
Towards a logical foundation
of computational complexity

Kazushige Terui
RIMS, Kyoto University

email: terui@kurims.kyoto-u.ac.jp

Towards a logical foundationof computational complexity – p.1/46

Background

Logic and type theory. Proofs = Programs.

Complexity issues arise in

type checking/inference,

verification,

normalization, etc.

Implicit computational complexity:

Machine-independent, parameter-free characterizations

of complexity classes (such as P)

Towards a logical foundationof computational complexity – p.2/46

Background

Gödel’s T + restrictions:

Safety (Bellantoni-Cook, Leivant, Marion, . . .)

Linearity at higher order (Bellantoni-Niggl-Schwichtenberg,

Hofmann, . . .)

Cons-free (Jones, Kristiansen, . . .)

Girard’s F + restrictions:

Light linear logic (Girard, Asperti, Baillot-T., . . .)

Soft linear logic (Lafont, Gaboardi-Ronchi,

Hofmann-Schöpp, . . .)

Complexity of simply typed lambda calculus (Schubert)

Complexity of fragments of linear logic (Mairson-T.)

Parallel complexity of proof nets (T.)
Towards a logical foundationof computational complexity – p.3/46

Current Status

When talking about complexity of proofs and programs ...

C o m p u t a b i l i t y / C o m p l e x i t y T h e o r y

L o g i c / T y p e T h e o r y

Towards a logical foundationof computational complexity – p.4/46

Our Ambition

L o g i c / T y p e T h e o r y

C o m p u t a b i l i t y /
C o m p l e x i t y T h e o r y

Towards a logical foundationof computational complexity – p.5/46

Our project

Explain basic phenomena in computability and complexity from

the view point of logic and type theory.

Towards a logical foundationof computational complexity – p.6/46

Our project

Explain basic phenomena in computability and complexity from

the view point of logic and type theory.

1. Reconstruct basic objects of C & C (machines, languages)

as logical objects (proofs, types)

Towards a logical foundationof computational complexity – p.6/46

Our project

Explain basic phenomena in computability and complexity from

the view point of logic and type theory.

1. Reconstruct basic objects of C & C (machines, languages)

as logical objects (proofs, types)

2. Derive C & C theorems as corollaries of (meta)theorems of

logic

Towards a logical foundationof computational complexity – p.6/46

Our project

Explain basic phenomena in computability and complexity from

the view point of logic and type theory.

1. Reconstruct basic objects of C & C (machines, languages)

as logical objects (proofs, types)

2. Derive C & C theorems as corollaries of (meta)theorems of

logic

3. Take full advantage of generality (various data/higher order)

and type-based reasoning (type isomorphisms/logic

metatheorems)

Towards a logical foundationof computational complexity – p.6/46

Our project

Explain basic phenomena in computability and complexity from

the view point of logic and type theory.

1. Reconstruct basic objects of C & C (machines, languages)

as logical objects (proofs, types)

2. Derive C & C theorems as corollaries of (meta)theorems of

logic

3. Take full advantage of generality (various data/higher order)

and type-based reasoning (type isomorphisms/logic

metatheorems)

Which logic? — Ludics (Girard 2001).

Towards a logical foundationof computational complexity – p.6/46

Outline

1. Time and space sensitive compositions in lambda calculus

2. What is ludics?

3. Data and computation in ludics

4. Arbitrary data sets

5. Language operators and internal completeness

6. Space compression and focalization

7. Conclusion

Towards a logical foundationof computational complexity – p.7/46

Composition of TMs

How do you compose two TMs?

M 1 M 2

Towards a logical foundationof computational complexity – p.8/46

Composition of TMs

Sequential composition �����: first simulate ��, then ��

M 1

M 2

M 1 ; M 2

Time efficient, but not space efficient.

Towards a logical foundationof computational complexity – p.9/46

Composition of TMs

Interactive composition ������: simulate a dialogue between

�� and ��

M 1 M 1 | | M 2

M 2

Space efficient, but not time efficient.

Towards a logical foundationof computational complexity – p.10/46

Evaluations of lambda terms

Lambda calculus admits a canonical composition:

� Æ � � �����������

Towards a logical foundationof computational complexity – p.11/46

Evaluations of lambda terms

Lambda calculus admits a canonical composition:

� Æ � � �����������

There are various evaluation methods.

Towards a logical foundationof computational complexity – p.11/46

Evaluations of lambda terms

Lambda calculus admits a canonical composition:

� Æ � � �����������

There are various evaluation methods.

Call-by-value �-reduction

Towards a logical foundationof computational complexity – p.11/46

Evaluations of lambda terms

Lambda calculus admits a canonical composition:

� Æ � � �����������

There are various evaluation methods.

Call-by-value �-reduction

Simulates TMs with a quadratic time/linear space overhead

(cf. Dal Lago-Martini).

Towards a logical foundationof computational complexity – p.11/46

Evaluations of lambda terms

Lambda calculus admits a canonical composition:

� Æ � � �����������

There are various evaluation methods.

Call-by-value �-reduction

Simulates TMs with a quadratic time/linear space overhead

(cf. Dal Lago-Martini).

Composition is time efficient, but not space efficient.

Towards a logical foundationof computational complexity – p.11/46

Evaluations of lambda terms

Lambda calculus admits a canonical composition:

� Æ � � �����������

There are various evaluation methods.

Call-by-value �-reduction

Simulates TMs with a quadratic time/linear space overhead

(cf. Dal Lago-Martini).

Composition is time efficient, but not space efficient.

Is there a space efficient evaluation method?

Towards a logical foundationof computational complexity – p.11/46

Krivine’s Abstract Machine

A pointer machine working on (graphs of) untyped �-terms

Equipped with environments � (for variables) and stacks 	 (of

arguments)

���
 	� �� �����
 	� if � � ��
���

������
 	� �� ���
 �� � 	�

��������
 ��� � 	� �� ����� �� ����
 	�

Fact: There is no evaluator that is significantly and uniformly

more space-efficient than (optimized) KAM.

Towards a logical foundationof computational complexity – p.12/46

Time-space tradeoff in �-calculus

Compose encodings ��
�

��
�

of TMs �� and ��:

M 1 *

M 2 *
w *

CBV simulates sequential composition �����

KAM simulates interactive composition ������

Time-space tradeoff shows up in a different way in lambda

calculus.

Towards a logical foundationof computational complexity – p.13/46

Outline

1. Time and space sensitive compositions in lambda calculus

2. What is ludics?

3. Data and computation in ludics

4. Arbitrary data sets

5. Language operators and internal completeness

6. Space compression and focalization

7. Conclusion

Towards a logical foundationof computational complexity – p.14/46

What is ludics?

Ludics (Girard 01): pre-logical framework upon which logic is

built and various phenomena are analyzed.

Towards a logical foundationof computational complexity – p.15/46

What is ludics?

Ludics (Girard 01): pre-logical framework upon which logic is

built and various phenomena are analyzed.

Keywords: Monism, existentialism, interaction/orthogonality:

Towards a logical foundationof computational complexity – p.15/46

What is ludics?

Ludics (Girard 01): pre-logical framework upon which logic is

built and various phenomena are analyzed.

Keywords: Monism, existentialism, interaction/orthogonality:

Game Semantics �� Ludics �� Proof Theory

strategies designs proofs

� 	orthogonality �

games behaviours types

Towards a logical foundationof computational complexity – p.15/46

What is ludics?

Ludics (Girard 01): pre-logical framework upon which logic is

built and various phenomena are analyzed.

Keywords: Monism, existentialism, interaction/orthogonality:

Game Semantics �� Ludics �� Proof Theory

strategies designs proofs

� 	orthogonality �

games behaviours types

Orthogonality �
� : “Players � and � well socialize”

Towards a logical foundationof computational complexity – p.15/46

What is ludics?

Ludics (Girard 01): pre-logical framework upon which logic is

built and various phenomena are analyzed.

Keywords: Monism, existentialism, interaction/orthogonality:

Game Semantics �� Ludics �� Proof Theory

strategies designs proofs

� 	orthogonality �

games behaviours types

Orthogonality �
� : “Players � and � well socialize”

Construction of behaviours: ����, �
� � �
 �

� � �

“Pair ��
�� of two player sets form a game.”

Towards a logical foundationof computational complexity – p.15/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

���� � �� � � accepts ��

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

���� � �� � � accepts ��

��
�� � �����

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

���� � �� � � accepts ��

��
�� � �����

In ludics:

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

���� � �� � � accepts ��

��
�� � �����

In ludics:

��
�� (orthogonality)

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

���� � �� � � accepts ��

��
�� � �����

In ludics:

��
�� (orthogonality)

�����
�
� ���� (behaviour)

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

���� � �� � � accepts ��

��
�� � �����

In ludics:

��
�� (orthogonality)

�����
�
� ���� (behaviour)

����
����

�
� �����
 �����
�� (internal completeness)

Towards a logical foundationof computational complexity – p.16/46

From C & C to Ludics

Basic concepts and constructions in C & C:

Machine � accepts � � ��

���� � �� � � accepts ��

��
�� � �����

In ludics:

��
�� (orthogonality)

�����
�
� ���� (behaviour)

����
����

�
� �����
 �����
�� (internal completeness)

There is no ontological distinction between � � and ��.

 is homogeneous and symmetric.

Towards a logical foundationof computational complexity – p.16/46

Computational Ludics

We introduce a modified version: computational ludics.

Absolute addresses �� Term calculus with variable binding

No care of finiteness �� Sensitive to finite generation

Cut-free designs �� Cut-ful ones

Towards a logical foundationof computational complexity – p.17/46

Well-behaved frag. of simply typed �-calculus

Types: � ��� � � � � �

Positive terms � and negative terms � are defined by:

� � ��� �� ����������

�

�� ��
�

� � � � ��
�

� ���������� ��� � � ����
�

� � � ���� �� �

Reduction: the arity � always agrees.

���� � � � ���� ��� � � ��� �� � ������
 � � �
 ������

Towards a logical foundationof computational complexity – p.18/46

Towards ludics

Designs in ludics:

Type-free; arity agreement is ensured in another way.

Infinitary (coinduitive).

Daimon (immediate termination)

Additive superimposition: �� 	�� 	�� 	 � � �

Various actions (rather than the single pair �/@)

given by a signature.

Signature: � � ��
 ���

� is a set of names,

�� � � �� � gives an arity to each name.

Towards a logical foundationof computational complexity – p.19/46

Computational designs

The set of designs is coinductively defined by:

� ��� � Daimon

�
 Divergence

� �������
 � � �
 ��� Proper positive action

� ��� � Variable

�

�
��������� Proper negative action

where ����� � �, ��� � ��
 � � �
 ��

�
��������� is built from ��������������. Compare it with:

� ��� ������ � � � ��

� ��� � � ��� � � � ����

Towards a logical foundationof computational complexity – p.20/46

Normalization 1

Designs �
� Processes in linear 	-calculus (Faggian-Piccolo)

Towards a logical foundationof computational complexity – p.21/46

Normalization 1

Designs �
� Processes in linear 	-calculus (Faggian-Piccolo)

 allows partial branching:

������� 	 ������� � ������� 	 �������	������
 	 ������
	 � � �

Towards a logical foundationof computational complexity – p.21/46

Normalization 1

Designs �
� Processes in linear 	-calculus (Faggian-Piccolo)

 allows partial branching:

������� 	 ������� � ������� 	 �������	������
 	 ������
	 � � �

Reduction rule:

�
�
����
 � � �
 ������� �����
 � � �
 ��� �� ��������
 � � �
 �������

Towards a logical foundationof computational complexity – p.21/46

Normalization 1

Designs �
� Processes in linear 	-calculus (Faggian-Piccolo)

 allows partial branching:

������� 	 ������� � ������� 	 �������	������
 	 ������
	 � � �

Reduction rule:

�
�
����
 � � �
 ������� �����
 � � �
 ��� �� ��������
 � � �
 �������

Compare it with

���� � � � ���� ��� � � ��� �� � ������
 � � �
 ������

Towards a logical foundationof computational complexity – p.21/46

Orthogonality

A positive design � is one of the following forms:

������
 � � �
 ��� Head normal form

�
�
���������� �����
 � � �
 ��� Cut

� Daimon

 Divergence

Fact: For any closed positive design � ,

� ���

� or diverges.

Orthogonality: Suppose !�� � � ���� and !��� � �.

�
� �� � ������ 	 ��

Towards a logical foundationof computational complexity – p.22/46

Normalization: the general case

Head reduction: �
�
���������� ��� ���� �� ��� ��������

By corecursion, it can be extended to �� ��:

��� �� � � if � 	 �;

� ����������
 � � �
 ������� if � 	 ������
 � � �
 ���;

�
 if � �;

����� � ��

��
�
����������� �

�
��������������

Non-effective: it works on infinite designs; renaming and

substitution involved.

Towards a logical foundationof computational complexity – p.23/46

Finite generation

Finite generation: Some infinite l-designs can be obtained from

a finite graph by unfolding:

s u c

x

 (x)

0
1

Unfolding

��
s u c

x

s u c

x

 (x)

 (x)

Towards a logical foundationof computational complexity – p.24/46

Finite generation

Is there any normalization procedure that directly works on

graph representations?

s u c

x

 (x)

0
1

Krivine’s abstract machine can be adapted to do so.

Towards a logical foundationof computational complexity – p.25/46

L-designs

� is total if � ��
.

" is linear if for any subterm �������
 � � �
 ���,

 !����, . . . , !���� are pairwise disjoint.

� is identity if it occurs in a bracket �������
 � � �
 �
 � � �
 ���.

L-designs: total, linear, identity-free designs with finitely many

free variables.

Towards a logical foundationof computational complexity – p.26/46

Outline

1. Time and space sensitive compositions in lambda calculus

2. What is ludics?

3. Data and computation in ludics

4. Arbitrary data sets

5. Language operators and internal completeness

6. Space compression and focalization

7. Conclusion

Towards a logical foundationof computational complexity – p.27/46

What are data?

Examples: integers, words, trees, lists, records, etc.

Data must be:

- structured (eg. list = head + tail)

- linearly duplicable (“linear” = “machine-like”)

- compressable (eg. binary int. � hexadecimal int.)

Fix a unary name �� �.

Notation: �� �, ��� ��� ���������� ���

The set of data designs is coinductively defined by

� ��� ����
 � � �
 ��
 � � ��

Towards a logical foundationof computational complexity – p.28/46

Data: examples

Natural numbers

�� � �����

�	 �� � ��������
Ordinal omega

#� � �����#���

Words, labelled binary trees, and lists:
$� � ��	

���� � �����������	
���

�����������
 ������
� � �����
 ���

Infinite words and trees are also representable.
Towards a logical foundationof computational complexity – p.29/46

From DFAs to cut-free l-designs

A DFA accepting ������:
a

q 0

q 2

q 1

b
a

a , b

b

�� � �������
 �� � ������� 	 ������� 	 �	
�

�� � �������
 �� � ������� 	 ������� 	 �	
��

�� � �������
 �� � ������� 	 ������� 	 �	
�
�

Towards a logical foundationof computational complexity – p.30/46

From DFAs to cut-free l-designs

�� � �������
 �� � ������� 	 ������� 	 �	
�

�� � �������
 �� � ������� 	 ������� 	 �	
��

�� � �������
 �� � ������� 	 ������� 	 �	
�
�

������
���� � ��� �����������
�� � � �

�� �������
��

�� ��� ��
� � � �

��� ��� �
� � � �

��� ��� ��������	
 � � �

�� ����	

��� � Towards a logical foundationof computational complexity – p.31/46

DFAs = f.g. cut-free l-designs

Theorem: DFA �� finitely generated cut-free l-design � :

� accepts � �� �
��

for every � � ��.

Towards a logical foundationof computational complexity – p.32/46

DFAs = f.g. cut-free l-designs

Theorem: DFA �� finitely generated cut-free l-design � :

� accepts � �� �
��

for every � � ��.

Finitely generated cut-free l-designs capture the regular

languages.

Towards a logical foundationof computational complexity – p.32/46

DFAs = f.g. cut-free l-designs

Theorem: DFA �� finitely generated cut-free l-design � :

� accepts � �� �
��

for every � � ��.

Finitely generated cut-free l-designs capture the regular

languages.

Too weak!

Towards a logical foundationof computational complexity – p.32/46

DFAs = f.g. cut-free l-designs

Theorem: DFA �� finitely generated cut-free l-design � :

� accepts � �� �
��

for every � � ��.

Finitely generated cut-free l-designs capture the regular

languages.

Too weak!

To enrich automata, one equips them with stacks.

Towards a logical foundationof computational complexity – p.32/46

DFAs = f.g. cut-free l-designs

Theorem: DFA �� finitely generated cut-free l-design � :

� accepts � �� �
��

for every � � ��.

Finitely generated cut-free l-designs capture the regular

languages.

Too weak!

To enrich automata, one equips them with stacks.

To enrich designs, one equips them with cuts.

Towards a logical foundationof computational complexity – p.32/46

L-designs with cuts

Succesors, Discriminators

Duplicator ��%���. For any finite data design �,

����%����� ���
	���
 ���

Cf. Duplicators in linear �-calculus (with limited rec.)

��%���� � ��&' � � ���� � ����� ����

� � �

�� � �

��� �

��

��%���� � ��&' � � ���� � ����� ����

� � ������ � ('� �� � �� � ��%����

)� �������� �������

Cut is essential for finite generation.

Q: Does ��% duplicate #�?
Towards a logical foundationof computational complexity – p.33/46

L-designs with cuts

Theorem: TM �� finitely generated (cut-ful) l-design � :

� accepts � �� �
���
Proof.

(�) Successors, discriminators, duplicators and the general

recursion scheme are available with cuts.

(�) Krivine’s abstract machine works effectively on finite graph

representations.

Finitely generated cut-ful l-designs capture the r.e. languages.

What about arbitrary data sets?

Towards a logical foundationof computational complexity – p.34/46

Outline

1. Time and space sensitive compositions in lambda calculus

2. What is ludics?

3. Data and computation in ludics

4. Arbitrary data sets

5. Language operators and internal completeness

6. Space compression and focalization

7. Conclusion

Towards a logical foundationof computational complexity – p.35/46

Strong separation for data designs

Böhm’s theorem in lambda calculus: Given � ��	
 �, there is *��

such that *��� �	
 ����� and *��� �	
 �����.

Towards a logical foundationof computational complexity – p.36/46

Strong separation for data designs

Böhm’s theorem in lambda calculus: Given � ��	
 �, there is *��

such that *��� �	
 ����� and *��� �	
 �����.

Separation theorem in ludics: for any (atomic) cut-free �
� ,

� � � iff �
� �� �
� for any �

Towards a logical foundationof computational complexity – p.36/46

Strong separation for data designs

Böhm’s theorem in lambda calculus: Given � ��	
 �, there is *��

such that *��� �	
 ����� and *��� �	
 �����.

Separation theorem in ludics: for any (atomic) cut-free �
� ,

� � � iff �
� �� �
� for any �

Strong separation for finite data designs:

for any finite data design �, there is a counter design �� such

that for any ',

� � ' iff ��
'�

Towards a logical foundationof computational complexity – p.36/46

Strong separation for data designs

Böhm’s theorem in lambda calculus: Given � ��	
 �, there is *��

such that *��� �	
 ����� and *��� �	
 �����.

Separation theorem in ludics: for any (atomic) cut-free �
� ,

� � � iff �
� �� �
� for any �

Strong separation for finite data designs:

for any finite data design �, there is a counter design �� such

that for any ',

� � ' iff ��
'�

“For any � � �� there is a DFA � such that ���� � ���.”

Towards a logical foundationof computational complexity – p.36/46

Strong separation for data designs

Böhm’s theorem in lambda calculus: Given � ��	
 �, there is *��

such that *��� �	
 ����� and *��� �	
 �����.

Separation theorem in ludics: for any (atomic) cut-free �
� ,

� � � iff �
� �� �
� for any �

Strong separation for finite data designs:

for any finite data design �, there is a counter design �� such

that for any ',

� � ' iff ��
'�

“For any � � �� there is a DFA � such that ���� � ���.”

How do we separate an arbitrary set of data designs?

Towards a logical foundationof computational complexity – p.36/46

Strong separation for data sets

Strong separation for sets of finite data designs:

for any set � of finite data designs, there is a counter design

�

� s.t. ' � � iff ��
'.

Towards a logical foundationof computational complexity – p.37/46

Strong separation for data sets

Strong separation for sets of finite data designs:

for any set � of finite data designs, there is a counter design

�

� s.t. ' � � iff ��
'.

�

� �
�
��� � � � ��.

Towards a logical foundationof computational complexity – p.37/46

Strong separation for data sets

Strong separation for sets of finite data designs:

for any set � of finite data designs, there is a counter design

�

� s.t. ' � � iff ��
'.

�

� �
�
��� � � � ��.

Linearity in linear logic: ��	 �� � ��� 	 ���

Towards a logical foundationof computational complexity – p.37/46

Strong separation for data sets

Strong separation for sets of finite data designs:

for any set � of finite data designs, there is a counter design

�

� s.t. ' � � iff ��
'.

�

� �
�
��� � � � ��.

Linearity in linear logic: ��	 �� � ��� 	 ���

Linearity in ludics: ���
�
����������� �
�
��������������

�

�
' �� �����'������ � �

�� �����'������ � � for some � � �

�� ��
' for some � � �

�� ' � ��

Towards a logical foundationof computational complexity – p.37/46

Strong separation for data sets

Strong separation for sets of finite data designs:

for any set � of finite data designs, there is a counter design

�

� s.t. ' � � iff ��
'.

�

� �
�
��� � � � ��.

Linearity in linear logic: ��	 �� � ��� 	 ���

Linearity in ludics: ���
�
����������� �
�
��������������

�

�
' �� �����'������ � �

�� �����'������ � � for some � � �

�� ��
' for some � � �

�� ' � ��

Behaviours are rich enough to capture all sets of finite data.
Towards a logical foundationof computational complexity – p.37/46

Behaviours

Given a set � of l-designs (atomic, of the same polarity),

�
� � �+ � �" � ��"
+��

Forms a Galois connection:

� � �� �� � � ��

Behaviour: � � ���.

Analogue of formulas, types, computability predicates, and

languages.

Fact: Any set of the form ���� is a behaviour.

Towards a logical foundationof computational complexity – p.38/46

Behaviours

Any set � of finite data designs ‘forms’ a behaviour � �
� �����

Any r.e. set � � �� can be expressed as ���� where � is

finitely generated.

Any regular set � � �� can be expressed as ���� where � is

finitely generated and cut-free.

One can apply logical connectives to obtain a new behaviour.

Towards a logical foundationof computational complexity – p.39/46

Outline

1. Time and space sensitive compositions in lambda calculus

2. What is ludics?

3. Data and computation in ludics

4. Arbitrary data sets

5. Language operators and internal completeness

6. Space compression and focalization

7. Conclusion

Towards a logical foundationof computational complexity – p.40/46

Interaction and Construction

Two approaches to define a language

Towards a logical foundationof computational complexity – p.41/46

Interaction and Construction

Two approaches to define a language

By interaction: � � ���� for a machine/automaton � .

Towards a logical foundationof computational complexity – p.41/46

Interaction and Construction

Two approaches to define a language

By interaction: � � ���� for a machine/automaton � .

By construction: ��
 ��
 �
�
�

, etc.

Towards a logical foundationof computational complexity – p.41/46

Interaction and Construction

Two approaches to define a language

By interaction: � � ���� for a machine/automaton � .

By construction: ��
 ��
 �
�
�

, etc.

To define a behaviour

Towards a logical foundationof computational complexity – p.41/46

Interaction and Construction

Two approaches to define a language

By interaction: � � ���� for a machine/automaton � .

By construction: ��
 ��
 �
�
�

, etc.

To define a behaviour

By interaction: ���� for an l-design � .

Towards a logical foundationof computational complexity – p.41/46

Interaction and Construction

Two approaches to define a language

By interaction: � � ���� for a machine/automaton � .

By construction: ��
 ��
 �
�
�

, etc.

To define a behaviour

By interaction: ���� for an l-design � .

By construction: ���
 ���

Towards a logical foundationof computational complexity – p.41/46

Internal completeness

Harmony of two approaches is ensured by internal

completeness:

���
 ���

�
� ����
 �������

The key step when proving full completeness theorem:

� � �Æ �� � interprets a proof of ��

Think of the case

� � �� �

�Æ � �����
 �����
��

Also a key to DFAs = Regular Expressions.

Towards a logical foundationof computational complexity – p.42/46

Outline

1. Time and space sensitive compositions in lambda calculus

2. What is ludics?

3. Data and computation in ludics

4. Arbitrary data sets

5. Language operators and internal completeness

6. Space compression and focalization

7. Conclusion

Towards a logical foundationof computational complexity – p.43/46

Space compression and Focalization

Space compression theorem: based on compression of data

by using more symbols.

������� ��� ��
���
In terms of data designs,

��������������	
���� ��� ����
���	
���

This map can be derived from a general principle of

focalization:

,������� �� ,�����

Towards a logical foundationof computational complexity – p.44/46

Focalization principle

In proof search in linear logic, one has to focus on a formula in

the end sequent:

� ��
 � � ��
 - � *

� ��
��
 �� �- � *�

Towards a logical foundationof computational complexity – p.45/46

Focalization principle

In proof search in linear logic, one has to focus on a formula in

the end sequent:

� ��
 � � ��
 - � *

� ��
��
 �� �- � *�

What happens next? Do we have to change the focus?

Towards a logical foundationof computational complexity – p.45/46

Focalization principle

In proof search in linear logic, one has to focus on a formula in

the end sequent:

� ��
 � � ��
 - � *

� ��
��
 �� �- � *�

What happens next? Do we have to change the focus?

Focalization principle (Andreoli): No! You can continue with the

same focus.

� ��
 �

� ��
 -

� ��
 - � *

� ��
��
 �� �- � *� or

� ��
 �

� ��
 *

� ��
 - � *

� ��
��
 �� �- � *�

Towards a logical foundationof computational complexity – p.45/46

Focalization principle

In proof search in linear logic, one has to focus on a formula in

the end sequent:

� ��
 � � ��
 - � *

� ��
��
 �� �- � *�

What happens next? Do we have to change the focus?

Focalization principle (Andreoli): No! You can continue with the

same focus.

� ��
 �

� ��
 -

� ��
 - � *

� ��
��
 �� �- � *� or

� ��
 �

� ��
 *

� ��
 - � *

� ��
��
 �� �- � *�

Two connectives of the same polarity can be combined

together: �� �- � *� � �� ��
-
*��

Towards a logical foundationof computational complexity – p.45/46

Conclusion

Ludics: general setting for logically analyzing computation

Supports various data, higher order, concurrency

Importance of finite generation and cuts

Arbitrary l-designs: arbitrary sets of finite data

F.g. l-designs: r.e. languages

F.g. cut-free l-designs: regular languages

“Adding stacks to automata = adding cuts to designs”

Uses of logical theorems of ludics (separation, linearity, internal

completeness, focalization)

WIP

Internal/full completeness� DFA = Regular Expr.

Focalization� Space compression.
Towards a logical foundationof computational complexity – p.46/46

	Background
	Background
	Current Status
	Our Ambition
	Our project
	Outline
	Composition of TMs
	Composition of TMs
	Composition of TMs
	Evaluations of lambda terms
	Krivine's Abstract Machine
	Time-space tradeoff in $lambda $-calculus
	Outline
	What is ludics?
	From C & C to Ludics
	Computational Ludics
	large Well-behaved frag. of simply typed $lambda $-calculus
	Towards ludics
	Computational designs
	Normalization 1
	Orthogonality
	Normalization: the general case
	Finite generation
	Finite generation
	L-designs
	Outline
	What are data?
	Data: examples
	From DFAs to cut-free l-designs
	From DFAs to cut-free l-designs
	DFAs = f.g. cut-free l-designs
	L-designs with cuts
	L-designs with cuts
	Outline
	Strong separation for data designs
	Strong separation for data sets
	Behaviours
	Behaviours
	Outline
	Interaction and Construction
	Internal completeness
	Outline
	Space compression and Focalization
	Focalization principle
	Conclusion

