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Background

-

® Logic and type theory. Proofs = Programs.

® Complexity issues arise In
o type checking/inference,
o Vverification,

o normalization, etc.

® |mplicit computational complexity:

Machine-independent, parameter-free characterizations
of complexity classes (such as P)

o -
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°

Background
B

GOdel’'s T + restrictions:
o Safety (Bellantoni-Cook, Leivant, Marion, ...)

o Linearity at higher order (Bellantoni-Niggl-Schwichtenberg,
Hofmann, ...)

o Cons-free (Jones, Kristiansen, ...)

Girard’s F + restrictions:
o Light linear logic (Girard, Asperti, Baillot-T., ...)

o Soft linear logic (Lafont, Gaboardi-Ronchi,
Hofmann-Schopp, ...)

Complexity of simply typed lambda calculus (Schubert)
Complexity of fragments of linear logic (Mairson-T.)

Parallel complexity of proof nets (T.) J
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Current Status

| .

When talking about complexity of proofs and programs ...

L -
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Our Ambition
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Our project

- -

® Explain basic phenomena in computability and complexity from
the view point of logic and type theory.

o -
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Our project

=

® Explain basic phenomena in computability and complexity from
the view point of logic and type theory.

-

1. Reconstruct basic objects of C & C (machines, languages)
as logical objects (proofs, types)

2. Derive C & C theorems as corollaries of (meta)theorems of
logic
3. Take full advantage of generality (various data/higher order)

and type-based reasoning (type isomorphisms/logic
metatheorems)

® Which logic? — Ludics (Girard 2001).

o -
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A L A

Outline

=

Time and space sensitive compositions in lambda calculus
What is ludics?

Data and computation in ludics

Arbitrary data sets

Language operators and internal completeness

Space compression and focalization

Conclusion

-
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Composition of TMs

-

How do you compose two TMs?

v v
v v




Composition of TMs

- .

® Sequential composition My ; M. first simulate M7, then M,

I

M 1 M1:M2

v
v

M2

A 4

® Time efficient, but not space efficient.

o -
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Composition of TMs

- .

® |Interactive composition M ||M-: simulate a dialogue between
M+ and Mo

M1 M1||M2

v 4

M2

® Space efficient, but not time efficient.

o -
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Evaluations of lambdaterms

- .

® |ambda calculus admits a canonical composition:

tou = Ax.t(u(x)).
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Evaluations of lambda terms

- .

® | ambda calculus admits a canonical composition:
tou = Ax.t(u(x)).

® There are various evaluation methods.

® Call-by-value s-reduction

o Simulates TMs with a quadratic time/linear space overhead
(cf. Dal Lago-Martini).
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Evaluations of lambdaterms

- .

® |ambda calculus admits a canonical composition:
tou = Ax.t(u(x)).

® There are various evaluation methods.

® Call-by-value s-reduction

o Simulates TMs with a quadratic time/linear space overhead
(cf. Dal Lago-Martini).

o Composition is time efficient, but not space efficient.

® |[s there a space efficient evaluation method?

o -
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Krivines Abstract M achine
- o

® A pointer machine working on (graphs of) untyped \-terms

® Equipped with environments p (for variables) and stacks = (of
arguments)

(xp, m) — (p(x), ) if £ € Dom(p)
((tu)p, ) — (tp, up: )
(Az.t)p, up’ : 1) — (tplx — up'], w)

® Fact: There is no evaluator that is significantly and uniformly
more space-efficient than (optimized) KAM.

o -
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Time-space tradeoff in A\-calculus

- .

® Compose encodings M7, M5 of TMs M; and Mo:

® CBYV simulates sequential composition M;; M
® KAM simulates interactive composition M; || M-

® Time-space tradeoff shows up in a different way in lambda
calculus.

o -
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N o 0o~ W D

Outline

=

Time and space sensitive compositions in lambda calculus
What is ludics?

Data and computation in ludics

Arbitrary data sets

Language operators and internal completeness

Space compression and focalization

Conclusion

-
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What I1sludics?

- .

® Ludics (Girard 01): pre-logical framework upon which logic is
built and various phenomena are analyzed.

o -
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- .

® Ludics (Girard 01): pre-logical framework upon which logic is
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What I1sludics?

=

Ludics (Girard 01): pre-logical framework upon which logic is
built and various phenomena are analyzed.

Keywords: Monism, existentialism, interaction/orthogonality:

Game Semantics <= Ludics <= Proof Theory
strategies designs proofs
N Jlorthogonality 1
games behaviours types

Orthogonality P_LN: “Players P and N well socialize”

Construction of behaviours: {P}+, Pt =N, Nt =P
“Pair (P, IN) of two player sets form a game.”

-
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From C & C toLudics
=

® Basic concepts and constructions in C & C:
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From C & Cto Ludics
=

® Basic concepts and constructions in C & C:
o Machine M accepts w € ¥
o L(M)={w: M accepts w}
e [ ULy = L(M)
® In ludics:
o M*1w* (orthogonality)
o {M*}+ = L(M) (behaviour)
® a.L1Ub.Ly = (a.L1 Ub.Ly)** (internal completeness)
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From C & Cto Ludics
=

® Basic concepts and constructions in C & C:
o Machine M accepts w € ¥
o L(M)={w: M accepts w}
e L ULy = L(Mp)
® In ludics:
o M*1w* (orthogonality)
o {M*}+ = L(M) (behaviour)
® a.L1Ub.Ly = (a.L1 Ub.Ly)** (internal completeness)

® There is no ontological distinction between M*® and w*°.
1 iIs homogeneous and symmetric.

o -
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Computational Ludics

- .

» Absolute addresses — Term calculus with variable binding

® We introduce a modified version: computational ludics.

» No care of finiteness — Sensitive to finite generation

o Cut-free designs — Cut-ful ones

o -
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Well-behaved frag. of ssmply typed \-calculus
- o

® Types:7t:i=1|T7—T

® Positive terms P and negative terms N are defined by:

L e T1—>...Tn—>L T T
Pt = (N] )NT- ... N™
N7'1—>...’7'n—>b - T ‘ )\x’i'l L. ZC;”PL

® Reduction: the arity n always agrees.

()\xlaznP)Nan — P[Nl/xl,,Nn/xn]

o -
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Towardsludics

- .

#® Designs in ludics:
o Type-free; arity agreement is ensured in another way.
» Infinitary (coinduitive).
o Daimon (immediate termination)
o Additive superimposition: N1 + No + N3 + - --
» Various actions (rather than the single pair \/@)
given by a signature.
® Signature: A= (A, ar)
A'Is a set of names,
ar : A — N gives an arity to each name.

o -
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Computational designs

-

® The set of designs is coinductively defined by:

P = X Daimon

| Q Divergence

| Npla(Ny,...,N,) Proper positive action
N = =x Variable

| D> a(Z,) Py Proper negative action

e wherear(a) =n, Ty =x1,...,Ty

® Y a(Z,).P,is built from {a(Z,).P, }ac 4. COmpare it with:

P = (No)Nan

L N = x|Axy---z,.P J
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Normalization 1

- .

® Designs = Processes in linear w-calculus (Faggian-Piccolo)

o -
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Normalization 1

- .

® Designs = Processes in linear w-calculus (Faggian-Piccolo)

® () allows partial branching:

a(Z).P +b(y).Q = a(Z).P+ b(y).Q+c(2).2 + d(2).2+ - -

o -
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Normalization 1

=

Designs = Processes in linear w-calculus (Faggian-Piccolo)

(2 allows partial branching:

a(Z).P+b(y).Q = a(Z).P +b(y).Q+c(2).Q+d(2).Q+ -
Reduction rule:
> a(xr, ..., xn).Py) |a{Ny, ..., Np) — Py[Ni/x1,...,Np/xy].
Compare it with

()\xlaznP)Nan — P[Nl/xl,,Nn/xn]

-
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Orthogonality
-

® A positive design P is one of the following forms:

z|la(Ny,...,Np) Head normal form
> a(Z,).Py) |a(Ny,...,N,) Cut

o8 Daimon

Y’ Divergence

® Fact: For any closed positive design P,
P —* »xor diverges.
® Orthogonality: Suppose fv(P) C {zo} and fu(N) = 0.

PIN <= P[N/xo| | %

o -
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Normalization: the general case

=

® Head reduction: (Y a(Z,).P,) [a(N,) — P,[N, /7.

® By corecursion, it can be extended to | |:

[P] = & if P
= zla([N1],...,[N.]) if Py z@(Ny, ..., N,);
— 0O If P}
[z] =
[>-a(@a).Pa] = > a(Za).[Pa].

® Non-effective: it works on infinite designs; renaming and
substitution involved.

o -
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Finite generation

- -

® Finite generation: Some infinite |-designs can be obtained from
a finite graph by unfolding:

Unfolding
—

) o

o -

Towards a logical foundationof computational complexity — p.24/41



Finite generation

L, .

Is there any normalization procedure that directly works on
graph representations?

Q.

0

® Krivine’s abstract machine can be adapted to do so.

o -
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L -designs

P is total if P # (. T

T is linear if for any subterm Ny|a(Ny, ..., Ny),
fv(Ny), ..., fu(N,) are pairwise disjoint.

x is identity if it occurs in a bracket Ny|a(Ny,...,z, ..., Np).

L-designs: total, linear, identity-free designs with finitely many
free variables.

-
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Outline

=
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°

What are data?

Examples: integers, words, trees, lists, records, etc.

Data must be:
- structured (eg. list = head + tall)
- linearly duplicable (“linear” = “machine-like”)
- compressable (eg. binary int. — hexadecimal int.)

Fix a unary name 1€ A.
Notation: =%  1a(N) =1 (2).z|a(N)

The set of data designs is coinductively defined by

d ==7Tald,...,d), a € A.

-
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Data: examples

-

® Natural numbers

O.
n+1* = 7suc(n®)

1zero

® Ordinal omega

w® = tTsuc(w®).
® Words, labelled binary trees, and lists:

e = Tnil

aba® = Ta(to(ta(tnil)))
node,(leafy, leaf.)®* = 1a(tb,1¢c)

L #® Infinite words and trees are also representable. J
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From DFAsto cut-freel-designs

- .

A DFA accepting a(ba)*:

Ph = =z <N0>, No = CL(ZE).Pl + b(x)Pg + nil.€2,
P = =z \,<N1>, Ny = a(x)Pg—l—b(x)Po + nil XX,
P, = =z <N2>, Ny = a(a:).Pg + b(CU)PQ + nil.€2.

2\
Towards a logical foundationof computational complexity — p.30/4



From DFAsto cut-freel-designs

=

PP = =« <N0>, No = CL(I).Pl + b(I)PQ + nil.€2,

P = =z \,<N1>, Ny = CL(I)PQ—FZ)(I)PO + nil XX,

P, = =« <N2>, Ny = CL(I).PQ + b(I)PQ + nil.€2.
Pylaba® /x| Py M(x).x|a(ba®) / x|

—  Nola(ba®)
— Py ba® /]
—* Pyla® /) x]
SN

_

Towards a logical foundationof computational complexity — p.31/4
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DFAs=1f.g. cut-freel-designs

- .

® Theorem: DFA M = finitely generated cut-free |-design P:
M accepts w <— Plw®,

for every w € X .
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® Theorem: DFA M = finitely generated cut-free |-design P: T

M accepts w <— Plw®,

for every w € X .

® Finitely generated cut-free |-designs capture the regular
languages.

o -

Towards a logical foundationof computational complexity — p.32/4



DFAs=1f.g. cut-freel-designs

Theorem: DFA M = finitely generated cut-free |-design P: T

M accepts w <— Plw®,

for every w € X .

Finitely generated cut-free |-designs capture the regular
languages.

Too weak!

-

Towards a logical foundationof computational complexity — p.32/4



DFAs=1f.g. cut-freel-designs

Theorem: DFA M = finitely generated cut-free |-design P:
M accepts w <— Plw®,

for every w € X .

Finitely generated cut-free |-designs capture the regular
languages.

Too weak!

To enrich automata, one equips them with stacks.

-

Towards a logical foundationof computational complexity — p.32/4



°

DFAs=1f.g. cut-freel-designs
B

Theorem: DFA M = finitely generated cut-free |-design P:
M accepts w <— Plw®,

for every w € X .

Finitely generated cut-free |-designs capture the regular
languages.

Too weak!
To enrich automata, one equips them with stacks.

To enrich designs, one equips them with cuts.

-
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L -designs with cuts

Succesors, Discriminators

Duplicator Dup|z]. For any finite data design d,

[Dupld]] =t pair(d, d).

Cf. Duplicators in linear \-calculus (with limited rec.)

Dupg(z) = case x =true =
r =false =
Dupn(x) = case x =zero =
r =suc(y) =

Cut is essential for finite generation.

Q: Does Dup duplicate w*?

true ® true
false ® false

Zero  zero
let z1 ® z9 = Dupn(y)

in suc(z1) ® suc(za)

-
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L -designswith cuts

- .

® Theorem: TM M = finitely generated (cut-ful) I-design P:

M accepts w <— Plw®.

® Proof.

(=) Successors, discriminators, duplicators and the general
recursion scheme are available with cuts.

(<) Krivine's abstract machine works effectively on finite graph
representations.

® Finitely generated cut-ful I-designs capture the r.e. languages.

® What about arbitrary data sets?

o -
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Strong separ ation for data designs

- -

#® Bohm'’s theorem in lambda calculus: Given t #g, u, there is ]
such that C|t] =5, Azy.x and Clu] =g, Azy.y.

o -
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such that C|t] =5, Azy.x and Clu] =g, Azy.y.
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Strong separ ation for data designs
-

#® Bohm'’s theorem in lambda calculus: Given t #g, u, there is ]
such that C|t] =5, Azy.x and Clu] =g, Azy.y.

® Separation theorem in ludics: for any (atomic) cut-free N, M,
N=Miff PLN <= P1M forany P

® Strong separation for finite data designs:
for any finite data design d, there is a counter design d¢ such

that for any e,
d=e Iff d°Le.

® “Forany w € ¥* there is a DFA M such that L(M) = {w}.”

® How do we separate an arbitrary set of data designs?

-
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Strong separ ation for data sets

- .

® Strong separation for sets of finite data designs:
for any set D of finite data designs, there is a counter design
D¢s.t.e € Diff D Le.

o -
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Strong separ ation for data sets

- .

® Strong separation for sets of finite data designs:
for any set D of finite data designs, there is a counter design
D¢s.t.e € Diff D Le.

® D°=3{d°:de D}

o -
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Strong separ ation for data sets
-

Strong separation for sets of finite data designs:
for any set D of finite data designs, there is a counter design
D¢s.t.e € Diff D Le.

D¢ = {d°: d e D}.
Linearity in linear logic: f(a 4+ b) = f(a) + f(b)

-
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°

Strong separation for data sets

Strong separation for sets of finite data designs:

=

for any set D of finite data designs, there is a counter design

D¢s.t.e € D iff D¢ Le.

D¢ =S {d°: d € D).

Linearity in linear logic: f(a 4+ b) = f(a) + f(b)
Linearity in ludics: [(>° P;)[N/xol] = > _([P;[IN/x0]])

Dle «—
<
<

<

[D[e/zo]] =&

[d°|e/xp]] =& for some d € D
d°leforsomede D

e € D.

-
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°

Strong separ ation for data sets
-

Strong separation for sets of finite data designs:
for any set D of finite data designs, there is a counter design
D¢s.t.e € Diff D Le.

D¢ = {d°: d e D}.
Linearity in linear logic: f(a 4+ b) = f(a) + f(b)
Linearity in ludics: [(>° P;)[N/xol] = > _([P;[IN/x0]])

Dle <= [D¢e/xp]] ="
< [d|e/xp]] = for some d € D

— d°leforsomed e D

— e € D.

Behaviours are rich enough to capture all sets of finite data. J

Towards a logical foundationof computational complexity — p.37/4



Behaviours
B

Given a set T of I-designs (atomic, of the same polarity),
T ={U:VT € T.TLU}.
Forms a Galois connection:
PC Nt «— NCP*

Behaviour: T = T+,

Analogue of formulas, types, computability predicates, and
languages.

Fact: Any set of the form {P}+ is a behaviour.

-
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Behaviours
.

Any set D of finite data designs ‘forms’ a behaviour D = {D¢}

Any r.e. set L C ¥* can be expressed as {P}+ where P is
finitely generated.

Any regular set L. C ¥* can be expressed as { P}+ where P is
finitely generated and cut-free.

One can apply logical connectives to obtain a new behaviour.

-
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| nter action and Construction

- .

® Two approaches to define a language
» By interaction: L = L(M) for a machine/automaton M.

s By construction: Ly U Ly, L7, etc.

® To define a behaviour
s By interaction: {P}+ for an I-design P.
o By construction: a.D U b.E

o -
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|nternal completeness

=

Harmony of two approaches is ensured by internal
completeness:

a.DUbLE = (a.DUBL.E)L.
The key step when proving full completeness theorem:
P € T° < P interprets a proof of T.

Think of the case

T = D&E
T° = (1.DUw.E)tt
Also a key to DFAs = Regular Expressions. J
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Space compression and Focalization

- .

® Space compression theorem: based on compression of data
by using more symbols.

(0110)g — (12)4.
In terms of data designs,
POTA TR0 YY) — TT(H2(Tnil)).

® This map can be derived from a general principle of
focalization:

a(TB(N))

12

af(N).

o -
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Focalization principle

- .

® |n proof search in linear logic, one has to focus on a formula in
the end sequent:

I_Fl,A F1y, B C
I_Fl,FQ,A(X)(B@O)

o -
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Focalization principle
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In proof search in linear logic, one has to focus on a formula in
the end sequent:

I_Fl,A F1y, B C
I_Fl,FQ,A(X)(B@O)

What happens next? Do we have to change the focus?

Focalization principle (Andreoli): No! You can continue with the
same focus.
-1, B -1, C

1M, A FIy,BpC 1M, A FIy,BpC
|‘F1,F2,A®(B@C) or |—F1,F2,A®(B@C)

-
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Focalization principle

=

In proof search in linear logic, one has to focus on a formula in
the end sequent:

I_Fl,A F1y, B C
I_Fl,FQ,A(X)(B@O)

What happens next? Do we have to change the focus?

Focalization principle (Andreoli): No! You can continue with the
same focus.
-1, B -1, C

1M, A FIy,BpC 1M, A FIy,BpC
|‘F1,F2,A®(B@C) or |—F1,F2,A®(B@C)

Two connectives of the same polarity can be combined J
together: A® (Ba(C)=® (A, B,C).
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Conclusion

=

#® Ludics: general setting for logically analyzing computation
® Supports various data, higher order, concurrency

® |mportance of finite generation and cuts
o Arbitrary I-designs: arbitrary sets of finite data
» Fg. l-designs: r.e. languages
» F.g. cut-free |-designs: regular languages
“Adding stacks to automata = adding cuts to designs”

® Uses of logical theorems of ludics (separation, linearity, internal
completeness, focalization)

o WIP
o Internal/full completeness ~~ DFA = Regular Expr.

L o Focalization ~~ Space compression. J
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