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Why study phase semantics? (1)

Useful.

- Semantic cut-elimination (Okada 96)

- Undecidability of MALL2 (Lafont 96)

- Decidability of LL/ILL with weakening/contraction via finite

model property (Lafont 96, Okada-Terui 99)

- Denotational completeness (Girard 98)

- Verification of concurrent constraint programs (Fages,

Ruet, Soliman 98)
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Why study phase semantics? (2)

Models not only provability, but also counter-proofs.

Conter-proofs: possibly infinite trees, defined dually to proofs,

not reaching axioms. E.g.,

� α ,β⊥

� α & β ,β⊥ � α ,β⊥

� (α & β)⊕α ,β⊥

� (α & β)⊕α ,α⊥ & β⊥
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Why study phase semantics? (3)

Theorem: Any formula has either a proof or a counter-proof.

Theorem (Terui 98): To each counter-proof π of a formula A,

one can associate a phase model π• such that π• �|= A.

Proofs dual⇐⇒ Counter-proofs

⇓ ⇓
Cliques ?⇐⇒ Phase models
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Why study phase semantics? (4)

Similar to classical logic proofs, from the viewpoint of

computational complexity.

Classical logic provability: coNP-complete (Cook 71).

MLL provability: NP-complete (Kanovitch 92).

Syntax-semantics twist between CL and MLL:

Classical logic MLL

Proofs ≈ Phase models

Boolean valuations ≈ Proofs
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Intuitionistic LL is almost classical

Intuitionistic connectives: 1,⊥,
,0,⊗,−◦,⊕,&, !

Theorem (Schellinx 91): A propositional formula A of ILL

without 0 nor ⊥ is provable in ILL iff it is provable in LL.

Should be contrasted with the CL/IL case:

CL � ((α → β) → α ) → α �−| IL

Schellinx’ Theorem fails for 0 or ⊥:

LL � α⊥⊥−◦α �−| ILL

LL � (
−◦1)−◦α 00−◦α �−| ILL

Syntactically, LL and ILL are almost equivalent. However,

semantically, they look so different...
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Phase semantics for LL

Classical phase space: (M,⊥) such that

- M: a commutative monoid

- ⊥⊆ M.

X ⊆ M is closed if X⊥⊥ = X .

Formulas interpreted by closed sets:

(A⊗B)• = (A• ·B•)⊥⊥

(A⊕B)• = (A• ∪B•)⊥⊥, etc.
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Phase semantics for ILL (1)

Intuitionistic phase space: (M,Cl) such that

- M: a commutative monoid

- Cl : P(M) −→ P(M).

(Cl1) X ⊆Cl(X),

(Cl2) Cl(Cl(X)) ⊆Cl(X),

(Cl3) X ⊆ Y =⇒Cl(X) ⊆Cl(Y ),

(Cl4) Cl(X) ·Cl(Y ) ⊆Cl(X ·Y ).

X ⊆ M is closed if Cl(X) = X .
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Phase semantics for ILL (2)

Intuitionistic phase model: intuitionistic phase space (M,Cl)
with a valuation of atoms and ⊥ into the set of closed sets.

Formulas interpreted by closed sets:

1• = Cl({1}) 0• = Cl( /0)


• = M ⊥• = prescribed by valuation

(A⊗B)• = Cl(A• ·B•) (A⊕B)• = Cl(A• ∪B•)

(A & B)• = A• ∩B• (A−◦B)• = {y ∈ M | ∀x ∈ A•(xy ∈ B•)}

(!A)• = Cl(A∩{x ∈ 1 | xx = x})
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Phase semantics for ILL (3)

A formula A is satisfied in (M,Cl,•) if 1 ∈ A•.

Theorem: A formula of ILL is provable iff it is satisfied in every

intuitionistic phase model.

Problem: Second-order even for propositional ILL!
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Concrete closure operators

(Abrusci 90): For some presupposed set B ⊆ P(M),

Cl(X) =
⋂

Y∈B

(X −◦Y )−◦Y.

(Okada 96): For some set C ⊆ P(M) closed under

intersection and implication,

Cl(X) =
⋂

Y∈C ,X⊆Y

Y.

Impredicative, whereas phase semantics for LL is entirely

first-order and predicative.

Is there a first-order, predicative characterization of

intuitionistic phase semantics?
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Subspaces

A subspace of a classical phase space (MC,⊥) is (MI ,Cl)
such that

MI ⊆ MC

Cl(X) ⊆ X⊥⊥ ∩MI , for X ⊆ MI .

Theorem: Every subspace of a classical phase space is an

intuitionistic phase space.

Q1: Is every intuitionistic phase space a subspace of a

classical phase space?
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Quasi-classical phase spaces

A quasi-classical phase space (MQ,ClQ) is a subspace of a

classical phase space (MC,⊥) such that

ClQ(X) = X⊥⊥, for X ⊆ MQ.

Q2: Is every intuitionistic phase space quasi-classical?

A phase-isomorphism from (M1,Cl1) to (M2,Cl2) is a bijection

F : ClosedSets(M1,Cl1) −→ClosedSets(M2,Cl2) that preserves

⊗,⊕,&,−◦,1,0,
, !.

Remark: Phase-isomorphic spaces are identical as

FL-algebra (Ono 94).

Q2’: Is every intuitionistic phase space phase-isomorphic to a

quasi-classical one?
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Answer to Q1 (1)

Theorem: Every intuitionistic phase space is a subspace of a

classical phase space.

Proof: Given (M,Cl), define (MC,⊥) by:

MC = {(x,Φ) | x ∈ M, Φ : a multiset of Cl-closed sets}
(x,Φ) · (y,Ψ) = (x · y,Φ�Ψ)

0C = {(x,Φ) | x ∈ 0,Φ : arbitrary}
⊥ = {(x,{X}) | X : closed set in (M,Cl), x ∈ X}∪0C

Original (M,Cl) is identified with {(x, /0) | x ∈ M} ⊆ MC.
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Answer to Q1 (2)

Lemma: For any X ⊆ M, (1,{Cl(X)}) ∈ X⊥.

Proof: If (x, /0) ∈ X , then (x, /0) · (1,{Cl(X)}) = (x,{Cl(X)}) ∈ ⊥.

Lemma: For any X ⊆ M, X⊥⊥ ⊆Cl(X)∪0C.

Proof: Two cases to be considered:

- For any (x, /0) ∈ X⊥⊥, (x,{Cl(X)}) = (x, /0) · (1,{Cl(X)}) ∈ ⊥.

Hence x ∈Cl(X).

- For any (x,Φ) ∈ X⊥⊥ with Φ non empty,

(x,Φ�{Cl(X)}) = (x,Φ) · (1,{Cl(X)}) ∈ ⊥. This means

x ∈ 0. Hence (x,Φ) ∈ 0C.
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Answer to Q1 (3)

Lemma: For any X ⊆ M, Cl(X)∪0C ⊆ X⊥⊥.

Proof: Omitted.

Corollary: For any X ⊆ M, Cl(X) = X⊥⊥∩M.

Proof: Cl(X) = (Cl(X)∪0C)∩M = X⊥⊥ ∩M.

Remark: In general, MC is uncountable. However, it can be

made countable when the original (M,Cl) has a countable

basis.
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Answer to Q2’

Theorem: Every intuitionistic phase space is

phase-isomorphic to a quasi-classical one.

Proof: Define (MQ,ClQ) by

MQ = M∪0C

ClQ(X) = X⊥⊥ ∩MQ

Then ClQ(X) = X⊥⊥ for any X ⊆ MQ.

Projection MQ −→ M gives a phase-isomorphism.

Corollary: ILL is complete with respect to the quasi-classical

phase models.

28/09/2004, Paris 7 – p.17/??



Summary

Theorem 1: Every intuitionistic phase space is a subspace of

a classical phase space.

First order, predicative semantics for propositional ILL.

Theorem 2: Every intuitionistic phase space is

phase-isomorphic to a quasi-classical one.

Intuitionistic phase spaces are almost classical.

Theorem 3: A syntactic embedding of full propositional ILL

into LL (based on these semantic ideas).

Open problems:

1. Is every intuitionistic phase space quasi-classical?

2. Second-order case?
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