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Abstract

We introduce a systematic procedure to transform large
classes of (Hilbert) axioms into equivalent inference rules
in sequent and hypersequent calculi. This allows for the
automated generation of analytic calculi for a wide range
of propositional nonclassical logics including intermedi-
ate, fuzzy and substructural logics. Our work encom-
passes many existing results, allows for the definition of
new calculi and contains a uniform semantic proof of cut-
elimination for hypersequent calculi.

1. Introduction

Nonclassical logics are often presented by extending
with suitable axioms the (Hilbert) calculi of well known
systems. The applicability/usefulness of these logics, how-
ever, strongly depends on the availability of analytic calculi.
Such calculi, where proof search proceeds by step-wise de-
composition of the formula to be proved, are not only useful
in establishing important properties of corresponding log-
ics, such as decidability or the Herbrand theorem, but also
the key to develop automated reasoning methods.

Since its introduction by Gentzen in [7], sequent calculus
has been one of the preferred frameworks to define analytic
calculi. This framework is however not capable of handling
all interesting and useful logics. A large range of variants
and extensions of sequent calculus have been indeed intro-
duced in the last few decades to define analytic calculi for
logics that seemed to escape a (cut-free) sequent formalisa-
tion; a prominent example being Gödel logic, obtained by
extending intuitionistic logic IL with the prelinearity axiom
�� � �� � �� � ��. An analytic calculus for this logic
was defined by Avron using hypersequents [2] – a simple
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generalization of Gentzen sequents to multisets of sequents.
Since then hypersequent calculi have been discovered for a
wide range of nonclassical logics, e.g. [2, 3, 4, 5, 11]. This
is traditionally done by (i) looking for the “right” inference
rule(s) formalizing the particular properties of the logic un-
der consideration (e.g., Avron introduced the rule �����,
corresponding to the prelinearity axiom) and (ii) proving
cut-elimination (or cut-admissibility) to show that the re-
sulting calculus is analytic. These two steps are usually
tailored to the particular logic at hand, and each calculus
needs its own proof of soundness, completeness and cut-
elimination. This holds even when adding the same rules to
different base calculi (e.g. IL + ����� dealt with in [2], IL
+ ����� - contraction in [4], and IL + ����� - weakening
- contraction in [11]), which might cause a combinatorial
explosion on the number of the papers to be produced.

In this paper we introduce a systematic procedure for
performing step (i) and a uniform (semantic) proof for step
(ii) for a wide range of logics extending ���1, i.e., in-
tuitionistic linear logic without exponentials. This allows
for the automated generation of analytic calculi for a wide
range of nonclassical logics including intermediate, sub-
structural and fuzzy logics.

More precisely, we define a hierarchy – analogous to
the arithmetical hierarchy ����� – over the formulas of
��� and show how to translate the axioms at levels up to
�� (resp. up to ��) into equivalent structural sequent rules
(resp. hypersequent rules). See Figure 2 for examples of
axioms, considered in the literature of intermediate, sub-
structural and fuzzy logics, that fall into these two classes.
When the generated rules satisfy an additional condition or
the base calculus admits weakening, these are further trans-
formed (completed) into equivalent analytic rules, i.e., they
preserve cut-elimination once added to ���. The analyt-
icity of the generated calculi is proved once and for all by

1��� stands for Full Lambek calculus with exchange, see e.g. [8].



extending Okada’s semantic proof of cut-elimination [13] to
hypersequent calculi. The completion procedure sheds also
light on the expressive power and limitations of structural
(hyper)sequent rules.

Our work accounts uniformly for many existing results,
and new ones can be generated in an automated way. For
instance, by applying our procedure a first analytic calculus
is found for Weak Nilpotent Minimum Logic WNM [6] –
the logic of left-continuous �-norms2 satisfying the weak
nilpotent minimum property (Corollary 8.9).

2. Preliminaries

The base calculus we will deal with is the sequent sys-
tem ��� i.e., Full Lambek calculus FL extended with ex-
change (see e.g. [8]). Roughly speaking, ��� is obtained
by dropping the structural rules of weakening (w) and con-
traction (c) from the sequent calculus �� (FLewc, in our
terminology) for intuitionistic logic. Also, ��� is the same
as intuitionistic linear logic without exponentials.

The formulas of ��� are built from propositional vari-
ables �� 	� 
� � � � and the �-ary connectives (constants) �
(unit), � (false), � (true) and � by using the binary logi-
cal connectives � (fusion),� (implication), � (conjunction)
and � (disjunction). 	� and � 
 � will be used as ab-
breviations for � � � and �� � �� � �� � ��. (Our
notation should not be confused with that of linear logic,
where symbol � is used for� and vice versa.)

Henceforth metavariables �� �� � � � will denote formulas,
���will stand for stoups, i.e., either a formula or the empty
set, and ��	� � � � for finite (possibly empty) multisets of
formulas. In this paper we will only consider sequents in
the language of ��� that are single-conclusion, i.e., whose
right-hand side (RHS) contains at most one formula. As
usual, axioms and inference rules are specified by using
metavariables together with metaformulas, i.e., expressions
built from metavariables �� �� � � � by using the logical con-
nectives of ���. See Fig. 1 for the inference rules of ���.

An axiom (scheme) is a metaformula �, which we iden-
tify with a rule � � with 0 premises.

By structural rule we mean any sequent rule, with the
exception of ���� and �����, of the form (� � �)


� � �� � � � 
� � ��


� � ��
�
�

where each 
� is a specific multiset of metavariables al-
lowed to be of both types: metavariables for formulas (�) or
for multisets of formulas (�), and each � � is either empty, a
metavariable for formulas, or a metavariable for stoups (�).
Examples of structural rules are found in Figure 3.

2� -norms are the main tool in fuzzy logic to combine vague informa-
tion.

Notice that a metavariable is used in two ways: as a nota-
tion that stands for (possibly compound) concrete formulas
and as an (atomic) building block for defining axioms and
rules. We do not make a rigorous distinction between them,
relying on the standard practice in our field.

The notion of proof in ��� is defined as usual. Let � be
a set of rules. If there is a proof in ��� extended with �
(�����, for short) of a sequent �� from a set of sequents
, we say that �� is derivable from  in ����� and write
 ������ ��. We write ������ � if � ������ � �.

The logical connectives of ��� are classified into two
groups according to their polarities [1]: ���� ��� (resp.
�������) are positive (resp. negative) connectives for
which the left (resp. right) logical rule is invertible, i.e., the
conclusion implies the premises. E.g. we have for ����:

� ���� � � ��� � � iff ���� ��� � � and ����
���� �.

Connectives of the same polarity interact well with each
other:

(P) ���� � � �
 �� � � � 
 �� �� � ��
 �,
� � �� � ��
 �� � �� � �� � ��.

(N) ���� � � � 
 �� ��� ��
 �� ��� ��
 �,
��� ������
 ��� ����� � ��� ��� ��
 �,
��� � ��� ��
 ��� �� � �� � ��.

(Notice that polarity is reversed on the left hand side of an
implication. For instance, the � on the left-hand side (LHS)
of� in the last equivalence is considered negative.)

Since connectives ���� � have units���� � respectively,
we adopt a natural convention: ���� � ���� (resp. ���� � ��
�� and �� � � ���) stands for� (resp.� and �) if �  �.

We say that two formulas � and � are (externally) equiv-
alent in ��� if � ���� � and � ���� �. Obviously
���� � 
 � implies that � and � are equivalent, while
the converse does not hold due to lack of a deduction theo-
rem. A counterexample is that � and � � � are equivalent
whereas ����� � 
 � � �. In contrast with internal equiv-
alence (i.e. ���� � 
 �), external equivalence is not a
congruence; indeed, � � � and �� � �� � � are not equiva-
lent. If we are allowed to use the modality �� of linear logic,
external equivalence can be internalized: ������
��.

Two rules �
�� and �
�� are equivalent (in ���) if the
relations ��������� and ��������� coincide. In particular,
when the conclusion of �
�� (and resp. of �
��) is derivable
from its premises in�����
�� (resp. �����
��) then �
��
and �
�� are equivalent. The definition naturally extends to
sets of rules.

3. Substructural Hierarchy

To address systematically the problem of translating ax-
ioms into equivalent structural rules in an automated way
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The inference rules of ��� are obtained by dropping ‘� � ’ and removing ��� �, ����.

Figure 1. Inference Rules of ����

we introduce below a hierarchy on the ��� formulas based
on their polarities, which is analogous to the arithmetical
hierarchy �����.

Definition 3.1. For each � � �, the sets����� of (positive
and negative) formulas are defined as follows:

(0) ��  ��  the set of propositional variables.

(P1) ��� and any formula � � �� belong to ����.

(P2) If �� � � ����, then � � �� � � � � ����.

(N1) ��� and any formula � � �� belong to ����.

(N2) If �� � � ����, then � � � � ����.

(N3) If � � ���� and � � ����, then �� � � ����.

An axiom � belongs to �� (resp.��) if this holds when its
metavariables are instantiated with propositional variables.

Example 3.2. 	�� ���� ���� � � ��� (weak nilpotent
minimum [6])� �� while Łukasiewicz axiom ���� ���
��� ��� � ��� �� � ��.
See Figure 2 for further examples.

Theorem 3.3.

1. Every ��� formula belongs to some �� and��.

2. �� � ���� and�� � ���� for every �.

Hence the classes ��, �� constitute a hierarchy, which
we call substructural hierarchy, of the following form:

�� �� �� ��

�� �� �� ��

�

�
�
���

�

�
�
���

�

�
�
���

� � � � � � � ��

�
�
�
���

�
�
�
���

�
�
�
���

� � � � � � � � � ��

It is easy to see that formulas in each class admit the
following normal forms:

Lemma 3.4.

(P) If � � ����, then we have ���� �
 �� � � � � � ��,
where each �� is a fusion of formulas in��.

(N) If � � ����, then ���� � 
 �
�
����� �� � ���,

where each �� is either � or a formula in ��, and each
�� is a fusion of formulas in��.

A formula � is said to be ��-normal if it is of the form
�� � � ��� � � where

� �  � or �� � � � � � �� with each �� a fusion of propo-
sitional variables and

� each �� is of the form
�
������

��� � ��� , where ��� 

� or is a propositional variable, and � �� is a fusion of
propositional variables.

As a consequence of the above lemma, every formula � in
�� can be transformed into a finite conjunction

�
����� ��

of��-normal formulas such that ���� �

�
����� ��.

The lack of weakening in���makes it hard to deal with
formulas in ��. We therefore introduce a subclass � �� of ��
defined as:

1. ��� � � ��

2. If � � �� then � � � � � ��

3. If �� � � � �� then � � �� � � � � � ��.

Henceforth we write ����� for � � �.
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Class Axiom Name Rule (cf. Fig. 3) Reference
�� �� �, �� � weakening ���� ���� [7]

�� � � � contraction ��� [7]
� � �� � expansion ������� [12]
�� � �� knotted axioms (��� � �) �������� [9, 16]��

	�� � 	�� weak contraction ����
�� � � 	� excluded middle ���� [3]

��� �� � �� � �� prelinearity ������� [2]
� �� ���� �� � �� � ��� � �� � �� linearity ����� [2, 4, 11]��

�� 	� � 		� weak excluded middle ��	��� [5]
��

������ �
�
� ��� ��� Kripke models with width � � ������� [5]

�� � ��� � ��� � � � � � ��� � � � � � ���� � ��� Kripke models with � worlds ������� [5]
��: The rule is equivalent to the axiom in FLew.
��: The rules �������� arise by applying the completion procedure in [18] to the rules in [16, 9].
��: The rule ����� is due to [2] (added to ��). Later added to FLew by [4] and to FLe by [11].

Figure 2. Axioms vs (hyper)sequent rules

Lemma 3.5. Every formula in � �� is equivalent to a finite
set of formulas ������� � � � � ������ where each �� is��-
normal.

Proof. We may assume that any formula � � � �� is built
from conjunctions of��-normal formulas by clauses 2 and
3. � can be transformed into the desired sets by applying
the equivalences between

� ���� � ���� � � and the set ���� � �� ��� � ��,

� �� � ���� � � and ���� � �� ��� � ��.

where � is any formula in � ��. To prove these equivalences
we use the fact that ������ ����� � ���� ������� and
���� � ����� � � ��� ���� � � are provable in ���.

Notice that in presence of weakening (i.e., in ����)
Lemma 3.5 holds for every formula in ��, as ����� � 

���.

4. �� and sequent rules

We provide a systematic procedure for transforming any
axiom in �� into a set of equivalent structural rules. The
key observation being

Lemma 4.1. The rule
�� � � � ��

��� � � � � �� � �
��� is equivalent to

each of the rules

�� �� � �� � � � �� � ��

��� � � � � �� � �
����

�� � � 	

��� � � � � �� � 	
����

where ��  �� � � ��� and��� � � � � ��� � are fresh metavari-
ables for formulas.

Proof. The left-to-right direction follows by �����. For in-
stance, assume the premises of �
��. Then ��� � � � � �� � �

follows from �� by �
�. One can then apply ����� to obtain
the conclusion of �
��. For the right-to-left direction we
instantiate �� with �� (  �� � � � � �) and � with �.

Theorem 4.2. Every axiom in �� is equivalent to a finite
set of structural rules.

Proof. By Lemma 3.4, it suffices to consider��-normal ax-
ioms �. Let � be �� � � ��� � � with �� 

�
������

��� �

��� for   �� � � � � �. By the invertibility of �� 
�, �� ��, ����
and Lemma 4.1 follows that �� � � ��� � � is equivalent to
the rule

�� � �� � � � �� � ��

��� � � � � �� � �

with ��� � � � � �� fresh metavariables. The invertibility of
��
�, �� 
�, �� ��, ���� and ��
� allows us to replace the
premises with an equivalent set  of sequents that consist
of metavariables only. If �  �, then remove it from the
conclusion to obtain a structural rule. Otherwise, �  �� �
� � ����. By Lemma 4.1 and the invertibility of ���� follows
that the above rule is equivalent to

� �� � 	 � � � �� � 	

��� � � � � �� � 	

with � fresh metavariable. The claim follows by the invert-
ibility of �� �� and ����.

Example 4.3. Using the algorithm described in the proof of
the theorem above, axiom	���	�� (weak contraction, see
Figure 2) is transformed into an equivalent structural rule as
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follows:

� ��� � ��� �� �� � ����

�� 	 � � � ��

	 �

�� 	 � � �� 	 �

	 �

A further transformation (called completion), described in
Section 6, makes it into the analytic rule ���� in Fig. 3.

5. �� and hypersequent rules

Consider some axiom beyond�� such as weak excluded
middle 	� � 		� and prelinearity �� � �� � �� � ��,
see Fig. 2. Since they are neither valid nor contradictory in
intuitionistic logic, Corollary 7.2 ensures that no structural
rule added to ��� is equivalent to them. These axioms
have been instead formalized in a natural way by structural
rules in hypersequent calculus – a simple generalization of
sequent calculus due to Avron (see [3] for an overview).
We show below that this holds for all axioms in the class � ��
(��, in presence of weakening) and we provide an algorithm
for transforming any such axiom into a set of equivalent
structural hypersequent rules.

Definition 5.1. A hypersequent � is a multiset�� � � � � � ��
where each �� for   �� � � � � � is a sequent, called a compo-
nent of the hypersequent. A hypersequent is called single-
conclusion if all its components are single-conclusion,it is
called multiple-conclusion otherwise.

The symbol “�” is intended to denote disjunction at
the meta-level. (This will be made precise in Defini-
tion 5.2 below.) As sequents are assumed here to be
single-conclusion, hypersequents are likewise assumed to
be single-conclusion.

Like sequent calculi, hypersequent calculi consist of ini-
tial hypersequents, logical rules, cut and structural rules.
Initial hypersequents, cut and logical rules are the same as
those in sequent calculi, except that a “side hypersequent”
may occur, denoted here by the variable �. Structural rules
are divided into two categories: internal and external rules.
The former deal with formulas within sequents as in sequent
calculi. External rules manipulate whole sequents. For ex-
ample, external weakening and contraction rules ��� � and
���� in Figure 1 add and contract components respectively.

Henceforth we will consider ���� the hypersequent
version of ��� (Figure 1). Let ����� indicate the deriv-
ability relation in ����. Note that the “hyperlevel”
of ���� is in fact redundant, in the sense that �����
�� � � � � � �� if and only if for some  � ��� � � � � ��, al-
ready ���� ��.

In hypersequent calculi it is however possible to define
additional external structural rules which simultaneously

act on several components of one or more hypersequents.
It is this type of rule which increases the expressive power
of hypersequent calculi compared to ordinary sequent cal-
culi. Examples of these rules are Avron’s communication
rule ����� and ��	� in Figure 3. E.g., extending the hyper-
sequent version of LJ, that is HFLewc, by

� ����� we get a cut-free calculus for Gödel logic, ax-
iomatized by (any Hilbert system for) intuitionistic
logic IL + (prelinearity), see [2].

� ��	� we get a cut-free calculus for the intermediate
logic LQ axiomatized by IL + (weak excluded mid-
dle), see [5].

More formally, by a hypersequent structural rule (hyper-
structural rule, for short) we mean ��� �, ���� and any
rule, except for ���� and �����, of the form (� � �)


 � ��
� � ��

� � � � 
 � ��
� � ��

�


 � �� � �� � � � � � �� � ��

����

where � is a metavariable that stands for hypersequents,
and 
�����


�
� �


�
� are as in structural rules. Observe that,

with the notable exceptions of ���� and ��� �, each
premise of a hypersequent structural rule contains exactly
one active component 
�

� � ��
�.

Two hypersequent rules � 
�� and � 
�� are equiva-
lent in ���� if the derivability relations �����������
and ����������� coincide when restricted to sequents3 :
 ����������� �� iff  ����������� �� for any set
 � ���� of sequents.

We introduce below an algorithm to transform axioms in
the subclass � �� of �� into equivalent hyperstructural rules.
Let us begin with establishing a connection between the two
derivability relations ���� and �����.

Definition 5.2. We define the interpretation function � �	

as follows:

1. ���� � � � � �� � ��	  �� � � ��� � �.

2. ���� � � � � �� � �	  �� � � ��� � �.

3. ���� � � � ����	  ��	� ��� � � � � � ��
	
����.

Note that our interpretation of “�” differs from that of
[11] due to lack of weakening and linearity.

We obviously have  �����
 �� if and only if
 ������
 �� for any axiom � and any set  � ����
of sequents. However, the next proposition gives us a cru-
cial step to “unfold” an axiom � to a hyperstructural rule in
����.

3The reason for this restriction is that we are primarily interested in
derivability relations on formulas (or at most sequents); hypersequents are
merely a convenient means to obtain analytic calculi. Note that our main
theorem in this section (Theorem 5.6) holds only with this restricted notion
of equivalence.
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Figure 3. Some Known (Hyper) structural rules

Proposition 5.3. For any hypersequent � and any set  �
���� of sequents, we have ���� ����� �� iff �� �	��
 ����� �� iff �� �	� �  ���� ��.

Proof. �� �	�� ���� �� obviously implies �� �	��
 ����� ��, which in turn implies ��� �  ����� �� by
� ������ �	 . For instance when �  �� � � � ��,
we have

� � � � 	

� �
����

� � � � 	
�� �

� ��� � � 	
����

� �
����

� ��� � � �
�� �

� ��� � � 	��
����

� ��� 	 	�� � � ��� 	 	��
�	��

� ��� 	 	��
����

�

To show that ���� ����� �� implies �� �	�� ����
��, we prove by induction on the length of derivation that
���� ����� �� implies �� �	�� ���� �	

� for any
hypersequent ��. The claim then follows since � 	

� implies
�� in ���.

The base case being easy. For the inductive case it is
enough to observe that for each inference rule in ����
with premises � � ��, . . . , � � �� and conclusion� � ��, the
sequent �� � ���	 � � � � � �� � ���	 � �� � ���	 is provable
in ���. For instance we have for the � right rule: (assume
for simplicity that � consists of a single component)
���� ��	 ��� � ��� ��	��� ��

	��� � ��� ��	��

� ��	 ��� � ��� � � ��	��.

Corollary 5.4. For any hypersequent � and any set
 � ���� of sequents, we have  ������ �� iff
 �������
�� �� iff  ������
�� ��.

The key Lemma 4.1 naturally extends to hypersequents.
We state it in a slightly generalized form for later use.

Lemma 5.5. Let ����� � � � ��� be (meta)hypersequents
consisting of metavariables. The hypersequent rule


 � �� � � � 
 � ��


 � � � ��� � � � � �� � �

is equivalent to each of the rules
����
� � � � ��� � �� � � � � � �� � ��

� � � ���� � � � ��� � �

����
� � � � � ���� �

� � � � ��� � � � � ����� �

where
����
� � �  �� � ��� � � � � � � ���, 
� is a fresh

metavariable �� or ��, and
� � is either� � or�� �
with ����� fresh.

Proof. Proceed as the proof of Lemma 4.1. To see that the
third rule implies the first one, instantiate
� �with� �.
The converse direction follows by �����.

Theorem 5.6.

1. Every axiom in � �� is equivalent to a finite set of hyper-
structural rules in����.

2. Every axiom in �� is equivalent to a finite set of hyper-
structural rules in�����.

Proof. 1. By Lemma 3.5, every axiom in � �� is equiva-
lent to a finite set of axioms ������ � � � � � ������ where
��� � � � � �� are ��-normal. By Corollary 5.4, the latter is
equivalent to � �� � � � � � � �� in ����, which is in
turn equivalent to �  �� � � �� � � � � � � ��� with � a
metavariable for hypersequents, by ��� � and instantiation
of � with the empty hypersequent. By applying the pro-
cedure described in the proof of Theorem 4.2 to each com-
ponent of � we obtain a finite set of hyperstructural rules,
which is equivalent to � by Lemma 5.5.

2. Follows by ����� �
 � � �.

Example 5.7. The � �� version of the weak nilpotent mini-
mum axiom (see Example 3.2), i.e.,
�	�� � ����� � �� � � � � � ����
is transformed into the hyperstructural rule ������ as fol-
lows:

�� 
 � � ��� � 	� � � � � 	 � � � 	

�� 
 � �� 	 � � � � 	 � � � 	

�� 
 � � � � � 	 
 � � � 	 � �


 � �� 	 � � � � �

�� 
 � � � � 
 � � � 	 
 � �� 	 � �


 � �� 	 � � � � �
������
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Linearity and the� �� version of the weak law of excluded
middle (see Fig. 2) are transformed into


 � 	 � � 
 � �� Æ


 � �� � � 	 � Æ
������


 � � � � 
 � 	� ��


 � � � � 	 �
�����

6. Rule Completion

As seen in the previous section, all axioms in � �� (and in
presence of weakening in ��) can be transformed into hy-
perstructural rules. These rules however do not always pre-
serve cut admissibility once added to ����. For instance,
HFLewc extended with


 � ���� �


 � �� � ��� �
����

does not enjoy cut admissibility, see [3]. Nevertheless, the
above rule can be transformed into an equivalent one (in
����) which does preserve cut admissibility. The same
applies to any hyperstructural rule when we admit weaken-
ing (see Section 7), or when the rule satisfies the acyclicity
condition below. The purpose of this section is to describe
this transformation (we refer to it as completion), which ex-
tends a similar procedure in [18] that works for suitable se-
quent structural rules in ��, and is analogous to the princi-
ple of reflection in [17].

Definition 6.1. Given a hyperstructural rule


 � ��
� � ��

� � � � 
 � ��
� � ��

�


 � �� � �� � � � � � �� � ��

����

we build its dependency graph !� 
� as follows:

� The vertices of !� 
� are the metavariables for
formulas occurring in the premises � � 
 �

� �
��
�� � � � � � � 


�
� � ��

� (we do not distinguish occur-
rences).

� There is a directed edge � �� � in !�
� if and only
if there is a premise � � 
�

� � ��
� such that � occurs

in 
�
� and �  ��.

A hyperstructural rule � 
� is said to be acyclic if !� 
� is
acyclic.

Example 6.2. The rules ������, ������ and ��	�� in Ex-
ample 5.7 and ��	 � above are acyclic, while this is not the
case for the rule


 � �� �� 	 
 � 	 � �


 � � � 	

1. Preliminary step. Given any hyperstructural rule, we
replace each metavariable � for multisets of formulas (resp.
each metavariable � for stoups), if any, by a fresh metavari-
able �
 (resp. ��) for formulas.

Clearly the original rule implies the new one. The con-
verse also holds because any multiset �  ��� � � � � �� of
formulas (resp. the empty stoup �  �) can be turned into a
single formula Æ�  �� � � ��� (resp. �). Hence given con-
crete instances of the premises of the original rule, one can
first replace a multiset � (resp. the empty stoup) with for-
mula Æ� (resp. �), apply the new rule and later on recover
the multiset � (resp. the empty stoup) by the invertibility of
�� ��, ���� and ��
�.

This step is not needed when the given hyperstructural
rule contains neither � nor �, as in the case of the rules
generated by the algorithms in Theorems 4.2 and 5.6. No-
tice that this step preserves acyclicity, i.e. if the original rule
is acyclic, so is the rule after applying the preliminary step.

Example 6.3. Applied to the rule ��	 � above the prelimi-
nary yields


 � 	�� 	� � �


 � 	� � � � 	� � �
����

2. Restructuring. Given any hyperstructural rule only
containing metavariables for formulas. We replace each
component ���� � � � � �� � �� in its conclusion with
���� � � � ������ � ��� and add ��� premises �� � �� �
���, . . . , �� � �� � ���, �� � ���� � ���,
where ��� � � � ��������� are fresh and mutually distinct
metavariables. Likewise, we replace each component
in its conclusion of the form ���� � � � � �� � � with
���� � � � ��� � � and add � premises �� � �� � ���,
. . . , �� � �� � ���. As a result, we obtain a new rule in
which

(linear-conclusion) each metavariable occurs (at most)
once in the conclusion

(separation) no metavariable occurring on the LHS (resp.
RHS) of a component of the conclusion does occur on
the RHS (resp. LHS) of a premise, and

(coupling) any pair ��� ���� of metavariables associated
to the same occurrence of � always occur together,
namely �� occurs in a premise iff �� does.

Example 6.4. Applied to ������ in Example 5.7, the re-
structuring step yields a new rule ������


 � � � � 
 � � � 	 
 � �� 	 � �


 � �� � 
 ��� 	 
 � 	� � 
 � ��
� �


 � ���� � 	�
� �

while applied to the rule �� �� in Example 6.3 this step yields


 � 	�� 	� � � 
 � �� � 	�

 � ��	� � �� 
 � �� � 	� 
 � ��	� � ��


 � ���	� � �� � ���	� � ��
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When the original rule is acyclic, so is the resulting rule as
we add only metavariables for multisets and stoups. The
equivalence with the original rule is ensured by Lemma 5.5.

3. Cutting. Given any acyclic hyperstructural rule. We
eliminate from the set � of its premises all metavariables
not occurring in the conclusion (we call these variables re-
dundant). The procedure is as follows.

Let � be such a redundant metavariable and �� 
�� � 
�

� � � � � �  � �� be the subset of premises which
have � on the RHS, and ��  �� � 
� � �� � � � � � � �� �
� � " � �� be the set of those which have one or more
occurrences of � on the LHS, where 
� does not contain �.
By acyclicity, � does not appear in 
�

� and �� .
If �  � (resp. �  �), then remove �� (resp. ��) from
�. The resulting rule implies the original one, by instantiat-
ing � with � (resp.�). (This remains true even if ��� are
not in the language.)

Otherwise, let �� be the set of all hypersequents of the
form � � 
� �


�
��
� � � � �
�

��
� �� , where � � " � � and

� � �� � � � � � � �. We replace ����� with �� thus obtain-
ing a new hyperstructural rule. It is clear that the acyclicity
is preserved by this transformation and the number of re-
dundant variables decreases by one. Hence by repeating this
process, we obtain a hyperstructural rule without redundant
variables.

Example 6.5. Applied to the metavariables # and $ of
the rule ������ in the previous example, the cutting step
yields


 � 	� � 
 � 	� 	


 � �� � 
 ��� 	 
 � �� 	�
� �


 � ���� � 	�
� �
������

and applied further on � and �,


 � ����
� �� 
 � 	���
� �

 � ��	�
� �� 
 � 	�	�
� �


 � ���� � 	�
� �
�����

To see that this step preserves equivalence, we show that
the two rules above (������ and �����) are equivalent.
It is clear that the conclusion � � ��	 � � ��� � �
is derivable from the premises of ������ by using �����
and �����. Conversely, consider concrete instances of the
premises of �����. Let Æ� be the fusion of all formulas in
�, and �  Æ� � Æ�, �  Æ� � Æ	. Since �� � � � ��,
�� � � � ��, �� � � � �� and �� � 	 � �� are provable
and � � �� ��� � � is derivable from the premises of
�����, we obtain the conclusion by ������.

We call completed any hyperstructural rule obtained by
applying the above completion procedure (steps 1-3).
Any completed hyperstructural rule satisfies the properties
(linear-conclusion) and (coupling) together with a strength-
ened form of (separation):

(strong subformula property) every metavariable occur-
ring on the LHS (resp. RHS) in a premise also occurs
on the LHS (resp. RHS) of the conclusion.

Example 6.6. The completion of the rule ��	� leads to the
rule


 � ������	� � �� 
 � ������	� � ��


 � ���	� � �� � ���	� � ��

suggested by Mints (see [3]) and equivalent to ����� in
presence of weakening and contraction.

Example 6.7. By applying to the axioms in Figure 2 the
translation of Sections 4 and 5 followed by the completion
procedure, we obtain the known rules in Figure 3 (up to
contraction ��� for ����� and �����).

7 On the power of (hyper)structural rules

If we admit weakening the completion procedure de-
scribed in Section 6 does not need the acyclicity condition
anymore and hence all (hyper)structural rule can be com-
pleted. This observation leads to two results (Corollary 7.2
and Corollary 7.3) that shed light on the expressive power
of single-conclusion (hyper)sequent calculi.

Theorem 7.1.

(a) Any acyclic hyperstructural rule can be transformed
into a completed rule which is equivalent in ����;

(b) Any hyperstructural rule can be transformed into a
completed rule which is equivalent in�����.

Proof. (a) Follows by results in the preceeding section.
(b) Steps 1 and 2 in Section 6 can be applied to any hy-
perstructural rule. As for step 3 (Cutting), all premises in
��,   �� �� � of the form 
� � � � can be simply re-
moved, being already derivable by weakening in �����.
It is easy to see that the resulting rule is equivalent to the
original rule in �����.

The completion procedure for hyperstructural rules out-
lined in Section 6 subsumes completion of structural rules
in sequent calculi. Hence

Corollary 7.2. Any structural rule is either derivable in
Gentzen’s �� or derives every formula in ��.

Proof. Given a structural rule �
�, we apply the completion
procedure to obtain, by Theorem 7.1(b), a completed rule
�
�� equivalent to �
� in ��. If �
 �� has no premises, by
linear-conclusion any formula is provable in ��� �
 �� and
hence in �� � �
�. Otherwise, the conclusion of �
 �� is
derivable from any of its premises by weakening and con-
traction due to the strong subformula property.
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Let ��	 be the hypersequent calculus �����
 �
����� � ����� (see Figure 3) introduced in [5] for three-
valued Gödel logic SM – the strongest intermediate logic,
semantically characterized by linearly ordered Kripke mod-
els containing two worlds.

Corollary 7.3. Any hyperstructural rule is either derivable
in��	 or derives ��	�� in�����, for some � � % .

Proof. First note that both rules


 � ����� � �� 
 � ����� � ��


 � �� � �� � �� � �� � �� �
������

and


 � ��� � � � ��� � �� 

 � ������ � � � ��� � ��������


 � �� � �� � � � � � �� � �� � �� �
������

are derivable in ��	. Indeed ������ follows by
������ ������ ���� ��� � and ����, while ������ is deriv-
able in ��	 by � � � applications of both ��� and
������ with premises � � 
�� � � � �
� � �� and
� � 
�� � � � �
� � �� (� �  � �), followed by several
applications of ������ ���� ��� � and ����.

Given any (hyper)structural rule. By Theorem 7.1(b) it
is equivalent in ����� to a completed rule, say � 
�.
If at least one active component in the premises of � 
�
has empty RHS then � 
� is derivable in ��	 (use
������ ���� ����, ��� and ��� �). Otherwise, we can as-
sume that � 
� has the form


 � � � ��
� � � � 
 � � � ��

�


 � �� � �� � � � � � �� � �� � �
�
� � � � � � � ��

� �

with � � �. We can also assume ��� � � � ��� �
����� � � � ��

�
�� as if e.g. �� �� ����� � � � ��

�
�� then � 
� is

equivalent in ����� to the rule with premises � � �� �
���� � � � � � � �� � ��� and conclusion � � 
� �
�� � � � � � 
� � �� � 
�

� � � � � � � 

�
� � � 
� �.

Let 
�  
�
�� � � � �


�
� and consider the rule � 
��


 � � � ��
� � � � 
 � � � ��

�


 � �� � �� � � � � � �� � �� � �� �

obtained applying to the conclusion of � 
�: ��� �, when
�  � and both ��� and ����, when � & �. Note that
� 
�� is derivable from � 
� in����� and satisfies linear-
conclusion. Two cases can occur:

1. There is a premise � � �� � ��� in � 
�� such that
�� �
�  �. As ��� � � � ��� � ����� � � � ��

�
��, the conclu-

sion of � 
�� is derivable from (some of) its premises using
������ and ���, from which the conclusion of � 
� follows
by several applications of ����� and ���. Hence � 
� is
derivable in ��	.

2. Assume otherwise that each premise � � �� � ���
of � 
�� involves a metavariable in 
�. We instantiate all

metavariables in 
� and those for stoups with �, and all
others with the empty multiset. Then all the premises of
� 
�� are of the form �� � � � � �� � and hence are provable
in �����. By the linear-conclusion property, the conclu-
sion is of the form� � � � � � � � � � �� � � � � � �, from
which � � 	�� is easily derivable in �����.

Corollaries 7.2 and 7.3 can be used to establish negative
results on the transformation of axioms into inference rules.

Example 7.4. No (hyper)structural rule is equivalent to
��� � �� � �� � ��� � �� � �� (Łukasiewicz ax-
iom, see Example 3.2). Indeed this axiom is not valid in
SM (take an evaluation ' in SM, i.e., ' � SM-formulas
� ��� �(�� �� with '�� � ��  � if '��� � '��� and
'�� � ��  '��� otherwise, and assign '���  �(�
and '���  �). Moreover for no finite �, is � � 	��

derivable from ����� extended with Łukasiewicz ax-
iom. This follows from the fact that Corollary 5.4 also
holds for ����� and ���� and from the non validity
of � � 	�� in infinite-valued Łukasiewicz logic L, which
is obtained by adding Łukasiewicz axiom to FLew (take
an evaluation ' in L, i.e., ' � L-formulas � ��� �� with
'�	��  � � '���, '�� � ��  ������ '��� � '��� � ��
and assign '���  �(��� ��).

8. Cut Elimination

We introduce a uniform (and first semantic) proof of cut-
admissibility for any (hyper)sequent calculus defined by ex-
tending ���� with any set of completed rules. Our result
is obtained by extending to hypersequents a powerful se-
mantic technique introduced by Okada (see e.g. [13]) which
proved cut-elimination for (higher order) linear, intuitionis-
tic and classical logics.

Traditional (syntactic) proofs of cut-elimination start
with derivations containing cuts and generate derivations
without cuts. Semantic proofs go instead in the opposite di-
rection; they start with a notion of cut-free provability and
build a model in which cuts are valid.

The latter step is analogous to the process of obtain-
ing the field of reals from the field of rationals � 
�)��� �� �� �� via the Dedekind-MacNeille completion. For
any * � ), define:

*�  �+ � �, � *� , � +�

*�  �+ � �, � *� + � ,�

Then the set �  �* � ) � *  *��� can be thought
of as the set of real numbers extended with �� and or-
dered by inclusion �, and one can naturally embed � into
�  ����� �����, where �� ���� are suitably defined,
by mapping 
 � ) to 
�  
��  
�.
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This construction yields a continuous structure out of a
discontinuous one. In our case, we start with an ‘intransi-
tive’ structure (as � of a sequent is intransitive in the ab-
sence of the cut rule), and obtain a ‘transitive’ one in which
the cut rule is valid. We refer to [15] for further algebraic
account.

Let � be a set of completed hyperstructural rules. We
write ���

������ � if � is cut-free provable in ���� �

�. For a set � of hypersequents, we write ���
������ � if

���
������ � for every � � �.

We denote the set of multisets of formulas by , the
set of sequents by  and the set of hypersequents by!. We
write ! and ! for "! and "!, respectively. The
empty hypersequent in ! and the empty multiset in are
respectively denoted by � and -. Given ������ �	�.� �
 ! and ��� ��/ � � !, we define:

����� Æ �	�.�  ���	�� � .� � !
��������� ��/ �  ���� � � � � / � !

Then � !� Æ� �-� ��� forms a commutative monoid. In
the sequel, we write # �$ �% � � � for subsets of !, and
& �' � � � � for those of !. The binary operations Æ, � and
� are naturally extended: # Æ $  �, Æ + � , � # � + � $�
and similarly for #�& and � � � �.

Furthermore, we define:

#�  �� � ! � �, � # � ���
������ ,���

&�  �, �  ! � �� � & � ���
������ ,���

Notice in particular that if ����� � # (resp. � &�) and
�	 � ��.� � #� (resp. � &), the hypersequent ��	 �
� � � � . is cut-free provable in ����� �.

The two operations � �� and � �� form a so-called
Galois connection between �� !� and ��!�: # �
&� (� & � #�, inducing a closure operator � ���

on �� !�. We have

1. # � #��, & � &��.

2. # � $ � $� � #�, & � ' � '� � &�.

3. #���  #�, &���  &�.

4. #�� Æ $�� � �# Æ $���.

The last property makes � ��� a nucleus [8]. Let us denote
by ) the set of all closed sets w. r. t. � ��� and define

# * $  �# � $���� 0  �� � � �����
# + $  �# Æ $���� 1  ��0� ������
# �Æ $  �+ �  ! � �, � # �, Æ + � $� .

Lemma 8.1 ([14]). �  �)���*�+��Æ� !� ���� 1� 0�
is a bounded pointed commutative residuated lattice.
Namely,

� �)���*� !� ���� is a lattice with greatest element
 ! and least element ���;

� �)�+� 1� is a commutative monoid;

� for any # �$ �% � ), # + $ � % (� # � $ �Æ % .

0 is just a point and there is no condition on it. Bounded
pointed commutative residuated lattices, also known as
/1�-algebras, give rise to an algebraic semantics for ���
(see [8]). Hence we can interpret our formulas in �.

A valuation on � is a function � �� that maps each
propositional variable � to a closed set �� � ). It can be
naturally extended to arbitrary formulas. If �  ��� � � � � ��
(resp. �  �), then ��  ��� Æ � � � Æ �

�
� (resp. ��  ��).

If � (resp. �) is empty, then ��  1 (resp. ��  0). We
interpret a sequent �  � � � by ��  ��������, and
a hypersequent �  �� � � � � � �� by ��  ��� � � � � � �

�
�.

If � is empty, then ��  ���. Notice that �� and �� are
subsets of!.

Our model supports ‘focusing’ of a component in a hy-
persequent:

Lemma 8.2. ���
������ �� � � � ��� if and only if

�0���� � ���Æ��, where �0���� denotes the set ��0�.� �
. � ���. In particular when � is empty, we have
���
������ ��� ��� if and only if �0� �� � �� �Æ��.

Proof. ��� Let �0�.� � �0����, , � �� and � � ���.
Then ,�� � . belongs to �� � � � ���, and so is cut-
free provable. Since ,�� � .  ��0�.� Æ ,���, we have
�0�.� Æ , � ����  ��, and hence �0�.� � �� �Æ ��.
The converse direction is also easy.

Theorem 8.3 (Soundness). Let � �� be a valuation on �.
For any hypersequent �, ������� � implies ���

������

��. Hence ������� �� � implies �0� �� � �� �Æ��.

Proof. By induction on the length of derivation. The iden-
tity axiom, cut and logical rules are dealt with by Lemmas
8.1 and 8.2. For instance, when the derivation ends with an
instance of (cut):

� � �� � � � ��	� �

� � �� �

the induction hypothesis together with Lemma 8.2 yields
�0���� � �� �Æ �� and �0���� � �� Æ	� �Æ ��. Hence
�0���� Æ �� � �� and �0���� Æ �� � 	� �Æ ��. From
this, we derive �0���� Æ �0���� � �� Æ 	� �Æ ��. Since
�0���� Æ �0����  �0�������  �0� �������, Lemma 8.2
yields ���

������ �� � � � ��	 � ���. By ����, we

obtain ���
������ �� � ��	� ���.

Suppose now that the derivation ends with an instance of
a completed hyperstructural rule �
� � �. For simplicity,
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we assume that it is of the form:

� � �� � � � � � ��

� � ��� � � � ������ � � ����� � � � ��� �

By the coupling and strong subformula properties, each � �

must be either of the form (1) ��� � � � � ���� �� � �, or of
the form (2) ��� � � � � ���� � with � � �� � � � � � � �.

Now, let /� � ��, �	��.�� � ���, . . . , �	��.�� �
���, ����/�� � �� and ��� � ��/�� � ���. Our pur-
pose is to show that

. � 	�� � � � �	���� � � 	���� � � � �	� �

is cut-free provable in ���� � �, where . 
�/� � /� � /� � .� � � � � �.�� and �  �����.

For each � �  � �, let ���  	�� � � � � �	�� �� � �
and .�

�  �/� � /� � /� � .�� � � � � � .�� � if �� is of
type (1) above, and � ��  	�� � � � � �	�� � and .�

� 
�/� � .�� � � � � � .�� � if �� is of type (2). It is not hard
to see that

. � ��� � � � . � ���
. � 	�� � � � �	���� � � 	���� � � � �	� �

is a correct instance of �
�; notice in particular that there
is no matching constraint for the conclusion because of the
linear-conclusion property.4 Since .�

� � �
�
� � �� � ���

� for
every � �  � �, the induction hypothesis and ��� � imply
that the conclusion is cut-free provable.

Let us now consider a valuation given by ��  ��� ����.
Under this specific valuation, we have the following form
of Okada’s lemma [13]:

Lemma 8.4. For any formula �, ��� �� � �� � �� �� ���.

Proof. By induction on the structure of �. The case �  �
follows by the identity axiom.

Suppose that �  � � �. To show that �� � �� �� �
�� �Æ ��, let ����� � �� and �	 � ��.� � ���. The
induction hypotheses �� � � � �� ��� and ��� �� � ��

imply that � � � � � and ��	 � � � . are cut-free
provable. Hence so is �� � � ��	 � � � � � . . This
proves �� � �� �� � �� �Æ ������  �� �Æ ��.

To show that ���Æ�� � � � � � �� ���, let ����� �
�� �Æ ��. The induction hypothesis ��� �� � �� implies
������� � �� � �� �� ���. Hence ��� � � � � is cut-
free provable and so is � � � � � � �. This proves the
claim. The other cases are similar.

Theorem 8.5 (Completeness). For any hypersequent �,
we have� � �� under the valuation ��  ��� ����. Hence
if �0� �� � �� �Æ ��, then � � � is cut-free provable in
������.

4It is instructive to try to prove soundness for �������� � (see Sec-
tion 6). The argument would break down precisely at this point, due to
lack of the linear-conclusion and coupling properties.

Proof. For any sequent �  �� � ��, we have ��� �� �
�� and �� � � � �� ��� by Lemma 8.4 (and by the
definition of 0 when � is empty). The latter implies � �
�� �� � ���, hence � � � � ��, and so � � �� for any
hypersequent �.

Corollary 8.6 (Uniform cut-elimination). Let � be a set
of completed hyperstructural rules. If ������� �, then �
is cut-free provable in ������.

Proof. Follows by Theorems 8.3 and 8.5.

Remark 8.7. The lattice reduct of the algebra � is com-
plete. Hence Corollary 8.6 can be easily extended to predi-
cate logics. Extensions to higher order logics and noncom-
mutative ones are also easy.

Corollary 8.8 (Uniform algebraic completeness). Sup-
pose that � is equivalent in ���� to a set K of axioms.
A formula � is valid in every /1�-algebra satisfying 2 if
and only if � is provable in ������.

Proof. (�) Since ������� 2, Theorem 8.3 implies that
� satisfies 2. Hence by assumption �0� �� � ��. The
claim follows by completeness. (() ������� � implies
������ �. The claim then follows by the soundness of
���.

To illustrate the use of our results, let WNM be the fuzzy
logic defined in [6] as FLew + (prelinearity) + (weak nilpo-
tent minimum) (see Example 3.2). Theorems 5.6, 7.1(b)
and Corollary 8.6 automatically yield:

Corollary 8.9. The hypersequent calculus obtained by ex-
tending HFLew with ����� and the rule ����� of Exam-
ple 6.5 is a cut-free calculus for WNM.

9. Conclusion

We introduce an algorithm that generates equivalent
structural rules, in sequent and hypersequent calculi, from
a large class of (Hilbert) axioms. The key idea for deter-
mining when this is possible is the identification of a hierar-
chy of formulas �����– similar to the arithmetic hierarchy
�����– which keeps track of polarity alternation (cf. [1]).
We show how to transform

1. any axiom in �� into an equivalent set of (sequent)
structural rules, and

2. any axiom in � �� (� ��) into an equivalent set of hy-
perstructural rules.

If the generated rules are acyclic, they are further trans-
formed (completed) into equivalent analytic rules. This also
holds when the base calculus contains weakening, in which
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case the automated transformation of axioms into equiv-
alent sets of analytic hyperstructural rules applies to the
whole class ��.

Every hypersequent calculus defined by extending
���� with a set of completed rules is shown to enjoy cut-
admissibility, via a uniform and semantic proof (the first
such for any hypersequent calculus).

Although some particular formulas beyond �� (resp. ��)
can be captured by multiple-conclusion (hyper)sequent cal-
culi, as in the case of weak excluded middle in Gentzen LK
calculus for classical logic or of Łukasiewicz axiom (see
Example 7.4) in the hypersequent calculus for Łukasiewicz
logic in [10], we conjecture that the expressive power of
single-conclusion sequent (resp. hypersequent) structural
rules is limited to�� (resp. ��) formulas.

We conclude the paper by stating the challenging ques-
tion of identifying the level of generality, beyond hyperse-
quents, appropriate for dealing, in a uniform way, with ax-
ioms at levels higher than ��.
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