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Abstract. Modular cut-elimination is a particular notion of ”cut-elimination in
the presence of non-logical axioms” that is preserved under the addition of suit-
able rules. We introduce syntactic necessary and sufficient conditions for mod-
ular cut-elimination for standard calculi, a wide class of (possibly) multiple-
conclusion sequent calculi with generalized quantifiers. We provide a ”universal”
modular cut-elimination procedure that works uniformly for any standard calcu-
lus satisfying our conditions. The failure of these conditions generates counterex-
amples for modular cut-elimination and, in certain cases, for cut-elimination.

1 Introduction

Cut-elimination is one of the most important techniques in proof theory. The removal of
cuts corresponds to the elimination of intermediate statements (lemmas) from proofs,
resulting in calculi in which proofs are analytic in the sense that all statements in the
proofs are subformulae of the result.

A great many different cut-elimination proofs for various sequent calculi have been
published since Gentzen’s proofs for LK and LJ (sequent calculi for classical and in-
tuitionistic first-order logic, respectively), most using heavy syntactic arguments and
based on case distinctions, usually written without filling in the details3. However since
it is often the case that “the devil is in the details” (this also explains why so many
wrong cut-elimination proofs appear in the literature, e.g. [5]), it is natural to inves-
tigate general criteria that a sequent calculus should satisfy in order to admit cut-
elimination. Such criteria should support a modular view of cut-elimination in sequent
calculi (i.e. decomposability of the whole calculus into local components when proving
cut-elimination), and also provide useful information in the negative case, where a par-
ticular cut-elimination method cannot be applied or a cut-elimination proof cannot be
found at all.

Necessary and sufficient conditions for cut-elimination were defined in [14] for
canonical calculi, which are sequent calculi containing identity axioms, the usual struc-
tural rules (weakening, exchange and contraction) and possibly ”standard” rules for
� Research supported by FWF Project P18731.
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connectives and quantifiers. Canonical calculi extended with (k, n)-ary connectives
which bind k variables and connect n formulas were investigated in [15] where suf-
ficient conditions for cut-elimination have been introduced in the case k = 0, 1. In the
context of substructural logics, syntactic and semantic criteria for (additive) structural
rules to preserve cut-elimination when added to full Lambek calculus were introduced
in [12]. Terui’s work was generalized in [3] to provide necessary and sufficient condi-
tions for a large class of propositional single-conclusion sequent calculi to admit reduc-
tive cut-elimination, a naturally strengthened version of free-cut elimination (see [1])
which additionally aims to shift non-eliminable cuts upwards as much as possible. The
proposed criteria have two equivalent forms: syntactic (reductivity and weak substitu-
tivity) and semantic (coherence and propagation). The former arises by weakening the
sufficient conditions in [2] while the latter generalize the results in [12].

In this paper we focus on the syntactic aspects of cut-elimination. We refine and
extend the (syntactic) results of [3] to standard calculi, i.e. commutative (not necessar-
ily single-conclusion) sequent calculi possibly containing (fancy) structural rules and
rules for (k, n)-ary connectives, for all k and n. Examples of standard calculi are Mae-
hara’s calculus LJ’ for intuitionistic predicate logic, the calculus GD for the logic of
constant domains [5], the multiplicative additive fragment of linear logic extended with
any structural rule, or the calculi in [14, 15]. We investigate modular cut-elimination in
standard calculi, a particular notion of ”cut-elimination in the presence of non-logical
axioms,” that is preserved under the addition of suitable rules. Weak substitutivity and
reductivity, the syntactic conditions of [3], are adapted to standard sequent calculi (Sec-
tion 4), and shown to be necessary and sufficient for modular cut-elimination (the for-
mer holds when logical rules satisfy some additional properties, see Section 5). The ne-
cessity result is used for counterexamples generation: given a standard sequent calculus
for which our criteria fail, counterexamples for modular cut-elimination are automati-
cally generated and, in certain cases, lead to counterexamples for cut-elimination. The
sufficient result is shown by providing a constructive proof of modular cut-elimination,
from which a concrete cut-elimination procedure can be read off (Section 6). Remark-
ably enough this procedure is ”universal”, in the sense that when a standard sequent
calculus admits modular cut-elimination our procedure always transforms derivations
with cuts into cut-free derivations (Corollary 3).

Our results also support a modular view of cut-elimination. Indeed when adding a
new connective and/or a new structural rule to a standard calculus for which modular
cut-elimination has been already established, it is enough to show that the newly added
rules are reductive and weakly substitutive. Moreover the task of proving modular cut-
elimination for a standard calculus can be decomposed into the sub-tasks of proving cut-
elimination for appropriate sub-calculi. In particular, in analogy with Toyama’s Lemma 4

in term rewriting theory, modular cut-elimination is preserved by taking the disjoint
union of two (sets of rules of) standard sequent calculi (Corollary 2).

4 It states that the disjoint union of two confluent term rewriting systems is also confluent.



2 Standard Calculi

We start by formalizing the notion of a standard sequent calculus. In the following we
consider formulas built over a vocabulary V consisting of (countably many): (term)
variables x, y, z, . . ., for each n ≥ 0, n-ary function and predicate symbols, as well
as (m, n)-ary connectives �1, �2, . . . for each m, n ≥ 0. As usual, terms t, u, v, . . .
(in the vocabulary V) are built up from variables using function symbols while atomic
formulae are built up from terms using predicate symbols. A formula (in the vocabulary
V) is either an atomic formula or a compound formula of the form � ix(A) with �i an
(m, n)-ary connective, which binds x ≡ x1, . . . , xm distinct variables, and connect
formulas A ≡ A1, . . . , An. Given a formula, its free and bound variables are defined in
the standard way. As usual, we identify formulas only differing in the names of bound
variables (i.e. formulas are considered up to α-equivalence).

Example 1.

1. The standard quantifiers ∀ and ∃ can be seen as (1, 1)-ary connectives, while propo-
sitional connectives as (0, n)-ary connectives, for some n ≥ 1.

2. The Henkin quantifier QH (see e.g. [15]) can be seen as a (4, 1)-ary connective.
3. Bounded quantified formulae ∀x ≤ t.A, ∃x ≤ t.A can be built with (1, 2)-ary

connectives ∀bx(X, Y ), ∃bx(X, Y ) with the proviso that the meta-variable X is
always instantiated by an inequation of the form x ≤ t.

We indicate with Γ, Δ, Π, Σ, . . . multisets of formulae. When λ ≥ 0, Γ λ denotes
Γ, . . . , Γ (λ times). A sequent Γ ⇒ Δ (Γ said to be antecedent and Δ consequent)
is atomic if all formulae in Γ and Δ are atomic. Γ ⇒ Δ is single-conclusion if Δ
contains at most one formula, otherwise it is multiple-conclusion.

To specify inference rules we use meta-variables X, Y, Z, X [t/x], . . . (t ≡ t1, . . . , tm
and x ≡ x1, . . . , xm) standing for arbitrary formulae and Θ, Ξ, Φ, Ψ, Υ, . . . for (possi-
bly empty) multisets of meta-variables.

Definition 1. A standard sequent calculus L consists of:

– the identity axiom of the form X ⇒ X
– the multiplicative version of the cut rule, i.e.

Θ⇒ Ξ, X X, Θ′ ⇒ Ξ ′

Θ, Θ′ ⇒ Ξ ′, Ξ
(CUT )

– structural inference rules of the form (n > 0):

Θ1 ⇒ Ξ1 · · · Θn ⇒ Ξn

Θ ⇒ Ξ
(Ri)

satisfying the conditions
(str0) Θ and Ξ are disjoint.
(str1) any meta-variable occurring in Θ1, . . . , Θn occurs in Θ and any meta-

variable occurring in Ξ1, . . . , Ξn occurs in Ξ .



(Note that since Θ, Ξ, . . . are multisets, we implicitly assume that permutation
rule(s) always belong to L)

– left logical rules {(�, l, y)i}i∈Λ and right logical rules {(�, r, z)j}j∈Λ′ (Λ and Λ′

could be empty) for each (k, l)-ary connective �, with k, l, m, n ≥ 0:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

�x(X), Θ ⇒ Ξ
(�, l, y)i

Υ ′
1 ⇒ Ψ ′

1 · · · Υ ′
m ⇒ Ψ ′

m

Θ ⇒ Ξ, �x(X)
(�, r, z)j

where x ≡ x1, . . . xk, X ≡ X1, . . . , Xl and for each i = 1, . . . l, Xi[t/x] (t ≡
t1, . . . , tk, where each ti is a term) may appear in Υj ⇒ Ψj , Υ

′
j′ ⇒ Ψj′ with

j = 1, . . . , n and j ′ = 1, . . . , m. y and z are the eigenvariables of the rules.
(�, l, y)i must satisfy the following conditions
(log0) Θ, Ξ and {X} are mutually disjoint.
(log1) Any meta-variable occurring in Υ1, . . . , Υn occurs in Θ or it is of the form

Xi[t/x] where Xi ∈ X . Any meta-variable occurring in Ψ1, . . . , Ψn occurs in
Ξ or it is of the form Xi[t/x] where Xi ∈ X .

The corresponding conditions hold for (�, r, z)j .

Remark 1. Conditions (str1) and (log1) ensure that rules satisfy the subformula prop-
erty and do not allow meta-variables in Θ and Ξ to move from antecedent to consequent
of sequents and vice versa.

We identify rules up to the renaming of meta-variables and logical rules up to the re-
naming of (term) variables.

Definition 2. Instances (resp. atomic instances) of identity axiom, (CUT ), and struc-
tural rules are obtained by substituting arbitrary formulae (resp. atomic formulae)
for meta-variables. An instance (resp. atomic instance) of a logical rule (�, l, y) i or
(�, r, y)j is obtained

1. by replacing each meta-variable Y with a formula (resp. atomic formula) that does
not contain y as free variables.

2. when a meta-variable Xi (∈ X) in its conclusion is replaced by a formula (resp.
atomic formula) A (that does not contain y as free variables), then each meta-
variable Xi[t/x] in its premises is replaced with the formula (resp. atomic formula)
A in which all free occurrences of the variable xj (if any) are replaced by the term
tj , for j = 1, . . . , k.

A derivation in L is obtained by composing instances of axioms and rules of L.

Condition 1. above ensures that the eigenvariable condition is satisfied.

Definition 3. In logical and structural rules (or their instances) the meta-variables
(formulae) in Θ are called left context meta-variables (left context formulae), those in Ξ
right context meta-variables (right context formulae), and (in the former rules) the meta-
variables (formulae) of the form Xi, Xi[t/x] active meta-variables (active formulae).

In a logical rule (or its instance) the introduced �x(X) (or the formula of the
form �x(A1, . . . , Al)) is called principal formula. Moreover, the two occurrences of
the formula instantiating the meta-variable X in (CUT) are called left and right cut
formulae (and the corresponding premises of (CUT) are called left and right premises).



Example 2.

1. Simple sequent calculi with permutation (see [3]) are particular standard calculi in
which each sequent is single-conclusion and whose connectives are of type (0, n).

2. The ordinary rules for quantifiers fit into our framework. For instance, the left and
right rules for ∀ are represented by the following rules:

X [t/x], Θ ⇒ Ξ

∀x(X), Θ ⇒ Ξ
(∀, l, ∅)

Θ⇒ Ξ, X [y/x]
Θ ⇒ Ξ, ∀x(X)

(∀, r, y)

where t is an arbitrary term and Θ, Ξ are arbitrary multisets of meta-variables.
3. Canonical calculi with (n, k)-ary connectives (see [15]) are particular standard cal-

culi that contain all the structural rules (weakening, contraction and exchange).

3 Modular Cut-Elimination

Generalizations of cut-elimination with extra (non-logical) axioms have been consid-
ered e.g. in [13, 1, 11]. They play an important role in the proof theory of formalized
mathematical theories such as fragments of arithmetic. Given a deduction in LK of a
sequent S0 from a set S of non-logical axioms closed under substitutions, free-cut elimi-
nation described in [1] aims at finding a deduction of S 0 containing only anchored-cuts,
i.e. cuts whose premises (at least one, for cuts with compound cut-formulas) derive
from sequents in S. If S consists only of atomic sequents closed under mix (and sub-
stitutions) then Gentzen’s cut-elimination method generates a cut-free LK-derivation
of S0, see e.g. [13]. To characterize the ”stepwise process of local transformations to
eliminate cuts” in a large class of propositional single-conclusion sequent calculi we
introduced in [3] reductive cut-elimination, a naturally strengthened version of free-cut
elimination which in addition aims to shift upward anchored-cuts in these calculi as
much as possible.

Here below we rework the above notions of cut-elimination in the presence of ax-
ioms to define a ”modular” cut-elimination for standard calculi, namely if such calculi
enjoy it, they also do when extended by any rule satisfying suitable conditions (weak
substitutivity and reductivity, see Section 4).

Definition 4. A set S of sequents (non-logical axioms) is called elementary if

1. all formulae in S are atomic.
2. S is closed under substitutions: whenever S(x) ∈ S and t is any term, the sequent

S(t), obtained by substituting in S the term t for all free occurrences of x, is in S.
3. S is closed under cuts: whenever Γ1 ⇒ Δ1, A and A, Γ2 ⇒ Δ2 belong to S, so

does Γ1, Γ2 ⇒ Δ1, Δ2.
4. it is not the case that sequents of the forms Γ ⇒ Δ, An and Am, Σ ⇒ Π with

n, m ≥ 2, both belong to S.

Definition 5. A standard sequent calculus L admits modular cut-elimination if when-
ever a sequent S0 is derivable in L from an elementary set S of sequents in L one can
find a cut-free derivation in L of S0 from S.



Remark 2. Modular cut-elimination implies the ordinary cut-elimination (set S = ∅).

Notice that if we remove condition 4 from Def. 4, the resulting notion of cut-elimination
is not admitted e.g. by LK: indeed S ≡ {A, A⇒ ; ⇒ A, A ; A⇒ A} with A atomic
satisfies the conditions 1-3 of Def. 4. It is easy to check that the empty sequent ⇒ is
derivable from S in LK only using (CUT).

4 Syntactic Criteria

In this section we introduce the notions of reductive logical rules and weakly substi-
tutive rules for standard calculi. Intuitively, a logical rule is reductive if it allows the
replacement of cuts by ”smaller” cuts, and a rule is weakly substitutive when any cut
can be permuted upward. Reductivity and weak substitutivity are obtained by suitably
modifying the homonymous conditions of [3] defined for simple calculi (see Ex. 2.1).

Let S be a sequent, A a formula, T1 ≡ A, Σ ⇒ Π and T2 ≡ Σ ⇒ Π, A. We define

[S ←↩rA T1] = {Γ, Σλ ⇒ Δ, Πλ | S ≡ Γ ⇒ Δ, Aλ with λ ≥ 0}
[S ←↩lA T2] = {Γ, Σλ ⇒ Δ, Πλ | S ≡ Aλ, Γ ⇒ Δ with λ ≥ 0}

Namely, each U ∈ [S ←↩rA T1] is obtained by applying (CUT) possibly several times
between S and (several copies of) T1 with cut formula A. [S ←↩lA T2] is dually defined.
In case T does not contain any occurrence of A in the antecedent (resp. consequent),
we define [S ←↩rA T ] = {S} (resp. [S ←↩lA T ] = {S}).

Definition 6. Let L be a standard sequent calculus. A rule (R) is said to be weakly
substitutive in L if for each instance of (R) with premises S1, . . . , Sn and conclusion
S0 the following condition holds:

(*) for any c ∈ {r, l}, context formula A and any sequent T of L (which does not
contain any eigenvariable of (R)), every U ∈ [S0 ←↩cA T ] has a derivation from⋃n

i=1[Si ←↩cA T ] only using structural rules and, when (R) is a left (resp. right)
logical rule with principal formula B, left (resp. right) logical rules with principal
formula B.

Remark 3. The above condition was defined (in fact, using rule schemas instead of rule
instances) in [3] only for structural rules. Indeed, the logical rules considered there
satisfy a condition stronger than (*), namely: for any c ∈ {r, l}, context formula A
(right or left context formula, depending on c) and single-conclusion sequent T , every
U ∈ [S0 ←↩cA T ] is derivable from

⋃n
i=1[Si ←↩cA T ] with an application of (R).

Example 3. The rules of LJ (resp. LK) are weakly substitutive in LJ (resp. LK). Con-
sider now:

1. Maehara’s calculus LJ’ for intuitionistic logic, that is an equivalent version of
Gentzen’s LJ where the intuitionistic restriction (i.e. consequent of sequents con-
tain at most one formula) applies not generally but only in the case of the right rules
for→,¬ and ∀, see e.g. [11].



2. The calculus GD for the logic of constant domains 5. GD was defined in [5] by
modifying LK as follows: (1) the sequents of GD have at most two formulas in
their consequents and (2) the rules (→, r, ∅) and (¬, r, ∅) obey the intuitionistic
restriction.

It is easy to see that e.g. the rule (→, r, ∅) is weakly substitutive neither in LJ’ nor in
GD. Indeed, take any instance of (→, r, ∅), say

S1

S0
≡ Γ, C, A⇒ B

Γ, C ⇒ A→ B
(→, r, ∅)

and T ≡ Σ ⇒ Π, C, where Π contains at least one formula. Then Γ, Σ ⇒ A →
B, Π ∈ [S0 ←↩lC T ] is in general not cut-free derivable from [S1 ←↩lC T ] in LJ’ or GD.

Although Definition 6 refers to all instances of any rule, in practice to check that a
particular rule is weakly substitutive it is enough to consider certain atomic instances.

Definition 7. Let (R0) be any instance of a structural rule. The associated atomic in-
stance 〈R0〉 is defined by replacing each context formula occurrence A with a new
atomic formula 〈A, c〉 with no free variables (c is either l or r according to whether the
formula occurrence appears in the antecedent or consequent of sequents in (R 0)).

When (R0) is an instance of a logical rule with the principal formula �x(A) with
x ≡ x1, . . . , xk and A ≡ A1, . . . , Al, the associated atomic instance 〈R0〉 is defined
by replacing

– each context formula A with 〈A, c〉 as above,
– its principal formula �x(A) with �x(〈A1, 1〉(x), . . . 〈Al, l〉(x)), where for each

i = 1, . . . , l 〈Ai, i〉 is a new k-ary predicate symbol
– each Ai[t/x] with 〈Ai, i〉(t).

Note that 〈R0〉 strictly distinguishes active, left and right context formulae.

Lemma 1. (1) If (R0) is an instance of a rule (R), so is 〈R0〉. (2) If condition (*) of
Def. 6 holds for 〈R0〉 then the same condition holds for (R0).

Proof. (1) Follows by conditions (str0), (str1), (log0) and (log1). (2) Easy.

To introduce reductivity we need some additional notation and terminology. Given a
set S of sequents (resp. a set A of formulae), we denote by S s (resp. As) the least set
containing S (resp. A) and closed under substitutions. We call any instance of (CUT )
with cut-formula in A an A-cut.

Definition 8. LetL be a standard sequent calculus. We call its logical rules {(�, r, y)j}j∈Λ

and {(�, l, z)k}k∈Λ′ for introducing a (k, l)-ary connective � reductive in L if

1. either Λ or Λ′ is empty or
5 A Hilbert calculus for this logic is obtained by adding to that of intuitionistic logic the shifting

law of universal quantifiers w.r.t. ∨, i.e. ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, where x does not
appear free in B.



2. for any pair of instances of left and right logical rules with principal formula
�x(A):

S1 . . . Sn

Γ ⇒ Δ, �x(A)
T1 · · · Tm

�x(A), Σ ⇒ Π

(�) Γ, Σ ⇒ Δ, Π is derivable from {S1, . . . , Sn, T1, . . . , Tm}s only using {A}s-
cuts and structural rules of L.

Remark 4. The above definition generalizes the reductivity condition of [3] and the
principal formula condition of [8], both defined for propositional calculi (single-conclusion,
in case of the former). Reductivity is also related to the coherence criterion of [6] or
[14].

Lemma 2. If condition (�) of Def. 8 holds for 〈R0〉 then it holds for (R0).

Example 4. Consider the (1, 1)-ary logical connectives �, � defined by the following
rules:

X [t/x], Θ ⇒ Ξ

�x(X), Θ ⇒ Ξ
(�, l, ∅)

Θ⇒ Ξ, X [t/x]
Θ ⇒ Ξ, �x(X)

(�, r, ∅)

X [y/x], Θ⇒ Ξ

�x(X), Θ ⇒ Ξ
(�, l, y)

Θ⇒ Ξ, X [y/x]
Θ ⇒ Ξ, �x(X)

(�, r, y)

The rules for � are reductive in LK while those for � are not.

Example 5. Let L1 be the standard calculus that consists of the following rules intro-
ducing the (0, 2)-ary connective� (together with permutation rules and identity axioms)

Θ⇒ X, Ξ Θ ⇒ Y, Ξ

Θ⇒ X � Y, Ξ
(�, r, ∅) Θ, X, Y ⇒ Ξ

Θ, X � Y ⇒ Ξ
(�, l, ∅)

(�, r, ∅) and (�, l, ∅) are not reductive in L1.

5 Necessary Conditions

We show that reductivity and weak substitutivity are necessary conditions for modular
cut-elimination in standard sequent calculi whose logical rules satisfy certain additional
conditions. Specifically, for each logical rule (�, l, y) i and (�, r, z)j we define the fol-
lowing conditions:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

�x(X), Θ ⇒ Ξ
(�, l, y)i

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ⇒ Ξ, �x(X)
(�, r, z)j

(log2) if any active meta-variable X [t/x] occurs in Υ1, . . . , Υn, then no X [t
′
/x′ ] (for

any t′, x′) occurs in Ψ1, . . . , Ψn, and vice versa.
(log3) each active meta-variable Xi (1 ≤ i ≤ l) occurs at most once in each premise

Υj ⇒ Ψj (1 ≤ j ≤ n).



Theorem 1. LetL be a standard sequent calculus. IfL admits modular cut-elimination,
(i) its structural rules are weakly substitutive and (if in addition each logical rule of L
satisfies (log2) and (log3)) (ii) its logical rules are weakly substitutive.

Proof. We prove (ii) since (i) is similar. Let (R0) be any instance of a logical rule with
principal formula B. By Lemma 1 it is enough to prove condition (*) of Definition 6 for
the associated atomic instance 〈R0〉 with premises S1, . . . Sn and conclusion S0. Let
c ∈ {l, r}, T be an atomic sequent without free variables and A any atomic formula.
W.l.o.g. we may assume that T does not share any atomic formula other than A with S 0.
Let S be the least set that contains {S1, . . . , Sn, T } and is closed under substitutions and
cuts. By conditions (log2) and (log3) and the definition of 〈R 0〉 and T , S is elementary
and is equivalent to

⋃
i=1,...,n[Si ←↩cA T ].

Then, any U ∈ [S0 ←↩cA T ] is derivable from S using 〈R0〉 and (CUT ). Hence
by modular cut-elimination, U has a cut-free derivation d from

⋃
i=1,...,n[Si ←↩cA T ].

Since B is the only compound formula in U , d uses only structural rules and logical
rules introducing B.

Theorem 2. Let L be any standard sequent calculus whose logical rules satisfy (log2)
and (log3). If L admits modular cut-elimination, then its logical rules are reductive.

Proof. Let (�, r, y)k and (�, l, z)j be a pair of instances of right and left logical rules
for � in L and 〈�, r, y〉k and 〈�, l, z〉j be the associated atomic instances (see Def. 7):

S1 . . . Sn

Γ ⇒ Δ, �[x](A)
〈�, r, y〉k

T1 · · · Tm

�[x](A), Σ ⇒ Π
〈�, l, z〉j

Without loss of generality, we may assume that (†) the context formulae of 〈�, r, y〉 k are
distinct from those of 〈�, l, z〉j . Thus the active formulae (in {A}s) are the only formu-
lae that can occur in the antecedent of a premise and in the consequent of another. Let
S be the least set that contains {S1, . . . , Sn, T1, . . . , Tm} and is closed under substitu-
tions and cuts. S is elementary due to conditions (log2) and (log3) and the definition of
〈�, r, y〉k and 〈�, l, z〉j . By modular cut-elimination Γ, Σ ⇒ Δ, Π is cut-free derivable
from S. Hence it is derivable from {S1, . . . , Sn, T1, . . . , Tm}s only using {A}s-cuts
and structural rules of L. The claim follows by Lemma 2.

6 Sufficient Conditions

Weak substitutivity and reductivity are sufficient conditions for a standard sequent cal-
culus to admit modular cut-elimination (and hence cut-elimination). Here below we
give a constructive proof of this result.

In the sequel,L denotes a standard calculus whose rules are weakly substitutive and
whose logical rules are reductive while S0 any elementary set of non-logical axioms.

Definition 9. The length |d| of a derivation d is the maximal number of inference rules
+ 1 occurring on any branch of d. The complexity |A| of a formula A is defined as
the number of occurrences of its (n, k)-ary connectives. The cut rank ρ(d) of d is (the
maximal complexity of the cut-formulae in d) + 1 (ρ(d) = 0 if d has no cuts). Given
a compound formula B and c ∈ {l, r}, �c

B(d) is the maximal number of c-side (left or
right) logical rules with principal formula B on any branch of d.



To prove modular cut-elimination for L, we proceed by removing cuts which are top-
most among all cuts with cut rank equal to the rank of the whole deduction. Let, e.g.

S0··· d1

Γ ⇒ Δ, A

S0··· d2

A, Σ ⇒ Π
(CUT)

Γ, Σ ⇒ Δ, Π

be a subderivation ending in such a cut. Roughly speaking our strategy is as follows:
If the cut-formula A is a compound formula, using the fact that rules are weakly sub-
stitutive, we shift up this cut over d2 as much as possible until we meet (a) an identity
axiom or (b) a logical rule introducing the cut formula A (Lemma 5). In the first case
the cut is easily eliminated while in case (b) is replaced by cuts with smaller complexity.
The latter can be done being logical rules reductive (Lemma 4 and Lemma 5). If A is
atomic, the cut is shifted upward over d2 or d1 (according to whether the elementary
set S0 contains a sequent of the form Φ⇒ Ψ, A, A or Φ, A, A⇒ Ψ , respectively) until
we meet (a) an identity axiom or (b) a non-logical axiom in S 0 (Lemma 6.(ii)). In both
cases the cut can be easily eliminated (for case (b) see Lemma 6.(i)).

Henceforth we write d,S �L S if d is a derivation in L of S from a set S of
sequents.

Lemma 3 (Substitution). Let S be any set of sequents closed under substitutions and
d,S �L S(x). Then for any term t there is a derivation d′ with |d′| = |d| and ρ(d′) =
ρ(d) such that d′,S �L S(t). Moreover, for any compound formula A which contains
neither x nor an eigenvariable of a rule in d and for any c ∈ {l, r}, � c

A(d′) = �c
A(d).

Proof. By induction on |d|. The crucial case is when the last inference (R) in d is a
logical rule with eigenvariables y and with premises S1(x, y), . . . , Sn(x, y). The term
t might contain eigenvariables y. So, take fresh variables z. Then each S i(t, z) (i =
1, . . . , n) has derivations with the required properties. We can now apply (R) and obtain
S(t). Since A contains neither x nor y, �c

A(d) remains unchanged.

The following lemma shows how to reduce a cut on a compound formula B (i.e. replace
it by cuts with cut-formula smaller than B) in case one of its premises is the conclusion
of a logical rule introducing B on the left hand side and with atomic context formulae.
This lemma is needed when proving the general case: reducing any cut on a compound
formula (Lemma 5).

Lemma 4. Let
T1 . . . Tm

T ≡ B, Σ ⇒ Π

be an instance of a left logical rule with principal formula B and in which all context
formulae are atomic. If d1,S0 ∪ {T1, . . . , Tm}s �L S with ρ(d1) < |B| then each
U ∈ [S ←↩rB T ] has a derivation d,S0 ∪ {T1, . . . , Tm}s �L U with ρ(d) < |B| and
�r
B(d) ≤ �r

B(d1).

Of course, one could derive U by applying (CUT ), but the resulting derivation would
have cut rank |B|+ 1.



Proof. Proceeds by a double induction on (�r
B(d1), |d1|). Let T = {T1, . . . , Tm}s.

Base case: |d1| = 1. Then S is either an identity axiom or belongs to S0 ∪ T . In the
former case U ∈ [S ←↩rB T ] is S or T , while in the latter case U is S (since S does not
contain B). Hence the claim is trivial.

Inductive case: |d1| > 1. If U ≡ S the claim is trivial. Otherwise, suppose that d1

ends in a rule (R) with premises S1, . . . , Sn and conclusion S. Two cases can arise:

(Case 1) (R) is not a right logical rule with principal formula B. Since (R) is weakly sub-
stitutive, (previously applying Lemma 3, if needed) U ∈ [S ←↩ r

B T ] has a deriva-
tion d′ from U1, . . . , Uk ∈

⋃n
i=1[Si ←↩rB T ], in which neither (CUT ) nor a rule

introducing B in the consequent is used. By the inductive hypothesis, we can find
derivations d′

i,S0∪T �L Ui with ρ(d′
i) < |B| and �r

B(d′i) ≤ �r
B(d1) for 1 ≤ i ≤ k.

Therefore the required derivation for U can be obtained by plugging d ′
1, . . . , d

′
k into

d′.
(Case 2) Otherwise, S can be written as Γ ⇒ Δ, B. Let U0 be Γ, Σ ⇒ Δ, Π . Then,

(1) U ∈ [U0 ←↩rB T ],
(2) U0 has a derivation d′

0 from U1, . . . , Uk ∈ {S1, . . . , Sn, T1, . . . , Tm}s only
using structural rules and {A}s-cuts, being (R) reductive. In particular, no
rule introducing B in the consequent is used in d ′

0.
By hypothesis, each Si (i = 1, . . . , n) has a derivation δi from S0 ∪ T with cut-
rank < |B| and and �r

B(δi) < �r
B(d1). By Lemma 3, each Ui has a derivation

d′i,S0 ∪ T �L Ui with ρ(d′
i) < |B| and �r

B(d′i) < �r
B(d1) for 1 ≤ i ≤ k. Therefore

by plugging d′
1, . . . , d

′
k into d′

0, we obtain a derivation d′,S0 ∪ T �L U0 with
ρ(d′) < |B| and �r

B(d′) < �r
B(d1). The required derivation for U can be obtained

by (1) and the inductive hypothesis.

To reduce any cut on a compound formula we use a similar argument as in the previous
lemma. Here we need more care of the parameter on which the induction proceeds. To
this aim we consider the marking (or decoration, see [2]) of some formulae occurring in
a derivation. Let us fix a formula B ≡ �x(A). A marked sequent is a sequent with some
(possibly zero) underlined occurrences of B in the antecedent. A marked derivation d
consists of marked sequents, with the following proviso:

(!) for any instance of a rule (R) used in d and any occurrence of B in the conclusion
of (R) which instantiates a meta-variable X , if that occurrence is marked, so are all
occurrences of B in the premises which instantiate X .

Given a not marked sequent S ≡ Γ ⇒ Δ, B and a marked sequent T , [T ←↩ l
B S]

stands for {Γ λ, Σ ⇒ Δλ, Π | T ≡ Bλ, Σ ⇒ Π with λ ≥ 0}. (Notice that Σ may
contain other occurrences of B.) Finally, let � l

B(d) be the maximal number of logical
rules introducing marked occurrences of B on the left side on any branch of d.

Lemma 5 (Compound formulae). Let B be any compound formula, T be a marked
sequent in which some occurrences of B in the antecedent are marked and d 2,S0 �L
T be a marked derivation. Assume d1,S0 �L S (d1 and S are not marked) where
ρ(d1), ρ(d2) < |B|. Then, each U ∈ [T ←↩lB S] has a marked derivation d,S0 �L U

with ρ(d) < |B| and �l
B(d) ≤ �l

B(d2).



Proof. Proceed by a double induction on (� l
B(d2), |d2|).

Base case: |d2| = 1. T is either an identity axiom or (B �∈ T and) T ∈ S0. Then U
is either S or T , and the required derivation d is either d1 or just consists of T . In both
cases, we have ρ(d) < |B| and �l

B(d1) = 0. Hence our claim holds.
Inductive case: |d2| > 1. If U ≡ T , the claim is trivial. Otherwise, assume that d2

ends with an instance of a rule (R) with premises T1, . . . , Tm and conclusion T . Two
cases can arise:

(Case 1) (R) is not a left logical rule introducing a marked occurrence of B. This case is
similar to (Case 1) in the proof of Lemma 4.

(Case 2) Otherwise, we may assume that T is of the form B, Σ ⇒ Π and S of the form
Γ ⇒ Δ, B. Let U0 be Γ, Σ ⇒ Δ, Π . Then any U ∈ [T ←↩lB S] other than T

also belongs to [U0 ←↩lB S]. Hence it is enough to find a derivation d,S0 �L U0

with ρ(d) < |B| and �l
B(d) < �l

B(d2). The claim will then be established by the
inductive hypothesis.
Let us replace the principal formula B by B and each context formula C(y) (resp.
marked context formula C(y)) in T, T1, . . . , Tm with free variables y by a fresh
atomic formula 〈C〉(y) (resp. 〈C〉(y)) to obtain sequents 〈T 〉, 〈T1〉, . . . , 〈Tm〉. In
particular, 〈T 〉 is of the form B, 〈Σ〉 ⇒ 〈Π〉 and 〈T1〉, . . . , 〈Tm〉/〈T 〉 is an in-
stance of (R) in which context formulas are atomic. Since 〈U0〉 ≡ Γ, 〈Σ〉 ⇒
Δ, 〈Π〉 ∈ [S ←↩rB 〈T 〉], Lemma 4 implies that there is a derivation d0,S0 ∪
{〈T1〉, . . . , 〈Tm〉}s � 〈U0〉 with ρ(d0) < |B| and �l

B(d0) = 0 (since d0 does not
contain any B). From this, we can easily obtain a derivation d ′

0,S0∪{T1, . . . , Tm}s
�L U0 with the same property. On the other hand, by hypothesis and Lemma 3
any U ′ ∈ {T1, . . . , Tm}s has a derivation d′,S0 �L U ′ with ρ(d′) < |B| and
�l
B(d′) < �l

B(d2). Hence by plugging them into d ′
0, we obtain the required deriva-

tion d for U0.

Lemma 6 (Atomic formulae). (i) Suppose that a sequent S has a cut-free derivation
d1 from S0 and T ∈ S0. Then, for any atomic formula A and any c ∈ {l, r}, each
U ∈ [S ←↩cA T ] has a cut-free derivation from S0.

(ii) Let d1 and d2 be cut-free derivations of d1,S0 �L S and d2,S0 �L T and A
be an atomic formula. Then, each U ∈ [T ←↩ lA S] (resp. each U ∈ [S ←↩rA T ]) has
a cut-free derivation d,S0 �L U provided that no sequent of the form A, A, Σ ⇒ Π
(resp. Γ ⇒ Δ, A, A) belongs to S0.

Proof. (i) Proceeds by induction on |d1|, similarly as (Case 1) in the proof of Lemma
4. (ii) Proceeds by induction on |d2| (resp. |d1|). When |d2| = 1, then T is an identity
axiom or T ∈ S0. If U ≡ T or U ≡ S the claim is trivial. Otherwise, since T does not
contain more than one occurrence of A in the antecedent, U ∈ [T ←↩ l

A S] also belongs
to [S ←↩rA T ]. Hence the claim follows by (i). The case |d2| > 1 is as before.

Theorem 3 (Modular Cut-Elimination). Any standard sequent calculusLwhose rules
are weakly substitutive and whose logical rules are reductive admits modular cut-
elimination.

Proof. Let S0 be an elementary set of non-logical axioms in L, d a derivation in L from
S0 with ρ(d) > 0. The proof proceeds by a double induction on (ρ(d), nρ(d)), where



nρ(d) is the number of cuts in d with cut rank ρ(d). Let us take in d an uppermost cut
with cut rank ρ(d). Let d1,S0 �L Γ ⇒ Δ, A and d2,S0 �L A, Σ ⇒ Π its premises.

When A is not atomic, let d′
2 be a marking of d2 in which the indicated A is marked,

and apply Lemma 5 to d1 and d′
2. When A is atomic, apply Lemma 6 (ii) to d1 and d2 (by

Definition 4, multiple copies of A cannot occur both in the antecedent and consequent
positions of any sequent in S0). In any case, either ρ(d) or nρ(d) decreases.

When a standard sequent calculus satisfies some additional properties, weak substitu-
tivity and reductivity characterize modular cut-elimination:

Corollary 1. Let L be a standard sequent calculus satisfying (log2) and (log3). Then
L admits modular cut-elimination if and only if all rules are weakly substitutive and
logical rules are reductive.

Theorem 3 allows us to prove cut-elimination for a given standard sequent calculus in
an “incremental” way:

Corollary 2 (Modularity). Let L and L ′ be standard calculi with disjoint sets of log-
ical connectives (L is single-conclusion if so is L′, and viceversa). Suppose that their
logical rules satisfy (log2) and (log3). If both L and L ′ admit modular cut elimination,
so does L ∪ L′, obtained by taking the union of logical connectives and rules in L and
L′.

Remark 5. The same result does not hold for cut-elimination. E.g. let L ′
1 be the cal-

culus containing exchange and the rules for implication in linear logic. L ′
1 admits cut-

elimination and so does (trivially) the calculus L1 of Example 5 (the only sequents
provable in L1 are instances of the identity axiom) while L1 ∪ L′1 does not anymore.

Our modular cut-elimination procedure is ‘universal’ for standard sequent calculi with
additional conditions in the following sense:

Corollary 3. LetL be a standard sequent calculus satisfying (log2) and (log3). IfL ad-
mits modular cut-elimination and �L S, the procedure described in this section always
provides a cut-free derivation in L for S.

Remark 6. The same does not hold for cut-elimination and e.g. the procedures of Gentzen
[4] and Schütte-Tait [10, 9]. Indeed, Gentzen’s cut-elimination method can be applied
only when suitable “ad hoc” (derivable) generalizations of the cut rule (e.g. Gentzen’s
mix) are found. These generalizations, needed to cope with rules duplicating formulas
(e.g. contraction), are not needed for the Schütte-Tait method whose applicability re-
lies on the inversion of (at least) one of the premises of the cut. This cannot always be
done in calculi that admit cut-elimination. For example let L2 be the single-conclusion
calculus consisting of weakening, exchange and the following rules:

Θ ⇒ X1 Θ′ ⇒ X2

Θ, Θ′ ⇒ X1 ∧ X2

(∧, r)
Θ, Xi ⇒ Y

Θ, X1 ∧ X2 ⇒ Y
(∧, l)i=1,2

L2 admits cut-elimination (e.g. using our method: it is easy to check that these rules
are reductive and weakly substitutive) although neither of the premises of a cut with cut
formula A ∧ B can be inverted in the usual way and hence the Schütte-Tait procedure
does not apply.



7 Counterexamples to (modular) cut-elimination

We have introduced syntactic criteria (weak substitutivity and reductivity) that when
met by a standard sequent calculus L, L admits modular cut-elimination. If the logical
rules of L satisfy (log2) and (log3) our conditions are also necessary and hence a coun-
terexample for modular cut-elimination (i.e. a derivation in L from an elementary set
of sequents in which cuts cannot be eliminated) can be extracted from their failure.

Now, what can we say about plain cut-elimination? The failure of weak substitu-
tivity or reductivity for a standard calculus L is not enough to conclude that L does
not admit cut-elimination, being modular cut-elimination a notion strictly stronger than
cut-elimination (e.g. both LJ’ and L1 admit cut-elimination although they do not admit
modular cut-elimination, see Examples 3, 5 and Remark 5).

Our conditions are however useful for pinning down the difficulty of (dis)proving
cut-elimination and reduce the search space when finding counterexamples for cut-
elimination (or cut-admissibility). Indeed

Definition 10. Let L be a standard sequent calculus. The following derivations d in L
are called candidates of counterexamples for L.

– Let (R) be an instance of a rule in L which is not weakly substitutive. Let S0 be its
conclusion and S1, . . . , Sn its premises. Take a sequent T , a formula A, c ∈ {l, r}
and U ∈ [S0 ←↩cA T ] which violates condition (*) of Def. 6. Then let d be the
following:

T

S1 · · · Sn

S0

U
(CUT )

– Let � be a connective in L whose rules are not reductive. Take a pair of instances of
left and right logical rules with conclusions Γ ⇒ Δ, �x(A) and �x(A), Σ ⇒ Π
which violates the condition (�) of Def. 8. Then let d be the following:

S1 · · · Sn

Γ ⇒ Δ, �x(A)
T1 · · · Tm

�x(A), Σ ⇒ Π

Γ, Σ ⇒ Δ, Π
(CUT )

A candidate of counterexamples d, U1, . . . , Un �L U0 is resolvable if whenever U1, . . . ,
Un are provable in L, U0 is cut-free provable in L.

Example 6. The rule (→, r, ∅) is weakly substitutive neither in Maehara’s LJ’ nor in
GD (see Example 3). A candidate of counterexamples for LJ’ and GD, that is also a
counterexample for modular cut-elimination is then provided by any cut-free derivable
sequent with one implicative formula on its right end side, e.g. D ⇒ C → D and any
set of non-logical axioms containing the sequent Γ ⇒ D, Δ, for any Δ that contains
at least one formula. This counterexample for modular cut-elimination can be easily
turned into a counterexample for cut-elimination in GD by suitably choosing Γ , Δ and
D such that �GD Γ ⇒ D, Δ while �GD Γ ⇒ C → D, Δ only using (CUT ). E.g.
take Γ ≡ ∀x(P (x) ∨ B), D ≡ ∀xP (x) and Δ ≡ B, it is easy to see that the sequent
∀x(P (x) ∨ B) ⇒ C → ∀xP (x), B is not cut-free derivable in GD while a derivation
with (CUT) is as follows:



P (a) ⇒ P (a) B ⇒ B
(∨,l)

P (a) ∨ B ⇒ P (a),B
(∀,l)

∀x(P (x)∨ B) ⇒ P (a),B
(∀,r)

∀x(P (x)∨ B) ⇒ ∀xP (x),B

∀xP (x) ⇒ ∀xP (x)
(w,l)

∀xP (x),C ⇒ ∀xP (x)
(→,r)

∀xP (x) ⇒ C → ∀xP (x)
(CUT)

∀x(P (x)∨ B) ⇒ C → ∀xP (x),B

This proves that GD does not admit cut-elimination (in contrast with the claim in [5]).

Notice that all candidates of counterexamples are resolvable in LJ’. Indeed, a careful
inspection of the modular cut-elimination proof shows:

Theorem 4. Let L be a standard sequent calculus for which either weak substitutiv-
ity or reductivity fails. Then L admits cut-elimination if and only if all candidates of
counterexamples for L are resolvable.

To conclude, although our conditions do not directly yield a counterexample for cut-
elimination, they do provide the class of candidates among which, if a standard calculus
does not admit cut-elimination, such a counterexample can be found.
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