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Motivation

Cut-elimination in Intuitionistic Logic corresponds to functional

computation via Curry-Howard isomorphism.

Linear Logic decomposes Intuitionistic Logic into

Multiplicatives, Additives and Exponentials.

Thus Linear Logic should decompose functional computation

into three.

But how?

Address this question from the viewpoint of computational

complexity.
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Summary

MLL: PTIME-complete

— Fulfils all finite computations as efficient as boolean circuits.

MALL: coNP-complete

— Nondeterministic cut-elimination with slices.

Generic MLL: captures PTIME (in terms of realizability)

— A logical notion of uniformity.

By-product: Soft Linear Logic without additives captures PTIME

— Affirmative answer to Lafont’s conjecture (Lafont 2001).

(So does Light Linear Logic.)
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Cut-Elimination as a Problem

Cut-Elimination Problem (CEP):

Given 2 proofs, do they reduce to the same normal form?

Subsumes:

Given a proof π, does it reduce to “true”?

CEP for Linear Logic is non-elementary (Statman 1979).

CEP for MLL is in PTIME.
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Syntax of MLL

For simplicity, we only consider the intuitionistic fragment.

Identify IMLL proofs = untyped linear lambda terms.

Justified by Hindley’s theorem: any linear lambda term has a simple
(propositional) type.

Types (−◦, ∀) are used neither for restriction nor for enrichment, but
for classification.

x :A � x :A
Γ � u :A x :A,∆ � t :C

Γ,∆ � t[u/x] :C

x :A,Γ � t :B
Γ � λx.t :A−◦B

Γ � u :A x :B,∆ � t :C
Γ, y :A−◦B,∆ � t[yu/x] :C

Γ � t :A
Γ � t :∀α.A α �∈ FV (Γ)

x :A[B/α],Γ � t :C
x :∀α.A,Γ � t :C
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Defined Connectives

1 ≡ ∀α.α−◦ α A⊗B ≡ ∀α.(A−◦B −◦ α) −◦ α
I ≡ λx.x t⊗ u ≡ λx.xtu

let t be I in u ≡ tu let t be x⊗ y in u ≡ t(λxy.u).

The above definitions are sound w.r.t.

let I be I in t −→ t let t⊗ u be x⊗ y in v −→ v[t/x, u/y]

(but not w.r.t. the commuting reduction rules)

� I :1
Γ � t :C

x :1,Γ � let x be I in t :C

Γ � t :A ∆ � u :B
Γ,∆ � t⊗ u :A⊗B

x :A, y :B,Γ � t :C
z :A⊗B,Γ � let z be x⊗ y in t :C

16/09/2003, IML – p.6/40



Π1 and eΠ1 types

Π1: constructed by −◦, ⊗, 1 (viewed as primitives) and positive

∀.

Example: B ≡ ∀α.α−◦ α−◦ α⊗ α (multiplicative boolean type)

Π1 includes finite data types.

eΠ1: like Π1, but may contain negative inhabited types.

Example: B is Π1 inhabited. Hence B −◦ B is eΠ1.

eΠ1 includes functionals over finite data types.
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Elimination of ⊗ and 1

Proposition: Any Π1 type is “isomorphic” to another Π1 type not

containing ⊗ nor 1. Similarly for eΠ1.

Proof: Positive ⊗ and 1 are removed by their Π1 definitions,

while negative ones are removed by

((A⊗B) −◦ C) ◦−◦ (A−◦B −◦ C)

(1 −◦ C) ◦−◦ C
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Weakening in MLL

Theorem (eΠ1-Weakening): For any closed eΠ1 type A, there is

a term wA of type A−◦ 1.

Examples:

� 1
� 1

� 1
1 � 1

1, 1 � 1

1 ⊗ 1 � 1
1 −◦ 1 ⊗ 1 � 1

1 −◦ 1 −◦ 1 ⊗ 1 � 1
B � 1

� B B � 1
B −◦ B � 1
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Contraction in MLL

Theorem(Π1-Contraction): Let A be a closed inhabited Π1 type

(i.e. data type). Then there is a contraction map

cntrA : A−◦A⊗A such that for any closed term t : A,

cntrA(t) −→∗t′ ⊗ t′,

where t′ is βη-equivalent to t.
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Turing Machines and Logspace Functions

Multi-Tape Turing Machines
Input tape (read only)

Work tapes (read/write)

Output tape (write only)

Finite control

f : {0, 1}∗ −→ {0, 1}∗ is logspace if f(w) can be
computed within O(log n) workspace where n = |w|.
Output may be polynomially large.

The num of all possible config = O(2k log n) = O(nk) for
some k. In particular, L ⊆ P .
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PTIME-completeness

A language X ⊆ {0, 1}∗ is logspace reducible to Y ⊆ {0, 1}∗ if

there exists a logspace function f : {0, 1}∗ −→ {0, 1}∗ such that

w ∈ X ⇔ f(w) ∈ Y .

X is PTIME-complete if X ∈ PTIME and each Y ∈ PTIME is

logspace reducible to X.

The hardest problems in PTIME.

If X is PTIME-complete, then X �∈ L unless L = PTIME.

Circuit Value Problem (PTIME-complete, Ladner 1975): Given a

boolean circuit C with n inputs and 1 output, and n truth values

�x = x1, . . . , xn, is �x accepted by C?

16/09/2003, IML – p.12/40



Boolean Circuits: implicit vs. explicit sharing

¬

∧ ∨

∨ ∧

∧

t f f

logspace
=⇒

¬

∧ ∨

∨ ∧

∧

C

C C

t f f
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Boolean Circuits in MLL

Projection: for any eΠ1 type C,

fstC ≡ λx.let x be y ⊗ z in (let wC(z) be I in y)

For any closed term t⊗ u : A⊗ C, fstC(t⊗ u) −→∗t.

Boolean values and connectives:

true ≡ λxy.x⊗ y :B

false ≡ λxy.y ⊗ x :B

not ≡ λPxy.Pyx :B −◦ B

or ≡ λPQ.fstB(P trueQ) :B −◦ B −◦ B

wB ≡ λz.let zII be x⊗ y in (let y be I in x) :B −◦ 1

cntr ≡ λP.fstB⊗B(P (true ⊗ true)(false ⊗ false)) :B −◦ B ⊗ B
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Conditional

Lemma (eΠ1-Conditional): Let

x1 :C1, . . . , xn :Cn � t1, t2 :D

and the type A ≡ C1 −◦ · · ·Cn −◦D is eΠ1. Then there is a

conditional

b :B, x1 :C1, . . . , xn :Cn � if b then t1 else t2 :D,

such that (if true then t1 else t2) −→ t1 and

(if false then t1 else t2) −→ t2.

Proof: Let

if b then t else u ≡ fst∀�α.A(b(λ�x.t)(λ�x.u))�x
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PTIME-completeness of MLL

Theorem (Mairson2003): There is a logspace algorithm which

transforms a boolean circuit C with n inputs and m outputs into

a term tC of type Bn −◦ Bm, where the size of tC is O(|C|):

C
logspace

=⇒ tC : Bn −◦ Bm

As a consequence, the cut-elimination problem for IMLL is

PTIME-complete.

Binary words {0, 1}n represented by Bn

Any f : {0, 1}n −→ {0, 1}m represented by a term tf :Bn −◦ Bm.

MLL captures all finite functions.
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Syntax of IMALL

Terms of IMALL: linear lambda terms plus the following;

(i) if t and u are terms and FV (t) = FV (u), then so is 〈t, u〉;
(ii) if t is a term, then so are π1(t) and π2(t).

Type assignment rules:

Γ � t1 :A1 Γ � t2 :A2

Γ � 〈t1, t2〉 :A1 &A2

x :Ai,Γ � t :C
y :A1 &A2,Γ � t[πi(y)/x] :C

i = 1, 2
.

Reduction rule: πi〈t1, t2〉 −→ ti, for i = 1, 2.
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Normalization in IMALL

Normalization is exponential as it stands; let

t0 ≡ λx.〈x, x〉
ti+1 ≡ λx.ti〈x, x〉

The size of nf(ti) is exponential in i; e.g.

t2 ≡ λx.(λy.(λz.〈z, z〉)〈y, y〉)〈x, x〉
−→ λx.(λy.〈〈y, y〉, 〈y, y〉〉)〈x, x〉
−→ λx.〈〈〈x, x〉, 〈x, x〉〉, 〈〈x, x〉, 〈x, x〉〉〉

How to avoid exponential explosion?

Either restrict to lazy additives (with no positive & in the

conclusion type)
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Slices

A slice of a term t is obtained by slicing:

〈u, v〉 �→ 〈u〉1, or 〈u, v〉 �→ 〈v〉2.

Two slices t and u (of possibly different terms) are compatible if

there is no context (i.e. a term with a hole) Φ such that

t ≡ Φ[〈t′〉i], u ≡ Φ[〈u′〉j ], and i �= j.

Lemma (Slicewise Checking): Two terms t and u are equivalent

iff for every compatible pair (t′, u′) of slices of t and u, we have

t′ ≡ u′.

Reduction rules for slices:

(λx.t)u sl−→ t[u/x], πi〈t〉i sl−→ t, πi〈t〉j sl−→ fail, if i �= j.
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Pullback

Lemma (Pullback): Let t −→∗u and u′ be a slice of u. Then

there is a unique slice t′ of t such that t′ sl−→∗u′.

Proof:

(λx.s)v s[v/x]

(λx.s′)v′ s′[v′/x]

�

�

�

�

�

�

�

�

�

�
slice_of

� � � � � � ��sl

�
slice_of

π1〈s, v〉 s

π1〈s′〉1 s′

�

�

�

�

�

�

�

�

�

�

�

�
slice_of

� � � � � � ��sl

�
slice_of

Syntactic counterpart of linearity of linear maps in coherent

semantics:
⋃
ai � X =⇒ F (

⋃
ai) =

⋃
F (ai)
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Nondeterministic Cut-Elimination

There are exponentially many slices for a given term.

But once a slice has been chosen, the computation afterwards

can be done in linear steps, thus in quadratic time.

We therefore have a nondeterministic polynomial time

cut-elimination procedure, viewing the slicing operation as a

nondeterministic reduction rule.

Every slice of a normal form can be reached from the source

term in this way (Pullback Lemma).

The equivalence of two terms can be checked slicewise

(Slicewise Checking Lemma).

Hence the cut-elimination problem for IMALL is in coNP.
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Encoding a coNP-complete Problem

Logical Equivalence Problem (coNP-complete): Given two

boolean formulas, are they logically equivalent?

Given a boolean formula C with n variables,

C �→ tC : B(n) −◦ B in logspace.

For each 1 ≤ k ≤ n, let

tak ≡ λf.λx1 · · · xk−1.〈f true x1 · · · xk−1, f false x1 · · · xk−1〉,

which is of type ∀α.(B(k) −◦ α) −◦ (B(k−1) −◦ α& α), and define

ta(tC) ≡ ta1(· · · (tantC) · · · ) : B & · · · & B︸ ︷︷ ︸
2n times

.

ta(tC) can be built from tC in O(log n).
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Encoding a coNP-complete Problem (2)

The normal form of ta(tC) consists of 2n boolean values, each

of which corresponds to a ‘truth assignment’ to the formula C.

Example: ta(or)

ta1(ta2or) −→ ta1(λy1.〈or true y1, or false y1〉)
−→∗ 〈〈or true true, or true false〉, 〈or false true, or false false〉〉
−→∗ 〈〈true, true〉, 〈true, false〉〉.

Two formulas C and D with n variables are logically equivalent

if and only if ta(tC) and ta(tD) reduce to the same normal form.

Theorem (coNP-completeness of IMALL): The cut-elimination

problem for IMALL is coNP-complete.
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Remark (1)

We do not claim that the complexity of MALL is coNP (If we

considered the complement of CEP, the result would be

NP-completeness).

We do claim that additives have something to do with

nondeterminism.
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Remark (2)

In reality, functional computation is never nondeterministic.

Nondeterministic computation can be simulated by

deterministic one with an exponential overhead:

=⇒ the complexity theoretic meaning of exponential

isomorphism

!(A&B)◦−◦!A⊗!B.
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Towards Infinite

An MLL proof represents a finite function. How can one

represent the infinite?

Analogy: A circuit C represents a finite predicate on {0, 1}n.

A family {Cn}n∈N of boolean circuits (Cn has n inputs)

represents an infinite predicate on {0, 1}∗.

Given an input w of length n, pick up Cn and evaluate Cn(w).

Such a family may represent a nonrecursive predicate.

A family {Cn}n∈N is logspace uniform if

n
O(log n) space

=⇒ Cn.

Theorem: X ∈ PTIME ⇐⇒ there is a logspace uniform family

{Cn}n∈N representing X.
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Towards logical uniformity

We could consider logspace uniform families of MLL proofs to

capture PTIME.

But logspace uniformity is not a logical concept!

Is there a purely logical notion of uniformity?

=⇒ Generic exponentials (Lafont 2001)
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Generic MLL(1)

Types of MGLL:

A,B ::= α | A −◦ B | ∀α.A | !A

Type assignment rules: MLL with generic promotion

x1 :A1, . . . , xn :An � t :B

x1 :!A1, . . . , xn :!An � t :!B

Notation: An ≡ A ⊗ · · · ⊗ A︸ ︷︷ ︸
n times

, A0 ≡ 1.
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Interpretation: MGLL−→ MLL

For each n ∈ N , define a “functor” 〈n〉 by

〈n〉 : MGLL −→ MLL

!A �→ An

Γ � A
!Γ �!A

�→ Γ � A
Γn � An

Proposition (Lafont):

t :A in MGLL =⇒ t〈n〉 :A〈n〉 in MLL for each n.

〈n〉 is compatible with cut-elimination.

Remark: A more general interpretation from SLL to SLL itself is

given in (Lafont 2001).
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Genericity ⇒ Logspace uniformity

Theorem: Let an MGLL proof t : A be given. Then

n
O(log n) space

=⇒ t〈n〉.

Every MGLL proof t gives a logspace uniform family of MLL

proofs.

t〈1〉, t〈2〉, t〈3〉, . . .
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Representing words in MGLL

W ≡ ∀α.!(B −◦ α−◦ α) −◦ α−◦ α.

W has no proof in MGLL.

W〈n〉 ≡ ∀α.(B −◦ α−◦ α)n −◦ α−◦ α for each n ∈ N .

W〈n〉 has proofs w representing w ∈ {0, 1}n.

010 ≡ λf1 ⊗ f2 ⊗ f3.λx.(f1false)(f2true)(f3false)x)) :W〈3〉
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Representing predicates in MGLL(1)

An MGLL proof t :Wl −◦ B represents a predicate X ⊆ {0, 1}∗
⇐⇒ for each word w of length n,

w ∈ X ⇐⇒ t〈n〉(w · · ·w︸ ︷︷ ︸
l times

) →∗ true

Theorem: Every proof t :Wl −◦ B in MGLL represents a PTIME

predicate.

Proof: Given input w of length n, build t〈n〉 in logspace, thus in

polynomial time, and normalize t〈n〉(w · · ·w) in quadratic time.
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Representing predicates in MGLL(2)

What about the converse?

Theorem (Lafont): Every PTIME predicate is representable in

MGLL with additives.

Theorem (Mairson-Terui): Every PTIME predicate is

representable in MGLL.

Every PTIME predicate can be programmed by a linear λ-term.

No need to think of sharing in program execution.

1. Given input of length n, compile t into MLL proofnet t〈n〉.
2. Normalize it (no sharing, no duplication, efficiently

parallelizable)
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Simulation of PTIME Turing Machines (1)

Polynomial clock nk : N −◦ N〈Xk〉
— Already multiplicative in (Lafont 2001)

One-step transition : Conf −◦ Conf
— (Lafont 2001) uses additives

Iteration: A−◦!(A−◦A) −◦ N −◦A
Initialization, Acceptance-checking

— OK.

It suffices to give a multiplicative encoding of one-step

transition.
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Simulation of PTIME Turing Machines (2)

Consider a TM with 2 symbols and 2n states. Then,

Conf ≡ ∀α.!(B −◦ α−◦ α) −◦ ((α−◦ α)5 ⊗ Bn)

Bn corresponds to the 2n states.

Usually one needs just 2 stacks (α−◦ α)2, left-tape and

right-tape, but we need 5.

Difficulties:

1. We cannot create a new tape cell.

2. We cannot remove a redundant tape cell (as Weakening is

available only for closed types).

Solution: Use 5 stacks to represent each configuration:

left-tape, right-tape, stocks of 0, stocks of 1, garbages.
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Simulation of PTIME Turing Machines (3)

(1) “Write 0 and move left”

i1 i2

0 1

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of 1

garbages

↓
=⇒

i1

0 i2

1

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of

garbages

↓

(2) “Write 1 and move right”

=⇒ 1

0

i1

i2

i5

w1

w3

w5

w2

w4

left tape right tape

stocks of 0 stocks of

garbages

↓
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Simulation of PTIME Turing machines (4)

One-step transition is obtained from:

1. Lafont’s ψ function to decompose a stack into the head and

the tail

2. Multiplicative conditional to branch according to the current

state

3. Combinatorial operations to rearrange 5 stacks
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Multiplicative Soft Linear Logic

MSLL: MGLL with multiplexing (generalization of dereliction,

weakening and contraction)

!X −◦Xn, for each n ∈ N

Internalization of 〈n〉 : MGLL −→ MSLL

W itself has inhabitants.

Satisfies polynomial time strong normalization:

Any proof t of depth d strongly normalizes in time O(|t|d+2)
(depth d counts nesting of ! promotions)

A self-contained logical system of polynomial time (like LLL).
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Conclusion

Multiplicatives: all finite computations (including booleans,

conditionals)

Additives: nondeterminism

Generic promotion: uniformity

Soft Linear Logic captures PTIME without additives

So does Light Linear Logic
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Landscape of Complexity in Linear Logic

Proof Search Cut-Elimination

MLL NP-complete P-complete

MALL PSPACE-complete coNP-complete

MSLL ? EXPTIME-complete

SLL undecidable coNEXPTIME-complete(?)

MLLL ? 2EXPTIME-complete

LL undecidable Non-Elementary

Is proof search strictly harder than cut-elimination? :

P=NP problem
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