On the meaning of logical completeness

Michele Basaldella* and Kazushige Terui

Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa
Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
{mbasalde,terui}@kurims.kyoto-u.ac.jp

Abstract. Godel’s completeness theorem is concerned with provability,
while Girard’s theorem in ludics (as well as full completeness theorems
in game semantics) is concerned with proofs. Our purpose is to look for
a connection between these two disciplines. Following a previous work
[1], we consider an extension of the original ludics with contraction and
universal nondeterminism, which play dual roles, in order to capture
a polarized fragment of linear logic and thus a constructive variant of
classical propositional logic.

We then prove a completeness theorem for proofs in this extended set-
ting: for any behaviour (formula) A and any design (proof attempt) P,
either P is a proof of A or there is a model M of A" which beats P. Com-
pared with proofs of full completeness in game semantics, ours exhibits a
striking similarity with proofs of Godel’s completeness, in that it explic-
itly constructs a countermodel essentially using Konig’s lemma, proceeds
by induction on formulas, and implies an analogue of Lowenheim-Skolem
theorem.

1 Introduction

Godel’s completeness theorem (for first-order classical logic) is one of the most
important theorems in logic. It is concerned with a duality (in a naive sense)
between proofs and models: For every formula A,

either AP(PF A) or 3IM(M |=-A).

Here P ranges over the set of proofs, M over the class of models, and P - A
reads “P is a proof of A.” One can imagine a debate on a general proposition A,
where Player tries to justify A by giving a proof and Opponent tries to refute
it by giving a countermodel. The completeness theorem states that exactly one
of them wins. Actually, the theorem gives us far more insights than stated.

Finite proofs vs infinite models: A very crucial point is that proofs are al-
ways finite, while models can be of arbitrary cardinality. Completeness thus
implies Léwenheim-Skolem and compactness theorems, leading to construc-
tions of various nonstandard models.

* Supported by JSPS Postdoctoral Fellowship for Foreign Researcher grant.

Nondeterministic principles: Any proof of Gddel’s completeness theorem re-
lies on a strong nondeterministic principle such as Konig’s or Zorn’s lemma,
in contrast to the trivial completeness theorem with respect to the class of
boolean algebras.

Matching of two inductions: Provability is defined by induction on proofs,
while truth by induction on formulas. The two inductions are somehow as-
cribed to the essence of syntax and semantics, respectively, and the com-
pleteness theorem states that they do match.

Unlike the real debate, however, there is no interaction between proofs and
models in Gédel’s theorem. A more interactive account of completeness is given
by Girard’s ludics ([12,13]; see [10,4] for good expositions). Ludics is a variant
of game semantics, which has the following prominent features.

Monism: Proofs and models are homogeneous entities, called designs.

Existentialism: Behaviours (semantic types) are built from designs, in contrast
to the ordinary game semantics (e.g., Hyland-Ong [14]) where one begins
with the definition of arenas (types) and then proceeds to strategies (proofs).

Normalization as interaction: Designs (hence proofs and models) interact
together via normalization. It induces an orthogonality relation between de-
signs in such a way that P_L M holds if the normalization of P applied to M
converges. A behaviour A is defined to be a set of designs which is equivalent
to its biorthogonal (A = A+4).

In this setting, Girard shows a completeness theorem for proofs [13], which
roughly claims that any “winning” design in a behaviour is a proof of it. In view
of the interactive definition of behaviour, it can be rephrased as follows: For
every (logical) behaviour A and every (proof-like) design P,

either P+ A or 3IM(M = At and M beats P).

Here, “M | A1” means M € A1, and “M beats P” means P J M. Hence in
case P I/ A, we may conclude P ¢ A+ = A. Notice that M = A+ no more
entails absolute unprovability of A; it is rather relativized to each P and there
is a real interaction between proofs and models.

Actually, Girard’s original ludics is so limited that it corresponds to a polar-
ized fragment of multiplicative additive linear logic, which is too weak to be a
stand-alone logical system. As a consequence, one does not observe an opposition
between finite proofs and infinite models, since one can always assume that the
countermodel M is finite (related to the finite model property for MALL [15]).
Indeed, the proof of the above completeness is easy once internal completeness
(a form of completeness which does not refer to any proof system [13]) for each
logical connective has been proved.

In this paper, we employ a term syntax for designs introduced in [19], and
extend Girard’s ludics with duplication (contraction) and its dual: universal
nondeterminism (see [1] and references therein). Although our term approach
disregards some interesting locativity-related phenomena (e.g., normalization as
merging of orders and different sorts of tensors [13]), our calculus is easier to

manipulate and closer to the tradition of A, Ay, Auji, T-calculi and others. Our
resulting framework is as strong as a polarized fragment of linear logic with
exponentials ([4]; cf. also [16]), which is in turn as strong as a constructive
version of classical propositional logic.

We then prove the completeness theorem above in this extended setting. Our
proof exhibits a striking similarity with Schiitte’s proof of Gédel’s completeness
theorem [18]. Given a (proof-like) design P which is not a proof of A, we explicitly
construct a countermodel M in A+ which beats P, essentially using Konig’s
lemma. Soundness is proved by induction on proofs, while completeness is by
induction on types. Thus our theorem gives matching of two inductions. Finally,
it implies an analogue of Lowenheim-Skolem theorem, which well illustrates the
opposition between finite proofs and infinite models.

In game semantics, one finds a number of similar full completeness results.
However, the connection with Gédel’s completeness seems less conspicuous than
ours. Typically, “winning” strategies in Hyland-Ong games most naturally cor-
respond to Bohm trees, which can be infinite (cf. [5]). Thus, in contrast to our
result, one has to impose finiteness/compactness on strategies in an external
and noninteractive way, in order to have a correspondence with finite A-terms.
Although this is also the case in [1], we show that such a finiteness assumption
is not needed in ludics.

2 Designs

2.1 Syntax

We first recall the term syntax for deterministic designs introduced by the sec-
ond author [19]. We employ a process calculus notation inspired by the close
relationship between ludics and linear 7-calculus [11].

Designs are built over a given signature A = (A,ar), where A is a set of
names a,b,c,... and ar : A — IN is a function which assigns to each name a
its arity ar(a). Let V be a countable set of variables V = {z,y, z,...}.

Over a fixed signature A, a (proper) positive action is @ with a € A, and a
(proper) negative action is a(x1,...,z,) where variables z1,...,z, are distinct
and ar(a) = n. In the sequel, we assume that an expression of the form a(%)
always stands for a negative action.

The positive (resp. negative) deterministic designs P (resp. N) are coinduc-
tively generated by the following grammar:

P = 0 |>I< | Nola(Ny,...,Np), N:= =z | > a().P,,

where ar(a) = n and & = x1,...,2z,. Intuitively, designs may be considered
as infinitary A-terms with named applications and superimposed abstractions.
Specifically, a positive design Ny|a(Ny, ..., N,) can be thought of as iterated
application NoNj ---N,, of name a € A, and a(Z).P, as iterated abstraction
AZ.P, of name a € A. A family {a(Z).P,}.ca of abstractions indexed by A is

then superimposed to form a negative design 3 a(Z%).P,. Each a(Z).P, is called
its component. The reduction rule for designs conforms to this intuition:

(Za(f)Pa) |5<N177Nn> — Pb[Nl/xla---aNn/xn]'

Namely, when the application is of name b, one picks up component b(Z).P, from
{a(#).P,}aca and applies S-reduction. Notice that any closed positive design P
(i.e., a positive design without free variables) has one of the following forms:
1, 2 and (3 a(Z).P,)|a({Ny, ..., Ny,). The last design reduces to another closed
one. Hence P eventually reduces to "X, or (2 or diverges. By stipulating that the
normal form of P in the last case is {2, we obtain a dichotomy between "X and
£2: the normal form of a closed positive design is either M or 2. As we shall see,
this induces an orthogonality relation between positive and negative designs.

We also use {2 to encode partial sums. Given a set a = {a(%),b(¥),...} of
negative actions, we write a(Z).P, + b(7).P, + - -+ to denote the negative design
> a(¥).R,, where R, = P, if a(%) € a, and R, = {2 otherwise.

Although [19] mainly deals with linear designs, there is no difficulty in dealing
with nonlinear ones. To obtain completeness, however, we also need to incorpo-
rate the dual of nonlinearity, that is universal nondeterminism [1]. It is reminis-
cent of differential linear logic [8], which has nondeterministic sum as the dual of
contraction; the duality is essential for the separation property [17] (see also [7]
for separation of Bohm trees). It is also similar to the situation in Hyland-Ong
game semantics [14], where nonlinear strategies for Player may contain a play
in which Opponent behaves noninnocently; Opponent’s noninnocence is again
essential for full completeness.

Definition 1 (Designs). For a fized signature A, a positive (resp. negative)
design P (resp. N) is a coinductively defined term given as follows:

P = 0 | N Qi (positive designs)
Q; := Nola(Ny,...,N,) (predesigns)
N =z | > a(Z).P, (negative designs),

where \; Q; is built from a family {Q;}icr of predesigns with I an arbitrary
index set.

We indicate positive designs by P, @, ..., negative designs by N, M, ..., and
arbitrary ones by D, E,.... Any subterm E of D is called a subdesign of D.

A design D may contain free and bound variables. An occurrence of subterm
a(¥).P, binds the free-variables # in P,. Variables which are not under the
scope of the binder a(Z) are free. We denote by fv(D) the set of free variables
occurring in D. In analogy with A-calculus, we always consider designs up to
a-equivalence, that is up to renaming of bound variables (see [19] for further
details). We also identify designs which only differ in indexing: A; P, = A\, Q;
if there is a bijection o : I — J such that P; = Q4(;) for every i € I.

The daimon "X is now defined to be the empty conjunction A {). A unary con-
junction A i Q; is simply written as ();. Furthermore, the conjunction operator

can be extended to positive and negative designs: for I, J disjoint sets of indices,

ArQiANN; Qi = A\juy Qi QNP =12,
>a(Z).Py A a(®).Qq =Y a(Z).(Py A Qu), z A N = undefined.

In particular, we have P A4 = P in contrast to [1], which distinguishes the two.
By the above convention, conjunction of two positive designs is always defined.

A cut is a predesign of the form (> a(Z).P,)[a(Ny,...,N,). Otherwise, a
predesign is of the form z|@a(Ny,...,N,) and called a head normal form. The
head wvariable z in the predesign above plays the same role as a pointer in a
strategy does in Hyland-Ong games and an address (or locus) in Girard’s ludics.
On the other hand, a variable occurring in a bracket (as in Np|a(Ny,...,
Ni_1, , Nit1,...,N,)) does not correspond to a pointer nor address. Rather,
it corresponds to an identity axiom (initial sequent) in sequent calculus, and
for this reason is called an identity. If a negative design N simply consists of a
variable x, then N is itself an identity.

A design D is said:

— total, if D # (2;

— linear (or affine), if for any subdesign of the form Np|a(Ny,..., N,), the sets
fv(No), ..., fv(NV,,) are pairwise disjoint;

— deterministic, if in any occurrence of subdesign A; Q;, I is either empty (and
hence A; Q; ="X) or a singleton.

Ezample 1 (Girard’s syntaz). Girard’s original designs [13] can be expressed in
our syntax by taking the signature G = (Pyin(IN),| |) where Pys;n(IN) consists
of finite subsets of IN and | | is the function that gives the cardinality to each
I € Pyin(IN). Girard’s designs correspond to total, deterministic, linear, cut-free
and identity-free designs over the signature G. See [19] for more details.

2.2 Normalization

Ludics is an interactive theory. This means that designs, which subsume both
proofs and models, interact together via normalization, and types (behaviours)
are defined by the induced orthogonality relation. Several ways to normalize
designs have been considered in the literature: abstract machines [3,9,6,1], ab-
stract merging of orders [13], and terms reduction [19]. Here we actually extend
the last solution. As in pure A-calculus, normalization is not necessarily termi-
nating, but in our setting a new difficulty arises: the operator A.

We define the normal forms in two steps, first giving a reduction rule which
finds conjunctions of head normal forms whenever possible, and then expanding
it corecursively. As usual, let D[N /Z] denote the simultancous and capture-free
substitution of N = Ni,...,N, for #=x1,...,2, in D.

Definition 2 (Reduction relation —). The reduction relation — is de-
fined over the set of positive designs as follows:

02—, QA (S a(7).Pa | B(N)) 5 QARIN/A.

We denote by —* the transitive closure of —.

Ezample 2. Let N = a(x) X + b(z).(z[a(zr) A a:|l_)_<y>) Then:
Nla{w) — "X, N|b{w) — wlaw) A wlb(y), N|e(w) — 2.

Given two positive designs P, Q, we write P || @) and read “P converges to
Q" if P —* @ and @ is a conjunction of head normal forms (including the
case Q = "H). We write P 1} and read “P diverges” otherwise (typically when
P —*).

Notice that the above reduction relation is completely deterministic. Al-
ternatively, a nondeterministic one can be defined over predesigns and (2 as
follows. Given predesigns Py, Rp (which can also be seen as positive designs
/\{0} Py, /\{0} Ry), we write Py— Ry if Py — Q A Ry for some positive design
Q. We also write 2— (2, and Py— 2 if Py — (2. Then it is easy to see that
Py converges if and only if all nondeterministic reduction sequences from Py are
finite. Thus our nondeterminism is universal rather than ezistential.

Definition 3 (Normal form). The normal form function[]:D — D is
defined by corecursion as follows:

[P] = A;zila([N:]) if P U Apaslas(No);
=1 if P Ay
[D°a(@).Pu] = Y a(@).[Pu]; [z] ==.

Notice that the dichotomy in the closed case is maintained: for any closed positive
design P, [P] is either "X or (2.

Theorem 1 (Associativity).
[D[N1/x1, ..., Nn/x,]] = [D][N1]/ 1, - - -, [Na]/2zn]-

3 Behaviours

3.1 Orthogonality

In the rest of this work, we restrict ourselves to a special subclass of designs:
namely, we consider only total, cut-free and identity-free designs. Restriction to
identity-free designs is not a serious limitation, since identities can be replaced
by suitable infinitary identity-free designs (namely, their infinite 7 expansions,
called fazes in [13]). A proof of this fact is given in [19].

Since we work in a cut-free setting, we can simplify our notation: we often
identify an expression like D[N/z] with its normal form [D[N/z]]. Thus, we
improperly write D[N/x] = E rather than [D[N/z]] = E.

Definition 4 (Orthogonality). A positive design P is closed if fv(P) = 0,
atomic if fv(P) C {xo} for a certain fixed variable xy. A negative design N
is atomic if fv(N) = 0. Two atomic designs P,N of opposite polarities are
said orthogonal and written P1LN when P[N/xzo] ="Q. If X is a set of atomic
designs of the same polarity, then its orthogonal set, denoted by X, is defined
by Xt :={FE:VDeX, DLE}.

The meaning of A can be clarified in terms of orthogonality. For designs D, E
of the same polarity, define D < E iff {D}* C {E}*. D < E means that E has
more chances of convergence than D when interacting with other designs. The
following is easy to observe.

Proposition 1. < is a preorder. Moreover, we have DAE < D and D < DAD
for any designs D, E of the same polarity.

In particular, P = P A4 < X for any positive design P. This justifies our
identification of ¥ with the empty conjunction A 0.

Although possible, we do not define orthogonality for nonatomic designs.
Accordingly, we only consider atomic behaviours which consist of atomic designs.

Definition 5 (Behaviour). An (atomic) behaviour X is a set of atomic de-
signs of the same polarity such that X1+ = X.

A behaviour is positive or negative according to the polarity of its designs. We de-
note positive behaviours by P, Q, R, . .. and negative behaviours by N, M K

There are the least and the greatest behaviours among all positive (resp.
negative) behaviours with respect to set inclusion:

0+ := X}, TH:=0"",
0~ := {E Y, T-:=0%L, (F =Y a(@)H).

We now introduce the contexts of behaviours, which corresponds to sequents
of behaviours in [13].

Definition 6 (Contexts of behaviours). A positive context T is of the
formxy : Pq,..., 2, : Py, where x1, ..., x, are distinct variables and P,...,P,
are (atomic) positive behaviours. We denote by fv(T') the set {z1,...,z,}. A
negative context T',N is a positive context T' enriched with an (atomic) nega-
tive behaviour N, to which no variable is associated. We define:

- PEx :P,... 2, Py if fv(P) C{xy,..., 20} and
P[Ni/z1,...,Nn/x,] = for any Ny € P{-, ..., N,, € PL.

- NEz :Py,...,z,, : P,, N iffv(N) C{zy,...,2,} and
P[N[Nyi/z1,...,Nn/zy]/20] = & for any Ny € P{, ..., N, € PL, P € N+,

Clearly, N = N ifft N € N, and P =y : P iff P[xo/y] € P. Furthermore,
associativity (Theorem 1) implies the following quite useful principle:

Lemma 1 (Closure principle). P =T,z : P if and only if P[N/z] E T for
any N € PL. N =T, N if and only if P[N/xo] =T for any P € N*.

3.2 Logical connectives

We next describe how behaviours are built by means of logical connectives in
ludics. Let us assume that the set of variables V is equipped with a fixed linear
order xg, 1,3

Definition 7 (Logical connectives). An n-ary logical connective a is a

finite set of negative actions a1(Z1), ..., am(Zm) such that the names a1, ..., Gm
are distinct and the variables &, ..., %, are taken from {x1,...,x,}. Given a
name a, an n-ary logical connective o and behaviours Ny,...,N,,Py,..., P,
we define:

6<N1,...,N >_{ 0|E<N1,...,Nm>:N1 ENl,...,Nm ENm},
L

1
a(Ny,...,N (mea “,...,Nim>) ,
a(Pl,...,Pn) — a(PL,... PLyL

where the indices iy,...,im € {1,...,n} are determined by the vector ¥ =
Tiyy ..., X, given for each a(Z) € a.

In terms of linear logic, the cardinality of the connective a corresponds to
the additive arity while the arity of each name to the multiplicative arity.

Ezample 8 (Linear logic connectives). Usual linear logic connectives can be de-
fined by logical connectives % ,&,7, L, T below; we also give some shorthand
notations for readability.

3, .:

B = {p(ml,m)}, ® = 9 =0,
&:={m(z1),m(22)}, @:=¢&, L 1= T,
1= {1z}, b=1 =1
1= {x}, T =10, (x 0-ary name).

We do not have exponentials here, because we are working in a nonlinear setting
so that they are already incorporated into the connectives. With these logical
connectives we can built (semantic versions of) usual linear logic types (we use
infix notations such as N ® M rather than the prefix ones @ (N, M)).

N oM = o(N,M)*+, P3Q=e(PL,Q)*,
N © M = (L1<N> U L2<M>)J'J', P& Q = L1<PJ'>J' N LQ(QJ'>J'
IN=[(N)*, TP =[(PH)"
1 = {xo[¥}++, 1=14,
0=0+, T=0"

The next theorem illustrates a special feature of behaviours defined by logical
connectives. It also suggests that nonlinearity and universal nondeterminism play
dual roles.

Theorem 2. Let P be an arbitrary positive behaviour.

1. PExz :P, zy: P = Plzo/x1,z0/22] € P.
2. NAM eP+ = N eP* and M € P+

Moreover, if P = a(N), the converses of 1. (duplicability) and 2.(closure under

A) hold.

Proof. 1. Let N € P+. Then P[N/x1, N/xs] = "X by assumption.

Hence Plxg/x1,z0/z2][N/z0] ="K, and so P[zo/z1,z0/22] € P+ = P.

2. Because of N A M < N, M (Proposition 1).

Closure under \.Let N, M € P+ = a(N)*. To prove NAM € P, it is sufficient
to show that N AM is orthogonal to any zo|a(K) € Ua(#)ea @Niys - - - Nj,,). But

since o occurs only once at the head position, it boils down to [N A M[a(K)] =
¥K, which is an easy consequence of [N[a(K)] = " and [M]a(K)] = .

Duplicability. Let Plazo/x1,20/x2] € P = a(N). It suffices to show that P[N /1,
M /23] = " holds for any N, M € P+. But we have just proven that NAM € P+,
and so Plro/z1,x0/22][N AN M/x9] = P[N AN M/x1,N AN M/z,] = "X Since
N AM < N,M by Proposition 1, we have P[N/xy, M /xs] = K. 0

Remark 1. Theorem 2 can be considered as an (internal, monistic) form of
soundness and completeness for the contraction rule: soundness corresponds to
point 1. whereas completeness to its converse (duplicability).

3.3 Internal completeness

In [13], Girard proposes a purely monistic, local notion of completeness, called
internal completeness. It means that we can give a precise and direct descrip-
tion to the elements in behaviours (built by logical connectives) without using
the orthogonality and without referring to any proof system. Negative logical
connectives easily enjoy internal completeness:

Theorem 3 (Internal Completeness (negative case)).
a(Py,...,P)={>"a(@).Po: P Exi, : Piy,... x;, : P; for every a(Z) € a},

where the indices iy, ..., i, are determined by the vector & = x;,,...,;

In the above, P, can be arbitrary when b(#) ¢ «a. Thus our approach is
“immaterial” in that we do not consider incarnations and material designs. For
example, we have

P& Q= {m(z1).P+m(x2)Q+-: Pz :Pand Q Fz2: Q}
= {m(z9).P + ma(x0).Q +---: PP and Q € Q},

where the irrelevant components of the sum are suppressed by “ --.” Up to
incarnation (i.e. removal of irrelevant part), P & Q, which has been defined by
intersection, is isomorphic to the cartesian product of P and Q: a phenomenon
called mystery of incarnation in [13].

As to positive connectives, [13] proves internal completeness theorems for ad-
ditive and multiplicative ones separately in the linear and deterministic setting.
They are integrated in [19] as follows:

Theorem 4 (Internal completeness (linear, positive case)). When the
universe of designs is restricted to linear and deterministic ones, we have

alNy,...,N,) = () @(Ni,...,N;,) U PR
a(¥)Ea

However, this is no more true with nonlinear designs. A counterexample is
given below.

Example 4. Let us consider the behaviour P := | (1 (0%)) =/ (1 (07))++. By
construction, the design Py := zo| | (1 (z1).2) belongs to P, but then, also any
design of the form P, := zo| | (1 (z1).P,) belongs to P. Too see this, note
that any N = 3 a(#).P, € P+ has component of the form 1 (y).y| | (M) with
M arbitrary (more precisely, 1 (y). A; y| | (M;) for some I with M; arbitrary).
Hence we have
Pos [N/ 0] = NI4(t (21).PalN/20]) = (1 (21). PalN/0]) [(M) = PalN/z0};
P() [N/.’L‘O] =
This proves P, 1 € P. However, P, 11 ¢ (1 (0™)), since 1(z1).P, is not atomic
and so cannot belong to 1 (0%).

This motivates us to directly prove completeness for proofs, rather than de-
riving it from internal completeness as in the original work [13]; internal com-
pleteness for positives will be further discussed in our subsequent work.

In [1] a weaker form of internal completeness is proved, which is enough
to derive a weaker form of full completeness: all finite “winning” designs are
interpretations of proofs. While such a finiteness assumption is quite common in
game semantics, we will show that it can be avoided in ludics.

4 Proof system and completeness for proofs

4.1 Proof system

We will now introduce a proof system. In our system, logical rules are automat-
ically generated by logical connectives. Since the set of logical connectives vary
for each signature A, our proof system is parameterized by A. If one chooses
A rich enough, the constant-only fragment of polarized linear logic ([4]; cf. also
[16]) can be embedded.

In the sequel, we focus on logical behaviours, which are composed by using
logical connectives only.

Definition 8 (Logical behaviours). A behaviour is logical if it is inductively
built as follows (o denotes an arbitrary logical connective):

P;:a<N1,...,Nn>, N = Oé(Pl,...,Pn).

Notice that the orthogonal of a logical behaviour is again logical.
As advocated in the introduction, our monistic framework renders both
proofs and models as homogeneous objects: designs.

Definition 9 (Proofs, Models). A proof is a design in which all the conjunc-
tions are unary. In other words, a proof is a deterministic and YH-free design. A
model is an atomic linear design (in which conjunctions of arbitrary cardinality
may occur).

Given a design D, let act(D) be the set of occurrences of proper positive
actions @ in D. The cardinality of D is defined to be the cardinality of ac* (D).
Notice that a proof in the above sense can be infinite, so might not “prove”
anything. Hence it might be better called a “proof attempt” or “untyped proof.”

A positive (resp. negative) sequent is of the form P F T' (resp. N + I',IN)
where P is a positive proof (resp. N is a negative proof) and T is a positive
context (see Definition 6) of logical behaviours such that fv(P) C fv(T") (resp.
fv(N) C fv(T)). Intuitively, a sequent D + T' should be understood as a claim
that D is a proof of - I, or D is of type + T.

Our proof system consists of three types of inference rules: positive (@, a),
negative (o), and cut.

M FT,N;, ... MnFI,N; (z:@(Ny,...,N,)€eT)
Z[@(My, ..., Mpy) F T

(@,a)

(P 1@ P o) ca PFT,2:P NFA,PL

(@)

(cut)

S a(@).Py - [,a(Py,...,Py) PIN/ZFT,A
with the proviso:
— In the rule (@,a), a(?) € a, = x;,,..., i, ,and i1,...,i,m € {1,...,n}.

— In («), ¥ : P, stands for x;, : P;,...,2z;, : P; . A component b(if).P,
of Y a(#,).P, can be arbitrary when b(¢) ¢ «. Hence we again take an
“immaterial” approach.

It is also possible to adopt a “material” approach by requiring P, = {2 when
b(J) € a. Then a proof D is finite (i.e., ac (D) is a finite set) whenever D + T'
is derivable for some I'. Thus, as in ordinary sequent calculi, our proof system
accepts only essentially finite proofs for derivable sequents (i.e., finite up to
removal of irrelevant part).

For linear logic connectives, the positive and negative rules specialize to the
following (taking the “material” approach):

Mi TNy M>FT,Ny (z:N;®@Nyel) PFT, 2z, : P,z : Ps

z
z|0(M1,M2)|—1" (®7.) p($1,$2).P|_I‘,P1 P>)
M"I‘,Ni (z:NlEBNQEF) (@) Pll—F,ZL‘1:P1 PQI—F,lL‘z:Pz (&)
Li
zlei(M) =T ’ 71 (x1).Pr + m2(22).Po F T, Py & Py
(Z 1€ F) PFT
3 S D - (M
Z[xET *PHT, L >a(@).2FT, T

4.2 Completeness for proofs

We now prove soundness and completeness for proofs. In the statement of the
theorem below, “D + I'” means that the sequent D + T is derivable in our proof
system.

Theorem 5 (Soundness). DFT = D ET.

Proof. By induction on the derivation of D + I, using Lemma 1 (the closure
principle) and Theorem 2 (1).

Theorem 6 (Completeness for proofs). For every positive logical behaviour
P and every proof P (see Definition 9),

P=xz:P= Ptx:P.
Similarly for the negative case.

The proof below is analogous to Schiitte’s proof of Godel’s completeness
theorem [18], which proceeds as follows:

1. Given an unprovable sequent - P, find an open branch in the cut-free
proof search tree.

2. From the open branch, build a countermodel M in which P is false.
We can naturally adapt 1. to our setting, since the bottom-up cut-free proof
search in our proof system is deterministic in the sense that at most one rule
applies at each step. Moreover, it never gets stuck at the negative sequent, since
a negative rule is always applicable bottom-up.

Suppose now that P - x : P does not have a derivation. Our goal is to build
a model ¢(P,) € P+ such that P Yc(P,).

By Ko6nig’s Lemma, there exists a branch in the cut-free proof search tree,

N FE,
P F O,

with Py = P and ®y = x : P, which is either finite and has the topmost sequent
Prioz F O with maz € IN to which no rule applies anymore, or infinite. In
the latter case, we set max = oo. Without loss of generality, we assume that
each variable is associated to at most one behaviour. Namely, if z : P and = : Q
occur in the branch, we have P = Q (an assumption needed for Lemma 2 (2)).

We first consider the former case (maz < oo) and illustrate how to build a
model ¢(P;) for 0 < i < maz by means of concrete examples. The construction
proceeds by downward induction from max to 0.

(i) When Pa. = 12, let ¢(Ppae) = " (= > a(@)X). (i) Suppose for in-

stance that Py,ee = ©Omaz is of the form Z|E<M> FT,z: M@K but @ # e so
that the proof search gets stuck. Then let ¢(Pqe.) = p(21, z,) M. (iii) Suppose

that we have constructed ¢(P;) for i + 1 < j < max, and the relevant part of

the branch is of the form:

Pi+1|_-®i+1 Pi+1|_I‘7w:P7y:Q
N, F 5, _ pxy). P FT,PRQ

m z| e {p(x,y).Piy1, M) F T

where T' contains z : (P % Q) ® M. Let:

c(P.) = N{e(P)) : i < j < maz, P; has head variable z}

e(P) = plan, o).l @ (e(Pe), c(P,)).

Here, ¢(P;) begins with p(z;, x,).x; rather than p(z;, z,).z,, because the branch
goes up to the left direction, choosing the left subformula P % Q. When none of
P; (i < j < max) has head variable z, we set ¢(P,) ="K .

Next consider the case max = oco. We first define ¢, (P;) for every n,i < oo.
Let ¢, (P;) = & for i > n. For 0 < i < n, we build ¢,(P;) by downward
induction on i from n to 0, using (iii) above. When n — oo, each ¢, (P;) grows
in the sense that each conjunction /A obtains more and more conjuncts. This
allows us to define ¢(P;) for each i by taking the “limit” lim,, o ¢, (P;), which
is roughly speaking the “union” c¢(P;) = |J,,coo ¢n (%) (cf. [19] for the union of
designs). ¢(P,) for each variable z is similarly defined. Observe that each ¢(P;)
and ¢(P,) thus constructed are surely models, i.e., atomic linear designs.

Theorem 6 is a direct consequence of the following two lemmas.

Lemma 2. For P; - ®; appearing in the branch, suppose that the head variable
of P is z and z : R € ©;. Then (1) ¢(P;) € R*, and (2) ¢(P.) € R*.

Proof. By induction on R. (1) When i = maz and the case (ii) applies, we
have p(z;, z,) 4 € (M ® K)* by internal completeness for negatives (Theorem
3). Suppose that the case (iii) applies to P; - @;. Then ¢(P;) = p(z, z,).z;|
(¢(P.),c(P,)). By induction hypothesis (2), we have ¢(P,) € P+ and ¢(P,) €
Q*. Hence zo|® (c(P:),c(P,)) € PL@Qt = (P®Q)*. Since z;, z, are not free
in ¢(P,),c(P,), we have z;| ® (¢c(P.),c(P,)) E x;: (P® Q)*,z, : M*. Hence by
Theorem 3, p(z;,7,).2;| ® (¢(P:),c(Py)) € PBQ)L ML = (PRQ) ® M)+,
(2) Follows from (1) since R* is closed under A (Theorem 2). a

Lemma 3. Suppose that the head variable of Py is x. Then we have Py Yc(Py).

Proof. We first prove that there is a nondeterministic reduction sequence

Pilc(Py,)/v1,- - c(Py,)m]—" Piy1[c(Puw,)/wi, ..., c(Puw,)/wn]

for any i < maz, where ¥ and «f are the free variables of P; and Py, re-
spectively. Suppose that P; is as in the case (iii) above. By writing [f] for
[c(Py,)/v1,...,¢(Py,) /vm] and noting that ¢(P.) contains ¢(P;) = p(z;, x,).x(| ®
(c(Py), c(Py)) as conjunct, we have

Bl0] = c(P.)] e {p(x,y)-Piy1[0], M[6])
— (p(2,y)-Pipa [0])] o (c(Pr), c(Py)) — Piy1[0,c(Pe)/x, c(By) [y],

as desired. When maz = oo, we have obtained an infinite reduction sequence
from Pylc(P;)/xz]. Otherwise, we have Pylc(P.)/x]——* Ppnaz[f]- In case (i),
Prazlf] = 2. In case (i), Prao]f] = c(P.)|a(M[0]) — £2, because ¢(P.) con-
tains ¢(Prmaz) = p(21, 2,) X + a(£).£2 + - -+ as conjunct. a

This establishes the proof of Theorem 6. Our explicit construction of the model
¢(P,) yields a byproduct.

Corollary 1 (Downward Léwenheim-Skolem, Finite model property).
Let P be a proof and P a logical behaviour. If P & P, then there is a countable
model M € Pt (i.e., act (M) is a countable set) such that P Y M.

Furthermore, when P is linear, there is a finite (and deterministic) model
M € P+ such that P Y M.

The last statement, is due to the observation that when P is linear the positive
rule (@, @) can be replaced with a linear variant:
My FTy,N; ... MpbET,, N,
zla(My,...,Mp) F T,z :a@(Ny,...,N,),

where T'y,..., T, are disjoint subsets of I'. We then immediately see that the
proof search tree is always finite, and so is the model ¢(P,).

5 Conclusion

We have presented a Godel-like completeness theorem for proofs in the frame-
work of ludics, aiming at linking completeness theorems for provability with
those for proofs. We have explicitly constructed a countermodel against any
failed proof attempt, following Schiitte’s idea based on cut-free proof search.
Our proof employs Konig’s lemma and reveals a sharp opposition between finite
proofs and infinite models, leading to a clear analogy with Léwenheim-Skolem
theorem.

In Hyland-Ong game semantics, Player’s “winning” strategies most naturally
correspond to possibly infinite Béhm trees (cf. [5]). One could of course impose
finiteness/compactness on them to have correspondence with finite proofs. But
it would not lead to an explicit construction of Opponent’s strategies beating
infinite proof attempts. Although finiteness is imposed in [1] too, our current
work shows that it is not necessary in ludics.

Our work also highlights the duality:

proof = model
deterministic, nonlinear nondeterministic, linear

The principle is that when proofs admit contraction, models have to be nonde-
terministic (whereas do not have to be nonlinear). A similar situation arises,
e.g. in [7,17], when one proves the separation property (an analogue of Béhm’s
theorem [2]), stating that two distinct terms can be distinguished via interaction

with a suitable context. Indeed, our construction of countermodels is based on
the B6hm out technique that is also crucial for proving separation. To prove the
separation property in our setting, however, a more delicate treatment of the
conjunction would be required (e.g., D and D A D cannot be separated since
{D}* ={D AD}).

Acknowledgements. We are deeply indebted to Pierre-Louis Curien, who pointed
out a gap in an earlier draft of this paper. Our thanks are also due to the
anonymous referees.

References

1. Basaldella, M., Faggian, C.: Ludics with repetition (exponentials, interactive
types and completeness). To appear in LICS (2009).

2. Bohm. C.: Alcune proprieta delle forme 3 — n-normali nel A — K-calcolo. Pub-
licazioni dell’Istituto per le Applicazioni del Calcolo 696 (1968).

3. Curien, P.-L.: Abstract Bohm trees. Mathematical Structures in Computer
Science 8 (1998) 559-591.

4. Curien, P.-L.: Introduction to linear logic and ludics, part II. CoRR
abs/cs/0501039 (2005)

5. Curien, P.-L.: Notes on game semantics (2006) Manuscript.

6. Curien, P.L., Herbelin, H.: Abstract machines for dialogue games. CoRR
abs/0706.2544 (2007)

7. Dezani-Ciancaglini, M., Intrigila, B., Venturini-Zilli, M.: Béhm’s theorem for
Bohm trees. In : ICTCS’98. (1998) 1-23.

8. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci.
364 (2006) 166-195.

9. Faggian, C.: Travelling on designs. In: CSL. (2002) 427-441.

10. Faggian, C.: Interactive observability in ludics: The geometry of tests. Theor.
Comput. Sci. 350 (2006) 213-233.

11. Faggian, C., Piccolo, M.: Ludics is a model for the finitary linear pi-calculus.
In: TLCA. (2007) 148-162.

12. Girard, J.-Y.: On the meaning of logical rules I: syntax vs. semantics. In Berger,
U., Schwichtenberg, H., eds.: Computational Logic. Heidelberg Springer-Verlag
(1999) 215 — 272.

13. Girard, J.-Y.: Locus solum: From the rules of logic to the logic of rules. Math-
ematical Structures in Computer Science 11 (2001) 301-506.

14. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I, II, and III. Inf.
Comput. 163 (2000) 285-408.

15. Lafont, Y.: The finite model property for various fragments of linear logic. J.
Symb. Log. 62 (1997) 1202-1208.

16. Laurent, O.: Polarized games. Ann. Pure Appl. Logic 130 (2004) 79-123.

17. Mazza, D., Pagani, M.: The separation theorem for differential interaction nets.
In: LPAR (2007) 393-407.

18. Schiitte, K.: Ein System des Verkniipfenden Schliessens. Archiv. Math. Logic
Grundlagenf. 2 (1956) 55-67.

19. Terui, K.: Computational ludics (2008) To appear in Theor. Comput. Sci.

