
Labelled Tableau Calculi Generating Simple Models for

Substructural Logics∗

Kazushige Terui†

Department of Philosophy, Keio University
E-mail: terui@abelard.flet.keio.ac.jp

Abstract

In this paper we apply the methodology of Labelled Deductive Systems to the tableau
method in order to obtain a deductive framework for substructural logics which incorpo-
rates the facility of model generation. For this special purpose, we propose new labelled
tableau calculi TL and TLe for two substructural logics L (essentially the Lambek calcu-
lus) and Le (the multiplicative fragment of intuitionistic linear logic). The use of labels
makes it possible to generate countermodels in terms of a certain very simple semantics
based on monoids, which we call the simple semantics. We show that, given a formula C
as input, every nonredundant tableau construction procedure for TL and TLe terminates
in finitely many steps, yielding either a tableau proof of C or a finite countermodel of C
in terms of the simple semantics. It shows the finite model property for L and Le with
respect to the simple semantics.

1 Introduction

In this paper we apply the methodology of Labelled Deductive Systems (LDS, [Gab96]) to the
tableau method ([Smu68], [Fit87]) in order to obtain a deductive framework for substructural
logics which incorporates the facility of model generation. Gabbay and D’Agostino ([DG94],
[Gab96]) combine LDS with the classical analytic deduction system KE ([DM94]) and propose
a labelled tableau framework LKES for substructural logics1. In contrast with [DG94] which
aims at giving a general framework of analytic deduction for a wide range of logics, we
introduce our labelled tableau framework for the special purpose of generating countermodels
for some specific substructural logics (as we discuss in Section 6). We believe that our work
opens another possibility of applying LDS to analytic deduction.

Model generation plays an important role in automated reasoning. Given a conjecture C,
the most succinct way to refute C would be to show a counterexample, or a countermodel,
of C. Moreover,a countermodel tells us something about what is wrong in C, and therefore
helps us improve the original conjecture C to a more reasonable one. By a model generation
procedure we mean a systematic procedure to generate a countermodel for a given conjecture

∗This work was partially supported by the Spinoza project ‘Logic in Action’ at ILLC, the University of
Amsterdam.

†Research Fellow of the Japan Society for the Promotion of Science.
1[DG94] distinguishes their framework from the tableau method, while [Gab96] calls it tableaux. We follow

the latter usage.

1

C. For such a procedure to be of any use in practice, it should at least satisfy the following
requirements;

(i) it should yield a countermodel in terms of a sufficiently simple semantics, and

(ii) it should yield a finite, or at least finitely representable, countermodel if there exists
any; in particular, for logics which have the finite model property it should always yield
a finite countermodel when applied to an invalid conjecture2.

The purpose of this paper is to give a deductive framework for substructural logics with the
facility of model generation, that is, a deductive framework which offers not only a proof
construction procedure but also a model generation procedure which meets the above re-
quirements.

It is well known that the tableau method directly offers such model generation procedures
for a wide range of logics, including classical logic, intuitionistic logic, and some modal logics
(see [Fit83] for exposition). Hence it is natural to employ the tableau method for our purpose.
Several tableau calculi have been proposed for substructural logics; for example [MB79] for
relevance logic and [MMB95] for linear logic. However, their calculi do not have the model
generation facility.

To develop a suitable framework for our purpose, we make use of the LDS methodology.
According to the LDS view, the basic units of deduction are not just formulas but labelled
formulas, and the labels are used to incorporate some metalevel information such as semantics
and pragmatics into syntax. In this paper we employ two specific sets of labels. Their roles
are twofold.

Firstly, the labels allow us to generate countermodels in terms of a sufficiently simple
semantics. Labels are often used to prove a completeness theorem with respect to a cer-
tain simple semantics to which the Lindenbaum-Tarski method cannot apply (e.g., [Bus86],
[Kur94], [Pan94], [OT98]). Our labels play the same role as in those works; indeed, our sets
of labels are direct descendants of Buszkowski’s one ([Bus86]).

Secondly, the labels establish a tight correspondence between our labelled tableaux and
bottom-up proof search trees of the sequent calculus. The idea is to introduce a certain
condition on the labels and to identify a set of labelled formulas whose labels satisfy the
condition with a sequent. This enables us to view a tableau as representing (a part of) a
proof search tree of the sequent calculus. Since all the logics considered in this paper have
the property that all proof search trees are finite, the correspondence gives us an assurance
that every nonredundant tableau construction procedure terminates in finitely many steps.

In this paper we start our investigation with two basic substructural logics L (the Lambek
calculus [Lam58] which allows the empty antecedent) and Le (the multiplicative fragment of
intuitionistic linear logic [Gir87][Tro92]). The reason for our choice of L and Le is that these
logics are known to be complete with respect to a certain extremely simple semantics based
on monoids, which we call the simple semantics ([Bus86]), and they are also known to have
the finite model property ([OT]). Hence, they provide a good starting point for the study of
model generation for substructural logics in general. The syntax and the semantics are given
in Section 2.

2One might further require that a reasonable model generation procedure should yield a countermodel
which is minimal in some sense (e.g., [Hin88], [BY96] for first order classical logic). However, the study of
model generation for substructural logics has just begun, and the notion of minimality is difficult to state for
the models of substructural logics. Hence, we are not concerned with the minimality requirement in this paper.

2

In Section 3 we introduce the labelled tableau calculi TL and TLe. In Section 4, we prove
(i) the equivalence of L (Le, resp.) and TL (TLe, resp.), and (ii) the completeness of TL
(TLe, resp.) with respect to the finite simple models (the finite commutative simple models,
resp.). During the proof we show that given a formula C as input every nonredundant tableau
construction procedure terminates in finitely many steps, yielding either a closed tableau for
C or a tableau for C which contains an open completed branch; from the latter we can
construct a finite countermodel of C in terms of the simple semantics. The significance of our
result is, in the author’s opinion, as follows;

1. From the practical point of view, the result shows that one can quite easily give a
decision procedure for TL and TLe which yields either a proof or a finite countermodel
for every formula C. Indeed, every nonredundant tableau construction procedure serves
as such a decision procedure. Thus we claim that our framework embodies the model
generation facility very naturally.

2. From the theoretical point of view, the result shows that L (Le, resp.) has the finite
model property with respect to the simple semantics (the commutative simple semantics,
resp.). The finite model property has already been shown for these logics in [OT]3.
There, however, the property is shown with respect to the phase semantics, which
properly extends the simple semantics with some closure operations. Hence the result
of the present paper may be still of theoretical importance by itself (see Remark 2.1
below).

In Section 5 we discuss some extensions of TL and TLe. In particular, it is mentioned
that TL and TLe can be extended with the weakening (monotonicity) rule if we allow a
slightly complicated semantics (with partial orderings on monoids).

As mentioned above, there is another labelled tableau framework LKES of [DG94]. We
do not claim that our framework is superior to LKES for every purpose, but we do claim
that our framework works much better for the purpose of generating countermodels for L and
Le. To make the point clear we compare our framework with LKES in Section 6.

2 Preliminaries

In Subsection 2.1 we give the syntax of two sequent calculi L and Le, and introduce the
simple semantics. In Subsection 2.2 we define the signed formulas and the uniform notation
for them. Then, we introduce signed sequent calculi L’ and L’e, which will be used in later
sections.

2.1 Syntax of L and Le and the Simple Semantics

We assume that an infinite set Atom of atomic formulas is given. The set Form of formulas
is defined by

Form ::= Atom | Form ⊗ Form | Form −◦ Form| Form◦−Form.

Lists of formulas are denoted by Γ,∆, etc. A sequent is of the form Γ � C.
3For the implicational fragment of Le, Buszkowski[Bus96] shows the finite model property result. [OT]

gives more general results for a wide range of substructural logics with multiplicative/additive conjunctions
and additive disjunction.

3

(i) A � A
Identity

∆ � A Γ1, A,Γ2 � C

Γ1,∆,Γ2 � C
Cut

Γ1, A,B,Γ2 � C

Γ1, A ⊗ B,Γ2 � C
⊗L

A,Γ � B

Γ � A −◦ B
−◦R Γ, A � B

Γ � B◦−A
◦−R

Γ1 � A Γ2 � B
Γ1,Γ2 � A ⊗ B

⊗R
∆ � A Γ1, B,Γ2 � C

Γ1,∆, A −◦ B,Γ2 � C
−◦L ∆ � A Γ1, B,Γ2 � C

Γ1, B◦−A,∆,Γ2 � C
◦−L

(ii) Γ1, A,B,Γ2 � C

Γ1, B,A,Γ2 � C
e

Table 1: Inference Rules of L and Le

Sequent calculus L (essentially the Lambek calculus [Lam58]) is defined by the inference
rules in Table 1 (i) 4. Sequent calculus Le (the multiplicative fragment of intuitionistic linear
logic [Gir87][Tro92]) is obtained by adding the exchange (permutation) rule e in Table 1 (ii)
to L. Note that in Le, A −◦ B and B◦−A are mutually derivable.

Now we describe the simple semantics. It is called GS1 in [Bus86], a variant of the
generalized standard (GS) semantics for the Lambek calculus. It is also called the semantics
of powerset residuated monoids over monoids in [Bus97]. In [OT98] the commutative simple
semantics is called the naive phase semantics, because it is precisely the intuitionistic phase
semantics ([Tro92]) without closure operations.

A simple model (M,v) consists of a monoid M = (M, ·, ε) with a valuation v which maps
each atomic formula to a subset of M . A simple model (M,v) is said to be commutative if
M is commutative. A valuation v is extended to non-atomic formulas by
• v(A ⊗ B) = {x · y|x ∈ v(A), y ∈ v(B)},
• v(A −◦ B) = {y|∀x ∈ v(A), x · y ∈ v(B)},
• v(B◦−A) = {y|∀x ∈ v(A), y · x ∈ v(B)}.
We say that B1, . . . , Bn � A is satisfied in (M,v) if v(B1 ⊗ · · · ⊗ Bn) ⊆ v(A). We also say
that A is satisfied in (M,v) if ε ∈ v(A).

Remark 2.1 One obtains a GS-model if a monoid M in the above definition is replaced
with a semigroup. The completeness of the Lambek calculus (L, resp.) with respect to the
GS-models (the simple models, resp.) is due to Buszkowski ([Bus86]). The completeness of
Le with respect to the commutative simple semantics can be proved essentially in the same
way.

A GS-model (M,v) is called a language model (L-model) if M is a free semigroup. Pentus
([Pen94]) refines Buszkowski’s result by showing that the Lambek calculus is complete with
respect to the L-models. But, of course, every free semigroup is infinite, hence one cannot

4One obtains the original Lambek calculus in [Lam58] if we add the restriction that Γ should not be empty
in −◦R and ◦−R. All the results of this paper can be easily extended to this original calculus.

4

(i) TA,FA
Identity

Γ, FA TA,∆
Γ,∆ Cut

U,Γ
Γ, U

Cyclic Shift

Γ, TA, TB

Γ, TA ⊗ B
⊗T

Γ, FB, TA

Γ, FA −◦ B
−◦F Γ, TA, FB

Γ, FB◦−A
◦−F

Γ, FB FA,∆
Γ, FA ⊗ B,∆ ⊗F

Γ, FA TB,∆
Γ, TA −◦ B,∆ −◦T Γ, TB FA,∆

Γ, TB◦−A,∆ ◦−T

(ii) Γ, V, U,∆
Γ, U, V,∆

e

Table 2: Inference rules of L’ and L’e

hope to obtain any finite model property result. In this paper we refine Buszkowski’s result
in another direction, that is, we show that L (Le, resp.) is complete with respect to the
finite simple models (simple commutative models, resp.). We can also show that the Lambek
calculus is complete with respect to the finite GS-models in the same way.

2.2 Signed Formulas, Uniform Notation and Signed Sequent Calculi L’ and
L’e

A signed formula is an expression either of the form TA or of the form FA where A ∈ Form.
Signed formulas are denoted by U, V, etc. By means of signed formulas, we may introduce
alternative formulations of L and Le. A signed sequent is a list of signed formulas U1, . . . , Un

where exactly one Ui is signed F . A signed sequent TA1, . . . , TAk, FB, TC1, . . . , TCl naturally
corresponds to sequent C1, . . . , Cl, A1, . . . , Ak � B. We define two signed sequent calculi L’
and L’e in which the basic units of deduction are signed sequents. L’ is defined by the
inference rules in Table 2 (i), where Γ and ∆ denote lists of signed formulas. L’e is obtained
by adding e to L’.

It is easily seen that every inference rule yields a signed sequent (i.e., a list which contains
exactly one formula signed F) given signed sequent(s) as premise(s). The following proposition
is easily shown.

Proposition 2.1
(1) A is provable in L if and only if FA is provable in L’.
(2) A is provable in Le if and only if FA is provable in L’e.

We make use of Smullyan’s uniform notation ([Smu68]) for the signed formulas. Non-
atomic signed formulas fall into two groups, the α formulas (of the form TA⊗B or FA−◦B
or FB◦−A) and the β formulas (of the form FA ⊗ B or TA −◦ B or TB◦−A). For each α
formula (β formula, resp.) two components α1 and α2 (β1 and β2, resp.) are defined as in
Table 3. Note that these components are defined in such a way that the logical inference rules
(⊗T,⊗F,−◦T,−◦F, ◦−T,−◦F) in Table 2 can be summarized as

5

α α1 α2 β β1 β2

TA ⊗ B TA TB FA ⊗ B FB FA
FA −◦ B FB TA TA −◦ B FA TB
FB◦−A TA FB TB◦−A TB FA

Table 3: Uniform Notation

Γ, α1, α2

Γ, α
α

Γ, β1 β2,∆
Γ, β,∆

β.

3 Labelled Tableau Calculi TL and TLe

In Subsection 3.1 we define two specific sets of labels. Using them, two labelled tableau calculi
TL and TLe are defined in Subsection 3.2.

3.1 Labels

In this subsection we define two sets L and Lcom of labels. L is a monoid and serves as the
labels for TL tableau calculus, while Lcom is a commutative monoid and serves for TLe.
L and Lcom have their origin in Buszkowski’s ND-terms ([Bus86]) which are used to set up
a certain labelled natural deduction calculus for the Lambek calculus (see also [Bus97] for
the explanation). Pankrat’ev[Pan94] exploits Buszkowski’s labels to show the completeness
of L with respect to a certain subclass of relational models. Two fundamental lemmas stated
below (Lemma 3.1 and Lemma 3.2) are essentially due to [Bus86] and [Pan94], respectively.

Definition 3.1 Let N be the set of natural numbers. The set B is defined as follows;
• ε, � ∈ B;
• a ∈ B and i ∈ N, then (a, i)1, (a, i)2 ∈ B (i is called an index);
• if a ∈ B and b ∈ B then (ab) ∈ B.

Let ≡ be the least congruence relation on B satisfying the following;
(assoc) a(bc) ≡ (ab)c;
(unit) εa ≡ a ≡ aε,
and let ≡com be the least congruence relation on B satisfying (assoc), (unit) above and
(com) (ab) ≡ (ba).
These relations induce two quotient structures on B, B/≡ and B/≡com, respectively. In the
sequel, elements of B/≡ and B/≡com are also denoted by a, (a, i)1, ab, etc., and unneccessary
parentheses are sometimes omitted.

Let 	→ be the least binary relation on B satisfying the following;
• (b, i)1(b, i)2 	→ b;
• If b 	→ b′ then (b, i)j 	→ (b′, i)j for j ∈ {1, 2}, (ab) 	→ (ab′) and (ba) 	→ (b′a).
The reflexive transitive closure of ≡ ◦ 	→ ◦ ≡ is denoted by 	→∗ (here ◦ means the composition
of two relations), and similarly, the reflexive transitive closure of ≡com ◦ 	→ ◦ ≡com is
denoted by 	→∗

com. 	→∗ (→∗
com, resp.) may be regarded as relation on B/ ≡ (B/ ≡com,

resp.).

6

α-expansion rule β-expansion rule Closure condition
α :a

α1 : (a, i)1
α2 : (a, i)2

β :b
β1 :b • c β2 :a • b

TA :a
FA :b
×

where i is a fresh index. where a • b • c is total. where a • b is total.

Table 4: Tableau Expansion Rules and Closure Condition

Lemma 3.1 (cf. [Bus86])
(1) 	→∗ is confluent and terminating on B/≡;
(2) 	→∗

com is confluent and terminating on B/≡com.

Proof. (1) is essentially equivalent to Lemma 2 and Lemma 3 of [Bus86]. (2) can be shown
similarly.

As a corollary, every a ∈ B/ ≡ has a unique normal form a• ∈ B/ ≡. Similarly, every
a ∈ B/ ≡com has a unique normal form a• ∈ B/ ≡com. Let us denote the set of terms
in B/ ≡ (resp. B/ ≡com) which are in normal form by L (resp. Lcom). Write a • b to
denote (ab)•. Then it holds that ε • a = a • ε = a, (a • b) • c = a • (b • c) both for L and
for Lcom, and that a • b = b • a for Lcom. Therefore (L, •, ε) (resp. (Lcom, •, ε)) forms a
monoid (resp. a commutative monoid). Elements of L and Lcom are called TL-labels and
TLe-labels, respectively.

Definition 3.2 A TL-label (TLe-label, resp.) a is said to be total if for some TL-labels
(TLe-labels, resp.) b and c, b1 • b2 = � and a = b2 • b1.

It holds by definition that a TLe-label a is total only if a = �.
The following lemma is useful when proving the soundness of our labelled tableau calculi

(Theorem 4.1).

Lemma 3.2 (cf. [Pan94]) For a1, a2, b, c ∈ L, a1 •b•a2 = a1 •c•a2 implies b = c. The same
property holds for Lcom.

Proof. See Lemma 3 of [Pan94].

3.2 Labelled Tableau Calculi TL and TLe

A TL-labelled signed formula (TLe-labelled signed formula, resp.) is of the form U :a where a
is a TL-label (TLe-label, resp.) and U is a signed formula. A list of labelled signed formulas
U1 : b1, . . . , Un : bn(n ≥ 0) is abbreviated as Γ : b, where Γ = U1, . . . , Un and b = b1 • · · · • bn.
We assume that the empty list ∅ is labelled as ∅ :ε.

A TL-tableau (a TLe-tableau, resp.) is a rooted tree whose nodes are labelled with TL-
labelled signed formulas (TLe-labelled signed formulas, resp.) which is constructed according
to the tableau expansion rules in Table 4. The tableau expansion rules and the closure
condition are common in TL and TLe. The difference of TL-tableau and TLe-tableau is
reduced to that of L and Lcom. The formal definition follows.

7

Definition 3.3 Let C be a formula. The set of TL-tableaux for C is defined as follows;

1. The tree with a single node labelled with FC : � is a tableau for C (called the initial
tableau for C);

2. Suppose that T is a tableau for C and θ is a branch of T in which a TL-labelled signed
formula α :a occurs. If T ′ results from T by adding a node to the end of θ labelled with
α1 : (a, i)1 and another node after that labelled with α2 : (a, i)2 where i is an index which
does not occur on θ, then T ′ is a tableau for C.

3. Suppose that T is a tableau for C and θ is a branch of T in which a TL-labelled signed
formula β : b occurs. Suppose also that a, c are labels such that a • b • c is TL-total.
If T ′ results from T by adding left and right children to the final node of θ which are
labelled with β1 :b • c and β2 :a • b respectively, then T ′ is a tableau for C.

The definition of TLe-tableaux for C is just the same except that the TL-labels are replaced
with TLe-labels.

Definition 3.4 A branch θ of a tableau is closed if both TA :a and FA :b occur on θ for some
formula A and labels a, b such that a•b is total. A tableau T is closed if every branch is closed.
A TL-tableau proof (TLe-tableau proof, resp.) of C is a closed TL-tableau (TLe-tableau,
resp.) for C.

Remark 3.1 One way of understanding the labelling in Table 4 is to assign labels to signed
sequents of L’(or L’e). Suppose that in an α-inference

Γ, α1, α2

Γ, α

the lower signed sequent is labelled as Γ : b, α : a where b • a is TL-total. Try to label the
upper sequent so that the sum of its labels becomes total as well. The most natural labelling
is as follows;

Γ:b, α1 : (a, i)1, α2 : (a, i)2
Γ:b, α :a .

By this labelling we have b • (a, i)1 • (a, i)2 = b • a which is total as required. (The need of
index i is explained by Example 2 below.) Similarly, we can label a β-inference as

Γ:a, β1 :b • c β2 :a • b,∆:c
Γ:a, β :b,∆:c ,

where a•b•c is total. That is the intuition behind the labelling of the tableau expansion rules
in Table 4. Note that the notion of totality is defined in such a way that the Cyclic Shift
rule of L’, labelled as

U :b2,Γ:b1

Γ:b1, U :b2,

preserves the totality of the labels. In this way, the tableau expansion rules are related to
the inference rules of L’ and L’e via the labels and the totality condition. This relation is
extensively used when proving the soundness (Theorem 4.1) and the termination of every

8

FP ⊗ Q −◦ Q ⊗ P :�

FQ ⊗ P : (�, 7)1

TP ⊗ Q : (�, 7)2

TP : ((�, 7)2, 9)1

TQ : ((�, 7)2, 9)2

FP : (�, 7)1((�, 7)2, 9)2

...

FQ : ((�, 7)2, 9)1(�, 7)1

..

...

...

...

..

F ((P −◦ Q) −◦ P) −◦ P :�

FP : (�, 4)1

T (P −◦ Q) −◦ P : (�, 4)2

FP −◦ Q :�

FQ : (�, 5)1

TP : (�, 5)2

...

..

...
TP : (�, 4)2

..

...

...

Figure 1: TLe-tableau proof of P ⊗ Q −◦ Q ⊗ P Figure 2

nonredundant tableau construction procedure (Theorem 4.2). See Remark 4.1.

Example 1. Figure 1 is a TLe-tableau proof of P ⊗ Q −◦ Q ⊗ P . At the last step, β-
expansion rule is applied to FQ⊗P : (�, 7)1 with respect to ((�, 7)2, 9)1 and ((�, 7)2, 9)2. Note
that ((�, 7)2, 9)1 • (�, 7)1 • ((�, 7)2, 9)2 is TLe-total, but is not TL-total. The left branch is
closed because it contains {TP : ((�, 7)2, 9)1, FP : (�, 7)1((�, 7)2, 9)2}. The right branch is
closed because it contains {TQ : ((�, 7)2, 9)2, FQ : ((�, 7)2 , 9)1(�, 7)1}.

Example 2. Figure 2 is a failure of proving the Pierce’s Law ((P −◦ Q) −◦ P) −◦ P . At
the second step, β-expansion rule is applied to T (P −◦ Q) −◦ P : (�, 4)2 with respect to ε and
(�, 4)1. The right branch is closed because it contains {FP : (�, 4)1, TP : (�, 4)2}, while the
left branch is open. It should be noted that if we did not employ indices, then the left branch
would (incorrectly) become closed, because it contains {FP : (�, 4)1, TP : (�, 5)2}. Therefore,
indices cannot be omitted in general.

4 Formal Properties of Labelled Tableau Calculi TL and TLe

In this section we show (i) the equivalence of L (Le, resp.) and TL (TLe, resp.), (ii) the
completeness of TL (TLe, resp.) with respect to the finite simple models (the finite com-
mutative simple models, resp.) (Corollary 4.1, Corollary 4.2), and (iii) every nonredundant
tableau construction procedure for TL and TLe terminates in finitely many steps (Theorem
4.2, Theorem 4.4). Since the proofs for L involve some intricacies due to non-commutativity,
first we show the above for Le in Subsections 4.1, 4.2 and 4.3. Then, we point out the mod-
ifications for L in Subsection 4.4. Subection 4.5 gives an example of a countermodel which
can be generated in our framework.

4.1 Soundness of TLe

Let X = {U1 :a1, . . . , Un :an} be a set of TLe-labelled signed formulas. We say that X occurs
on a tableau branch θ if each Ui : ai ∈ X occurs on θ. X is said to be total if a1 • · · · • an

is total, i.e., a1 • · · · • an = �. X is said to be regular if exactly one Ui is signed F . The
set of total sets and the set of regular total sets which occur on θ are denoted by Total(θ)

9

and RegTotal(θ), respectively. If X is a regular total set {TA1 : a1, . . . , TAn : an, FB : b},
we write Seq(X) to denote signed sequent TA1, . . . , TAn, FB. It makes sense because X
determines Seq(X) uniquely modulo permutation and the derivability of a signed sequent in
L’e is unchanged by an application of the exchange (permutation) rule.

For a tableau branch θ, the set Label(θ) is defined by

a ∈ Label(θ) if a = a1 • · · · • an for some subset X ′ = {U1 : a1, . . . , Un : an} of a
total set X on θ.

In particular, ε ∈ Label(θ) for every θ. Note that a, b ∈ Label(θ) does not necessarily imply
a • b ∈ Label(θ). Note also that Label(θ) is finite whenever θ is.

Now we show the soundness of TLe with respect to Le.

Theorem 4.1 If A is provable in TLe, then it is also provable in Le.

The theorem follows from the following lemmas.

Lemma 4.1 For every closed branch θ there is some X ∈ RegTotal(θ) such that Seq(X) is
provable in L’e.

Proof. Take X as {TA :a, FA :b} which closes θ.

Lemma 4.2 Suppose that branch θ′ result from θ by an application of α-expansion rule to
α :a. If there is an X ′ ∈ RegTotal(θ′) such that Seq(X ′) is provable in L’e, then there is an
X ∈ RegTotal(θ) such that Seq(X) is provable in L’e.

Proof. If X ′ also occurs on θ, there is nothing to prove. Otherwise, X ′ should contain
either α1 : (a, i)1 or α2 : (a, i)2. Without loss of generality we may assume that X ′ contains the
former. First we show that X ′ also contains the latter. Since X ′ is total, X ′ is of the form
{α1 : (a, i)1, U1 : b1, . . . , Un : bn} and (a, i)1 • b1 • · · · • bn = �. The equation holds only in case
bj = (a, i)2 for some 1 ≤ j ≤ n by the freshness of index i. Hence, X ′ contains α2 : (a, i)2.
Therefore we may assume that X ′ is of the form {α1 : (a, i)1, α2 : (a, i)2,Γ : b} for some Γ : b.
Let X be {α :a,Γ : b}. It is easy to see X ∈ RegTotal(θ) and that Seq(X) is derivable from
Seq(X ′) in L’e.

Lemma 4.3 Suppose that θ1 and θ2 result from θ by an application of β-expansion rule to
β :b with respect to (a, c). If there is Xi ∈ RegTotal(θi) such that Seq(Xi) is provable in L’e
for i ∈ {1, 2}, then there is an X ∈ RegTotal(θ) such that Seq(X) is provable in L’e.

Proof. If either X1 or X2 occurs on θ, then there is nothing to prove. Otherwise, X1 should
be of the form {Γ : a′, β1 : b • c} and X2 should be of the form {β2 : a • b,∆ : c′}. Let X be
{Γ : a′, β : b,∆ : c′}. a • b • c = � = a′ • b • c implies that a = a′ (by Lemma 3.2). Similarly
c = c′. Therefore, X is total. It is easy to see that X is regular and that Seq(X) is derivable
from Seq(X1) and Seq(X2).

Proof of Theorem 4.1. Suppose that A has a closed tableau Tf . It means that there is a
sequence T0, . . . , Tn of tableaux for A, where T0 is the initial tableau for A, Ti+1 results from
Ti by an application of a tableau expansion rule, and Tn = Tf . Using Lemma 4.1, Lemma
4.2 and Lemma 4.3, it can be shown by induction on 0 ≤ i ≤ n that every branch of Tn−i

contains a regular total set X such that Seq(X) is provable in L’e. Since the only regular
total set of T0 is {FA :�}, we conclude that FA is provable in L’e, that is, A is provable in
Le by Proposition 2.1.

10

4.2 Tableau Construction Procedures for TLe

In this subsection we show an important property of TLe, that is, every nonredundant tableau
construction procedure for TLe is terminating. First we define some notions.

Definition 4.1

1. A labelled signed formula α :a is fulfilled in branch θ if there are labels a1 and a2 such
that a = a1 • a2 and that both α1 :a1 and α2 :a2 occur on θ.

2. Let (a, c) ∈ Lcom ×Lcom. A labelled signed formula β :b is (a, c)-fulfilled in branch θ
if either β1 :b • c or β2 :a • b occurs on θ.

3. A labelled signed formula β : b is fulfilled in branch θ if β : b is (a, c)-fulfilled in θ for
every (a, c) ∈ Label(θ) × Label(θ) such that a • b • c is total.

4. A branch θ is completed if every labelled signed formula occurring in θ is fulfilled.

By a tableau sequence for C we mean a finite or infinite sequence T0, T1, . . . such that T0

is the initial tableau for C and each Ti+1 is obtained from Ti by applying a tableau expansion
rule.

Definition 4.2 A tableau sequence T0, T1, . . . is said to be nonredundant when the following
conditions are satisfied;

(i) if Ti+1 is obtained from Ti by applying a tableau expansion rule to U :a in a branch θ
of Ti, then U :a is not fulfilled in θ;

(ii) if Ti+1 is obtained from Ti by applying β-expansion rule to β :b with respect to (a, c) in
a branch θ of Ti, then a, c ∈ Label(θ).

By a tableau construction procedure we mean an algorithm which, given a formula C as input,
yields a tableau sequence T0, T1, . . . until either a closed tableau or a tableau which contains an
open completed branch is obtained; otherwise it does not terminate. A tableau construction
procedure is nonredundant if it yields only nonredundant tableau sequences.

It is routine to give a nonredundant tableau construction procedure. If such a procedure
terminates for a given input C, it outputs either a closed tableau for C or an open completed
branch, and from the latter we can construct a countermodel of C, as shown in the next
subsection. In the rest of this subsection we show the following.

Theorem 4.2 Every nonredundant tableau construction procedure for TLe terminates in
finitely many steps.

To show this, we need to define some notions. Let � be the binary relation on the total
sets of labelled signed formulas defined by
• {Γ:b, α1 : (a, i)1, α2 : (a, i)2} � {Γ:b, α :a} for i ∈ N;
• {Γ:a, β1 :b • c} � {Γ:a, β :b,∆:c};
• {β2 :a • b,∆:c} � {Γ:a, β :b,∆:c}.
Let � be the reflexive transitive closure of �. For a formula C, we define ↓ (C) = {X | X �
{FC :�} }.

Let (·)0 be the mapping from Lcom to Lcom defined by
• ε0 = ε, �0 = �;

11

• (a, i)01 = (a0, 0)1, (a, i)02 = (a0, 0)2;
• (ab)0 = (a0b0).
The above (·)0 is extended to labelled signed formulas, sets of labelled singed formulas, sets
of sets of labelled singed formulas, etc., by (U :a)0 = U :a0 and W 0 = {w0|w ∈ W}.

To prove Theorem 4.2, it suffices to show that, given C, every nonredundant tableau
sequence T0, T1, . . . for C is finite. The following three lemmas suffice to show this.

Lemma 4.4 (↓ (C))0 is finite.

Proof. Firstly, every descendent sequence X0 � X1 � X2, . . . is finite because X � Z
implies size(X) > size(Z), where size(X) denotes the number of logical connectives {⊗,−◦}
occurring in X. Secondly, {Z | Z � X}0 is finite for any total set X. Thirdly, X0 = Y 0

implies {Z | Z � X}0 = {Z | Z � Y }0. These facts suffice to prove the lemma.

Lemma 4.5 For every Ti and every branch θ of Ti, (Total(θ))0 ⊆ (↓ (C))0.

Proof. It suffices to show Total(θ) ⊆↓ (C). This is proved by induction on i, using condition
(ii) in Definition 4.2.

Lemma 4.6 Suppose that a branch θ′ of Ti+1 is obtained from a branch θ of Ti by an appli-
cation of a tableau expansion rule. Then (Total(θ))0 is a proper subset of (Total(θ′))0.

Proof. By condition (i) in Definition 4.2.

Proof of Theorem 4.2. Lemma 4.4, Lemma 4.5 and Lemma 4.6 together show that in the
sequence T0, T1, . . . no branch can be expanded infinitely. In fact, the lengths of the branches
are bounded by | ↓ (C)0|. Since every tableau is finitely branching, the sequence cannot be
infinite.

Remark 4.1 Note that (↓ (C))0) essentially corresponds to the (completed) bottom-up proof
search tree for C in Le, which is obviously finite. Lemma 4.5 and Lemma 4.6 state that every
nonredundant tableau construction procedure simulates the bottom-up proof construction of
the sequent calculus, hence the termination of such a procedure is intuitively clear.

4.3 Countermodel Construction from Open Completed Branches

In this subsection we describe how to construct a finite countermodel of C from an open
completed branch in a tableau for C. This proves the completeness of TLe with respect to
the finite commutative simple models.

Theorem 4.3 If there is a tableau for C which contains an open completed branch θ, then
there is a commutative simple model (M,v) in which C is not satisfied. Moreover, if θ is
finite, then M is also finite.

Recall that Label(θ) is defined as

a ∈ Label(θ) if a = a1 • · · · • an for some subset X ′ = {U1 : a1, . . . , Un : an} of a
total set X on θ.

12

Here we define a subset PosLabel(θ) of Label(θ) as follows;

a ∈ PosLabel(θ) if a = a1 • · · · • an for some subset X ′ = {TA1 :a1, . . . , TAn :an}
of a total set X on θ such that all labelled signed formulas in X ′ is signed T .

Suppose that an open completed branch θ be given. We define M and a valuation v as
follows;

• M = PosLabel(θ) ∪ {√}. Note that ε ∈ PosLabel(θ).

• For a, b ∈ M , a · b =

{
a • b if a • b ∈ PosLabel(θ);√

otherwise.
In particular, a · √ =

√
for any a ∈ M .

• For each atomic formula P , v(P) = {b | TP :b occurs on θ} ∪ {√}.

Lemma 4.7 (M, ·, ε) is a commutative monoid.

Proof. Only nontrivial is the associativity (a·b)·c = a·(b·c). If a, b, c, a•b•c ∈ PosLabel(θ),
then a•b, b•c ∈ PosLabel(θ) by definition. Hence (a ·b) ·c = (a•b) ·c = (a•b)•c = a•(b•c) =
a · (b · c). If a • b • c �∈ PosLabel(θ), then (a · b) · c =

√
= a · (b · c).

Lemma 4.8 For every formula A,
(i) if TA :b occurs on θ, then b ∈ v(A);
(ii) if FA :c occurs on θ, b ∈ PosLabel(θ) and b • c is total, then b �∈ v(A)5;
(iii)

√ ∈ v(A).

Proof. (iii) can be easily shown. Here we prove (i) and (ii) by induction on the complexity
of A.
(Case 1) A is an atomic formula. (i) holds by definition. As for (ii), since θ is open, TA : b
never occurs on θ. Hence b �∈ v(A).
(Case 2) A is of the form B⊗D. To show (i), assume that TB⊗D :b occurs on θ. Then TB :b1

and TD : b2 occurs on θ for some b1, b2 such that b1 • b2 = b. By the induction hypothesis
b1 ∈ v(B) and b2 ∈ v(D). Hence b = b1 • b2 ∈ v(B ⊗ D).

To show (ii), assume that FB ⊗ D : c occurs on θ, b ∈ PosLabel(θ) and b • c is total. It
suffices to show that if b = d · e for some d, e ∈ M , then either d �∈ v(B) or e �∈ v(D). Suppose
that b = d · e. Then d �= √

, e �= √
, hence d, e ∈ PosLabel(θ). Since d • e • c = e • c • d is

total, either FC :c•d or FB :e• c occurs on θ. Therefore, by the induction hypothesis, either
d �∈ v(B) or e �∈ v(D).
(Case 3) A is of the form B−◦D. To show (i), assume that FB−◦D :b occurs on θ. It suffices
to show that for any d ∈ v(B), d · b ∈ v(D). If d · b =

√
, then by (iii),

√ ∈ v(D). Otherwise,
d, b ∈ PosLabel(θ) and d · b ≡ d • b ∈ PosLabel(θ). It means that for some e ∈ Label(θ),
d • b • e is total. Therefore, either FB : b • e or TD : d • b occurs on θ. By the induction
hypothesis (ii) the former would imply d �∈ v(B), hence is impossible. From the latter and
the induction hypothesis (i) it follows that d • b ∈ v(D).

To show (ii), assume that FB −◦ D : c occurs on θ, b ∈ PosLabel(θ) and b • c is total.
Then it follows that TB : c1 and FD : c2 also occur on θ for some c1 ∈ PosLabel(θ) and
c2 ∈ Label(θ) such that c1 • c2 = c. By the induction hypothesis (ii) we have c1 ∈ v(B), and

5Note that c does not have to be in PosLabel(θ).

13

by the induction hypothesis (i) we have c1 • b �∈ v(D). This proves that b �∈ v(B −◦ D).
(Case 4) A is of the form D◦−B. Similar to (Case 3).

Proof of Theorem 4.3. From an open completed branch θ we can construct a commuta-
tive simple model (M,v) as above. It is obvious from the construction that (M,v) is finite
whenever θ is. Since ε ∈ PosLabel(θ), FC : � occurs on θ and ε • � = � is total, it holds by
Lemma 4.8 that ε �∈ v(C).

Corollary 4.1 For every formula A, the following are equivalent;
(1) A is provable in Le.
(2) A is satisfied in every commutative simple model.
(3) A is satisfied in every finite commutative simple model.
(4) A is provable in TLe.

Proof. (1) implies (2) by the standard soundness argument. (2) implies (3) trivially. (4)
implies (1) by Theorem 4.1. To show that (3) implies (4), suppose that A is not provable in
TLe. Take an arbitrary nonredundant tableau construction procedure. It yields a tableau
for A which contains a finite open completed branch θ (by Theorem 4.2), from which we can
construct a finite commutative simple model in which A is not satisfied (by Theorem 4.3).

4.4 Modifications for TL

To adapt the proofs in the former subsections to TL, we need to modify some notions. Let
≈ be the equivalence relation on the finite lists of TL-labelled signed formulas defined by

[U1 :a1, . . . , Un :an] ≈ [Ui :ai, . . . , Un :an, U1 :ai, . . . , Ui−1 :ai−1] for 1 ≤ i ≤ n.

A cycle is an equivalence class of finite lists of TL-labelled signed formulas induced by ≈.
A cycle X = [U1 :a1, . . . , Un :an] is said to be total if a1 • · · · • an is total. X is said to be

regular if exactly one Ui is signed F . If X = [TA1 :a1, . . . , TAn :an, FB : b] is a regular total
cycle, then we write Seq(X) to denote signed sequent TA1, . . . , TAn, FB. It makes sense
because X determines Seq(X) uniquely modulo cyclic shift and the derivability of a signed
sequent in L’ is unchanged by an application of the cyclic shift rule.

For a TL-tableau branch θ, the set Label(θ) is defined by

a ∈ Label(θ) if there is a total cycle X = [U1 : a1, . . . , Un : an] on θ and a =
aj • · · · • ak for some 0 ≤ j ≤ k ≤ n.

According to this change, all the proofs in Subsections 4.1, 4.2 and 4.3 can be modified
for L. Therefore, we have the following.

Theorem 4.4 Every nonredundant tableau construction procedure for TL terminates in finitely
many steps.

Corollary 4.2 For every formula A, the following are equivalent;
(1) A is provable in L.
(2) A is satisfied in every simple model.
(3) A is satisfied in every finite simple model.
(4) A is provable in TL.

14

4.5 An Example of a Countermodel

Let us fix a nonredundant tableau construction procedure σ. Given a formula C, we can
effectively obtain either a proof or a countermodel of C as follows;
(1) Apply σ to C. Then σ terminates in finitely many steps.
(2) If σ outputs a closed tableau T , then T is a tableau proof of C.
(3) Otherwise, σ outputs a tableau T which has a finite open completed branch θ.
(4) From θ, a countermodel of C is obtained by the construction described in Subsection 4.3.
Let us give an example for the last step (4).

Example. The following is a TLe-tableau for (P ⊗(Q−◦P))−◦P , where the leftmost branch
θ is open and completed;

F (P ⊗ (Q −◦ P)) −◦ P :�

FP : (�, 4)1

TP ⊗ (Q −◦ P) :(�, 4)2

TP : ((�, 4)2, 5)1

TQ −◦ P : ((�, 4)2, 5)2

FQ :�

FQ : ((�, 4)2, 5)2(�, 4)1

FQ : (�, 4)2

FQ : ((�, 4)2, 5)2

..

TP :�

..

...

TP : (�, 4)1((�, 4)2, 5)2

...

...

TP : (�, 4)2

...

...
TP : ((�, 4)2 , 5)2

..

...

...

...

...

For readability, we omit indices and denote (�, 4)j by �j and ((�, 4)j , 5)k by �jk ((j, k ∈ {1, 2}).
Then, we have PosLabel(θ) = {ε, �2, �21, �22}. By the construction described in Subsection
4.3, we obtain the following commutative simple model (M,v);

• M = {ε, �2, �21, �22,
√} (monoid operation a · b is defined as in Subsection 4.3);

• v(P) = {�21,
√}; v(Q) = {√}.

In this model, v(Q −◦ P) = {ε, �2, �21, �22,
√}, v(P ⊗ (Q −◦ P)) = {�21, �2,

√}, and v((P ⊗
(Q−◦P))−◦P) = {√}. Therefore we see that (M,v) is a countermodel of (P ⊗(Q−◦P))−◦P ,
as expected.

5 Notes on Extensions

In this section we discuss possible extensions of TL and TLe.

15

As mentioned before, all results of this paper can be easily extended to the original Lambek
calculus in [Lam58], i.e., L with the restriction that the antecedent of each sequent should
not be empty.

It is surely difficult to extend our framework with additional logical connectives such as
additive (boolean) connectives. But see [OT98] for some attempts, where the model gener-
ation for a certain fragment (including the additive disjunction) of intuitionistic linear logic
is described. [OT98] also describes the model generation method for full linear logic in the
framework of the sequent calculus based on the phase semantics.

As for extensions with structural rules, we can obtain similar results for the extensions of
L and Le with the weakening (monotonicity) rule

Γ,∆ � C

Γ, A,∆ � C
w

if we admit a more complicated semantics than the simple semantics. Let us denote L with
w by Lw, and Le with w by Lew. In the sequel, we just mention the results without proofs.

By a partially ordered monoid model (PO-monoid model), we mean a triple (M,≤, v) where
≤ is a partial order on M which satisfies ∀x1, x2, y ∈ M(x1 · x2 ≤ x1 · y · x2), and valuation v
assigns a ≤-upward closed subset of M to each atomic formula. v(A−◦B) and v(B −◦A) are
defined just as before, and we define v(A ⊗ B) = {z|∃x ∈ v(A), y ∈ v(B)(x · y ≤ z)}. Then,
every formula is interpreted by a ≤-upward closed subset of M .

Let � be the smallest preordering on L which satisfies ∀a1, a2, b ∈ L(a1 • a2 � a1 • b • a2).
Preordering �com on Lcom is similarly defined. An TLw-label is an element of L, and
an TLew-label is an element of Lcom. A (TLw- or TLew-) label a is said to be total if
∃b1, b2(b1 • b2 = � and a � b2 • b1). TLw-tableaux and TLew-tableaux are defined just in
the same way as TL-tableaux and TLe-tableaux. Then we can show that the following are
equivalent;
(1) A is provable in Lw (Lew, resp.);
(2) A is satisfied in every PO-monoid model (commutative PO-monoid model, resp.);
(3) A is satisfied in every finite PO-monoid model (commutative PO-monoid model, resp.);
(4) A is provable in TLw (TLew, resp.).
Moreover, we can show as before that
• every nonredundant tableau construction procedure for TLw and TLew terminates in
finitely many steps.

It may be expected that similar results are obtained for extensions with the contraction
rule and the expansion rule. For the present, however, these extensions remain open problems.

6 Conclusion

In this paper we have proposed a new framework of the labelled tableau method for substruc-
tural logics. It has the following advantage over the existing tableau calculi for substructural
logics such as [MB79] and [MMB95]: it yields not only proofs for theorems but also counter-
models for non-theorems. The resulting countermodels are finite and sufficiently simple as
required for practical applications. From the theoretical point of view, we have shown the
finite model property for L and Le with respect to the simple semantics and the commuta-
tive simple semantics, respectively. It may be regarded as an refinement of the completeness
results given by [Bus86] (See Remark 2.1).

16

As mentioned in the introduction, there is another labelled tableau framework for sub-
structural logics, i.e., LKES of Gabbay and D’Agostino ([DG94], [Gab96]). Here we compare
our framework with LKES . First of all, it should be mentioned that their motivation is com-
pletely different from ours. LKES is not intended as a system oriented to a special purpose
such as model generation, but just as a uniform and transparent system for a wide range of
substructural logics. We would like to remark the following points.

(1) We use two fixed sets L and Lcom of labels, and formulas are labelled with elements
of these sets directly. On the other hand, the use of labels in LKES is more flexible than ours
in that each formula is labelled with an element of a labelling algebra which identifies a class
of information frames. Information frames (or unital quantales, see [Yet90], [Ono94]) have
more complicated algebraic structures than our L and Lcom which are just a monoid and a
commutative monoid. It is this flexibility that allows LKES to cover a considerably wide range
of substructural logics. However, as a consequence of this flexibility, countermodels which may
be obtained in their framework are inevitably complicated ones based on information frames
(see Proposition 3 of [DG94]). Hence, for the purpose of generating countermodels for L and
Le, our tableau calculi works much better than LKES .

(2) Our tableau calculi retain a tight connection with the sequent calculus via the totality
condition on labels (see Remark 3.1 and Remark 4.1). This connection makes it very easy
to give a decision procedure for L and Le; indeed, every nonredundant tableau construction
procedure is terminating. On the other hand, LKES loses such a connection, and it might
be a nontrivial task to give such a decision procedure for L and Le ([DG94] announces that
the decision problems will be discussed in Part II of their paper).

(3) LKES puts the “cut” rule (the PB-rule) into the tableau expansion rules. The idea
stems from the precursor of LKES , called KE ([DM94]), which is an analytic deduction
system for classical logic. The PB-rule allows KE to produce essentially shorter proofs than
the standard tableau method for classical logic. One might expect that a similar statement
holds for L and Le, i.e., that LKES produces essentially shorter proofs than our tableau
calculi which lack the “cut” rule. However, it is not the case, because in substructural logics
without the contraction rule such as L and Le, shortest proofs are always cut-free.

To sum up, (i) LKES covers much wider class of substructural logics than our frame-
work; (ii) as for proof construction for L and Le, our tableau calculi produce tableau proofs
essentially of the same size as LKES ; (iii) as for model generation for L and Le, our tableau
calculi generate much simpler countermodels than LKES .

Our labels have two uses; one is to generate simple models, and the other is to relate
tableaux to proof search trees of the sequent calculus. The latter use seems to be original to
our work, and we hope that our technique will be found useful in other applications of the
LDS methodology.

Acknowledgments
The author would like to thank Prof. Maarten de Rijke and Prof. Mitsuhiro Okada for their
helpful advice.

References

[Bus86] W. Buszkowski. Completeness results for Lambek syntactic calculus. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik, 32:13–28, 1986.

17

[Bus96] W. Buszkowski. The finite model property for BCI and related systems. Studia Logica,
57:303–323, 1996.

[Bus97] W. Buszkowski. Mathematical linguistics and proof theory. In Johan van Benthem and
Alice ter Meulen, editors, Handbook of Logic and Language, chapter 12. Elsevier Science B.
V., 1997.

[BY96] F. Bry and A. Yahya. Minimal model generation with positive unit resolution tableaux.
In Proc. 5th Workshop on Theorem Proving with Analytic Tableaux and Related Methods.
Springer-Verlag LNCS, 1996.

[DG94] M. D’Agostino and D. M. Gabbay. A generalization of analytic deduction via labelled
deductive systems. Part I: basic substructural logics. Journal of Automated Reasoning,
13:243–281, 1994.

[DM94] M. D’Agostino and M. Mondadori. The taming of the cut. Journal of Logic and Computa-
tion, 4(3):285–319, 1994.

[Fit83] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht, 1983.

[Fit87] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, 1987.

[Gab96] Dov. M. Gabbay. Labelled Deductive Systems. Oxford: Oxford University Press, 1996.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Hin88] J. Hintikka. Model minimization – an alternative to circumscription. Journal of Automated
Reasoning, 4:1–13, 1988.

[Kur94] Natasha Kurtonina. The Lambek calculus: Relational semantics and the method of la-
belling. ILLC research report and technical notes series LP–94–05, Institute for Logic,
Language and Computation, University of Amsterdam, 1994.

[Lam58] J. Lambek. The mathematics of sentence structure. American Mathematical Monthly,
65(3):154–170, 1958.

[MB79] M. A. McRobbie and N. D. Belnap Jr. Relevant analytic tableaux. Studia Logica, 38:187–
200, 1979.

[MMB95] R. K. Meyer, M. A. McRobbie, and N. Belnap. Linear analytic tableaux. In P. Baumgartner,
R. Hahnle, and J. Posegga, editors, Theorem proving with analytic tableaux and related
methods: Proceedings TABLEAUX’95, pages 278–293. Springer-Verlag LNCS 918, 1995.

[Ono94] Hiroakira Ono. Semantics for substructural logics. In K. Došen and P. Schröder-Heister,
editors, Substructural logics, pages 259–291. Oxford University Press, 1994.

[OT] Mitsuhiro Okada and Kazushige Terui. The finite model property for various fragments of
intuitionsitic linear logic. Journal of Symbolic Logic. to appear.

[OT98] Mitsuhiro Okada and Kazushige Terui. Completeness proofs for linear logic
based on the proof search method (preliminary report). In J. Garrigue, editor,
Type theory and its applications to computer systems, pages 57–75. Research In-
stitute for Mathematical Sciences, Kyoto University, 1998. Available by ftp at
ftp://abelard.flet.mita.keio.ac.jp/pub/Papers/Terui.

[Pan94] Nikolai Pankrat’ev. On the completeness of the Lambek calculus with respect to relativized
relational semantics. Journal of Logic, Language, and Information, 3:233–246, 1994.

[Pen94] M. Pentus. Language completeness of the Lambek calculus. In proc. of LICS 94, pages
487–496. IEEE, 1994.

[Smu68] R. Smullyan. First-Order Logic. Springer-Verlag, 1968.

18

[Tro92] Anne S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes 29, Center for the Study
of Language and Information, Stanford, California, 1992.

[Yet90] David N. Yetter. Quantales and (noncommutative) linear logic. Journal of Symbolic Logic,
55(1):41–64, March 1990.

19

