S(y), z〉 ∈ add. Conversely, assume 〈x,S(y), z〉 ∈ add. Then
either S(y) = 0⊗x = z or ∃y′∃z′(S(y) = S(y′)⊗z = S(z′)⊗〈x, y′, z′〉 ∈ add).
Since the former is impossible, we have S(y) = S(y′)⊗z = S(z′)⊗〈x, y′, z′〉 ∈
add for some y′ and z′. By Proposition 3.2 (2), it follows that y = y′. Thus,
z = S(z′)⊗ 〈x, y, z′〉 ∈ add. Hence we have ∃z′(z = S(z′)⊗ 〈x, y, z′〉 ∈ add),
as required.

It is easy to formalize the above proofs in LAST. (3) and (4) can be
shown similarly.

The following two propositions show that addition and multiplication are
provably total in LAST.

Proposition 3.9.
(1) 〈n,m, k〉 ∈ add is provable in LAST if n+m = k.
(2) 〈n,m, k〉 ∈ mult is provable in LAST if n ·m = k.

Proof. Both are proved by (external) induction onm, using Lemma 3.8.

Proposition 3.10. The following are provable in LAST:
(1) ∀x ∈ N.∀y ∈ N.§∃!z ∈ N(〈x, y, z〉 ∈ add).
(2) ∀x ∈ N.∀y ∈ N.§3∃!z ∈ N(〈x, y, z〉 ∈ mult).

Proof. (1) We prove
(i)
 ∀x ∈ N.∃!z ∈ N(〈x, 0, z〉 ∈ add) and
(ii) ∀x ∈ N.∃!z ∈ N(〈x, y, z〉 ∈ add)
 ∀x ∈ N.∃!z ∈ N(〈x,S(y), z〉 ∈ add).
It then follows by light induction that

y ∈ N
 §(∀x ∈ N.∃!z ∈ N(〈x, y, z〉 ∈ add)). (∗)

By an easy manipulation, we derive §(x ∈ N), y ∈ N
 §∃!z ∈ N(〈x, y, z〉 ∈
add), hence by coercion x ∈ N, y ∈ N
 §∃!z ∈ N(〈x, y, z〉 ∈ add), as required.

Now let us show (i). By Lemma 3.8(1), 〈x, 0, x〉 ∈ add ⊗ ∀y(〈x, 0, y〉 ∈
add−◦ y = x) is provable. From this, x ∈ N
 ∃!z ∈ N(〈x, 0, z〉 ∈ add), i.e.,
(i) is provable.

14 Kazushige Terui

As for (ii), argue within LAST. Assume that ∀x ∈ N.∃!z ∈ N(〈x, y, z〉 ∈
add) and let x ∈ N. Then there is a unique z ∈ N such that 〈x, y, z〉 ∈ add.
By Proposition 3.4 (2), S(z) ∈ N, and by Lemma 3.8 (2),

〈x,S(y),S(z)〉 ∈ add. (∗∗)

It remains to show that S(z) is the unique element satisfying (∗∗). So assume
that 〈x,S(y), w〉 ∈ add. Then by Lemma 3.8 (2), there exists w′ such that
w = S(w′) and 〈x, y,w′〉 ∈ add. By the uniqueness of z, we have w′ = z.
Therefore w = S(z) as required. It is easy to check that this informal proof
can be formalized in LAST.
(2) We prove

(iii)
 §∃!z ∈ N(〈x, 0, z〉 ∈ mult) and
(iv) x ∈ N, §∃!z ∈ N(〈x, y, z〉 ∈ mult)
 §∃!w ∈ N(〈x,S(y), w〉 ∈ mult).

It then follows, by light induction, that !x ∈ N, y ∈ N
 §2∃!z ∈ N(〈x, y, z〉 ∈
mult). Hence by coercion, we derive the desired formula.

As for (iii), observe that
 0 ∈ N ⊗ 〈x, 0, 0〉 ∈ mult ⊗ ∀w(〈x, 0, w〉 ∈
mult−◦w = 0) is provable by Proposition 3.4 (1) and Lemma 3.8 (3).

As for (iv), first show

〈x, y, z〉 ∈ mult, 〈z, x,w〉 ∈ add
 〈x,S(y), w〉 ∈ mult

and

∀z′(〈x, y, z′〉 ∈ mult−◦ z′ = z),∀w′(〈z, x,w′〉 ∈ add−◦w′ = w)

 ∀w′(〈x,S(y), w′〉 ∈ mult−◦w′ = w)

by using Lemma 3.8 (4). From these two, we derive

∃!z ∈ N(〈x, y, z〉 ∈ mult),∀z ∈ N.∃!w ∈ N(〈z, x,w〉 ∈ add)

 ∃!w ∈ N(〈x,S(y), w〉 ∈ mult).

Therefore, we obtain the desired sequent by rule (§) and sequent (∗) above
(with variables renamed suitably).

4. Representing Sets and Functions

We first clarify the notion of representability (in 4.1), then demonstrate
that various sets and functions are representable in LAST (in 4.2 – 4.5).
We finally show that every polytime function is representable, i.e., provably
total (in 4.6).

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 15

4.1. Representation in LAST

Let us make precise what it means to represent sets and functions in LAST.

Definition 4.1.
(1) A set T is represented by a term t of LAST if there is a bijection
(·)∗ from T to the set of terms u such that
 u ∈ t is provable in
LAST.

(2) A function φ : �T −→ U is represented by a term f with domains �t
and range u if
• �T and U are represented by �t and u respectively;
• For any �m ∈ �T and n ∈ U such that φ(�m) = n,
 〈�m∗, n∗〉 ∈ f is

provable in LAST;
•
 ∀�x ∈ t.§d(∃!y ∈ u.〈�x, y〉 ∈ f) is provable in LAST for some
d ≥ 0, where ∀�x ∈ t.A stands for ∀x1 ∈ t . . . ∀xn ∈ t.A.

In particular, we say that φ is flatly represented by f in case d = 0.
A representable function is also said to be provably total in LAST,
following the standard terminology.

Note that the notion of representability in the above sense is stronger
than that of numeralwise representability studied in Section 2.5, as it requires
the totality of a function to be internally provable in the formal system
LAST. We have already seen that the term N represents the set N of
natural numbers (Proposition 3.4) and plus and mult represent addition and
multiplication of natural numbers (Propositions 3.9 and 3.10). It is also
clear that the term {x|∃y(x = 〈y,S(y)〉)} represents the successor function.
Further examples of representations are provided below.

The uniqueness property incorporated by the third condition of Defini-
tion 4.1(2) implies the following:

Proposition 4.2. Suppose that a function φ : �T −→ U be represented by
a term f with domains �t and range u. Let �m ∈ �T . Then 〈�m∗, v〉 ∈ f is
provable in LAST iff v ≡ n∗, where n = φ(�m).

Proof. The “if” direction holds by definition. To show the “only-if” di-
rection, observe that
 §d∃!y ∈ u(〈�m∗, y〉 ∈ f) is provable in LAST for any
�m ∈ �T . By Corollary 2.4, it follows that

∀z(〈�m∗, z〉 ∈ f −◦ z = v0) (†)

is provable for some v0. Now suppose that 〈�m∗, v〉 ∈ f be provable. Then
we have v = v0 by (†). On the other hand, we also have 〈�m∗, n∗〉 ∈ f by
definition, where n = φ(�m). Hence it holds that n∗ = v0 by (†). Hence
v = v0 = n∗ is provable in LAST. Therefore v ≡ n∗ by Proposition 2.6.

16 Kazushige Terui

Definition 4.1 gives our intended notion of representability. The main
theorems (Theorem 4.17, Corollary 5.12) will be stated in terms of this. It
is, however, problematic in that representable functions in this sense are not
necessarily composable††. For this reason, we introduce a slightly stronger
notion of representability.

Definition 4.3. A function φ : �T −→ U is §-represented by a term f with
domains �t and range u if it is represented so in the sense of Definition 4.1 (2)
with the third condition strengthened as follows: There exists d ≥ 0 such
that for any e ≥ 0,

 ∀�x ∈ t.§d∃y ∈ u.§e(〈�x, y〉 ∈ f ⊗ ∀z(〈�x, z〉 ∈ f −◦ z = y))

is provable in LAST. We say that φ is flatly §-represented by f in case
d = 0.

Note that §-representability implies the original representability (the lat-
ter corresponds to the case e = 0). It is not hard to see that addition,
multiplication and successor are §-representable as well.

4.2. Finite Sets

A finite set Qn with n elements is represented by the term Qn ≡
{0, . . . , n− 1} with the obvious bijection. In particular, the set Q2 of boolean
values is represented by Q2. It is easy to prove
• Flat Contraction: t ∈ Qn −◦ (t ∈ Qn ⊗ t ∈ Qn);
• Coercion: t ∈ Qn −◦ §d!et ∈ Qn for any d ≥ 1 and e ≥ 0.

Moreover, we have

Proposition 4.4. Every finite function φ : Qn1×· · ·×Qnk
−→ Qm is flatly

§-representable with domains Qn1 , . . . ,Qnk
and range Qm.

Proof. Instead of giving a detailed proof, we just describe an example,
which should be sufficient for convincing ourselves. We show that boolean
conjunction ∧ : Q2 ×Q2 −→ Q2 is flatly §-represented by

conj ≡ {x|(x = 〈0, 0, 0〉) ⊕ (x = 〈0, 1, 0〉) ⊕ (x = 〈1, 0, 0〉) ⊕ (x = 〈1, 1, 1〉)}.

The first and the second conditions for §-representability are obvious. As
for the third condition, prove
 0 ∈ Q2 ⊗ §e(〈0, 0, 0〉 ∈ conj ⊗ ∀z(〈0, 0, z〉 ∈
conj −◦ z = 0)) for any e ≥ 0, from which it follows that x = 0, y = 0

††Pointed out by Daniel de Carvalho.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 17

∃z ∈ Q2.§e(〈x, y, z〉 ∈ conj ⊗ ∀z′(〈x, y, z′〉 ∈ conj −◦ z′ = z)). Similarly, we
can prove:
x = 0, y = 1
 ∃z ∈ Q2.§e(〈x, y, z〉 ∈ conj⊗ ∀z′(〈x, y, z′〉 ∈ conj−◦ z′ = z)),
x = 1, y = 0
 ∃z ∈ Q2.§e(〈x, y, z〉 ∈ conj⊗ ∀z′(〈x, y, z′〉 ∈ conj−◦ z′ = z)),
x = 1, y = 1
 ∃z ∈ Q2.§e(〈x, y, z〉 ∈ conj⊗ ∀z′(〈x, y, z′〉 ∈ conj−◦ z′ = z)).

Therefore, it holds that x ∈ Q2, y ∈ Q2
 ∃z ∈ Q2.§e(〈x, y, z〉 ∈ conj ⊗
∀z′(〈x, y, z′〉 ∈ conj−◦z′ = z)), by noting that x ∈ Q2 ◦−◦ x = 0⊕x = 1.

As a generalization, we also have

Proposition 4.5. Given a function ψi : �T −→ U for each 0 ≤ i ≤ n− 1,
one defines a new function φ : Qn × �T −→ U by φ(i, �v) = ψi(�v).

Suppose that �T and U are represented by terms �t and u, and ψi be flatly
§-represented by term hi with domains �t and range u (0 ≤ i ≤ n− 1). Then
the above φ is flatly §-represented by the following term f with domains Qn,�t
and range u:

f ≡ {x|(∃w ∈ h0.w = 〈�y, z〉 ⊗ x = 〈0, �y, z〉)⊕
· · · ⊕ (∃w ∈ hn−1.w = 〈�y, z〉 ⊗ x = 〈n− 1, �y, z〉).

4.3. Words over Finite Alphabets 1

Let us consider the set Wn of words over a finite alphabet Qn. First of all,
define

ε ≡ ∅;
Si(t) ≡ 〈i, t〉, for each 0 ≤ i < n.

Then we can naturally associate a term w to each word w ∈Wn. For example
we associate to 010 ∈W2 the term S0(S1(S0(ε))).

There are two ways to represent the set Wn, both of which are useful.
The first is a generalization of N. Define W2 by

W2 ≡ {x|∀α.!∀y(y ∈ α−◦ S0(y) ∈ α)−◦
!∀y(y ∈ α−◦ S1(y) ∈ α)−◦ §(ε ∈ α−◦ x ∈ α)}.

More generally, define for each n

Wn ≡ {x|∀α.!∀y(y ∈ α−◦ S0(y) ∈ α)−◦
· · ·!∀y(y ∈ α−◦ Sn−1(y) ∈ α)−◦ §(ε ∈ α−◦ x ∈ α)}.

18 Kazushige Terui

In what follows, W2 and W2 are also written as W and W. The second
representation of Wn will be given in the next subsection. Similarly to
Proposition 3.4, we have

Proposition 4.6.
(1) ε ∈Wn is provable in LAST.
(2) t ∈Wn −◦ Si(t) ∈Wn is provable in LAST for each 0 ≤ i < n.
(3) t ∈ Wn is provable in LAST if and only if t is of the form w for
some w ∈Wn.

Analogously to N, Wn admits the light induction principle:

Γ
 A[ε/x] B0, A[y/x]
 A[S0(y)/x] · · · Bn−1, A[y/x]
 A[Sn−1(y)/x]
§Γ, !B0, . . . , !Bn−1, t ∈Wn
 §A[t/x]

where y does not occur in A and B0, . . . , Bn−1. Hence it also admits coercion
and contraction (cf. Proposition 3.6):
• Coercion: t ∈Wn −◦ §p!qt ∈Wn is provable for any p ≥ 1 and q ≥ 0.
• Wn-Contraction: The following inference rule is derivable in LAST:

t ∈Wn, t ∈Wn, �u ∈Wn
 §pA
t ∈Wn, �u ∈Wn
 §p+1A

for any p ≥ 0.

Proposition 4.7.
(1) Let n ≤ m. Then t ∈ Wn
 t ∈ Wm is provable in LAST. There-
fore the inclusion map ι : Wn −→ Wm is flatly §-representable with
domain Wn and range Wm.

(2) The length map | • | : Wn −→ N is §-representable with domain Wn

and range N.

Proof. (1) Proving t ∈ Wn
 t ∈ Wm is easy. The term {x|∃y.x = 〈y, y〉}
represents the inclusion map. (2) We consider the case n = 2. Define the
term len by:

〈x, y〉 ∈ len ◦−◦ (x = ε⊗ y = 0)⊕
∃x′∃y′((x = S0(x′)⊕ x = S1(x′))⊗ y = S(y′)⊗ 〈x′, y′〉 ∈ len).

Then, using light induction for W2, we can show that it represents the length
map.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 19

4.4. Words over Finite Alphabets 2

The second representation of Wn is given by fixpoint:

x ∈W′
n ◦−◦ x = ε⊕ ∃x′ ∈W′

n(x = S0(x′)⊕ · · · ⊕ x = Sn−1(x′)).

Then similarly to Lemma 2.12, we have

Proposition 4.8.
(1) ε ∈W′

n is provable in LAST.
(2) t ∈W′

n −◦ Si(t) ∈W′
n is provable in LAST for each 0 ≤ i < n.

(3) t ∈ W′
n is provable in LAST if and only if t is of the form w for

some w ∈Wn.

W′
n does not admit induction. Instead, it provides a flat discriminator

function:

Proposition 4.9. Given functions ψε : �T −→ U and ψi : Wn × �T −→ U
for 0 ≤ i ≤ n − 1, one defines a new function φ : Wn × �T −→ U , called
discriminator, by φ(ε, �v) = ψε(�v); φ(i · w,�v) = ψi(w,�v).

Suppose that �T and U are represented by terms �t and u, and ψε and
ψi’s be flatly §-represented by hε and hi’s. Then the above φ is flatly §-
representable with domains W′

n,�t and range u.

Proof. For simplicity, we consider the case n = 2 and assume �T ≡ T . Fur-
thermore, we only consider the weaker form of representability here. Define
the term f by

〈x, y, z〉 ∈ f ◦−◦ (x = ε⊗ 〈y, z〉 ∈ hε)⊕
∃x′((x = S0(x′)⊗ 〈x′, y, z〉 ∈ h0)⊕ (x = S1(x′)⊗ 〈x′, y, z〉 ∈ h1)).

By assumption, y ∈ t
 ∃!z〈y, z〉 ∈ hε, from which we obtain

x = ε, y ∈ t
 ∃!z(〈x, y, z〉 ∈ f). (i)

And also, x′ ∈W′
2, y ∈ t
 ∃!z(〈x′, y, z〉 ∈ h0) by assumption, from which we

obtain
x′ ∈W′

2 ⊗ x = S0(x′), y ∈ t
 ∃!z(〈x, y, z〉 ∈ f). (ii)

Similarly we have

x′ ∈W′
2 ⊗ x = S1(x′), y ∈ t
 ∃!z(〈x, y, z〉 ∈ f). (iii)

By (i), (ii) and (iii), x ∈ W′
2, y ∈ t
 ∃!z(〈x, y, z〉 ∈ f) is provable as

required.

20 Kazushige Terui

As an instance of the above proposition, we have:

Proposition 4.10. Predecessor for Wn, defined by ρ(ε) ≡ ε; ρ(i · w) ≡ w
for 0 ≤ i < n, is flatly §-representable with domain W′

n and range W′
n.

The following proposition shows, in some sense, that Wn is a “subset” of
W′

n.

Proposition 4.11. t ∈ Wn
 §(t ∈ W′
n) is provable in LAST. Therefore,

the identity map ι : Wn −→ Wn is §-representable with domain Wn and
range W′

n.

Proof. We have
 ε ∈W′
n and x ∈W′

n
 Si(x) ∈W′
n for each 0 ≤ i < n by

Proposition 4.8. Therefore, by light induction for Wn, we obtain t ∈ Wn

§(t ∈W′

n).

The converse cannot be proved, since W′
n does not admit induction. As

a compensation, we have the following semi-identity map:

Proposition 4.12. There is a term tau such that 〈n,w,w〉 ∈ tau is provable
whenever n ≥ |w|, and

∀x ∈ N.§∀y ∈W′
n.∃z ∈Wn.§e(〈x, y, z〉 ∈ tau⊗ ∀z′(〈x, y, z′〉 ∈ tau−◦ z′ = z))

is provable for any e ≥ 0.

The term tau can be obtained from the function τ : N ×Wn −→ Wn,
defined by τ(0, w) = ε; τ(n+ 1, ε) = ε; τ(n+ 1, i ·w) = i · τ(n,w). The proof
of Proposition 4.12 is left to the reader.

4.5. Cartesian Product, Composition and Iteration

If two sets T and U are represented by terms t and u respectively, then their
Cartesian product T × U is represented by the term t× u ≡ {x|∃y∃z(x =
〈y, z〉 ⊗ y ∈ t⊗ z ∈ u)}, with the associated bijection 〈x, y〉∗ = 〈x∗, y∗〉.

Proposition 4.13. Let φi : Ti −→ Ui be flatly §-represented by term fi with
domains ti and range ui (i = 1, 2). Then their product φ1×φ2 : T1×T2 −→
U1 × U2 is flatly §-represented by the following term f1 × f2 with domain
t1 × t2 and range u1 × u2:

f1×f2 ≡ {x|∃y1y2z1z2(x = 〈〈y1, y2〉, 〈z1, z2〉〉⊗〈y1, z1〉 ∈ f1⊗〈y2, z2〉 ∈ f2)}.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 21

Proposition 4.14. Suppose that �T , �T ′, U and V are represented by terms
�t, �t′, u and v, where terms �t admit coercion. Suppose also that function
ψ : �T × U −→ V is §-represented by term g with domain �t, u and range v,
and that function ξ : �T ′ −→ U is §-represented by term h with domains �t′
and range u. Then their composition ψ ◦ ξ(�x, �y) = ψ(�x, ξ(�y)), where �x and
�y are disjoint, is §-represented by the following term g ◦ h with domain �t, �t′
and range v:

g ◦ h ≡ {x′|∃�x�yzw(x′ = 〈�x, �y, z〉 ⊗ 〈�y,w〉 ∈ h⊗ 〈�x,w, z〉 ∈ g)}.

Proof. It is easy to check that the term g ◦ h satisfies the first and the
second conditions for §-representability in Definition 4.3. To show the third
one, let e ≥ 0. Then by definition, we have

�x ∈ �t
 ∀w ∈ u.§d∃z ∈ v.§e(〈�x,w, z〉 ∈ g ⊗ ∀z′(〈�x,w, z′〉 ∈ g −◦ z′ = z)), (iv)

�y ∈ �t′
 §d′∃w ∈ u.§d+e(〈�y, w〉 ∈ h⊗ ∀w′(〈�y, w′〉 ∈ h−◦ w′ = w)) (v)

for some d, d′ ≥ 0. Let

G ≡ 〈�x,w, z〉 ∈ g ⊗ ∀z′(〈�x,w, z′〉 ∈ g −◦ z′ = z),
H ≡ 〈�y,w〉 ∈ h⊗ ∀w′(〈�y,w′〉 ∈ h−◦w′ = w).

Then, by applying (§) and coercion to (iv), we obtain �x ∈ �t
 §d′∀w ∈
u.§d∃z ∈ v.§eG, while we can rewrite (v) as �y ∈ �t′
 §d′∃w ∈ u.§d+eH.

From these two, we successively derive:

�x ∈ �t, �y ∈ �t′
 §d′∃w.(§d(∃z ∈ v.§eG)⊗ §d+eH),

�x ∈ �t, �y ∈ �t′
 §d′∃w.§d∃z ∈ v.§e(G⊗H),

�x ∈ �t, �y ∈ �t′
 §d+d′∃z ∈ v.§e∃w(G⊗H).

In the meantime, it can be shown that

∃w(G⊗H)
 〈�x, �y, z〉 ∈ g ◦ h⊗ ∀z′(〈�x, �y, z′〉 ∈ g ◦ h−◦ z′ = z),

from which the third condition for §-representability follows easily.

Iteration is supported by LAST, but there is a crucial limitation that
only flatly representable functions with at most one auxiliary argument can
be iterated.

Proposition 4.15. Suppose that �T , U and V are represented by terms �t,
u and v, where terms �t admit coercion. If ψ : �T −→ U is §-represented

22 Kazushige Terui

by g and ξ : U × V −→ U is flatly §-represented by h, then the function
φ : N× �T × V −→ U defined by

φ(0, �y, z) = ψ(�y);
φ(n+ 1, �y, z) = ξ(φ(n, �y, z), z),

is §-represented by

〈x, �y, z, w〉 ∈ f ◦−◦ (x = 0⊗ 〈�y,w〉 ∈ g)⊕
∃x′w′(x = S(x′)⊗ 〈x′, �y, z, w′〉 ∈ f ⊗ 〈w′, z, w〉 ∈ h).

We do not give a (rather tedious) proof here, since it is just a general-
ization of the proof of Proposition 3.10 (2).

4.6. Encoding Turing Machines

Now let us encode Turing machines in LAST. Our treatment of Turing
machines below is essentially the same as in [7, 2]. We refer to [11] for the
general background on Turing machines.

Let M be a single-tape Turing machine over the alphabet Σ = {0, 1, b}
(where b is for blank) and with the states Q = {q0, . . . , qn−1} (where q0 is
the initial state). M is endowed with a transition function

δ : Σ×Q −→ Σ×Q× {L,R,C},

here L stands for left, R for right, and C for no-move. M has an infinite
tape, which has infinitely many cells in both directions. A step of M consists
of reading one symbol from the cell which the head is scanning, writing a
symbol on the same cell, moving the head at most one tape cell, and entering
a new state, in accordance with the transition function δ.

A configuration of M consists of a triple 〈q, w1, w2〉 ∈ Q × Σ∗ × Σ∗; q
denotes the current state, w1 describes the non-blank part of the tape to the
left of the head, w2 describes the non-blank part of the tape to the right of
the head. By convention, w1 is written in the reverse order, and w2 includes
the content of the cell currently scanned.

We say that M with input w yields w′ after n steps when, starting from
the initial configuration 〈q0, ε, w〉, M arrives at a configuration 〈q, w1, w

′〉
for some q, w1 after n steps, and moreover w′ ∈ W. If w′ �∈ W, M yields
nothing.

Definition 4.16. A function φ : W −→ W is a polynomial time function
if there is a Turing machine M and a monotone polynomial p such that for
any w ∈W, M with input w yields φ(w) after p(|w|) steps.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 23

Now we claim:

Theorem 4.17. Every polynomial time function is provably total in LAST
with domain W and range W.

Proof. All the requisite materials are given in the previous subsections. It
just suffices to put them together. Let φ be a polynomial time function.
Then there is a Turing machine M and a polynomial p by Definition 4.16.
• The set Conf ≡ Q× Σ∗ × Σ∗ of configurations is represented by the
term Conf ≡ Qn ×W′

3 ×W′
3.

• The function δ̂ : Conf −→ Conf for the one-step transition is ob-
tained by combining successors and predecessor for Σ∗, a case function
for Q and a discriminator for Σ∗. Note that all of these are flatly §-
representable in LAST by Propositions 4.8, 4.10, 4.5 and 4.9. Hence
δ̂ is also flatly §-representable with domain Conf and range Conf by
Proposition 4.13. (Here it is crucial to use W′

3 rather than W3.)
• By iteration, a function φM : N× Conf −→ Conf is defined so that
the value of φM (n, c) is the configuration of M after n steps starting
from the configuration c. By Proposition 4.15, this φM can be §-
represented by a term of LAST with domain N × Conf and range
Conf.
• On the other hand, any monotone polynomial can be composed of
addition and multiplication, and thus can be §-represented by a LAST
term with domain N and range N (with the help of composition and
N-Contraction). By composing it with the length map | • | : W −→ N

in Proposition 4.7 (2), we obtain a term §-representing the function
p(|w|) with domain W and range N.
• The initializing function which transforms an input w ∈ W to an
initial configuration is §-represented by a term with domain W and
range Conf by using Proposition 4.7 (1) and Proposition 4.11. The
output function from Conf to W can be similarly §-represented with
domain Conf and range W′.
• Therefore, we obtain a term §-representing φ with domain W and
range W′; the input is used twice, once for initialization and once
for the time bound p(|w|), but it does not matter since we have W-
Contraction.
• Although the above φ is §-represented with range W′, we may apply
τ(n,w) in Proposition 4.12 to change the range into W, by taking a
sufficiently large n; such an n is always provided, since the length of
the output is obviously bounded by p(|w|).

24 Kazushige Terui

• Finally, recall that §-representability implies representability, thus φ
is provably total in LAST.

5. Light Affine Lambda Calculus and Interpretation of
Proofs

In the preceding sections, we have shown that every polytime function is
provably total in LAST. In this section, we show the converse, i.e., that
any provably total function in LAST is a polytime function. To achieve
this, we interpret proofs of LAST as terms of Light Affine Lambda Calculus
(λla, [21]), which are known to be polytime (strongly) normalizable.

We recall λla and its main properties in 5.1, then give an interpretation
of proofs in 5.2. Finally we show how to extract a program from a proof of
a totality statement in 5.3.

5.1. Light Affine Lambda Calculus

Here we recall only the requisite materials about λla. See [21] for a full
exposition.

Definition 5.1. Let x, y, z . . . range over variables. The set PT of pseudo-
terms is defined by the following grammar:

M, N ::= x | λx.M | MN | !M | let N be !x in M | §M | let N be §x in M.

In the sequel, symbol † stands for either ! or §. Pseudo-terms (λx.M) and
(let N be † x in M) bind each occurrence of x in M. As usual, pseudo-terms
are considered up to α-equivalence, and subject to the variable convention
(see [4]); namely, the bound variables are chosen to be different from the
free variables, so that variable clash is never caused by substitution. The
notation M[N/x] denotes the pseudo-term obtained by substituting N for
the free occurrences of x in M. FV (M) denotes the set of free variables in
M. FO(x, M) denotes the number of free occurrences of x in M and FO(M)
denotes the number of all free variable occurrences in M.

The size |M| of a pseudo-term M is the number of symbols occurring in it.
Given M and its subexpression N, the depth of N in M is the number of modal
operators !, § enclosing it. The depth of M is the maximum of the depths of
all its subexpressions.

In order to define well-formedness, it is convenient to distinguish three
kinds of variables: undischarged, !-discharged, and §-discharged variables.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 25

These are to be bound by λ-abstraction, let-! operator and let-§ operator,
respectively. (Below, � stands for the disjoint union.)

Definition 5.2. LetX,Y,Z range over the finite sets of variables. The 4-ary
relation M ∈ TX,Y,Z (saying that M is a well-formed term with undischarged
variablesX, !-discharged variables Y and §-discharged variables Z) is defined
as follows (in writing M ∈ TX,Y,Z , we implicitly assume that X, Y and Z are
mutually disjoint):

(1) x ∈ TX,Y,Z ⇐⇒ x ∈ X.
(2) λx.M ∈ TX,Y,Z ⇐⇒ M ∈ TX�{x},Y,Z , FO(x, M) ≤ 1.
(3) MN ∈ TX,Y,Z ⇐⇒ M ∈ TX,Y,Z, N ∈ TX,Y,Z.
(4) !M ∈ TX,Y,Z ⇐⇒ M ∈ TY,∅,∅, FO(M) ≤ 1.
(5) §M ∈ TX,Y,Z ⇐⇒ M ∈ TY �Z,∅,∅.
(6) let M be !x in N ∈ TX,Y,Z ⇐⇒ M ∈ TX,Y,Z, N ∈ TX,Y �{x},Z .
(7) let M be §x in N ∈ TX,Y,Z

⇐⇒ M ∈ TX,Y,Z, N ∈ TX,Y,Z�{x}, FO(x, N) ≤ 1.
We say that M is a well-formed term, or simply a term, if M ∈ TX,Y,Z for

some X,Y and Z. The set of terms is denoted by T .

The reduction rules of λla are the following:
(β) (λx.M)N −→ M[N/x];
(§) let §N be §x in M −→ M[N/x];
(!) let !N be !x in M −→ M[N/x];

(com1) (let N be †x in M)L −→ let N be †x in (ML);
(com2) let (let N be †x in M) be †y in L

−→ let N be †x in (let M be †y in L).
The reduction relation −→ is defined as usual. The reflexive-transitive clo-
sure of −→ is denoted by −→∗.

The following are the main properties of λla:

Theorem 5.3 (Polytime strong normalization). Any term M of depth d re-
duces to a normal form within O(|M|2d+1

) reduction steps (and within time
O(|M|2d+2

) on Turing machines). This result holds independently of which
reduction strategy we take.

Theorem 5.4 (Church-Rosser property). If M0 is a term and M1 ←−∗ M0 −→
∗M2, then M1 −→∗M3 ←−∗ M2 for some term M3.

5.2. Interpretation of LAST proofs

Here we give an interpretation of LAST proofs into λla terms.

26 Kazushige Terui

x :A
 x :A Id
Γ1
 N :A x :A,Γ2
 M :C

Γ1,Γ2
 M[N/x] :C Cut

Γ
 M :C
∆,Γ
 M :C Weak

x : [A]!, y : [A]!,Γ
 M :C
z : [A]!,Γ
 M[z/x, z/y] :C Cntr

Γ1
 N :A1 x :A2,Γ2
 M :C
Γ1, y :A1 −◦ A2,Γ2
 M[yN/x] :C −◦l

x :A1,Γ
 M :A2

Γ
 λx.M :A1 −◦A2
−◦r

x : [A]!,Γ
 M :C
y :!A,Γ
 let y be !x in M :C !l

x :B
 M :A
x : [B]!
 !M :!A !r

x : [A]§,Γ
 M :C
y :§A,Γ
 let y be §x in M :C

§l Γ,∆
 M :A
[Γ]!, [∆]§
 §M :§A §r

x :A[u/x],Γ
 M :C
x :∀x.A,Γ
 M :C ∀l Γ
 M :A

Γ
 M :∀x.A ∀r

x :A[u/x],Γ
 M :C
x :u ∈ {x|A},Γ
 M :C ∈ l

Γ
 M :A[u/x]
Γ
 M :u ∈ {x|A} ∈ r

In rule (!), x :B may be absent. In rule (∀r), x is not free in Γ.

Figure 2. Interpretation of LAST proofs

A declaration is either of the form x : A or of the form x : [A]† ([A]† is
called a †-discharged formula). Throughout this section, Γ,∆, · · · stand for a
finite set of declarations. Now consider the term assignment rules in Figure
2. To each LAST proof of conclusion �B
 A, we assign a pseudo-term M
with free variables �x such that �x : �B
 M :A is derivable according to those
rules. Note that here we use discharged formulas in addition to the ordinary
formulas, and that the contraction rule is applied to !-discharged formulas
rather than !-prefixed formulas. It is, however, easy to see that it makes no
significant difference between two proof systems. As expected, we have

Theorem 5.5. Proofs of LAST are interpreted by (well-formed) terms of

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 27

λla. More exactly, if �x : �A,�y : �[B]!,�z : �[C]§
 M :D, then M ∈ T{�x},{�y},{�z}.

Proof. By induction on the length of the derivation. As for (Cut) and
(−◦l), we use the substitution lemma:
• If M ∈ TX�{x},Y,Z and N ∈ TX,Y,Z then M[N/x] ∈ TX,Y,Z .

As for (Weak), we use the weakening lemma:
• If M ∈ TX,Y,Z and X ⊆ X ′, Y ⊆ Y ′ and Z ⊆ Z ′, then M ∈ TX′,Y ′,Z′ .

Both are proved by induction on M .

In [21] we proved the subject reduction theorem for ILAL, and it is
routine to accommodate the proof to LAST (see Section 6.2 of [22]). Thus
we have

Theorem 5.6 (Subject Reduction for LAST). If Γ
 M :A is derivable and
M −→ N, then Γ
 N :A is derivable.

The normalization theorem and the subject reduction theorem together
imply that every explicit cut, which corresponds to a redex of λla, can be
eliminated from a LAST derivation. In the meantime, it is easy to see
that every implicit cut, which does not correspond to a redex of λla, can
be eliminated without increasing the size of a derivation. For example, a
principal cut for ∈ can be eliminated as follows:

.... π1

Γ1 � N :A[v/y]

Γ1 � N :v ∈ {y|A}

.... π2

x :A[v/y], Γ2 � M :C

x :v ∈ {y|A}, Γ2 � M :C

Γ1, Γ2 � M[N/x] :C

−→
.... π1

Γ1 � N :A[v/y]

.... π2

x :A[v/y],Γ2 � M :C

Γ1, Γ2 � M[N/x] :C

See Section 6.3 of [22] for a precise argument. As a consequence, we have

Theorem 5.7 (Cut-Elimination Theorem for LAST). If Γ
 M :C is deriv-
able, then Γ
 N : C is cut-free derivable, where N is the normal form of
M.

Corollary 5.8.
(1) If
 M :§A is derivable and M is normal, then M is of the form §N and

 N :A is derivable.

(2) If
 M : ∃y.A is derivable and M is normal, then M is of the form
λz.zN and
 N :A[u/y] is derivable for some term u of LAST.

(3) If
 M :A ⊗ B is derivable and M is normal, then M is of the form
λz.zNL and
 N :A and
 L :B are derivable.

Proof. (1) is obvious. As for (2), recall that ∃y.A is defined as ∀x.(∀y.(A−◦
t0 ∈ x)−◦ t0 ∈ x). The last part of the cut-free derivation of
 M :∃y.A must
be of the following form:

28 Kazushige Terui

....

 N :A[u/y] w :t0 ∈ x
 w :t0 ∈ x
z :A[u/y]−◦ t0 ∈ x
 zN :t0 ∈ x
z :∀y.(A−◦ t0 ∈ x)
 zN :t0 ∈ x

 λz.zN :∀y.(A−◦ t0 ∈ x)−◦ t0 ∈ x

 λz.zN :∃y.A ,

and M ≡ λz.zN. (3) can be shown similarly.

5.3. Program Extraction

Now we describe how to extract a term of λla from a proof of LAST.
Instead of dealing with the general case, we confine ourselves to proofs of
formulas of the form ∀x ∈ W.§d∃y ∈ W.A, which should be sufficient for
illustrating the general pattern.

The following definition is needed to clarify the notion of representation
in λla. Let ≈ be the least binary congruence relation that satisfies the
following:

(η) λx.Mx ≈ M, if x �∈ FV (M).
(let) let N be †x in M ≈ M, if x �∈ FV (M).
(λ-let) λx.(let M be †y in N) ≈ let M be †y in λx.N, if x �∈ FV (M).
(let-let) let M be †x in (let N be †y in L)

≈ let N be †y in (let M be †x in L),
if x �∈ FV (N) and y �∈ FV (M).

It is easy to see that ≈ is compatible with −→∗. Namely, if M ≈ N and
M −→∗M′, then there is a term N′ such that N −→∗N′ and M′ ≈ N′.

Definition 5.9. Let w ≡ i0 · · · in ∈W. Then w denotes

λx0x1.(let x0 be !z0 in(let x1 be !z1 in §λy.(zi0 · · · (ziny) · · ·))).

In particular, when w is the empty word ε, w denotes

λx0x1.(let x0 be !z0 in(let x1 be !z1 in §λy.y)).

A λla-representation of w is a term M of λla such that
 M : w ∈ W is
derivable.

It is easy to show that w is a λla-representation of w ∈ W. Con-
versely, if M is a λla-representation of w, then M ≈ w. Furthermore, λla-
representations of two distinct words are not related by ≈. Therefore, there
is a canonical one-one mapping from W toW/≈, whereW is the set of λla-
representations. Since ≈ is compatible with −→∗, the following definition
makes sense:

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 29

Definition 5.10. A function f : W −→ W is λla-represented by a term
F if there is a natural number d ≥ 0 such that for every w ∈ W and its
λla-representation M, FM −→∗§dN and N is a λla-representation of f(w).

The following terms are useful in program extraction. For each d ≥ 0,
define λla terms Fstd(z) and Extd(z), both having a free variable z, as
follows:

Fst0(z) ≡ z(λxy.x)
Fstd+1(z) ≡ let z be §y in §Fstd(y)
Ext0(z) ≡ z(λx.x)

Extd+1(z) ≡ let z be §y in §Extd(y)

Then it is easy to see that Fstd(§dλz.zNL) −→∗§dN and Extd(§dλz.zM) −→∗

§dM for every d ≥ 0.
Our main theorem in this section is the following:

Theorem 5.11 (Program Extraction). Let
 ∀x ∈ W.§d(∃y ∈ W.A) be
provable in LAST. Then there is a term F of λla such that for every
w ∈ W, Fw reduces to §dN, N is a λla-representation of some w′ ∈ W, and
A[w/x,w′/y] is provable in LAST.

Proof. Let G be a term of λla such that

 G :∀x ∈W.§d∃y ∈W.A

is derivable. We claim that the desired term F is λz.Fstd(Extd(Gz)).
Let w ∈ {0, 1}∗. Then,
 w : w ∈ W is derivable. On the other hand,

it is easy to see that
 G : w ∈ W −◦ §d∃y ∈ W.A[w/x] is derivable, so that
we have
 Gw : §d∃y ∈ W.A[w/x]. By the subject reduction theorem, the
normal form of Gw is of the same type and by Corollary 5.8, it must be of the
form §dλz.z(λw.wNL). Moreover,
 N :u ∈W and
 L :A[w/x, u/y] must be
derivable for some term u of LAST. By Proposition 4.6 (3), u ≡ w′ for some
w′ ∈ {0, 1}∗. Hence N is a λla-representation of w′ such that
 A[w/x,w′/y]
is provable in LAST.

To put things together, we obtain:

(λz.Fstd(Extd(Gz)))w −→ Fstd(Extd(Gw))

−→∗Fstd(Extd(§dλz.z(λw.wNL))) −→∗Fstd(§dλw.wNL) −→∗§dN ≈ §dw′,

as required.

30 Kazushige Terui

As a corollary, we have the following characterization theorem:

Corollary 5.12. (Characterization of the Polytime Functions) Let
φ : W −→W be a function. The following are equivalent:

(1) φ is computable in polynomial time.
(2) φ is provably total with domain W and range W in LAST.
(3) φ is λla-representable.

Proof. (1⇒ 2) By Theorem 4.17.
(2⇒ 3) By definition, there is a term f of LAST, a natural number d ≥ 0
and a term G of λla such that
 G : ∀x ∈ W.§d∃!y ∈ W(〈x, y〉 ∈ f). From
this, we can easily obtain
 G′ : ∀x ∈ W.§d∃y ∈ W(〈x, y〉 ∈ f). Hence the
program extraction theorem applies, and we obtain a term F of λla such
that for any w ∈ W, Fw reduces to §dN, N is a λla-representation of some
w′ ∈ W, and 〈w,w′〉 ∈ f is provable in LAST. The latter is equivalent to
φ(w) = w′ by Proposition 4.2. Therefore F λla-represents φ.
(3⇒ 1) By the polytime normalization theorem (see [21]).

6. Conclusion

Substructural logics are often criticized as lacking good reasons for restrict-
ing structural inference rules. Here, however, we find at least two reasons
for restricting contraction: to save unrestricted comprehension (as observed
by Grishin) and to keep feasibility of computation. These two reasons have
nicely combined in Girard’s work and resulted in a polytime naive set theory,
Light Linear Set Theory. A drawback in his set theory is that, in contrast
to its “light” computational complexity, the syntax is too “heavy.” Our
contributions in this paper are, firstly, to simplify the syntax by adding un-
restricted weakening (as has been done by Asperti for Light Linear Logic),
and secondly, to formally verify the truly polytime character of the result-
ing set theory, LAST. We believe that our work clarifies the essentials of
Girard’s idea, and thus makes this important application of substructural
logics more accessible.

It should be noted, however, that LAST is hardly considered as a work-
ing system of mathematics, because the reasoning allowed by LAST is too
poor to formalize proofs of mathematically interesting theorems. Indeed,
we have found difficulty even in proving the totality of division (when it is
inductively defined based on subtraction). Nevertheless, there is much room
for extending LAST to a more flexible and yet polytime naive set theory.
One approach would be to extend it with function symbols and non-logical
axioms.

Light Affine Set Theory: A Naive Set Theory of Polynomial Time 31

Another research direction is to look for naive set theories which cap-
ture other complexity classes. We already have Elementary Affine Set The-
ory, which captures the elementary recursive functions, but can there be a
stronger one? And if so, does it make sense to look for the “strongest” one?
We leave these investigations for future work.

Ackowledments
The author would like to thank Professor Mitsuhiro Okada, Professor Hi-
roakira Ono and Dr. Masaru Shirahata for helpful suggestions. He would
also like to thank Dr. Patrick Baillot and Daniel de Carvalho for stimulating
discussions, and also for pointing out a mistake in an earlier version of this
paper.

References

[1] Asperti, A., ‘Light affine logic’, Proceedings of the Thirteenth Annual IEEE Sympo-

sium on Logic in Computer Science, pp. 300 – 308, 1998.

[2] Asperti, A., and L. Roversi, ‘Intuitionistic light affine logic (proof-nets, normaliza-

tion complexity, expressive power, programming notation)’, ACM Transactions on

Computational Logic, 3(1): 137 – 175, 2002.

[3] Baillot, P., ‘Stratified coherent spaces: a denotational semantics for light linear

logic’, Theoretical Computer Science, to appear.

[4] Barendregt, H.P., The Lambda Calculus: Its Syntax and Semantics, Elsevier

North-Holland, 1981.

[5] Cantini, A., ‘The undecidability of Grishin’s set theory’, Studia Logica, 74: 345 –

368, 2003.

[6] Danos, V., and J.-B. Joinet, ‘Linear logic & elementary time’, Information and

Computation, 183(1): 123 – 137, 2003.

[7] Girard, J.-Y., ‘Light linear logic’, Information and Computation, 14(3): 175 – 204,

1998.

[8] Girard, J.-Y., ‘Linear logic’, Theoretical Computer Science, 50: 1 – 102, 1987.

[9] Grishin, V.N., ‘A nonstandard logic and its application to set theory’, In Studies

in Formalized Languages and Nonclassical Logics (Russian), pp. 135 – 171. Izdat,

Nauka, Moskow, 1974.

[10] Grishin, V.N., ‘Predicate and set theoretic calculi based on logic without contraction

rules’ (Russian), Izvestiya Akademii Nauk SSSR Seriya Matematicheskaya, 45(1): 47

– 68, 1981. English translation in Math. USSR Izv., 18(1): 41 – 59, 1982.

[11] Hopcroft, J., and J. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, Reading, Mass, 1979.

32 Kazushige Terui

[12] Kanovitch, M, M. Okada, and A. Scedrov, ‘Phase semantics for light linear logic’,

Theoretical Computer Science, 244(3): 525 – 549, 2003.

[13] Komori, Y., ‘Illative combinatory logic based on BCK-logic’, Mathematica Japonica,

34(4): 585 – 596, 1989.

[14] Lincoln, P., A. Scedrov, and N. Shankar, ‘Decision problems for second order

linear logic’, Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer

Science, pp. 476 – 485, 1995.

[15] Murawski, A. S., and C.-H. L. Ong, ‘Discreet games, light affine logic and PTIME

computation’, Proceedings of Computer Science Logic 2000, pp. 427 – 441. Springer-

Verlag, LNCS 1862, 2000.

[16] Neergaard, P., and H. Mairson, ‘LAL is square: Representation and expressiveness

in light affine logic’, presented at the Fourth International Workshop on Implicit

Computational Complexity, 2002.

[17] Peterson, U., ‘Logic without contraction as based on inclusion and unrestricted

abstraction’, Studia Logica, 64(3): 365 – 403, 2000.

[18] Schwichtenberg, H., and A. S. Troelstra, Basic Proof Theory, Cambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1996.

[19] Shirahata, M., ‘A linear conservative extension of Zermelo-Fraenkel set theory’,

Studia Logica, 56: 361 – 392, 1996.

[20] Shirahata, M., ‘Fixpoint theorem in linear set theory’, unpublished manuscript,

available at http://www.fbc.keio.ac.jp/∼sirahata/Research, 1999.

[21] Terui, K., ‘Light affine lambda calculus and polytime strong normalization’, Pro-

ceedings of the Sixteenth Annual IEEE Symposium on Logic in Computer Science,

pp. 209 – 220, 2001. The full version is available at http://research.nii.ac.jp/∼terui.

[22] Terui, K., Light Logic and Polynomial Time Computation, PhD thesis, Keio Uni-

versity, 2002. Available at http://research.nii.ac.jp/∼terui.

[23] White, R., ‘A demonstrably consistent type-free extension of the logic BCK’, Math-

ematica Japonica, 32(1): 149 – 169, 1987.

[24] White, R., ‘A consistent theory of attributes in a logic without contraction’, Studia

Logica, 52: 113 – 142, 1993.

Kazushige Terui

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku
Tokyo 101-8430, Japan.
terui@nii.ac.jp

