On the Computational Complexity of Cut-Elimination in Linear Logic

(Joint work with Harry Mairson)

Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics, Tokyo

Motivation

- Cut-elimination in Intuitionistic Logic corresponds to functional computation via Curry-Howard isomorphism.
- Linear Logic decomposes Intuitionistic Logic into Multiplicatives, Additives and Exponentials.
- Thus Linear Logic should decompose functional computation into three.
- But how?
- Address this question from the viewpoint of computational complexity.

Summary

- MLL: PTIME-complete
 - Fulfils all finite computations as efficient as boolean circuits.
- MALL: coNP-complete
 - Nondeterministic cut-elimination with slices.
- Generic MLL: captures ртіме (in terms of realizability)
 - A logical notion of uniformity.
- By-product: Soft Linear Logic without additives captures PTIME
 - Affirmative answer to Lafont's conjecture (Lafont 2001).
- (So does Light Linear Logic.)

Cut-Elimination as a Problem

- Cut-Elimination Problem (CEP):
 - Given 2 proofs, do they reduce to the same normal form?
- Subsumes:
 - Given a proof π , does it reduce to "true"?
- CEP for Linear Logic is non-elementary (Statman 1979).
- CEP for MLL is in PTIME.

Syntax of MLL

- For simplicity, we only consider the intuitionistic fragment.
- Identify IMLL proofs = untyped linear lambda terms.
- Justified by Hindley's theorem: any linear lambda term has a simple (propositional) type.
- **■** Types $(-\infty, \forall)$ are used neither for restriction nor for enrichment, but for classification.

$$\frac{\Gamma \vdash u : A \quad x : A, \Delta \vdash t : C}{\Gamma, \Delta \vdash t [u/x] : C}$$

$$\frac{x : A, \Gamma \vdash t : B}{\Gamma \vdash \lambda x . t : A \multimap B}$$

$$\frac{\Gamma \vdash u : A \quad x : B, \Delta \vdash t : C}{\Gamma, y : A \multimap B, \Delta \vdash t [yu/x] : C}$$

$$\frac{\Gamma \vdash t : A}{\Gamma \vdash t : \forall \alpha . A} \quad \alpha \not\in FV(\Gamma)$$

$$\frac{x : A[B/\alpha], \Gamma \vdash t : C}{x : \forall \alpha . A, \Gamma \vdash t : C}$$

Defined Connectives

$$\mathbf{1} \equiv \forall \alpha.\alpha \multimap \alpha$$

$$\mathbf{1} \equiv \lambda x.x$$

 $A \otimes B \equiv \forall \alpha. (A \multimap B \multimap \alpha) \multimap \alpha$ $t \otimes u \equiv \lambda x.xtu$

let t be I in $u \equiv tu$

let t be $x \otimes y$ in $u \equiv t(\lambda xy.u)$.

The above definitions are sound w.r.t.

let I be I in
$$t \longrightarrow t$$

let
$$t \otimes u$$
 be $x \otimes y$ in $v \longrightarrow v[t/x, u/y]$

(but *not* w.r.t. the commuting reduction rules)

$$\frac{\Gamma \vdash t\!:\!C}{x\!:\!\mathbf{1},\Gamma \vdash \operatorname{let} x \operatorname{\ be\ I\ in\ } t\!:\!C}$$

$$\frac{\Gamma \vdash t : A \quad \Delta \vdash u : B}{\Gamma. \Delta \vdash t \otimes u : A \otimes B}$$

$$\frac{\Gamma \vdash t \colon A \quad \Delta \vdash u \colon B}{\Gamma, \Delta \vdash t \otimes u \colon A \otimes B} \qquad \frac{x \colon A, y \colon B, \Gamma \vdash t \colon C}{z \colon A \otimes B, \Gamma \vdash \text{let } z \text{ be } x \otimes y \text{ in } t \colon C}$$

Π_1 and $e\Pi_1$ types

- **●** Π_1 : constructed by \multimap , \otimes , 1 (viewed as primitives) and positive \forall .
- **•** Example: $\mathbf{B} \equiv \forall \alpha. \alpha \multimap \alpha \multimap \alpha \otimes \alpha$ (multiplicative boolean type)
- lacksquare Π_1 includes finite data types.
- $e\Pi_1$: like Π_1 , but may contain negative inhabited types.
- **•** Example: **B** is Π_1 inhabited. Hence **B** \multimap **B** is $e\Pi_1$.
- $e\Pi_1$ includes functionals over finite data types.

Elimination of \otimes and 1

- **▶** Proposition: Any Π_1 type is "isomorphic" to another Π_1 type not containing ⊗ nor 1. Similarly for $e\Pi_1$.
- **▶** Proof: Positive \otimes and 1 are removed by their Π_1 definitions, while negative ones are removed by

$$((A \otimes B) \multimap C) \quad \circ \multimap \quad (A \multimap B \multimap C)$$
$$(\mathbf{1} \multimap C) \quad \circ \multimap \quad C$$

Weakening in MLL

- **▶** Theorem ($e\Pi_1$ -Weakening): For any closed $e\Pi_1$ type A, there is a term w_A of type A \multimap 1.
- Examples:

$$\begin{array}{c|c}
 & -1 \\
\hline
 & 1 \vdash 1 \\
\hline
 & 1, 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \vdash 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1 \\
\hline
 & +1 & 1 \otimes 1 \mapsto 1$$

Contraction in MLL

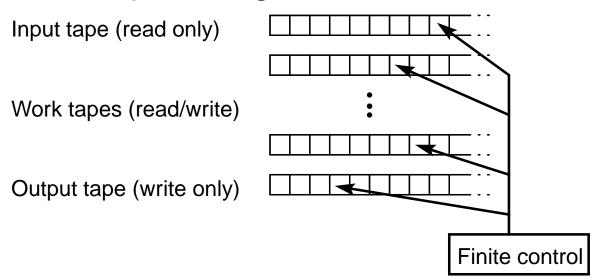
■ Theorem(Π_1 -Contraction): Let A be a closed inhabited Π_1 type (i.e. data type). Then there is a contraction map $cntr_A: A \multimap A \otimes A$ such that for any closed term t:A,

$$\operatorname{cntr}_A(t) \longrightarrow^* t' \otimes t',$$

where t' is $\beta\eta$ -equivalent to t.

Turing Machines and Logspace Functions

Multi-Tape Turing Machines

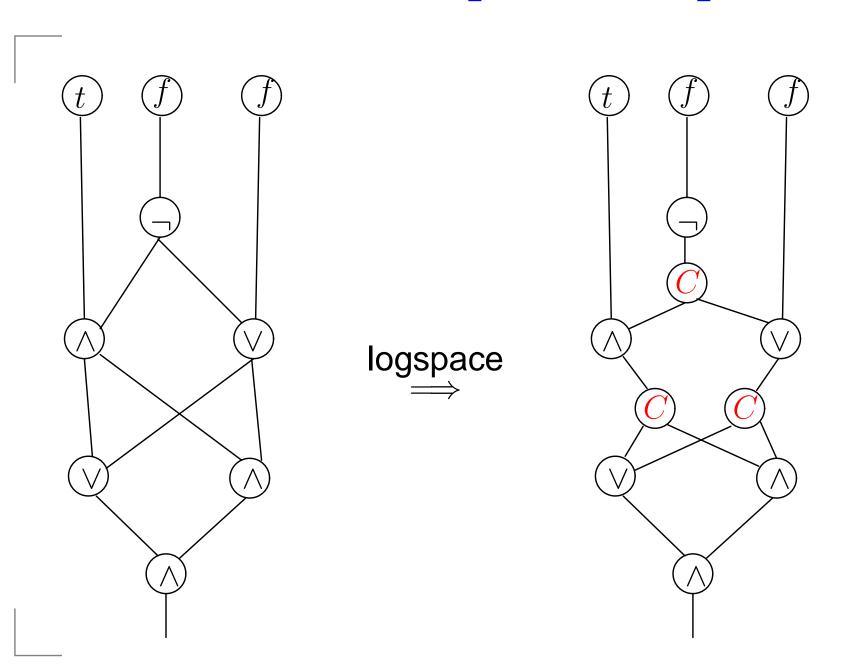


- $f: \{0,1\}^* \longrightarrow \{0,1\}^*$ is logspace if f(w) can be computed within $O(\log n)$ workspace where n = |w|.
- Output may be polynomially large.
- ▶ The num of all possible config = $O(2^{k \log n}) = O(n^k)$ for some k. In particular, $L \subseteq P$.

PTIME-completeness

- ▶ A language $X \subseteq \{0,1\}^*$ is logspace reducible to $Y \subseteq \{0,1\}^*$ if there exists a logspace function $f: \{0,1\}^* \longrightarrow \{0,1\}^*$ such that $w \in X \Leftrightarrow f(w) \in Y$.
- ullet X is ptime-complete if $X\in \operatorname{ptime}$ and each $Y\in \operatorname{ptime}$ is logspace reducible to X.
- The hardest problems in PTIME.
- If X is ptime-complete, then $X \not\in L$ unless L = ptime.
- Circuit Value Problem (PTIME-complete, Ladner 1975): Given a boolean circuit C with n inputs and 1 output, and n truth values $\vec{x} = x_1, \dots, x_n$, is \vec{x} accepted by C?

Boolean Circuits: implicit vs. explicit sharing



Boolean Circuits in MLL

• Projection: for any $e\Pi_1$ type C,

$$\mathsf{fst}_C \equiv \lambda x.\mathsf{let}\ x\ \mathsf{be}\ y \otimes z\ \mathsf{in}\ (\mathsf{let}\ \mathsf{w}_C(z)\ \mathsf{be}\ \mathsf{l}\ \mathsf{in}\ y)$$

- For any closed term $t \otimes u : A \otimes C$, $\operatorname{fst}_C(t \otimes u) \longrightarrow^* t$.
- Boolean values and connectives:

```
\begin{array}{lll} \operatorname{true} & \equiv & \lambda xy.x \otimes y & : \mathbf{B} \\ & \operatorname{false} & \equiv & \lambda xy.y \otimes x & : \mathbf{B} \\ & \operatorname{not} & \equiv & \lambda Pxy.Pyx & : \mathbf{B} \multimap \mathbf{B} \\ & \operatorname{or} & \equiv & \lambda PQ.\operatorname{fst}_{\mathbf{B}}(P\operatorname{true}Q) & : \mathbf{B} \multimap \mathbf{B} \multimap \mathbf{B} \\ & \operatorname{w}_{\mathbf{B}} & \equiv & \lambda z.\operatorname{let}z\operatorname{II}\operatorname{be}x \otimes y\operatorname{in}\left(\operatorname{let}y\operatorname{be}\operatorname{I}\operatorname{in}x\right) & : \mathbf{B} \multimap \mathbf{1} \\ & \operatorname{cntr} & \equiv & \lambda P.\operatorname{fst}_{\mathbf{B}\otimes\mathbf{B}}(P(\operatorname{true}\otimes\operatorname{true})(\operatorname{false}\otimes\operatorname{false})) & : \mathbf{B} \multimap \mathbf{B}\otimes\mathbf{B} \end{array}
```

Conditional

• Lemma ($e\Pi_1$ -Conditional): Let

$$x_1:C_1,\ldots,x_n:C_n\vdash t_1,t_2:D$$

and the type $A \equiv C_1 \multimap \cdots C_n \multimap D$ is $e\Pi_1$. Then there is a conditional

$$b: \mathbf{B}, x_1: C_1, \dots, x_n: C_n \vdash \text{if } b \text{ then } t_1 \text{ else } t_2: D,$$

such that (if true then t_1 else $t_2) \longrightarrow t_1$ and (if false then t_1 else $t_2) \longrightarrow t_2$.

Proof: Let

if b then t else
$$u \equiv \text{fst}_{\forall \vec{\alpha}.A}(b(\lambda \vec{x}.t)(\lambda \vec{x}.u))\vec{x}$$

PTIME-completeness of MLL

▶ Theorem (Mairson2003): There is a logspace algorithm which transforms a boolean circuit C with n inputs and m outputs into a term t_C of type $\mathbf{B}^n \to \mathbf{B}^m$, where the size of t_C is O(|C|):

$$C \stackrel{\mathsf{logspace}}{\Longrightarrow} t_C : \mathbf{B}^n \multimap \mathbf{B}^m$$

As a consequence, the cut-elimination problem for **IMLL** is PTIME-complete.

- **●** Binary words $\{0,1\}^n$ represented by \mathbf{B}^n
- Any $f: \{0,1\}^n \longrightarrow \{0,1\}^m$ represented by a term $t_f: \mathbf{B}^n \longrightarrow \mathbf{B}^m$.
- MLL captures all finite functions.

Syntax of IMALL

- Terms of IMALL: linear lambda terms plus the following;
 - (i) if t and u are terms and FV(t) = FV(u), then so is $\langle t, u \rangle$;
 - (ii) if t is a term, then so are $\pi_1(t)$ and $\pi_2(t)$.
- Type assignment rules:

$$\frac{\Gamma \vdash t_1 : A_1 \quad \Gamma \vdash t_2 : A_2}{\Gamma \vdash \langle t_1, t_2 \rangle : A_1 \& A_2} \qquad \frac{x : A_i, \Gamma \vdash t : C}{y : A_1 \& A_2, \Gamma \vdash t[\pi_i(y)/x] : C} \quad i = 1, 2$$

• Reduction rule: $\pi_i \langle t_1, t_2 \rangle \longrightarrow t_i$, for i = 1, 2.

Normalization in IMALL

Normalization is exponential as it stands; let

$$t_0 \equiv \lambda x.\langle x, x \rangle$$
$$t_{i+1} \equiv \lambda x.t_i \langle x, x \rangle$$

■ The size of $nf(t_i)$ is exponential in i; e.g.

$$t_{2} \equiv \lambda x.(\lambda y.(\lambda z.\langle z, z \rangle)\langle y, y \rangle)\langle x, x \rangle$$

$$\longrightarrow \lambda x.(\lambda y.\langle \langle y, y \rangle, \langle y, y \rangle)\langle x, x \rangle$$

$$\longrightarrow \lambda x.\langle \langle \langle x, x \rangle, \langle x, x \rangle \rangle, \langle \langle x, x \rangle, \langle x, x \rangle \rangle$$

- How to avoid exponential explosion?
- ullet Either restrict to lazy additives (with no positive & in the conclusion type)
- Or adopt nondeterministic cut-elimination with slices

Slices

A slice of a term t is obtained by slicing:

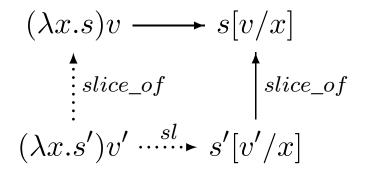
$$\langle u,v \rangle \mapsto \langle u \rangle_1$$
, or $\langle u,v \rangle \mapsto \langle v \rangle_2$.

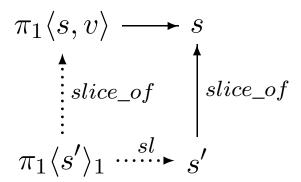
- Two slices t and u (of possibly different terms) are compatible if there is no context (i.e. a term with a hole) Φ such that $t \equiv \Phi[\langle t' \rangle_i]$, $u \equiv \Phi[\langle u' \rangle_j]$, and $i \neq j$.
- Lemma (Slicewise Checking): Two terms t and u are equivalent iff for every compatible pair (t', u') of slices of t and u, we have $t' \equiv u'$.
- Reduction rules for slices:

$$(\lambda x.t)u \xrightarrow{sl} t[u/x], \quad \pi_i \langle t \rangle_i \xrightarrow{sl} t, \quad \pi_i \langle t \rangle_j \xrightarrow{sl} \text{fail}, \quad \text{if } i \neq j.$$

Pullback

- **▶** Lemma (Pullback): Let t → *u and u' be a slice of u. Then there is a unique slice t' of t such that t' → *u'.
- Proof:





Syntactic counterpart of linearity of linear maps in coherent semantics:

$$\bigcup a_i \sqsubset X \Longrightarrow F(\bigcup a_i) = \bigcup F(a_i)$$

Nondeterministic Cut-Elimination

- There are exponentially many slices for a given term.
- But once a slice has been chosen, the computation afterwards can be done in linear steps, thus in quadratic time.
- We therefore have a nondeterministic polynomial time cut-elimination procedure, viewing the slicing operation as a nondeterministic reduction rule.
- Every slice of a normal form can be reached from the source term in this way (Pullback Lemma).
- The equivalence of two terms can be checked slicewise (Slicewise Checking Lemma).
- Hence the cut-elimination problem for IMALL is in CONP.

Encoding a coNP-complete Problem

- Logical Equivalence Problem (coNP-complete): Given two boolean formulas, are they logically equivalent?
- Given a boolean formula C with n variables, $C \mapsto t_C : \mathbf{B}^{(n)} \multimap \mathbf{B}$ in logspace.
- For each $1 \le k \le n$, let

$$ta_k \equiv \lambda f. \lambda x_1 \cdots x_{k-1}. \langle f \text{ true } x_1 \cdots x_{k-1}, f \text{ false } x_1 \cdots x_{k-1} \rangle,$$

which is of type $\forall \alpha. (\mathbf{B}^{(k)} \multimap \alpha) \multimap (\mathbf{B}^{(k-1)} \multimap \alpha \& \alpha)$, and define

$$\operatorname{ta}(t_C) \equiv \operatorname{ta}_1(\cdots(\operatorname{ta}_n t_C)\cdots): \underbrace{\mathbf{B} \ \& \cdots \& \ \mathbf{B}}_{2^n \ times}.$$

• $ta(t_C)$ can be built from t_C in $O(\log n)$.

Encoding a coNP-complete Problem (2)

- The normal form of $ta(t_C)$ consists of 2^n boolean values, each of which corresponds to a 'truth assignment' to the formula C.
- Example: ta(or)

```
\mathsf{ta}_1(\mathsf{ta}_2\mathsf{or}) \longrightarrow \mathsf{ta}_1(\lambda y_1.\langle \mathsf{or}\;\mathsf{true}\;y_1,\mathsf{or}\;\mathsf{false}\;y_1\rangle)
\longrightarrow^* \quad \langle\langle \mathsf{or}\;\mathsf{true}\;\mathsf{true},\mathsf{or}\;\mathsf{true}\;\mathsf{false}\rangle,\langle \mathsf{or}\;\mathsf{false}\;\mathsf{true},\mathsf{or}\;\mathsf{false}\;\mathsf{false}\rangle\rangle
\longrightarrow^* \quad \langle\langle \mathsf{true},\mathsf{true}\rangle,\langle \mathsf{true},\mathsf{false}\rangle\rangle.
```

- Two formulas C and D with n variables are logically equivalent if and only if $ta(t_C)$ and $ta(t_D)$ reduce to the same normal form.
- Theorem (CONP-completeness of IMALL): The cut-elimination problem for IMALL is CONP-complete.

Remark (1)

- We do not claim that the complexity of MALL is CONP (If we considered the complement of CEP, the result would be NP-completeness).
- We do claim that additives have something to do with nondeterminism.

Remark (2)

- In reality, functional computation is never nondeterministic.
- Nondeterministic computation can be simulated by deterministic one with an exponential overhead:
 the complexity theoretic meaning of exponential isomorphism

 $!(A \& B) \circ - \circ !A \otimes !B.$

Towards Infinite

- An MLL proof represents a finite function. How can one represent the infinite?
- Analogy: A circuit C represents a finite predicate on $\{0,1\}^n$.
- A family $\{C_n\}_{n\in N}$ of boolean circuits $(C_n \text{ has } n \text{ inputs})$ represents an infinite predicate on $\{0,1\}^*$.
- ullet Given an input w of length n, pick up C_n and evaluate $C_n(w)$.
- Such a family may represent a nonrecursive predicate.
- lacksquare A family $\{C_n\}_{n\in N}$ is logspace uniform if

$$n \xrightarrow{O(\log n) \text{ space}} C_n$$

▶ Theorem: $X \in \text{PTIME} \iff$ there is a logspace uniform family $\{C_n\}_{n \in N}$ representing X.

Towards logical uniformity

- We could consider logspace uniform families of MLL proofs to capture PTIME.
- But logspace uniformity is not a logical concept!
- Is there a purely logical notion of uniformity?
 - → Generic exponentials (Lafont 2001)

Generic MLL(1)

Types of MGLL:

$$A, B ::= \alpha \mid A \multimap B \mid \forall \alpha.A \mid !A$$

Type assignment rules: MLL with generic promotion

$$\frac{x_1 : A_1, \dots, x_n : A_n \vdash t : B}{x_1 : !A_1, \dots, x_n : !A_n \vdash t : !B}$$

Notation: $A^n \equiv \underbrace{A \otimes \cdots \otimes A}_{n \ times}, \ A^0 \equiv \mathbf{1}.$

Interpretation: MGLL — MLL

• For each $n \in N$, define a "functor" $\langle n \rangle$ by

Proposition (Lafont):

 $t\!:\!A$ in MGLL $\Longrightarrow t\langle n\rangle\!:\!A\langle n\rangle$ in MLL for each n. $\langle n\rangle$ is compatible with cut-elimination.

Remark: A more general interpretation from SLL to SLL itself is given in (Lafont 2001).

Genericity \Rightarrow Logspace uniformity

Description Theorem: Let an **MGLL** proof t : A be given. Then

$$n \stackrel{O(\log n)}{\Longrightarrow} \operatorname{space} t\langle n \rangle.$$

Every MGLL proof t gives a logspace uniform family of MLL proofs.

$$t\langle 1\rangle, t\langle 2\rangle, t\langle 3\rangle, \dots$$

Representing words in MGLL

- $\mathbf{W} \equiv \forall \alpha .! (\mathbf{B} \multimap \alpha \multimap \alpha) \multimap \alpha \multimap \alpha.$
- W has no proof in MGLL.
- $\mathbf{W}\langle n\rangle \equiv \forall \alpha. (\mathbf{B} \multimap \alpha \multimap \alpha)^n \multimap \alpha \multimap \alpha \text{ for each } n \in N.$
- $\mathbf{w}\langle n\rangle$ has proofs \underline{w} representing $w\in\{0,1\}^n$.
- $010 \equiv \lambda f_1 \otimes f_2 \otimes f_3.\lambda x.(f_1 \text{false})(f_2 \text{true})(f_3 \text{false})x): \mathbf{W}\langle 3 \rangle$

Representing predicates in MGLL(1)

▶ An MGLL proof t: W l \multimap B represents a predicate $X \subseteq \{0,1\}^*$ \iff for each word w of length n,

$$w \in X \iff t\langle n \rangle (\underbrace{\underline{w} \cdots \underline{w}}) \to^* \text{true}$$

- **▶** Theorem: Every proof t: \mathbf{W}^l \multimap \mathbf{B} in MGLL represents a PTIME predicate.
- ▶ Proof: Given input w of length n, build $t\langle n\rangle$ in logspace, thus in polynomial time, and normalize $t\langle n\rangle(\underline{w}\cdots\underline{w})$ in quadratic time.

Representing predicates in MGLL(2)

- What about the converse?
- Theorem (Lafont): Every PTIME predicate is representable in MGLL with additives.
- Theorem (Mairson-Terui): Every PTIME predicate is representable in MGLL.
- Every PTIME predicate can be programmed by a linear λ -term.
- No need to think of sharing in program execution.
 - 1. Given input of length n, compile t into **MLL** proofnet $t\langle n \rangle$.
 - 2. Normalize it (no sharing, no duplication, efficiently parallelizable)

Simulation of PTIME Turing Machines (1)

- ullet Polynomial clock n^k : $\mathbf{N} \multimap \mathbf{N}\langle X^k \rangle$
 - Already multiplicative in (Lafont 2001)
- One-step transition : $Conf \multimap Conf$
 - (Lafont 2001) uses additives
- **●** Iteration: $A \multimap ! (A \multimap A) \multimap \mathbf{N} \multimap A$
- Initialization, Acceptance-checking— OK.
- It suffices to give a multiplicative encoding of one-step transition.

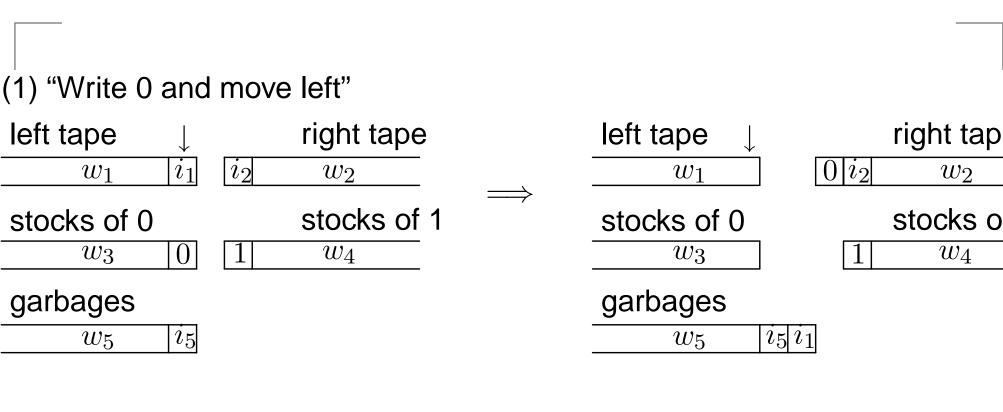
Simulation of PTIME Turing Machines (2)

ullet Consider a TM with 2 symbols and 2^n states. Then,

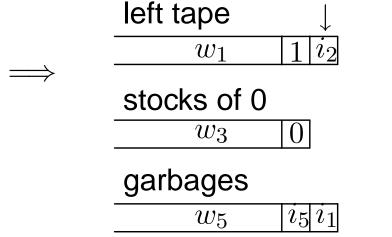
$$Conf \equiv \forall \alpha.! (\mathbf{B} \multimap \alpha \multimap \alpha) \multimap ((\alpha \multimap \alpha)^5 \otimes \mathbf{B}^n)$$

- **B**ⁿ corresponds to the 2^n states.
- Usually one needs just 2 stacks $(\alpha \multimap \alpha)^2$, left-tape and right-tape, but we need 5.
- Difficulties:
 - 1. We cannot create a new tape cell.
 - 2. We cannot remove a redundant tape cell (as Weakening is available only for closed types).
- Solution: Use 5 stacks to represent each configuration: left-tape, right-tape, stocks of 0, stocks of 1, garbages.

Simulation of PTIME Turing Machines (3)



(2) "Write 1 and move right"



right tap

stocks o

16/09/2003, IML - p.36/4

 w_4

 w_2

Simulation of PTIME Turing machines (4)

- One-step transition is obtained from:
 - 1. Lafont's ψ function to decompose a stack into the head and the tail
 - 2. Multiplicative conditional to branch according to the current state
 - 3. Combinatorial operations to rearrange 5 stacks

Multiplicative Soft Linear Logic

MSLL: MGLL with multiplexing (generalization of dereliction, weakening and contraction)

$$!X \multimap X^n$$
, for each $n \in N$

- ullet Internalization of $\langle n
 angle : exttt{MGLL} \longrightarrow exttt{MSLL}$
- w itself has inhabitants.
- Satisfies polynomial time strong normalization: Any proof t of depth d strongly normalizes in time $O(|t|^{d+2})$ (depth d counts nesting of ! promotions)
- A self-contained logical system of polynomial time (like LLL).

Conclusion

- Multiplicatives: all finite computations (including booleans, conditionals)
- Additives: nondeterminism
- Generic promotion: uniformity
- Soft Linear Logic captures PTIME without additives
- So does Light Linear Logic

Landscape of Complexity in Linear Logic

	Proof Search	Cut-Elimination
MLL	NP-complete	P-complete
MALL	PSPACE-complete	coNP-complete
MSLL	?	EXPTIME-complete
SLL	undecidable	coNEXPTIME-complete(?)
MLLL	?	2EXPTIME-complete
LL	undecidable	Non-Elementary

Is proof search strictly harder than cut-elimination? :
P=NP problem