Computational Ludics

Kazushige Terui

Research Institute for Mathematical Sciences, Kyoto University.
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, JAPAN.

Abstract

We reformulate the theory of ludics introduced by J.-Y. Girard from a computa-
tional point of view. We introduce a handy term syntax for designs, the main objects
of ludics. Our syntax also incorporates explicit cuts for attaining computational ex-
pressivity. We also consider design generators that allow for finite representation
of some infinite designs. A normalization procedure in the style of Krivine’s ab-
stract machine directly works on generators, giving rise to an effective means of
computation over infinite designs.

The acceptance relation between machines and words, a basic concept in com-
putability theory, is well expressed in ludics by the orthogonality relation between
designs. Fundamental properties of ludics are then discussed in this concrete con-
text. We prove three characterization results that clarify the computational powers
of three classes of designs. (i) Arbitrary designs may capture arbitrary sets of finite
data. (ii) When restricted to finitely generated ones, designs exactly capture the
recursively enumerable languages. (iii) When further restricted to cut-free ones as
in Girard’s original definition, designs exactly capture the regular languages.

We finally describe a way of defining data sets by means of logical connectives,
where the internal completeness theorem plays an essential role.

Key words: Ludics, automata theory

1 Introduction

Ludics has been introduced by J.-Y. Girard [9] as a foundational, pre-logical
framework upon which ordinary logics and type systems are to be built, and in
which various semantic and computational phenomena are uniformly analyzed
(see [4,2] for good expositions). The basic entities of ludics are called designs,

Email address: terui@kurims.kyoto-u.ac. jp (Kazushige Terui).

Preprint submitted to Elsevier 17 November 2008

which may be understood in various ways: as abstract sequent proofs, abstract
Bohm trees [1], innocent strategies [5] and processes [7]. Ludics then provides
a ‘forum,’ in which various participants (designs) interact together via normal-
ization/composition, and sometimes form a ‘community’ that shares a com-
mon interactive behaviour. Such a ‘community’ is in fact called a behaviour (or
an interactive type), and corresponds to semantic types (see, e.g., [17]) or truth
values in realizability [14]. Ludics sheds a new light onto some known prop-
erties, such as confluence/associativity, stability and syntax-semantics corre-
spondence. It also discovers a number of new phenomena, such as incarnation
and internal completeness.

Some of the new ideas from ludics are also relevant for the traditional theory
of computability and complexity:

Monism. There is no ontological distinction between syntax and semantics.
Such a monistic framework would be appealing in the computability the-
ory too, where people usually go back and forth between two ontological
entities: machines (algorithms) and languages (sets), that can be cumber-
some. Ludics could provide a forum in which languages and machines are
homogeneous entities, only distinguished by their inherent properties. Typ-
ically, acceptance relation between machines and words is replaced by the
orthogonality relation between designs, which is homogeneous:

Machine M accepts a word w <= M* Lw*.

Focalization. Logical connectives of the same polarity combine together,
yielding synthetic connectives. After maximal focalization, every logical for-
mula becomes a pure alternation of positive and negative layers. This alter-
nation would give a logical account to the unit of computation time/space
(suggested by [9]).

Interaction. As with linear logic and game semantics, ludics favours an in-
teractive view of computation (agent <> agent) rather than the functional
one (input — output). Interactive computation also lies in the core of the
basic complexity theory (think of composition of two logspace Turing ma-
chines, that has to be done interactively, not functionally), and is also a key
notion in the progress in the last two decades (typically in interactive proof
systems; see e.g. [3]).

Our ultimate goal is to develop a monistic, logical, interactive theory for com-
putability and complexity based on ludics. The current article is a first step
towards this goal. We propose a slightly modified and extended formalism for
ludics that is well suited for dealing with computational objects. The major
modifications are as follows:

(1) Designs in [9] are built with absolute addresses (sequences of natural num-
bers), called loci. While this locative approach is illuminating in theory, it

is too heavy for practical use; working with absolute addresses is like pro-
gramming with machine codes. We therefore adopt a more conservative
approach using a term calculus, where absolute addresses are replaced by
variable bindings, as initiated by Curien [2]. Coinductive techniques turn
out useful for manipulating our syntactic designs (cf. [13]; see [12] for an
introduction to coinductive techniques).

(2) Designs are infinite objects in general, while effective computation re-
quires of finitary representation. We therefore introduce a generator pro-
ducing a design. In particular, finite generators, which are analogous to
automata, allow for finitary representation of some infinite designs.

(3) Designs in [9] capture only cut-free and identity-free proofs. While it
is semantically natural (as strategies in game semantics are cut- and
identity-free), it limits the computational power considerably. Hence we
extend designs with explicit cuts (and also identities for future purposes).

We then study the basic properties of our extended designs and behaviours.
Although most of them are adapted from the original work, our exposition
puts special emphasis on their relevance to concrete computation.

It should be stressed that our purpose is not to replace the original frame-
work, which has a lot of theoretical advantages, but to complement it with a
handy extended syntax, which has practical advantages and is more oriented
to applications.

The rest of this article is organized as follows. In Section 2, we introduce our
syntax for designs, which simplifies and extends Curien’s concrete syntax [2].
Our designs also incorporate explicit cuts and identities for computational
purposes, and thus called computational designs or c-designs. Design genera-
tors producing c-designs are also introduced, which allow finite generation of
infinite c-designs. They come equipped with a Krivine-style normalization pro-
cedure [15], that leads to effective computation over infinite c-designs. There is
a quite satisfactory definition of data as c-designs in our framework. Based on
them, some examples of computation are illustrated. In particular, we give a
bidirectional correspondence between deterministic finite automata (DFA) and
finitely generated standard designs, which are cut-free as in Girard’s original
definition. This way we estimate the computational power of finitely generated
standard designs as that of DFA.

In Section 3, we study the analytical properties of designs from a computa-
tional point of view. Associativity of normalization is important for composi-
tion of function designs, while separation is for acceptance of data designs. The
pull-back property, a ludics analogue of linearity, is useful for acceptance of
sets of data designs. In passing, we also observe that the computational power
of finitely generated c-designs goes far more beyond DFAs, once equipped with
cuts; indeed they capture all recursively enumerable languages. This comes in

contrast with the cut-free case above, and in fact was our original motivation
to consider designs with cuts.

In Section 4, we introduce the behaviours, i.e. biorthogonal-closed sets of (lin-
ear) c-designs. Behaviours may be considered as generalizations of languages.
To have an exact correspondence, however, one has to restrict a behaviour to
the set of “pure” elements in it. Here the notion of incarnation, a truly original
discovery of ludics, plays an essential role. While interactive definition of lan-
guages via machines/automata is well expressed by orthogonal construction of
behaviours, constructive definition of languages via language operators (e.g.,
union and Kleene’s star) is supported by logical construction based on logical
connectives. Here, internal completeness, another originality of ludics, plays a
key role. We end the section by exhibiting ludics analogues of some language
operators.

Section 5 concludes the article with a number of future research directions.

2 Designs and Normalization

We introduce our new notion of design, which modifies Girard’s original one
(subsection 2.1). They can be generated by design generators, sometimes by fi-
nite ones (subsection 2.2). Normalization of designs is defined in two ways, first
by a reduction-based procedure (subsection 2.3) and later by a Krivine-style
one (subsection 2.6). We also illustrate how to represent data and functions
as designs (subsection 2.4), and show that finitely generated cut-free designs
correspond to deterministic finite automata, and thus have a limited compu-
tational power (subsection 2.5).

2.1 Designs

We present a handy syntax for designs that simplifies and extends Curien’s
concrete syntax [2]. Inspired by a close relationship with linear 7-calculus [7],
we adopt a notation analogous to m-calculus.

As with Curien’s, it can be best understood by analogy with lambda terms.
Let us consider the simple types generated by 7 :=¢ | 7 — 7 and a fragment
of simply typed lambda calculus given by:

P o= (N7 N N,

N 2= | Aaft -y P

The terms of the form P (resp. N) are considered positive (resp. negative).

Positive terms are always of atomic type, and take some number of argu-
ments, while negative ones are of arbitrary type, and among them non-variable
ones bind some number of variables. A redex is a positive term of the form
(Axy---x,.P)Ny---N,. Because of the typing, the arity n always agrees.
Hence one can apply n steps of reduction at once:

()\Ill‘nP)Nan — P[Nl/l’l,,Nn/l‘n]

yielding another positive term. Two restrictions may be imposed. A term is
normal if in any positive subterm (Np)Nj...N,, N, is a variable. On the
other hand, a term is n-long if in any positive subterm (Ng)Nj ... N,, none of
Ny, ..., N, is a variable, unless it is of atomic type.

The designs of ludics extend the lambda terms in this well-behaved fragment
in several ways. First, designs can be infinitary. Second, types are dropped
and agreement of arity is ensured in another way. Third, instead of the single
constructor /destructor pair, that is A and the application, there are plenty of
such pairs, one for each finite set I of natural numbers (called a ramification).
A special term for termination (called the daimon) is also added, and finally
additive superimposition Ny + Ny + - -+ of terms is allowed.

Actually, the original designs extend the normal, n-long and linear lambda
terms. In contrast, our syntax also encompasses non-normal, non-n-long and
non-linear terms. Another difference is that terms are built from an arbitrary
set of names, rather than the fixed set of ramifications.

Definition 2.1 A signature A is a pair (A,ar) of a set A of names and a
function ar : A — N giving an arity to each name.

Let V be a denumerable set of variables x,y, z,.... We build actions from a
given signature A and V. A positive action is either YK (daimon), Q2 (divergence)
or @ with a € A (proper positive action). A negative action is either xz € V

(variable) or a(zy,...,x,) (proper negative action) where a € A, ar(a) = n
and xi,...,x, are distinct variables. In the sequel, we adopt the following
convention: each of Z,, ¥y, ... denotes a vector of n = ar(a) distinct variables.

Hence an expression of the form a(Z,) always denotes a negative action.

Remark 2.2 Names generalize ramifications I € P;(N) of the original ludics.
In fact, the original designs can be considered as structures over the signature
RAM = (P;(N),| |), where |I] gives the cardinality of I € P;(N). Our use of
names allows for a handy notation and circumvents the difficulty associated
to the empty ramification (see 5.2.4 of [9]).

We are now ready to define our version of designs. To distinguish them from
the original ones, we call them computational designs, or c-designs.

Definition 2.3 We fix a signature A = (A, ar). Let T be the set of (possibly
infinite) rooted trees in which each node is labelled with a positive action, a

variable, or a set {a(%,)}sca of proper negative actions indexed by A, and
each edge is labelled with [€ N U A.

The set DT of positive c-designs and the set D~ of negative c-designs are the
largest subsets of T that satisfy the following conditions.

1. If P € D", then one of the following holds:

e P is a single node labelled with .
e P is a single node labelled with €.
e P is of the form
N, e N,

A

i.e. a tree whose root is labelled with a positive action @ with ar(a) = n and
has n + 1 immediate subtrees Ny,..., N, € D~. The edge connecting the
root to N; is labelled with i € N. We denote P by Ny|a(Ny, ..., N,).

a

2. If N € D, then one of the following holds:

e N is a single node labelled with a variable x.
e N is of the form
P,

{a(fa)}aEA

i.e. a tree whose root is labelled with {a(Z,)}sca and has |A| immediate
subtrees {P,}aca, all in D*. The edge connecting the root to P, is labelled
with a € A. We denote N by Y a(Z,).P,.

Informally, we may consider D = D+ U D~ to be coinductively defined by

P o= | Q| No|a(Ny, ..., Ny),
N =2 | Za(fa).Pa.

We use symbols P, Q, ... for a positive c-design in D, M, N, ... for a negative
c-design in D™, and T, U, ... for an arbitrary one in D.

By definition, every non-variable negative c-design is fully branching, i.e., has
| A]-many children, that is often too much. A partially branching one can be
encoded by using €. Given a subset K C A and { P, },cx, we write Y. i a(Z,). P,
to denote the negative c-design 3 a(%,).Q, where @, = P, if a € K and
Q. = Q otherwise. When K is a finite set {ay,...,a,}, we use the notation
a1 (%1).Py, + - -+ + an(Z,).P,, . In particular, when K is a singleton {a} or the
empty set, we write a(%,).P, or 0, respectively.

A positive c-design Ny|a() with 0-ary name a is simply written as Ny|@.
A subtree of T is called a subdesign of T
Definition 2.4

e A positive c-design of the form Ny|a(Ny,..., N,) is called a cut if Ny is not
a variable, and hence is of the form (3 a(%,).P,) [@a(Ny, ..., Ny).

e A variable z occurring as Ny|[@a(Ny,...,z,..., N,) in T is called an identity
in T. If T'= x, then T itself is an identity.

We call T cut-free (identity-free, resp.) if it does not contain a cut (identity,
resp.) as subdesign.

If T is cut- and identity-free, any positive subterm is either X4, €2 or of the form
z|a(Ny, ..., N,) where none of Ny,..., N, is a variable. Observe the analogy
with the normal and n-long terms in the well-behaved fragment of lambda
calculus given at the beginning of this subsection. Furthermore, anticipating
subsection 2.3, the reduction rule for c-designs is as follows:

(X al(xy, ..., 2).P) [a(Ny, ..., Np) — Pu[Ni/x1,...,Np/xy].
This is also analogous to the reduction rule for lambda terms:

()\Ill‘nP)Nan — P[Nl/l’l,,Nn/l‘n]

Our c-designs involve binding expressions a(Z,).P, which binds free occur-
rences of Z, in P,. Hence it is natural to identify them up to a-equivalence.
By renaming we mean a function p : ¥V — V. We write id for the iden-
tity renaming, and p[z/x] for the renaming that agrees with p except that
plz/z](x) = z. The set of renamings is denoted by RN .

Definition 2.5 The a-equivalence is the largest relation R C (D x RN)?
such that if (7, p) R (U, 7), then one of the following holds:

(1) T ="1=U,
(2) T=Q=U;

(3) T = No|a{Ny,...,Ny), U= My|a(M;, ..., M,) and (Ng, p) R (Mg,) for
every 0 < k < n;

(4) T==2, U=y and p(z) = 7(y);

(5) T = Y a(s).Po, U = Y a(¥a).Qu and (Py, p[22/Za]) R (Qus pl2a/Ta]) for
every a € A and some vector 2, of fresh variables.

T and U are a-equivalent if (T, id) R (U, id).

In the sequel, we identify c-designs up to a-equivalence.

Given a c-design T, the set of free variables in it is denoted by fv(7'). We omit
a formal definition, as it is intuitively clear.

If T is a c-design and N a negative c-design, T[N/x] denotes the c-design
obtained from 7' by substituting N for all free occurrences of z in 7. In doing
so, we assume that the bound variables of 7" have been suitably renamed, so
that no free variable of N is newly bound by the substitution.

The following lemma is useful when proving two c-designs are equivalent (up
to a-equivalence).

Lemma 2.6 Let R be a binary relation on c-designs such that

e R is closed under a-equivalence: if T and T' (resp. U and U') are a-
equivalent and T R U, then T' R U’;

o if T' RU then one of the following holds:

(1) T ="1=U;

(2) T=Q=U;

(3) T = Nola(Ny,...,N,), U= Myla(My,...,M,) and N, R M for every

0<k<n,
(4) T=x=U;
(5) T =% a(%,).P,, U=Y a(%,).Q, and P, R Q, for every a € A.

If T RU, then T and U are a-equivalent.

Proof Define a new relation R’ C (D x RN)? as follows:

e (T,p) R (U,7)if Tp RUT, where Tp is the result of applying the renaming
p to the free occurrences of variables in 7T'.

Assume that (T, p) R’ (U, 7) and verify that one of (1) — (5) in Definition 2.5
holds for R'. The most crucial case is when T is of the form Y a(%,).P, so
that Tp = (X a(#,).P,) p = X a(Zs).(Pup|Za/%,)). Since Tp R Ut, U must be
of the form Y a(%,).Qq. so that UT = Y a(¥a)-(QaT[¥a/Ua]). Let a € A and Z,
be a vector of fresh variables. Since R is closed under a-equivalence, we have

2 a(Za)-(PaplZa/Ta]) B 2 a(Za)-(QaTlZe/Yal), and so Pap[Za/Ta] B Qa7[Za/7a

by (5). This proves that (P, p[Z,/Z.]) R (Qa,T[Z./7.]) for every a € A, as
required. O

Definition 2.7 Let T be a c-design.

e T is total if T = Q.

e T'is linear if for any subdesign of the form Ny|a(Ny, ..., N,), the sets fv(Ny),
..., fv(N,) are pairwise disjoint.

e T is standard if it is total, linear, cut-free, identity-free and fv(T) is finite.

Remark 2.8 The standard c-designs over the signature RAM exactly cor-
respond to the original designs in [9].

Concretely, let T be a standard c-design with free variables {z1, ..., x,}. As-
suming that a distinct address &; (locus) is associated to each z;, and also
assuming that an address &, is associated to the root when T is negative, one
can automatically infer the addresses of its subdesigns. Let P = y[J(M) be an
occurrence of a positive subdesign of T". If y = x;, then its address is ;. Oth-
erwise, the address is obtained via the address £ of the binder 3" I(i;).Q; of y.
If I'={iy,...,0inm} with iy <--- <ipm, 1 = Yir,---,Yi,, and y = y;,, then the
address of P is £.1;. The address of an occurrence of a negative subdesign is
obtained from the positive one immediately above it. Let P = y|I(Ny,..., N,
be a subdesign of T', where I = {iy,...,in}, i1 < -+ < iy. If the address of
P is &, the address of Ny is .4y for each 1 < k£ < m.

2.2 Design generators

Since designs are infinitary in general, they are not directly an object of ef-
fective computation. We therefore introduce design generators that provide
a means to finitely describe infinite designs. Generators are also useful for
defining a function on designs by corecursion.

Definition 2.9 A generator G is a triple (S*,S7,¢) where ST and S~ are
disjoint sets of states, and ¢ is a function defined on S = S* U S~ which
satisfies the following conditions:

e For st € ST, ((s)is either ¥4, Q or an expression of the form sy [a(sy,...,s;)
such that a € A, ar(a) =n and s;,...,s, € S™.

e For s= € S, {(s™) is either a variable x or an expression of the form
> a(#,).s; such that s € ST for every a € A.

A pointed generator is a pair (G, sy) of a generator G = (S, S, /) and s; € S.
It is also written as a quadruple (S*, S, ¢, s1).

Q

° Un1"0:k>1ing ‘
)

Fig. 1. Generator for w* and its unfolding

A generator GG can be considered as a labelled directed graph with the set S
of vertices. The equation ¢(s™) = sy |a(s;,...,s,) can be read as “the vertex
st has label @ and there is a labelled edge s* — s; for every 0 < i <
n.” Likewise, ((s7) = Y a(#,).s] can be read as “the vertex s~ has label
{a(Z,)}aea and there is a labelled edge s= — s} for every a € A.” Hence
given an initial point s7, the standard unfolding procedure yields a a labelled
tree with root s;. It is in fact a c-design, which we denote by design(G, s;).
We say that (G, s;) generates the c-design design(G, sy).

For instance, the pointed generator ({sx}, {sn}, ¢, sy) with
U(sg) =X, Usn) =Y a(Zy).sm

generates the negative daimon Y4~ = a(Z)."4. On the other hand, consider
({sp,sa}, {sn, sz}, ¢, sy) with

U(sp) = si|suc(sy), U(sy) =T(z).sp, l(s;) =z, l(sq) = Q,

Here, 1 (z).sp is a shorthand for Y a(Z).s, where s, is sp if a =1 and is
sq otherwise (see Fig. 1). It generates an infinite negative c-design w* =
1 (z).z[suc{w*) that will be considered as a representation of the ordinal w
(see subsection 2.4).

There is a universal generator G, = (D%, D™, id), which consists of the set of
all positive c-designs, that of all negative c-designs, and the identity function.
Notice that the identity function id on DT UD~ can be (abusively) considered
as a labelling function Z in the sense of Definition 2.9. Hence every c-design U
is generated by a pointed generator. In fact, we have design(G,,,,U) = U.

10

Different generators may generate the same c-design. A condition for equiva-
lence can be given by bisimulation, though we do not pursue it in the current
article.

Definition 2.10 A c-design U is finitely generated if it is generated by a
pointed generator (G, s;) which has finitely many states, and whenever £(s~) =
> a(Z,).Sa, all but finitely many s, have the label €.

For instance, the above w* is finitely generated. The power of finite generation
is partly witnessed by the following proposition; notice that x may occur
infinitely many times in 7" below.

Proposition 2.11 IfT and N are finitely generated, so is T[N /x].

By using generators, we can easily justify corecursive definition of functions
on c-designs.

Theorem 2.12 Let f: D — D be a function that respects the polarity (i.e.
maps a positive c-design to a positive one, etc.). Then there exists a unique
function f : D — D such that

f(P) = f(No)[al(f(N1), ..., f(Nw)) if f(P) = Nola(Ny, ..., Ny),
=X if f(P)="%
= if f(P)=%;

F(N) = Sa(@.).f(P.) if f(N) = S alZa).Pa;
=z if f(N) =ux.

Proof Let G be the generator (D+, D™, f), and define f(U) = design(G, U)
(here we abusively think of f as the labelling function ¢ as in the definition
of the universal generator). Then it is easy to verify the above equations. For
instance, if f(P) = Ny|a(Ny, ..., N,), then

~

f(P) = design(Gy, P)
(G

= design No)[a(design(Gs, Ny), ..., design(Gf, Ny))

= f(No)|a<f(N1), o (V).

The uniqueness can be established by a standard bisimulation argument. [J

11

2.8 Reduction-based normalization

Designs can be normalized in several ways. We first present a reduction-based
procedure. It is defined in two stages. First, we introduce a reduction rule that
finds a ‘head normal form’ whenever it exists.

Definition 2.13 The reduction relation — is defined on positive c-designs
by:

(X a(#,).P,) [a(N) — P,[N/Z,],
where N is a vector of n = ar(a) negative c-designs. The transitive reflexive
closure of — is denoted by by —*. We write P |} @ if P —* @ and @ is
neither a cut nor €. If there is no such (), we write P 1.

When P is closed (i.e. has no free variables), P is a cut, M or Q. Hence we
have either P || " or P).

Second, we expand — by corecursion. Define a function hAnf : D — D by
hnf(P) = Q if P | Q and hnf(P) = Q otherwise; hnf is just the identity
on negative c-designs. Then Theorem 2.12 ensures the unique existence of the
following function.

Definition 2.14 The normal form function [| : D — D is defined as
follows:

[P] =% if Py %
=0Q if P 1);
= x|a<[[N1]l77[[Nn]]> lfPUx|6<NlaaNn>a

Though intuitive, the above definition of normalization is not effective, because
it works on c-designs which are often infinite, and the substitution involves a
costly renaming operation. An alternative procedure will be given in subsec-
tion 2.6.

To give an example of normalization, let us consider the faz, that is a fully
n-expanded form of the identity axiom. It is defined by a recursive equation:

n(N)=Xa(ys, ..., yn)-Nl@n(y), -, 1Yn)),

where n varies depending on the arity of each name a € A. It is easy to give
a finite generator for it, whenever A is finite. The fax n(x) is standard, and it
works as the identity function when applied to cut- and identity-free c-designs:

12

Proposition 2.15 Let P and N be respectively positive and negative c-designs
without cuts and identities. For any variables x, ..., x,, we have

[Pln(z1)/z1, - n(an) [za]] = P, [n(Nn(z1)/z1, ... n(zn)/2za])] = N.
Proof Define a binary relation R on D as follows:

e P R Q if P is cut- and identity-free, and Q = [P[n(z1)/x1,...,n(xn)/z4]]
for some xq,...,x,;
e N R M if N is cut- and identity-free (and hence is not a variable), and

M = [[U(N[n(l‘l)/l‘la RS U(xn)/fn])]] for some T1,...,Tn;
e 1 R x for any variable z.

Let us verify that if 7' R U, one of (1) — (5) in Lemma 2.6 holds.

If T is of the form z[a(Ny,..., Np), then U = [T[n(z1)/x1,...,0(xn)/za]]-
Assume z = x; for some 1 < i < n (otherwise the proof is easier). We write

() /&) for [n(x1)/x1, . .., n(xn)/2n]. Then,

— —

Nl () /7)1
’

n(x)/7))]

—

N[() /Z])])-

Since x R x and N; R [[n(Nz[n(?v)/f])]] for every 1 <i < m, (3) holds.

5

When T is of the form 3" a(Z,).P,, we may assume that z1, ..., x, are distinct
from z, by a-equivalence. Now,

U =[n(Tln(x)/7))])
=[S ays, - yn)- (T a(Z)-Paln

=Y a(y, - ya)-[(Ta(Z) Puln(x
= a(y1, s Yn)-[Paln(
=Y a(z1,...,2).[Pafn(

Since P, R [P,[n (V/Z,n(z1)/21, -y 0(2n)/2a]], (5) holds.

Other cases are straightforward. Hence by Lemma 2.6, we obtain the desired
equalities. O

A consequence is that one can safely replace an identity = with n(x) in some
situations (see Remark 2.18).

13

2.4 Data and functions as designs

Let us now discuss representations of data and functions in ludics. First of all,
note that if a signature A contains a 0-ary name n for each natural number
n € N, an arbitrary function f : N — N can be represented by a c-design
Snn.f(n). In fact, we have

(Zun.fm)) [m — Fm).

But this does not admit a finite generator, hence is not interesting from a
computational point of view. We are rather interested in structured data and
finitely presentable functions over them.

Fortunately, ludics admits a quite general definition of data that encompasses
most of what are usually called (first order) data. Throughout the rest of this
paper, we assume that the signature A contains a fixed unary name 1. We
denote Thy |. A negative c-design of the form 1 (z).z[a(N) with z ¢ fu(N) is
shorthanded by 1@(N). It behaves as follows:

ta(N)| | (M) — M[a(N).

Definition 2.16 The set of data designs consists of negative c-designs d, dy, do,
... coinductively defined as follows:

d ==1a(dy,...,d,),

where a stands for an arbitrary name and n = ar(a).

Data designs are standard, and the only negative action involved is 1 (z).
Furthermore, the variable x thus introduced is immediately consumed. Hence
the binding relation, which corresponds to the justification relation in Hyland-
Ong game semantics [11], is trivial.

For the purpose of giving examples, let ¥ be an alphabet (i.e., a finite set of
symbols) and consider a signature 4, that contains:

e O-ary names: zero, nil, a® for each a € 3;
e unary names: suc, a' for each a € ¥;

e binary names: pair, cons, a? for each a € .

In the sequel, a’, a' and a? are often written as a.

14

Each natural number n can be represented by a data design n*:

0* = 1zero = 1(x).x|zero

(n+1)" = tsuc(n®) = 1 (x).z[sU¢(n*)

A data design w* corresponding to the ordinal w can also be defined by a
recursive equation:

w* = fsuc(w*).

As we have seen in subsection 2.2, w* is finitely generated.

Similarly, words over X, labelled binary trees over X, and lists over a set D of
data designs are represented as follows:

e = T nil, leaf* = ta?, " = tnil;

(aw)* = 1@ (w*), (node,(t,u))" = ta*{t*,u*), (d:1)* = tcons(d,l*).

where a € ¥ and w € ¥*. leaf, is a single node labelled with a, node,(t, u)
is a tree with root labelled by a and has immediate subtrees ¢,u. [| is the
empty list, d € D, and [stands for a list over D. These representations can
be extended to the infinitary ones in the same way as natural numbers are
extended to w.

We have chosen data to be negative c-designs, even though they are positive
“in spirit,” as their main ingredients are positive actions (the negative action 1
is just used for adjusting polarity). The reason is that a c-design may in general
have multiple variables, for which negative c-designs can be substituted. Hence
our choice allows for natural definitions of multi-arity functions.

Definition 2.17 An n-ary function design is a negative c-design F[xq, ..., 2y]
such that fv(F) C {xy,...,z,} and [F[dy,...,d,]] is either a data design or
M(z).Q for any data dy, ..., d,.

Notice that 1(z).Q can also be written as Y a(%,).Q2. It is a negative version
of divergence Q, and is called skunk in [9]. In the sequel, we give some typical
examples of function designs.

Constructors. To each a € A of arity n, an n-ary function design 1 @(Z,)
is associated, representing the constructor function for a. For instance, the
successor for the natural numbers is given by Suc[z] =13uc(x).

15

Discriminators. Let K C A and suppose that a function design F,[7,] is
given for each a € K. We define

case z of {a(%,) = F,[Tu]|}uck = T(y)-$|i<ZK a(fa).(Fa[fa]|¢<y>)>.

Given a data design d =1a(dy,...,d,) with a € K, it works as follows (below,
we write T' = U if U is obtained by applying the reduction rule to a subdesign
of T').

case d of {a(7,) = FulZulYaex = H(u).dlL (S al@,).(FlT]| L))
= 1(y)-(Sk (@) (Fulal [L (v))) [alds, . ., d)
= Ny).(Fu[dy, ..., dn]| L (1))

Since F, is a function design, the normal form [F,[dy,...,d,]] is of the form
1(z).P for some P. Hence we have

() My)-(1(=@).PlL(y)) = Ny).Ply/z] =1(z).P.

Assuming associativity of normalization (Theorem 3.1), we obtain

[case d of {a(Z,) = Fu[%]}ack] = [Fuldi, .- ., dn]]-

By using this construction, the predecessor for natural numbers can be defined:
Pred[z] = case = of {zero = 0%, suc(z) = z}.

Remark 2.18 Although the definition of case = of {a(%,) = F,[%.]}eek in-
volves an identity y, one can replace y with the fax 7(y) to obtain the same
result. In fact, nothing changes until (!) above, and then we have

(") w).(1)-PlL () = 1) Pln(y)/=] = t(z).Pln(z)/x].

Since P is cut- and identity-free, the last c-design is equivalent to 1(x).P by
Proposition 2.15.

Duplicator. A remarkable feature of data designs is that any finite one can
be duplicated by a linear c-design. The duplicator is recursively defined as

16

follows:

(3\

a(Z,) =1 (w). duplz:]|] (pair(y1, 21)-

duplz] [(pair(ys, 22).

dup|x] = case x of :
dup[z,]|J-(pair(yn, 2n)-

wlpair(t@(fa), 1a(zu))) - - -)

\ J a€A

where n depends on the arity of each a € A, ¥, = x1,..., %0, Yo = Y1,---,Yn
and Z, = z1,..., 2.

It is linear, finitely generated, and contains cuts and identities. Identities can
be removed as for the discriminators, while cuts are essential; if it is normal-
ized, the normal form may not be finitely generated.

To see how it works, let d be a finite data design of the form ta(d,,...,d,).
Then, assuming [dup[d;]] =1 pair(d;,d;) for i = 1,...,n and associativity of
normalization, one can verify that [dup[d]] =1 pair(d, d). Notice however that
the argument goes by induction on the structure of d, and thus does not work
for infinite data designs. In fact, the duplicator will diverge when applied to
an infinite one.

The duplicator allows sharing of inputs: given F[zy, z5], we define

(let y = 21,25 in Flay, 2]) = 1(2).duply]| | (pair(z1, z2).(Flay, 2] L (2))).
We then have

let d = 21,25 in Flxy,25] = 1(2 dup[d]|¢<pa|r(x1,x2) (F [xl,x2]|¢<z>)>
tpair(d, d)| | (pair(zy, 22).(Flor, 22]| L(2)))
(pair (1, 7). F[xl,x21|¢<z>)|pair<d, d)
2).(Fld, d]| 4(z)).

z

().
= 1(2).
= 1(2).
= 1(2)-

Therefore,
[[Iet d—= T1,T9 in F[.’L’l, IL’Q]]] = [[F[d, d”]

We end this subsection by showing that the general recursion scheme is linearly
available.

Proposition 2.19 Let F' be an m + 1-ary function design. Then there exists
an m-ary function design F such that

for all finite data designs d = di,...,dpy.

If F is linear (resp. finitely generated), so is F.

Proof For simplicity, we assume that m = 1. F' is defined by a recursive
equation:

Flz] = (let z = 21,2 in F[F[z], 2)).
Suppose that F' is linear and finitely generated. Then it is clear that the c-
design

F'[X,2] = (let 2=z, 2 in F[X, 29])
is also linear and finitely generated. Notice the mixed use of the same variable
z for free and bound occurrences; the LHS occurrence of z in 2 = z, 29 is
free while the RHS one is bound. Because of this mixed use, we obtain an
a-equivalent of F' by iteratively substituting F'[X, 2] for X. More precisely,
let G = (ST,S57,¢,s7) be a finite pointed generator for F'. Let sx be the state

with {(sx) = X. Consider a new function (' that agrees with £ except that
V'(sx) ={(s7). Then G = (S, S, ¢, s;) generates the linear c-design F. [

Remark 2.20 It is essential to use cuts in duplicator, general recursion, and
function designs in general for finite generation. One can of course eliminate
cuts from a function design F'[x] by normalization, but then the result [F|[z]]
would correspond to the extension (denotation) of F[z], which is hardly rep-
resentable by finite means.

2.5 Standard c-designs and finite automata

We now discuss the computational power of standard c-designs. They are in-
deed very weak due to the absence of cuts. To formally estimate their strength,
we give a bidirectional correspondence between standard c-designs and deter-
ministic finite automata. Thus, standard c-designs are as powerful as finite
automata, when computing over words.

Let us recall the definition of deterministic finite automata.

Definition 2.21 A deterministic finite automaton (DFA) M is a tuple
(3,Q,0,q0, Qr) where ¥ is an alphabet, @ is a finite set (of states), § :
Q x ¥ — @ (the transition function), ¢y € @ (the initial state), Qr C @ (the
final states). We write ¢, — ¢ if 0(q1,a) = ¢o.

M accepts a word w = ay ---a, (n > 0) if there is a sequence of transitions
starting from ¢, such that

QOL(]I&)"&)quQf

18

Fig. 2. DFA M,

M accepts a language L C ¥* if L = {w € ¥* : M accepts w}. L is reqular
(rational) if L is accepted by a DFA.

We fix an alphabet ¥ and work on a signature A which contains a unary
name q for each a € ¥. We can then associate to a language L. C ¥* a set
L* = {w* : w € L} of data designs.

Before stating the general result, let us give a simple example.

Example 2.22 Consider a DFA My = ({a, b}, {90, 01,92}, 9, G0, {q1}), where
the transition relation 0 is described in Fig. 2. My accepts the language a(ba)*.

This can be turned into a finitely generated standard c-design P, defined as
follows:
Py = x| (Ny), Ny = a(x).Py + b(x).P, + nil.Q,

Py = x|l {(Ny), Ny = a(z).Ps + b(z).Py + nil X,
Py = x| (Ny), Ny = a(z).Py + b(z).Ps + nil.Q2.

Observe the correspondence between state ¢; and c-design P; for i € {0,1,2}.
In fact, we have P[yw*/x] —* Pjlw*/xz] if and only if ¢; — ¢; for any
y € {a,b} and i,j € {0,1,2}. Hence Py[w*/z] |} *& if and only if w € a(ba)*.

Theorem 2.23 For every DFA M, there exists a finitely generated positive
standard c-design P such that

(*) for any w € ¥*, M accepts w if and only if Plw*/x] | K.

Conversely, for every finitely generated positive standard c-design P which has
exactly one free variable x, there exists a DFA M such that (*) holds.

Proof For simplicity, we assume that the alphabet ¥ is {a, b}. We translate

a given DFA M = (%, Q, d, ¢, QF) into a pointed generator (S*,S7, 7, s7) as
follows. When @ = {qo, ..., ¢n},

[] S+ — {qO; e ,Qn,Q%,CIQ}; S_ = {SU; .. .,Sn,SI}; S = q[];

19

o U(q;) = sz|d(si); L gm) =5 Lga) = Q; U(sy) = ;
e When ¢; - ¢; and ¢; U Ak

U(s;) = a(x).qj + b(x).q + nil.gx if ¢; € Qp;
= a(x).qj + b(x).q, + nil.go otherwise.

The generator is finite and generates positive standard c-designs F,..., P,
corresponding to qo, . .., q, such that

P, = x|] {(a(x).P; + b(x).Py, + nil.R;)

when ¢; — ¢; and ¢; LN qr. R; is "1 if ¢; € Qp and is € otherwise. It is easy
to see that for any word w over {a,b}, Py|w*/x] | & iff M accepts w.

Conversely, given a finite pointed generator (G, s;) with G = (S*, S, () yield-
ing a positive standard c-design P with exactly one free variable x, we build
a finite automaton M = (3, Q, 6, qo, Qr) as follows.

* Q=5%q=sn
e For each s € ST, if {(s) = s"|] (s') and

E(SI) = a(z).sa + b(z).sb +nil.syy + -+,

we have transitions
s — Sa, s =25 .
(£(s") is always a variable by standardness.) We also let s € Qp iff {(spy) =
o0
e Otherwise, /(s) is one of Q, s"|¢(s],...,s)) with ¢ # | and ¢(s") = y, and
X, In the first two cases, design(G, s)[w*/y] 1} for any word w. Hence we let

s —3 s, 3L>s, s ¢ Qp,

meaning that the automaton accepts no inputs once s is visited. In the last
case £(s) =X, design(G, s)[w*/y] |} "& for any word w. Hence we let

s —3 s, 3L>s, s € Qr,
meaning that the automaton accepts any input once s is visited.

It is easy to see that for any w € ¥*, M accepts w iff Plw*/z] |} Y. O

Remark 2.24 The above theorem is specific to DFAs on words. There does
not seem to be a canonical way to encode automata on trees as standard c-
designs. Moreover, the argument for the second claim works just because we
have restricted the inputs to words. Acceptance of trees would be naturally
explained if we adopt a more parallel notion of designs, like L-nets of [6].

20

2.6 Krivine style normalization

As we have pointed out, the reduction-based normalization procedure given
in subsection 2.3 is not quite satisfactory, because it involves substitution
and renaming, and so does not directly work on generators. Here we present
another normalization procedure in the style of Krivine’s abstract machine
[15]. It works on generators, hence provides an effective means of normalization
for finitely generated c-designs. Similar procedures are given by Faggian [4]
and Curien [2]. However, unlike the token machine in the latter, our machine
employs nesting of closures and environments to properly deal with bound
variables (rather than absolute addresses).

Throughout this section, we fix a pointed generator G = (S*, S, ¢, s1).

Definition 2.25 The set of closures and that of environments are defined by
simultaneous induction. A closure ¢ is a pair sp of s € S = ST U S~ and an

environment p. An environment p is a finite set {(z1,¢1), -, (zn,¢,)} such
that xy,...,z, are distinct variables and ¢y, ..., ¢, are closures. We denote it
by [z1 = ¢y Ty =). U p =21 = 1, 2, = ¢, p(z;) stands for

¢i. plx; — ¢ is the same as p except that p[z; — c](z;) = ¢,. The empty
environment is written as [].

A positive configuration (sp) simply consists of a closure sp with s € ST,
while a negative configuration is a pair (sp, ¢) such that s € S~ and ¢ (which
corresponds to the stack of Krivine’s abstract machine) is a positive action
followed by a finite list of closures: ¢ = @({cy, ..., ¢,) with n = ar(a).

The procedure starts by the initial configuration (s;[]), and follows the tran-
sition rules below. The transition relation between two states is denoted by
—. For simplicity of description, we confuse a state s with its label £(s).

(Hp) terminates;
(Qp) diverges;
(sol@(si,...,sn) p) — (sop,@(s1p, ..., snp))
(X al(@y).50)p, @lct, ... cn)) — (Saply = 1y @y = ¢4))
(xp,d) — (p(x), @), if p(z) is defined.

In particular when £(s) = so|a(sy, ..., s,) with £(sg) = =, we have

(sp) — (xp, @(s1p,...,s0p)) — (p(x), T(s1p,...,50p)),

which can be considered as a single step.

21

The above procedure works for closed c-designs. Applied to an open one, it
may get stuck at (zp, @) with p(x) undefined (x is then construed as the ‘head
variable’ of the normal form). Although it is possible to extend the procedure
to open c-designs, we prefer to delegate it to the subsequent work.

One can verify that (s;[]) —* ("p) if and only if design(G, s;) || "H. Moreover,
the computation is effective. Hence when restricted to computation over word
designs, we have the following:

Theorem 2.26 Let X be an alphabet. For every finitely generated positive
c-design P, there exists a Turing machine M such that

(*) for any word w € ¥*, M accepts w if and only if Plw*/z] {} Y&.

Proof There is a finite pointed generator (G, s;) for P. One can define
a Turing machine M which, given a word w € ¥* as input, yields a finite
generator (G', s7) for Plw*/x] and then applies the Krivine style normalization
procedure. M terminates if and only if the procedure does. O

The converse will be taken up in subsection 3.1.

3 Analytical Theorems

The designs of ludics enjoy a number of fundamental properties, called ana-
lytical theorems in [9]. In this section, we reprove some of them in our new
setting with special emphasis on their relevance to computational issues.

Associativity (subsection 3.1) is a weak form of the confluence property. It
guarantees that composition of function designs works as expected. Mono-
tonicity (subsection 3.2) states that normalization preserves natural orderings
of c-designs.

Separation (subsection 3.3) is an analogue of Bohm’s theorem in lambda calcu-
lus, meaning that two distinct standard c-designs can be separated via interac-
tion with another c-design. We prove a stronger form of this property for data
designs, which can be intuitively understood as saying that one can associate
to each finite data design d a counter design (or a “machine”) which accepts d
and (essentially) nothing else. This is obvious for designs representing words,
but we prove it for arbitrary finite data designs.

Finally, the pull-back property (subsection 3.4) informally states that linear
c-designs are truly linear (in the sense of coherent semantics). It implies that
merging of counter designs has a desired effect, and thus leads to a separa-
tion result for sets of finite data designs. The pull-back property also implies

22

stability, just as linearity of a map in coherent semantics implies its stability.

3.1 Associativity

The first property to be stated is a limited form of confluence.

Theorem 3.1 (Associativity) Let T be a c-design and Ny, ..., N, be neg-
ative c-designs. Then,

[TINV s Nafyal T = TITTIN /91, - - INGD /] 1

It is intuitively clear that it holds, since our c-designs reasonably generalize
Girard’s original designs and lambda terms, both enjoying associativity. A
formal proof is however lengthy, and is postponed to our subsequent work due
to lack of space.

An immediate consequence of associativity is that function designs compose
naturally.

Lemma 3.2 Let F|x]| and G[y| be function designs and dy a data design. If
[Fldo]] = di and [G[d1]] = da, then [G[F|[dy]]] = da. The same holds for

composition of multi-arity functions.

We can now prove the converse of Theorem 2.26.

Theorem 3.3 Let Y be an alphabet. For every Turing machine M, there exists
a finitely generated positive linear c-design M* without identities such that

(*) for any w € ¥*, M accepts w if and only if M*[w*/xq] | &

Proof (Sketch) Given a Turing machine M, it is routine to build a c-design
M* which satisfies (*) by using constructors, discriminators, duplicators in
subsection 2.4, together with Plx| = x|] (zer6."X¥), and applying composition
and general recursion. Here P|[z] is used to turn a function design into a
positive c-design which converges or diverges depending on the output: for
any data design d, P[d] || " if and only if d = 0*.

These are all linear and finitely generated. Identities can be removed by Propo-
sition 2.15 (see also Remark 2.18). Moreover, composition of two function
designs preserves finiteness of generators by Proposition 2.11, and yields an
expected function design by Lemma 3.2. The same holds for general recursion
(Proposition 2.19). Therefore, the resulting c-design M* is linear, identity-free
and finitely generated. O

23

3.2 Orderings and monotonicity

Designs admit two orderings. The first one, stable ordering C, is an analogue
of Berry’s ordering in domain theory (see, eg., [10]). It captures the degree
of superimposition: 7" = U means that U is ‘more superimposed,’” or ‘more
defined’ than T'.

Definition 3.4 The stable ordering C is the largest binary relation R over
c-designs such that

(1) if M R T then T = "q;

(2) if Q RT, then T is positive;

(3) if No|a(Ny,...,N,) R T then T = Myla(M,...,M,) and N; R M; for
every 0 <1 < n;

(4) if z RT then T = x;

(5) if (X a(Z,).P.) RT then T =Y a(Z,).Q, and P, R @, for every a € A.

The second one, observational ordering =<, is an analogue of the standard
extensional ordering in domain theory. As we shall see, it corresponds to the
likelihood of convergence: 7" < U means that U is more likely to converge than
T when interacting with other designs.

Definition 3.5 The observational ordering < is the largest binary relation
R over c-designs that satisfies (1), (2), (4), (5) of Definition 3.4 and

(3") if Nola(Ny,...,N,) R T then T = & or T = My|a(M,, ..., M,) and
N; R M; for every 0 <17 < n.

It is clear that both C and < are partial orderings, and 7' C U implies T' < U:
more defined, more likely to converge. An impressive inequality is

QC P <y

which holds for any positive c-design P. Since the only difference between C
and < lies in the treatment of "I, two orderings coincide on the set of Yi-free
c-designs.

Any pair of distinct data designs is incomparable with respect to C (and <,
which coincides with C over the data designs). Hence d C e implies d = e for
any data designs d and e.

We now show that substitution and normalization are monotone with respect
to these orderings. In particular, it confirms our intuition that the ordering <
captures likelihood of convergence.

24

Theorem 3.6 (Monotonicity)

(1) If T <U and M < N, then T[M/x] < UN/z].
(2) If T < U, then [T] < [U].

The same holds for the stable ordering C.

Proof (1) Define a binary relation R by

e Ty RUy <— T, = T'|M,/z] and Uy = U;[N;/z| for some Ty, Uy, My, N;
such that T1 j U1 and M1 j Nl.

One can easily verify that R satisfies (1), (2), (3%), (4), (5) of Definitions 3.4
and 3.5. Since T[M/z] R U[N/x], we conclude T[M/x] < U[N/z].

(2) We first prove the following statement:
(*) IijQandPUPo,thenQUQo and Pg jQO

The proof proceeds by induction on the length of the reduction sequence
P —x P().

When P = Py, the claim is trivial. Otherwise, P is of the form (¥ a(Z,).P,) [a(M),
which reduces to P,[M/Z,]. Since P =< @, @ is either ™ or of the form
(> a(%,).Q,) [a(N), where P, < Q, for every a € A and M < N.

In the former case, we have P,[M/Z,] < "K. In the latter case, @ reduces to
QJ[N/7,] and we have P,[M/7,] < Q,[N/Z,] by (1) above. In any case, the
induction hypothesis applies, and we conclude (*).

Let us now define a binary relation R by

e Ty RUy, <= T, =[T1] and U, = [U;] for some T}, U; such that T3 < U;.
Then R satisfies the properties (1), (2), (37), (4), (5).

For instance, let us verify (3’). Assume Ny|a(Ny,...,N,) R T. Then by def-
inition, there are P and (@) such that [P] = Ny|a(Ny,...,N,), [Q] = T
and P < . This means that Ny, = x and there are M, ..., M, such that
P | z|a(Mi,...,M,) and [M;] = N; for 1 < i < n. By (*) above and
the definition of < either @ | "X, or @ | z[a(L4,...,L,) and M; < L; for
1 < i < n. In the former case, we have T = [Q] = . In the latter case,
T = z|a([L1],...,[Ls]). Since x R x and N; = [M;] R [L;], (3’) holds.

Now if T' < U, [T] R [U]. Therefore we conclude [T =< [U]. O

25

3.8 Orthogonality and separation

We first define the orthogonality relation between c-designs (and anti-designs),
and then discuss the separation property as well as a stronger form of it. In
the sequel, we fix a variable x(, which plays the role of the absolute address
for atomic positive c-designs.

Definition 3.7 Let P and N be positive and negative c-designs respectively.
P is said to be closed if it has no free variables. This implies that P is 2, "X or
a cut. P is atomic if fv(P) C {xo}, and N is atomic if fv(N) = (). Two atomic
c-designs P, N of opposite polarities are said to be orthogonal and written
PLN if P[N/zy| | &

It is possible to extend orthogonality to arbitrary c-designs. For that, we need
the notion of anti-designs.

Definition 3.8 An anti-design against positivesis aset {(x1, N1), ..., (zn, Ny)}
where xq,...,x, are distinct variables and Ny,..., N, are atomic negative
c-designs. We denote it by [Ny/z1,...,N,/z,]. A positive c-design P and
[G] = [N1/x1, ..., Ny/z,] are said to be orthogonal and written P_L[G] if the
result of substitution P[N;/z1,..., N,/x,] is closed and converges to YX.

An anti-design against negatives is a set {P, (z1, Ny),..., (zn, N,)} where
{(z1, N1),..., (zn, N,)} is as above and P is an atomic positive c-design.
We denote it by [P, Ni/xy,..., N,/x,]. A negative c-design M and [G] =
[P,Ni/x1,...,N,/z,] are said to be orthogonal and written M L[G] if
P[M[Nl/xl, . .,Nn/xn]/xo] is closed and converges to M. In the sequel, we
use notations [G],[H],... to denote arbitrary anti-designs of both polarities.

We say that an anti-design is total (resp. linear, cut-free, identity-free or stan-
dard) if its component c-designs are.

Theorem 3.6 (monotonicity) entails that if T < U and T L[G] then U L[G] for
any anti-design [G] against the polarity of 7" and U. The separation property
is concerned with the converse. It holds for standard c-designs:

Theorem 3.9 (Separation) IfT and U are standard and T A U, then there
is a standard anti-design [G] such that T L[G] and U L[G].

See [9] or [4] for a proof. As a consequence, we have T = U if and only if
T1[G] <= UL[G] for any [G]. Hence the internal structure of a standard
c-design can be completely determined by its external behaviour. Notice that
this does not hold for c-designs with cuts and/or identities, and non-linear
c-designs.

26

In the above statement of the separation property, the anti-design [G] separat-
ing 7" and U depends on both 7" and U. On the other hand, it is also possible
to consider a notion of separation for which the separating anti-design depends
only on T

Definition 3.10 A standard c-design T" admits strong separation if

e there is an anti-design [T°] such that T L[T¢] and U A[T*¢] for any standard
-free c-design U such that T A U.

Here we restrict ourselves to Md-free U for a practical reason; without this
restriction, very few c-designs would admit strong separation.

Our aim here is not to get into a general study of strong separation, but to
exhibit how it is useful in analysis of computation. Hence we focus on the data
designs and show that all finite ones enjoy the strong separation property. For
that, we first define the counter design (d);, for each finite data design d.

Definition 3.11 Given a finite data design d and a negative c-design N, we
define a positive c-design (d)$, by induction on the structure of d:

(@) = NI4 (%) if d =13,
= NI a1,) () ()5, B [(da)s,) i d =t)
with n > 1, where P[Q)/"H] is obtained by replacing all occurrences of ¥« in P

by Q.

For instance, if d =1a(1b,1¢), then (d)¢ = zo| (a(z1,22).21|] (b.22| | (cHH))).

ro
Note that every (d);, constructed this way is standard and has exactly one
occurrence of M.

Theorem 3.12 (Strong separation for data designs) Letd be a finite data
design. For any negative standard c-design N which is X-free, (d)5 LN if and
only if d < N.

In the above statement, d < N can be replaced with d C N, since N is "H-free.

Proof As to the if’ direction, one can easily observe that (d)g, Ld. Hence
by monotonicity, (d)5, LN.

The converse direction is proved by induction on d.

27

Suppose that d =1b. If ()¢ [N/zo] = (d)% converges, then N must be 10+ K,
where K is of the form Y 4\ 1y a(#a)-Pa, so that we have

(d)S = (15 + K| (025 — (b2F)[b — K.

Hence we have d < N.

Now suppose that d =1 a(dy,...,d,) with n > 1. If (d)5 [N/zo] = (d)%
converges, then N must be of the form ta(Ny,..., N,) + K so that we have

() = NL(alwr, . wa)-(d)5, [(da)5, H - [(dn)5, H))
— (al@r,) (di)s, (o), P -+ [(dn), ED) @V,)
— (d1)f, [(do) 5%, /PH] - [(dn), /PH,

and the last one converges. Notice that

(d)f, = (d)y, [(d2) i, /2] = -+ = (di), [(da) e, /PR -+ [(dn)y, /R

Hence (d,)%, also converges by Theorem 3.6(2). Since N, is "i-free, it con-
verges just because the normalization visits the occurrence of " in (d;)5, . In
conjunction with the convergence of

(), [(d2) 5% /- [(dn) e,) = (A, [((do) 5 (o), P -+ [(dn), /B PH|

we see that (d)%,[(ds)%, /"] - - [(dn)%, /"X converges too. By repetition, we
see that (di)%, converges for every 1 < k < n. By induction hypothesis,
dr, < Ni. Hence d < N. O

Remark 3.13 Our notion of strong separation is closely related to the notion
of interactive observability studied by Faggian [4]. In fact, it is possible to
construe Theorem 3.12 as a special case of the characterization of interactive
observability of slices via counter-slices in [4].

3.4 Compatibility and stability

In the previous subsection, we have shown that each finite data design can be
strongly separated. In applications, however, it is more important to separate
each set D of finite data designs from others. For that, we need to find a
counter design which works for all elements of D. Here the key operation is
to merge the counter designs {(d); |d € D}. We therefore introduce the union
and intersection operations on c-designs.

28

Definition 3.14 The union T UU of two c-designs T', U is defined as a partial
operation:

U =,

e PUOQ=QUP=P;

Nola{Ny, ..., Ny)U Myla{M, ..., M,) = NyU My|la(N, UM, ..., N, UDM,)
if NgU M,, ..., N, UM, are defined;

rUx =ux;

Y a(Zy).PoUY a(Zy).Qu = X a(%,).(P,UQ,) if P,UQ, is defined for every
a € A,

e T'UU is not defined otherwise.

The intersection T'NU can be defined in the almost same way as union, except
that

e PNOQ=0NP=0Q.

T and U are compatible if there is a c-design V such that TC V and U C V.

Formally, unions and intersections are defined by an extension of the core-
cursion principle (Theorem 2.12) to partial functions. Although only binary
unions and intersection are defined above, they can be extended to arbitrary
ones without any problem.

Lemma 3.15 (1) If T and U are compatible, so are [T] and [U].

(2) T and U are compatible iff T U U is defined iff T NU is defined.

Two distinct data designs are never compatible. Hence one cannot take the
union. On the contrary, we have:

Lemma 3.16 For any finite data designs d and e, (d)¢ and (e) are compat-

y y
ible.

This is intuitively clear, as the only positive actions in (d); and (e); are] and
4. Hence there are very few chances of conflict. A formal proof is as follows.

Proof We show the following statement by induction on the structure of d:

e for any data design e and any compatible pair (P, Q) of positive c-designs,
(d)g[P/X] and (e);[Q/"] are compatible.

The lemma then follows by taking P = @@ = "X
If d =1b, then (d)$[P)X] = y[L (b.P). If € is also 1b, then the claim is trivial.

Otherwise, (e);[Q/"] is of the form y| | (¢(7.).R) with ¢ # b. Hence one can
take the union y|] (b.P + ¢(Z.).R).

29

If d =ta(d,...,d,), then (d);[P/"] is of the form

yld(al@y, - wn).(dh)g, [(d2)z, /R - - - [(dn)g, PRIP/E])-

If e is of the form 1¢(€) with ¢ # a, then the proof proceeds as in the previous
case. So suppose that e =1a(ey, .. .,e,). Then (e);[Q /K] is of the form

yldlales, s en).(en)g, [(e2)5, /H - - [(en)s, RIQ/).

By induction hypothesis, (d,)5 [P/"] and (ey); [Q/"] are compatible. Hence
so ate (dy1)5, ()5, PRI/ and (e,)i, [(en):, FEQ/E] (note that

the former can also be written as (d,_1)5 [((dn)gn [P/%])/*I*] and similarly

Tn—1

for the latter). By repetition, we see that (d);[P/%] and (e);[Q/"X] are com-

patible. M

Lemmas 3.16 and 3.15(2) allows us to define a counter design for a set of data
designs.

Definition 3.17 Given a nonempty set D of finite data designs, we define

c(D) = J{(d)g, : d € D} U {zo| 1 (0)},

where x4|] (0) is added just in case of D being empty.

To establish that this ¢(D) works as a separator for the set D, we have to show
that ¢(D) LN for a standard "i-free NV implies (d); LN for some d € D; then
we would be able to conclude d < N by Theorem 3.12. Although it is possible
to prove it directly, we prefer to derive it from a more general principle. That
is nothing but the pull-back property of [9].

Definition 3.18 A (finite) slice is a finite c-design in which all negative sub-
designs are either 0 or of the form a(Z,).P, (i.e., at most unary branching). U
is a slice of T'if U is a slice and U C T'.

All data designs are slices by definition.
The notion of slice is useful to analyze the structure of linear c-designs in
two ways. First, linearity of a c-design T implies that every variable occurs

at most once in every slice of T'. Second, normalization of a linear c-design is
performed slice-wise. The pull-back property formalizes this second aspect.

Theorem 3.19 (Pull-back) Let T be a linear c-design. For any slice U of

30

U = [T1], there exists a unique minimal slice T' of T such that [T"] = U':

T U

4

slice_of slice_of

Proof First of all, consider the following reduction:
P = (Y a(Z,).P,) [a(N) — P,N/T,]) = Q,

where ¥, = x1,...,x, and N = Ni,...,N,. Let Q" be a slice of Q. It is of
the form P![N'/Z,], where P!, N’ are respectively slices of P,, N. We assume
that N' = N/,..., N], are chosen minimal; namely N; = 0 if z; ¢ fv(P). From
this, we obtain a slice P’ = a(i,).P! [a(N') of P:

(X a(#a).Pa) [@(N) — Pu[N/Z,]

sliceof slice_of

a(Ta)-Py [a(N') - - PiIN'/#,]
Obviously P’ is the minimal slice such that P’ — @'. This can be extended
to the case when P —* () # Q by induction on the length of the reduction
sequence.

Now, the theorem is proved by induction on the structure of the slice U’ (which
is finite) of the normal form U = [T7].

If U' = Q, then one can take T" = Q. If U' = "4, then the above argument
yields the desired slice T" such that 7" — "4 If U' = x, then U = T = z.
Hence one can take 7" = x.

If U is of the form z[a(N{,...,N}), then U is of the form z|a(Ny,..., N,)
so that N/ is a slice of N; for 1 < ¢ < n. Since U = [T], we have T |
zla(M, ..., M,) and [M;] = N; for 1 < i < n. By induction hypothesis, there
is a unique minimal slice M] of M; such that [M]] = N/. Since z|a(M], ..., M)
is a slice of z|a(My,..., M,), the desired slice T" of T is obtained by pulling
back x|a(Mj,..., M) along the reduction sequence T" —* z|a(M,..., M,)
as above.

If U’ is of the form a(Z,).Q", then U is of the form Y a(%,).Q,. Since U = [T7],
T must be of the form Y a(#,).P, so that [P,] = Q,. Since @, is a slice of
(a4, the induction hypothesis yields a unique minimal slice P, of P,. Then one
can take a(Z,).P, as the desired slice of T'. O

31

We are now ready to prove a separation result for sets of finite data designs.

Theorem 3.20 (Strong separation for sets of finite data designs) Let
D be a set of finite data designs. For any negative standard c-design N which
is YH-free, ¢(D) LN if and only if d < N for some d € D.

Proof If d < N for some d € D, then (d); LN by Theorem 3.12. Since
(d)s, € ¢(D), we have ¢(D)_LN by monotonicity.

Conversely, suppose that ¢(D)LN, i.e., [¢(D)[N/x]] = & By the pull-back
theorem, there are a slice P’ of ¢(D) and a slice N of N such that [P'[N'/xz¢]] =
X, ie., P'LN.

We claim that P’ is a finite chain (or a chronicle [9]). Indeed, P" does not
branch at a positive subdesign because the only proper positive action in P’
is | that is unary. It does not branch at a negative subdesign either, because
P' is a slice. Furthermore, P’ is finite by the definition of slice.

As a consequence, P’ is contained in one counter design (d)S, for some d € D.
By monotonicity, we have (d); LN. Hence by Theorem 3.12, we conclude
d=<N. O

We end this subsection by proving another important consequence of the pull-
back theorem: stability. To properly state and prove it, we need the following
lemma.

Lemma 3.21 If every slice of T' is also a slice of U, then T C U.

Proof Define a binary relation R by T' R U <= U contains all slices of T.
One can then verify that R satisfies (1) — (5) of Definition 3.4. O

Corollary 3.22 (Stability) Let {T;};cn be a family of linear c-designs. If
{T;}icn are pairwise compatible, then [Nica Ti] = Nieal T3]

Proof The inclusion C follows by monotonicity. To show the converse, let
U’ be a common slice of [T;] for all i € A. By the pull-back theorem, each T;
contains a minimal slice 7] such that [7]] = U’.

We claim that 7] = T7 for every 4,7 € A. For that, notice that U;cy 7; is a
linear c-design, [T;] C [U;ea 7] by monotonicity, and hence U’ is also a slice
of [U;iea T;]- By the pull-back theorem again, U;cx 7; contains a minimal slice
T;- By minimality of T and 77, we have Ty = T for all i € A as required.

Since N;cp T; contains the slice T§, [Nica 7i] contains U’ by monotonicity.
Therefore by Lemma 3.21, N;cA[Ti] C [Niea T3] O

32

4 Behaviours and internal completeness

We have studied the designs, which correspond to proofs in logic, terms in
lambda calculus, strategies in game semantics, processes in concurrency, and
data and machines in automata and computability theories. We now step up
to a higher level construct: the behaviours. Behaviours correspond to interpre-
tations of formulas, computability predicates in strong normalization proofs,
semantic types (see, eg., [17]), and truth values in Krivine realizability [14].

After introduction of behaviours (subsection 4.1), we discuss how to construe
a behaviour as a language. Since behaviours usually contain a lot of irrelevant
elements, we need to purify them by incarnation (subsection 4.2).

We then introduce logical connectives as behaviour constructors (subsection
4.3). On the one hand, they allow us to build a logical system, such as polarized
linear logic [16], upon ludics, although it is left to our subsequent work. On the
other hand, they can be seen as a generalization of language operators (such
as union, prefixing). Internal completeness of logical connectives is essential
for both views (subsection 4.4). Finally we sketch how to construct languages
by logical connectives and other operators (subsection 4.5).

4.1 Behaviours

In the rest of this paper, we restrict ourselves to a special class of c-designs.

Definition 4.1 An [-designT is a total, linear, identity-free c-design such that
fv(T) is finite. An anti-l-design is an anti-design that consists of l-designs.

Thus the standard c-designs are exactly the cut-free l-designs. Non-linear c-
designs and c-designs with identities will be studied in the subsequent work.

The orthogonality relation L is defined in Definition 3.7. It naturally induces
a construction of sets of 1-designs as in phase semantics [8].

Definition 4.2 Given an l-design 7" and anti-l-design [G], we define
T+={[G] : TL[G),[G] is an anti-l-design},
[G]" ={T : TL[G], T is an l-design}.

These definitions extend to T+ and G*, where T and G are respectively a
set of l-designs and a set of anti-1-designs of the same polarity.

33

The basic properties of orthogonality are as follows:

Lemma 4.3 For any sets X,Y of I-designs of the same polarity (or of anti-
l-designs of the same polarity), the following hold:

(1) X CY implies Y+ C Xt

(2) X C X',

(3) Xt =Xttt

(4) X C Y+ implies X+ C Y.
(5) (XUY) =X'nY".

Definition 4.4 A behaviour T is a set of l-designs of the same polarity that
is equal to its biorthogonal: T = T++. T is positive or negative depending on
the polarity of 1-designs in it. T is atomic if all 1-designs in it are.

By Lemma 4.3(3), any set of the form G+ is a behaviour (where G is a set of
anti-I-designs). By (5), an intersection of behaviours is also a behaviour.

In general, the orthogonal T of a set T of l-designs consists of anti-I-designs.
But when T is atomic, T+ can also be considered as a behaviour:

TH={U:VT € T. TLU, U is an I-design}.

There are the least and greatest atomic positive (resp. negative) behaviours
0", T+ (resp. 07, T):

0" = {H} = {atomic negative l-designs};
T+ = {atomic positive l-designs} = 0;
0 =k} = {atomic positive l-designs}+;
T~ = {atomic negative l-designs} = ()+;

where "M =" a(Z,) XK.
Proposition 4.5 FEvery behaviour T satisfies the following closure properties:

e Closure under the observational ordering: T' € T andT < U impliesU € T.

o Closure under B-equivalence: T € T iff [T] € T.

o Closure under intersection: for any set {T;}ien of compatible I-designs in T,
Niea Li € T.

These properties are respectively due to monotonicity (Theorem 3.6), associa-
tivity (Theorem 3.1) and stability (Corollary 3.22).

34

Just as anti-designs are built from atomic c-designs, anti-behaviours are built
from atomic behaviours.

Definition 4.6 Given an atomic positive behaviour P, atomic negative be-
haviours Ny, ..., N,, and distinct variables z, ..., z,, we define

IN/# = {[Ni/@1, ..., Na/2a] : Ny € N for 1 < i < n};
[P,N/Z|={[P,Ni/x1,...,Ny/z3] : P € P,N; € N, for 1 <i < n},

where N/7 stands for Ny /xz1,..., N, /zp.

Observe that P € [N/z]* if and only if P[zy/z] € N*.
4.2 Incarnation

As Theorem 2.23 indicates, acceptance of a word w by a DFA M can be
captured by orthogonality between w* and M*:

M accepts w <= M* Lw*.

Hence one might expect that {M*}+ gives rise to (a representation of) the
language accepted by M. However, this is not exactly the case, since the be-
haviour {M*}+ contains a lot of irrelevant elements. For instance, if a* =ta(t
nil) € {M*}*, the following also belong to {M*}* by Proposition 4.5:

e Any N such that [N] = a*

e Any N of the form ta(tnil + K;) + K5, where K; and K, are of the form
Savgn 0(Th)-Po.

e 1N(z) X and Ta(f(x).).

Hence to obtain a representation of a language, one has to remove these redun-
dant I-designs from {M*}+. In [9], an operation called incarnation is introduced
to remove the second type of redundancy. Roughly speaking, given an l-design
U in a behaviour T, the incarnation of U in T is the least portion of U that is
required for interacting with the anti-1-designs in T+. Slightly deviating from
[9], we also incorporate the effect of normalization into the definition to get rid
of the first type of redundancy as well. The third one is removed by restricting
l-designs to "H-free ones.

Definition 4.7 Let T be a behaviour and U an l-design in it. The incarnation
of U in T is defined by

Ulx ={U': U' C [U],U" € T}.

35

An l-design U is material in T if U = |U|rp. U is pure in T if it is material in
T and furthermore -free. The set of all material (resp. pure) l-designs in T
is denoted by |T| (resp. ||T||).

The incarnation |U|r belongs to T due to stability (Proposition 4.5).

The set |T| in fact contains all necessary l-designs to interact with its op-
ponents: |T|* = T+, In fact, T+ C |T|* by Lemma 4.3(1). To show the
converse, let [G] € |T|* and U € T. Then |U|r € |T| and hence |U|rL[G].
By monotonicity, U L[G]. Therefore [G] € T*.

With the notions of incarnation and purity, we can give a purely ludics-
theoretic definition of acceptance which applies to non-data designs as well.

Definition 4.8 Let T be an atomic l-design. A set U of l-designs is accepted
by T if ||T+|| = U.

Although the definition is general, we are mainly interested in the particular
case of sets of data designs. The following lemma gives a sufficient condition
for that.

Lemma 4.9 Suppose that a positive [-design P satisfies the following prop-
erty:

e For any YH-free negative cut-free l-design N such that P1N, there is a data
design d T N such that P1d.

Then ||P|| = {d: PLd, d is a data design}.

Proof Suppose that N € |[|P*||. Then N is cut-free, M-free, and PLN.
Hence by the condition there is a data design d = N such that Pld. Since N
is material in P+, we have d = N.

Conversely, assume that a data design d satisfies P Ld. Recall that d is cut- and
M-free. If d is not material in P+, there exists N Z d such that P1N. Since
N is also cut- and "H-free, the condition gives another data design d' C N [Z d,
that is impossible (see subsection 3.2). Hence d is material in P+, and in fact
pure. Il

We are now ready to prove the main theorem of this paper, which illustrates
the computational powers of arbitrary I-designs, finitely generated l-designs,
and finitely generated cut-free l-designs.

Theorem 4.10

(1) Any set D of finite data designs is accepted by an [-design.

36

For any language L C X%,

(2) L* is accepted by a finitely generated l-design if and only if L is recursively
enumerable.

(3) L* is accepted by a finitely generated cut-free I-design if and only if L is
reqular.

Proof (1) By Theorem 3.20, the positive l-design ¢(D) satisfies the condi-
tion of Lemma 4.9. Hence D = ||¢(D)*]|.

(2) As to the ‘if” direction, observe that the positive I-design M* in the proof
of Theorem 3.3, when applied to a negative standard design N, only uses
the data part d = N of N, since M* is obtained by composition and general
recursion from constructors, discriminators, and duplicators and P[z]|. Hence
it satisfies the condition of Lemma 4.9. Moreover, M* can be built in such a
way that it never accepts non-word data designs. Hence L* = ||[M**||. The
converse direction immediately follows from Theorem 2.26.

(3) As to the ‘if’ direction, the positive cut-free l-design P in the proof of
Theorem 2.23 satisfies the condition of Lemma 4.9 by definition. Hence L* =
||P*|]. The converse direction immediately follows from the second statement
of Theorem 2.23. O

4.3 Logical connectives

In language and automata theory, there are basically two ways for defining a
language.

e By interaction: give a machine or automaton and consider the set of words
accepted by it.

e By construction: construct a language by various operators such as union,
prefixing and Kleene’s star.

Since behaviours generalize languages, it is natural to extend the above two
approaches to definition of behaviours. The first approach, definition by in-
teraction, has already been exploited: given an I-design T, take its orthogonal
T+ and then restrict it to the pure elements ||T||. Although we have only
discussed definition of behaviours that consist of data designs, this approach
can be generalized to definition of arbitrary behaviours.

Now let us discuss the second approach, definition by construction. For that,
the first thing to be observed is that some operations on languages do not
generalize to behaviours. For instance, consider the union operation. Let T
and U be two behaviours of the same polarity. Then it is not always the case

37

that T U U forms a behaviour. One can of course obtain the least behaviour
that contains T U U by taking biorthogonal: (T U U)++. But then there is
no guarantee that ||(T U U)**|| = ||T||U ||U||; taking biorthogonal may add
new pure elements. Hence a natural question is this: for which operation x on
behaviours, do we have the property ||(T = U)*L|| = [|T|| ||U]|?

In this subsection, we propose a definition of positive and negative logical con-
nectives on behaviours, as analogues of language operators. They encompass
connectives of polarized linear logic without exponentials [16]. In the next sub-
section, we show that all logical connectives enjoy internal completeness. In
particular, all positive ones satisfy the above property, and thus can be used
as language operators.

Given an m-ary name a and negative behaviours My, ..., M,,, we define

a(My,..., M) = {xol|a(M,..., My,) : M € My, for 1 <k < m}.

Given a set o = {a(Z,) }ack of negative actions (with K C A) and a positive
behaviour P, for each a € K, we define

S, a(70). Py = {Sx a(Z.).P, : P, € P}

Definition 4.11 We presuppose a fixed ordering of variables other than z:
T1, T2, T3, An n-ary logical connective « is a finite set {a(Z,)}q.ex of neg-
ative actions indexed by K C A such that {%,} C {zy,...,2,} for every
a € K. Given atomic negative behaviours Ny, ..., N, and atomic positive
behaviours Py, ..., P,, we define

where in the definition of @(Ny,...,N,), indices iy, ...,i, vary for each
a(%,) € a, and are determined by 7, = x;,,...,z;

m*

Two typical logical connectives are & = {m(z1), ma(z2)} and ¥ = {p(z1,72)}.
Let us write ® = &, 1; =7;, ® = &, and e = p. We then have

SN, M) = ((N) Una(M))*, &(P, Q) = 1a(PH)* NuafQH),
(N, M) = o(N, M)+, 3 (P,Q) = o(PL, QL) .

38

4.4 Internal completeness

In [9], some remarkable completeness properties are proved. They are called
internal completeness, because they can be stated and proved without recourse
to any external entities such as syntax. We now prove our version of internal
completeness.

A crucial role is played by the counter designs, which interactively determine
the first action of their opponents (the same idea has already appeared in
subsection 3.3). For every logical connective «, we define @°(Ny,...,N,) =
Ua(za)ea @(Niy, -+, Nj,). We also define a(Py,...,P,) to be the set of I-
designs of the form

a(fa).Q[l‘ik/$0] + b1(?7b1)-’1* + -+ bl(gjb,).%

where a(xa) €, Ty =Ty, T, 1 <k <m, Q€ P; and o\{a(Z,)} =
{b1(b,), -+, bi(Uh,) }- We abbreviate it by a(Z,).Q;, [%i, /To] + Ha-

We also consider a weaker form of incarnation (head incarnation).

Definition 4.12 Given a positive behaviour P, we define |P|, to be the subset
of P that consists of ‘head normal’ l-designs of the form zo|@(M). Similarly,
given a negative behaviour N and a logical connective «, |N|, is the subset of
N that consists of ‘head incarnated’ I-designs of the form Y, a(Z,).P,.

These operations are indeed incarnations at the head position, as will be wit-
nessed by Corollary 4.15.

Lemma 4.13

(1) |ac(N1L7 -) |h C Ua)EQ 6<N21a - '7Nim>'

(2) @(Nl,...,N >Ca (Nf,.. N

(3) [a*(Pi, ..., P e C S,a(Z). [Py /iy, ..., P i 1, (where indices
Tlyennsipm depend on Ty = Ti,...,T;, as before).

(4) a(Py,...,P,) =a(Pt,... ., P+
Proof (1) Let P = zo|a(M;,..., M,,) be an l-design in [a¢(N{, ..., N,
We see that a(Z,) € « for some #, = xi,...,x, because it is orthogo-

nal to the l-designs in a¢(N{,...,N}). Moreover, since P is orthogonal to
a(%,).Q[x;, [x0] + X, for any 1 < k < m and any @ € NZ-Lk, the reduction

(a(%,).Qwi, [xo] +Ha) | @(My, ..., Mp) — Q[mzk/xo][ﬂ/j’a] = Q[My,/xo]

shows that M, L@, and so M}, € N;,. Hence we conclude P € a(N;,,...,N;).

39

(2) It is sufficient to show that Uyz,)eq @(Niy, - .., Nj,,) is a subset of the RHS
by Lemma 4.3(3). So let P be of the form zg|a(My,..., My,) with a(Z,) €
o, Ty = Tiyy..., T, and M, € N; for every 1 < k < m. Take N from
a®(N7,...,N1) and check that N is orthogonal to P. The crucial case is
N = a(Z,).Q[x;, /7o) +H for some 1 < k < m and Q € N; . In this case,
P[N/zo) = Nl|a(M, ..., M) reduces to Q[z;, /xo][My/x;,] = Q[Mj/xo]. Since
M, € N;, and Q € N, the latter converges to M.

(3) Let N = X, a(#,).Q, be an l-design in [a°(P{, ..., Pi)t|,. Let a(Z,) € a.
Since N is orthogonal to a(Pi,...,PL) C a“(Py,...,Py),

Qu[My/zi,, ..., My,/x;,] must converge for all My € P, ..., M, € P; .

11!

This shows that @, belongs to [P} /x;,,...,Pi: /x; |*. Hence N belongs to
the RHS.

(4) Immediate by definition. O

The internal completeness follows directly from the above lemma.

Theorem 4.14 (Internal completeness)

(1) [a(Ny, ..., No)|n = Ugzayea @Niy, - -, Ny,).
(2) |a(P1,...,Py)la =20 a(fa).[Piil/xil, . .,me/xim]#

Proof (1) The inclusion D is obvious. The converse inclusion follows from
Lemma 4.13 (1) together with [@(Ny, ..., N,)|s C |a¢(N{, ..., Ny)t|,, which
is a consequence of (2).

(2) The inclusion C follows from Lemma 4.13 (3) together with |a(Py,...,P,)|a C
|a¢(P{, ..., Py)t|, which is a consequence of (4).

As to the converse, let N € ¥, a(%,).[P;/z;,, ..., P Jx;)5 Then N is of
the form ¥, a(%,).Qq and Q, € [P;;/x;,, ..., Pi /x;]+ for every a(Z,) € a.
Let also P € a*(P{,...,PL). Then P is of the form xo|a(Mi,...,M,,) for

some a(Z,) € o, Ty = x;y,...,2;, and My € P, ..., M, € P} . We have
P[N/xy] — Q.[My/xs, ..., My /z;,] |} . Hence N € (@*(Py,...,PL)t =
a(Py, ..., P,). 0

In particular, we have:

| & (N, M)[r, = i (N) U (M), | & (P,Q)|e = m1(20).P + ma(20).Q,
| @ (N, M)|, = o(N, M), | B(P, Q)5 = B (x1,52).[P/z1, Q" /mo] "

The second one holds because 71 (x1).[PL/z1]*t = mi(20). Pt = my(a0).P.
It is of particular interest. Notice that the LHS is basically an intersection

40

&(P,Q) = 11 (P11t Nuy(Qt)+ whereas the RHS is a cartesian product. Hence
it states that intersection and cartesian product are the same up to incarna-
tion, and is called the mystery of incarnation in [9]. Notice also that a unary
negative connective behaves like a positive connective, in that the orthogo-
nal operation is completely removable. For instance, for the unary connective

1= {1(1)}. we have: | 1(P)}; =1(zo).P.

Corollary 4.15

(1) |6<N17"'7Nn>| = Ua(fa)6a6<|Ni1|7"'v|Nim|> U{%}
(2) [la(Ny, ..., No)|| = Ua@z,yea TN], - - [ING,,)

(3) |a(Py,...,Py)| = X, a(Z.).| [P} /2, .., P [y, 1.
(4) llo(Py, Po)|| = Zo al@a) || [P5 /2iy, - - Py f2,]

Proof For simplicity, let us assume n = 1 and all elements of « are of the
form a(x).

(1) If P € |@(N)|, then P is normal, and hence is either *X or of the form
x|a(M). In the latter case, P belongs to |[@(N)|,. Hence by internal complete-
ness, a(z) € a and M € N. If there is M’ C M in N, then z|a(M’) belongs
to @(N), that contradicts P being material. Hence M is material in N, and
we conclude that P belongs to the RHS. The converse direction is easy.

(3) If N € |a(P)], one can easily observe that N is of the form Y, a(x).P, and
belongs to |a(P)|,. Hence by internal completeness, P, € [P+/x]* for every
a(z) € a. If there is P! C P, in [P+/z]*, then 3, a(z).P! belongs to a(P),
that contradicts N being material. Hence P, is material in [P+/z]*, and we
conclude that N belongs to the RHS.

(2) and (4) easily follow from (1) and (3), respectively. O

4.5 Defining data sets by construction

As we have noted at the beginning of subsection 4.3, two approaches for defin-
ing a language (by interaction and by construction) generalize to the setting of
defining a set of designs: by orthogonality and by logical connectives. While the
first approach necessarily leads to behaviours which are biorthogonal closed,
the second abhors biorthogonals. Hence for the two approaches to reside in
harmony, sets of designs in question must be biorthogonal closed, and yet the
biorthogonals must be removable. That is exactly what the internal complete-
ness theorem achieves. Let us now see its effect in the concrete setting of data
designs.

First, notice that internal completeness of logical connectives (Corollary 4.15)

41

yields the following:

Proposition 4.16 For any n-ary logical connective o and atomic negative

behaviours Ny, ..., N,, we have:
[1a(Ny,. . N[= U ta(NG NG,
a(Za)Ea
where indices iy, ..., i, depends on a(Z,) € a as before.

This allows us to construct various behaviours by means of logical connectives.
Empty set. Consider the empty logical connective (). We have:

1101 = 0.

Singleton. Denote the 0-ary logical connective {nil} by Nil. We then have:

|| = {1 7).

Prefixed union. Let § = {a(z1),b(z2)}. Then,

| T8, N)[| =ta([[M][)u 1b(|IN[)).

The above constructions are all based on logical connectives, and apply to
arbitrary behaviours. On the other hand, the constructions below are specific
to those representing data sets. First, let us observe two simple facts:

Lemma 4.17 Let D be a set of data designs. Then we have ||D+L|| = D.

Proof Let N € |[D**||. Since the counter design c¢(D) (Definition 3.17)
belongs to D+, we have N L¢(D). Hence by Theorem 3.20, d C N for some
d € D. By materiality of N, we have N = d. O

Lemma 4.18 Let N be a set of atomic negative [-designs, and M be a set of
negative [-designs with at most one free variable x. We then have

(M[N/z])* = (M*H[N* /z])+,
where M[N/xz] = {M[N/x]: M € M, N € N}.
Proof Observe that for any anti-design [G] against negatives, we have

(*) VM € M. [G] LM <= [G] € M' <= YM € M. [G]LM.

42

Similarly for N. Now, P € (M[N/z])* if VM € M.YN € N.P[M[N/z]/xo] |
Moreover, P[M[N/x]/zq] | 1is equivalent to both P[M/x]L[N/x]
(i.e. P[M/x¢][xo/x] LN) and [P, N/x] L M. Hence by using (*) twice, we derive
the desired equality. O

Union. Given negative behaviours M and N, one can form another behaviour
(MUN)++. When M = D++ and N = E++ for some sets D, E of data designs,
this indeed works as the union operator by Lemma 4.17:

[(MUN)=||=[[(D-UE) || = |(DUE)|| = DUE = |[M]|U[|N]].

Composition. Given M, N as in Lemma 4.18, we may form another be-
haviour (M[N/z])*+. When M = D+ and N = E++ where E is a set of
data designs and D, consists of I-designs which are like data designs but are
allowed to have at most one occurrence of identity x, we have:

I(MIN/])==|| = [|(Dg[E/]) || = D[E/2] = [[M]| [||N]|/2].

Iteration. Given M = DX as above, we may define M° =1 Nil, M"! =
(M[M"/z])++, M* = (U, M")*+. Then from what precede, we derive:

[IME[] = U M]"

We thus have ludics analogues of language operators defiining regular lan-
guages. However, it should be noted that while prefixed union properly works
for arbitrary behaviours by internal completeness, union, composition and it-
eration only work for behaviours arising from data designs, since the latter
rely on the strong separation property (Theorem 3.20).

5 Conclusion

We have reformulated ludics from a computational point of view. Our syntax
is designed for representing various algorithms in it. For that purpose, having
explicit cuts inside c-designs is of vital importance. Another important issue
is finite generation of infinite c-designs. The significance of cuts and finite

generation is well summarized by the three characterization results (Theorem
4.10):

(1) Arbitrary l-designs may capture arbitrary sets of finite data designs.

(2) Finitely generated l-designs exactly capture the recursively enumerable
languages (when restricted to acceptance of languages).

43

(3) Finitely generated cut-free l-designs (i.e., finitely generated standard c-
designs) exactly capture the regular languages.

To prove these results, we have made essential uses of the fundamental prop-
erties of ludics, such as associativity, separation, pull-back, incarnation, and
internal completeness. Our development illustrates how useful these appar-
ently abstract properties are for practical purposes.

We have also explained how two approaches for defining languages in automata
theory generalize to the ludics setting. The interaction approach leads to the
notion of orthogonality, while the construction approach leads to logical con-
nectives and other constructions. These two approaches are compatible thanks
to the internal completeness theorem and the strong separation property.

Our subsequent work will discuss:

Syntactic types. In subsection 4.5, we have launched construction of var-
ious behaviours by logical connectives (and other means). This approach
can be most effectively pursued by introducing syntactic types, which are
analogous to (regular) expressions in automata theory. Then the issue of
internal completeness, together with its applications, naturally carries over
to the issue of full completeness, a full correspondence between types and
behaviours.

Focalization. Space compression theorem, one of the most fundamental re-
sults in complexity theory, is based on a very simple idea of compressing
data by using more symbols: a typical example is the transformation of
natural numbers in base 2 to those in base 4:

(0110)3 — (12)4.
In terms of data designs, this corresponds to the following map:
POATATOORD))) — 1T 2(1mil).
Interestingly, this map can be derived from a general principle of focalization:
a(tB(N)) = ap(N),

which states that two consecutive logical connectives «, 5 of the same polar-
ity (here separated by 1) can be combined into one . In our subsequent
work, we plan to prove a general form of focalization in ludics, and de-
rive space compression from that, aiming at a logical account to the latter
computational phenomenon.

Extensions of ludics. Recently Basaldella and Faggian have extended de-
signs and behaviours to non-linear settings. Non-linear designs are impor-
tant in various ways. In particular, what we have in mind is to use them

44

to give a logical account to space sensitive composition (eg. composition of
logspace functions).

Another interesting direction would be to study parallel designs like L-
nets [6], from the viewpoint of automata theory, since they are suitable for
expressing acceptance of tree languages (see Remark 2.24).

Acknowledgments. We would like to thank Claudia Faggian and the anony-
mous referees for a lot of useful suggestions.

References

[1] P.-L. Curien. Abstract bohm trees. Mathematical Structures in Computer
Science, 8(6):559-591, 1998.

[2] P.-L. Curien. Introduction to linear logic and ludics, part II. CoRR,
abs/cs/0501039, 2005.

3] D.Du and K.-1. Ko. Theory of Computational Complezity. Wiley-Interscience,
2000.

[4] C. Faggian. Interactive observability in ludics: The geometry of tests. Theor.
Comput. Sci., 350(2-3):213-233, 2006.

[5] C. Faggian and M. Hyland. Designs, disputes and strategies. In CSL’02, pages
442-457, 2002.

[6] C.Faggian and F. Maurel. Ludics nets, a game model of concurrent interaction.
In LICS’05, pages 376-385, 2005.

[7] C. Faggian and M. Piccolo. Ludics is a model for the finitary linear pi-calculus.
In TLCA’07, pages 148-162, 2007.

[8] J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard, Y. Lafont,
and L. Regnier, editors, Advances in Linear Logic, pages 1-42. Cambridge
University Press, 1995. Proceedings of the Workshop on Linear Logic, Ithaca,
New York, June 1993.

9] J.-Y. Girard. Locus solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science, 11(3):301-506, 2001.

[10] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science 7. Cambridge University Press, 1988.

[11] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and IIL.
Inf. Comput., 163(2):285-408, 2000.

[12] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222-259, 1997.

[13] F. Joachimski. Confluence of the coinductive [lambda]-calculus. Theor. Comput.
Sei., 311(1-3):105-119, 2004.

[14] J.-L. Krivine. Typed lambda-calculus in classical Zermelo-Fraenkel set theory.
Arch. Math. Log., 40(3):189-205, 2001.

[15] J.-L. Krivine. A call-by-name lambda calculus machine. Available at
http://www.pps.jussieu.fr/~ krivine, 2006.

[16] O. Laurent. Polarized games. Ann. Pure Appl. Logic, 130(1-3):79-123, 2004.

[17] P.-A. Melliés and J. Vouillon. Recursive polymorphic types and parametricity
in an operational framework. In LICS’05, pages 82-91, 2005.

45

