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Abstract

We study the relationship between proof nets for muti-
plicative linear logic (with unbounded fan-in logical con-
nectives) and Boolean circuits. We give simulations of
each other in the style of the proofs-as-programs correspon-
dence; proof nets correspond to Boolean circuits and cut-
elimination corresponds to evaluation. The depth of a proof
net is defined to be the maximum logical depth of cut for-
mulas in it, and it is shown that every unbounded fan-in
Boolean circuit of depth n, possibly with stCONN 2 gates, is
polynomially simulated by a proof net of depth O(n) and
vice versa. Here, stCONN2 stands for st-connectivity gates
for undirected graphs of degree 2. Let APN i be the class of
languages for which there is a polynomial size, log i-depth
family of proof nets. We then have APN i = ACi(stCONN2).

1. Introduction

Proof nets [4, 2, 6] are a parallel syntax for logical
proofs, which has arisen in the study of linear logic. Tra-
ditional proofs involve lots of inessential sequential infor-
mation in proof construction that makes cut-elimination a
global and sequential procedure. The proof net syntax
remedies traditional ones by removing those innessential
sequentialities. An outcome is a local and parallel cut-
elimination procedure. So far it has been most successful
for the multiplicative fragment of linear logic (MLL), that
is classical propositional logic without weakening nor con-
traction, though it is being refined and extended in various
directions [5, 7, 11].

Boolean circuits (see [17, 1, 16] for instance) are one
of the standard models of parallel computation, which has
been studied mainly in computational complexity theory.
The model has been extensively used in analyzing paral-
lel complexity of functions. Most notably, it has provided
a number of nontrivial lowerbounds on the complexity of
∗Partially supported by Grant-in-Aid for Scientific Research, MEXT,

Japan.

practically interesting functions, such as parity [3], major-
ity [14], modulo-p [15] and st-connectivity [8].

The aim of this paper is to establish a formal connection
between these two models of parallel computation. More
precisely, we wish to relate them in the style of the proofs-
as-programs correspondence, where proofs are identified
with circuits and cut-elimination is identified with evalua-
tion of circuits. Actually, a first step has already been taken
by [12, 13], where it is shown that every Boolean circuit of
size s can be simulated by an MLL proof (coded by a linear
lambda term) of size O(s). Since cut-elimination in MLL
can obviously be done in quadratic time, the simulation has
resulted in the P-completeness of cut-elimination in MLL.

Two important issues are left untouched, however. First,
the notion of depth is not taken into account at all. Without
depth, the simulation is not very interesting, because the
point of parallel computation is to achieve a speed-up by
use of multiple processors, and in the case of Boolean cir-
cuits it is nothing but depth that reflects the speed of com-
putation. Second, the converse simulation from proofs to
circuits is not given at all. Although cut-elimination could
be simulated by a Turing machine and a Turing machine
could in turn be simulated by a circuit, that would not give
efficiency in terms of parallel computation. In particular,
the circuit thus obtained would be as deep as the time re-
quired for sequential cut-elimination. In other words, the
main advantage of parallel computation would be entirely
lost.

This paper attempts to offer a better link between proofs
and circuits. The first step of improvement is to use proof
nets, which are intrinsically parallel, instead of lambda
terms, which are primarily sequential. We then introduce a
suitable notion of depth for proof nets and give simulations
in both directions which preserve depth-efficiency.

After giving some background on Boolean circuits (Sec-
tion 2), we present an unbounded fan-in variant of MLL,
called MLLu, and consider the proof nets for it (Section 3).
The reason for considering MLLu is that proof nets seem to
better relate to circuits in the unbounded fan-in setting. The
depth of a proof net is defined to be the maximum logical
depth of cut formulas in it.



Several encodings of Boolean functions are given next
(Section 4). Of particular interest are the encodings of the
parity function PARITY and the majority function MAJ. To
show the correctness of PARITY, we employ some graph
theoretic argument which seems to be authentic to proof
nets. To encode MAJ, we exploit higher order facility of
proof nets; in some sense, proof nets are capable of repre-
senting a sort of “higher order gate” whose output is not
a Boolean value but a Boolean function. The majority
function is smoothly coded by the medium of a higher or-
der functional. We also give an encoding of stCONN 2 (st-
connectivity gates for undirected graphs of degree 2) along
the same line, and prove that every unbounbded fan-in cir-
cuit of size s and depth d, possibly with stCONN2 gates, can
be simulated by a proof net of size O(s5) and depth O(d).

To give the converse simulation, we present a parallel
cut-elimination procedure according to which the number
of reduction steps is bounded in terms of depth (rather than
size) and furthermore, each reduction step is simulated by
a constant depth circuit (Section 5). To deal with axiom
cuts, we consider a global reduction rule of tightning, and
implement it by means of stCONN2 gates. We then prove
that every proof net of size s and depth d (which represents
a Boolean function) can be simulated by an unbounded fan-
in circuit with stCONN2 gates of size O(s4) and depth O(d).

A hierarchy APN of proof net complexity classes is de-
fined, fully analogously to the AC hierarchy (Section 6). For
i ≥ 0, let APNi be the class of those languages for which
there is a polynomial size, logi-depth family of proof nets.
From what precedes, it follows that APN i = ACi(stCONN2),
and therefore the union APN of the hierarchy amounts to
the class NC, which is reasonably considered to be the class
of effectively parallelizable functions, for which a parallel
computer could achieve a dramatic speed-up over standard
sequential computers.

2. Boolean Circuits

In this section, we briefly recall the definition of Boolean
circuits and several known facts on them (see [17, 1, 16] for
further information).

Definition 1 (Boolean circuits) A basis B is a set of
Boolean functions. A Boolean circuit C with n inputs (and
one output) over B is a labeled, directed acyclic graph. The
nodes of in-degree 0 are called input nodes, and are labeled
with x1, . . . ,xn,0,1. Non-input nodes are called gates and
are labeled with a Boolean function from B whose arity
coincides with its in-degree (also called its fan-in). There
is a unique node of out-degree 0, that is called the output
node.

The size is the number of gates, and the depth is the
length of the longest path from an input to the output node.

A circuit C with n inputs accepts a word w = i1 · · · in ∈
{0,1}n if C evaluates to 1 when i1, . . . , in are assigned to
x1, . . . ,xn. C accepts a language X ⊆ {0,1}n if C accepts w
just in case w ∈ X for every w ∈ {0,1}n. A single circuit
only works on inputs of fixed length. If one wants to solve
a problem for inputs of arbitrary length, one needs to have
an infinite family of circuits, one for each input length. We
say that a family {Cn}n∈N of circuits accepts a language
X ⊆ {0,1}∗ if Cn accepts X ∩{0,1}n for every n ∈ N.

Besides standard Boolean connectives, we consider the
following functions:

• Parity: PARITYn(x1, . . . ,xn) = 1 iff the sum of
x1, . . . ,xn is odd.

• Majority: MAJn(x1, · · · ,xn) = 1 iff the sum of x1, . . . ,xn

is greater than or equals to n/2.

• st-Connectivity: Given E = {xi, j}1≤i< j≤n coding
an undirected graph G over vertices {1, . . . ,n},
stCONNn(E) = 1 iff there is a path from vertex 1 to
n in G. (Without loss of generality, we may assume
that G does not contain a loop. Hence we do not take
the values xi,i into account.)

• st-Connectivity for graphs of degree d: stCONNn
d is

analogous to stCONNn, but works only for undirected
graphs of degree at most d. (When E codes a graph of
degree greater than d, stCONNn

d(E) = 0.)

In this paper, we are concerned with the standard un-
bounded fan-in basis B1 = {¬} ∪ {∧n,

∨
n}n∈N, possibly

equipped with a family F of Boolean functions such as
MAJ = {MAJn}n∈N and stCONNd = {stCONNn

d}n∈N. A basis
B1∪F is denoted by B1(F ).

Definition 2 (AC hierarchy) A language X ⊆ {0,1}∗ be-
longs to the class ACi(F ) iff X is accepted by a polynomial
size, logi-depth family of unbounded fan-in Boolean circuits
over the basis B1(F ). ACi is defined to be ACi( /0).

It is not hard to see that

ACi⊆ACi(MAJ)⊆ACi(stCONN2)⊆ACi(stCONN)⊆ACi+1.

In the meantime, it is known that the union
⋃

i ACi coin-
cides with the class NC, i.e., the class of those languages
for which there is a polynomial size, polylog-depth fam-
ily of bounded fan-in circuits. The class P/poly, often
called nonuniform P, consists of those languages which
are computable in polynomial time with polynomial ad-
vice. It is also known that P/poly coincides with the class
of languages for which there is a polynomial size fam-
ily of Boolean circuits. There are some separation results
for constant depth circuits. For instance, it is known that
ACi � ACi(PARITY) � ACi(MAJ) for i = 0 [3, 14], though
no such results are known for i > 0.
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Figure 1. Links and an example of proof net construction

3. Proof Nets for Unbounded Fan-in MLL

3.1. Sequent Calculus

In this section, we introduce an unbounded fan-in ver-
sion of multiplicative linear logic MLL, denoted by MLLu.
MLLu is like MLL, but equipped with logical connectives
of arbitrary arities. It should be noted that there is no dif-
ference between MLL and MLLu as to representability of
functions; MLLu just gives us a depth-efficient way of writ-
ing proofs (such a system with generalized multiplicatives
is studied in [2]).

Definition 3 (Formulas of MLLu) The formulas A, B,
C, . . . of MLLu are built from literals α , α⊥, β , β⊥, . . . by
n-ary versions of multiplicative conjunction⊗n(A1, . . . ,An)
and multiplicative disjunction

..................................................
............
................................. n(A1, . . . ,An) for every n≥

1.

The negation A⊥ of a non-literal formula A is defined by de
Morgan duality:

(⊗n(A1, . . . ,An))⊥ ≡ .................................................
............
.................................. n(A⊥n , . . . ,A⊥1 )

(.................................................
............
.................................. n(A1, . . . ,An))⊥ ≡ ⊗n(A⊥n , . . . ,A⊥1 )

Note that the order of subformulas is reversed by negation
(as in non-commutative linear logic). The notation A[B/α ]
denotes the formula A with all occurrences of α replaced by
B. In the sequel, we use the following abbreviations:

A⊗B ≡ ⊗2(A,B) A
.................................................

............
.................................. B ≡ .................................................

............
.................................. 2(A,B)

A−◦B ≡ A⊥..................................................
...........
.................................. B An ≡ ⊗n(A, . . . ,A)

Superscripts n in⊗n and
..................................................

............
................................. n are often omitted. In addition,

a sequence A1, . . . ,An is written as
−→
A , and An, . . . ,A1 as

←−
A .

Definition 4 (Sequent calculus for MLLu) A sequent of
MLLu is of the form 	 Γ, where Γ is a multiset of formulas.
The inference rules of MLLu are as follows:

	 A,A⊥
(Axiom)

	 Γ1,A1 · · · 	 Γn,An

	 Γ1, . . . ,Γn,⊗n(
−→
A )

⊗n

	 Γ,C 	 ∆,C⊥

	 Γ,∆ (Cut)
	 Γ,An, . . . ,A1

	 Γ,
.................................................

............
.................................. n(
←−
A )

.................................................
............
.................................. n

Thus MLLu has neither weakening nor contraction,
while it admits exchange implicitly. The formulas C and
C⊥ in the rule (Cut) are called cut formulas.

3.2. Proof Nets

Let us now introduce the proof nets [4, 2] (see also [10]
for an excellent exposition). Informally, a proof net is a
graphical structure which is obtained from a sequent calcu-
lus proof by abstracting away everything irrelevant to com-
putation. Proof nets just keep the structure of proofs.

The basic ingredients are three sorts of link (see Figure
1(a), (b) and (c)). These are called an axiom link, ⊗ n-link
and

.................................................
............
.................................. n-link, respectively. Each link has several ports to

which distinct natural numbers are associated, with the ex-
ception that an axiom link has two ports both numbered by
0. The port(s) numbered by 0 is called the principal port(s),
while others are called auxiliary ports. By convention, the
principal port(s) is always written below a link, while aux-
iliary ports are above it. The auxiliary ports are ordered
from left to right for a ⊗n-link, while they are written in
the reverse order for a

.................................................
............
.................................. n-link. With this convention, the

port numbers can be safely omitted. Note that, unlike the
standard formulation, there is no link for (Cut). It is rather
represented by a pair of links connected to each other at the
principal ports.

A proof net is obtained from a sequent calculus proof
by replacing the inference rules (other than (Cut)) with the
corresponding links and connecting them by edges corre-
sponding to the subformula relation and (Cut) inferences.
Figure 1(d) illustrates how to obtain a proof net from a se-
quent calculus proof (where subscripts q and r are attached
to formulas/links in order to distinguish occurrences).

The formal definition is as follows.

Definition 5 (Pseudo nets) A pseudo net P is a triple <
L,σ ,∼> such that:

• L is a finite set of links;

• σ : L−→ {•}∪{⊗n,
..................................................

............
................................. n}n≥1;

• ∼ is a symmetric relation on (L×N).



(a) Type inference rules

	 p :A, p :A⊥� axp
(Axiom)

	 Γ1, p1 :A1 � P1 · · · 	 Γn, pn :An � Pn

	 Γ1, . . . ,Γn,q :⊗n(
−→
A )� tensor

−→p
q (�P)

⊗n

	 Γ, p :C � P 	 ∆,q :C⊥� Q
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(Cut)
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..................................................

............
................................. n(
←−
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q (P)

.................................................
............
.................................. n
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Figure 2. Type inference rules and proof net constructors

A link p with σ(p) = • (
.................................................

............
.................................. n,⊗n, resp.) stands for an axiom-

link (
..................................................

............
................................. n-link,⊗n-link, resp.). When (p,n)∼ (q,m), we say

that there is an edge between (p,n) and (q,m), where (p,n)
stands for a port of link p numbered by n. A cut in P is an
unordered pair of links p,q such that (p,0) ∼ (q,0). A cut
{p,q} is called an a-cut when either p or q is an axiom-link;
otherwise it is called an m-cut.

Definition 6 (Proof nets) A judgment is of the form 	 Γ �
P, where P is a pseudo net and Γ is a multiset of expressions
of the form p : A. A proof net of type 	 Γ is a pseudo net P
such that 	 Γ � P is derivable by the type inference rules in
Figure 2(a), where:

• axp denotes the pseudo net which consists of a single
axiom link p with no edges;

• tensorp1,...,pn
q (P1, . . . ,Pn) denotes the pseudo net which

extends the disjoint union of P1, . . . ,Pn with a new ⊗n-
link q and a new edge (pi,0)∼ (q, i) for each 1≤ i≤ n
(Figure 2(b));

• parpn,...,p1
q (P) denotes the pseudo net which extends P

with a new
.................................................

............
.................................. n-link q and a new edge (pi,0) ∼ (q, i)

for each 1≤ i≤ n (Figure 2(c));

• cutp,q(P,Q) denotes the pseudo net which extends the
disjoint union of P and Q with a new edge (p,0) ∼
(q,0) (see Figure 2(d)).

A proof net of type 	 p : A for a single formula A is simply
called a proof net of type A.

Note that cuts are only created by the (Cut) rule, and it
is ensured that if {p,q} is an m-cut and p is a ⊗n-link (

..................................................
............
................................. n-

link, resp.), then q is a
.................................................

............
.................................. n-link (⊗n-link, resp.). It is clear

that every sequent calculus proof π induces a unique proof
net, whereas the converse does not hold. Indeed, whenever
we have 	 Γ � P, we also have 	 Γ[A/α ] � P for every A
and α .

As an example, consider how to represent Boolean val-
ues by proof nets. In simply typed lambda calculus,
Boolean values are represented by terms of type α → α →
α . However, we cannot use its analogue α −◦α −◦α , be-
cause it does not have any proofs due to lack of weakening.
Instead, the Boolean type B is defined as

.................................................
............
.................................. 3(α⊥,α⊥,α ⊗

α ). There are exactly two cut-free proof nets (up to renam-
ing of links) of this type:

b1 ≡ parp,q,r
s (tensorp,q

r (axp,axq))
b0 ≡ parq,p,r

s (tensorp,q
r (axp,axq))

depicted as:

b1 ≡ b0 ≡

They serve as true and false, respectively. From a graph
theoretic point of view, the difference between b1 and b0

amounts to the fact that b1 is not planar whereas b0 is.

Definition 7 (Depth and size) The depth d(A) of a for-

mula A is given by d(α ) = d(α ⊥) = 1 and d(⊗n(
−→
A )) =

d(..................................................
............
................................. n(
←−
A1)) = max(d(A1), . . . ,d(An))+ 1.

Given a derivation π of 	 Γ � P, its depth d(π) is the
maximum depth of cut formulas in it. We also define the



total depth d ′(π) to be the maximum depth of cut formulas
and all formulas in Γ.

The depth d(P) of a proof net P is defined to be

min{d(π)| π is a derivation of 	 Γ � P for some Γ}.

The total depth d ′(P) is defined analogously. The size |P| is
the number of links in P.

Observe that d(A[B/α ]) ≤ d(A) + d(B)− 1, d(P) ≤
d′(P), and d ′(cutp,q(P,Q))≤ max(d ′(P),d′(Q)).

Remark. It is possible to consider the notion of principal
derivation, that is to say the most general derivation for a
given proof net from which any other derivations are ob-
tained by substitution and permutation of inferences. Then
the above d(P) amounts to the depth of the principal deriva-
tion for P.

3.3. Cut-Elimination

Definition 8 (A-reduction and m-reduction) Given a
proof net P, an a-reduction consists in replacing an a-cut
{p,q} and edges incident to p,q as in Figure 3(a). A
m-reduction consists in replacing a m-cut {p,q} and edges
incident to p,q as in Figure 3(b).

We write P −→ Q when Q is obtained from P either by an
a-reduction or an m-reduction. The relation −→∗ is defined
to be the transitive reflexive closure of −→. Note that the
number of links strictly decreases by a reduction, due to
our convention that cuts are expressed by edges rather than
links.

To give an example of cut-elimination, consider again
the proof net given in Figure 1(d), which is hereafter de-
noted by not(p). It is of type 	 p : B⊥,s : B. Link p is
naturally considered as an input argument, while link q is
considered as an output argument. Now compose it with b 1

at p by (Cut) to obtain a proof net not(b1), that is of type B.
We then have not(b1) −→∗b0 as in Figure 3(c). Similarly,
one can check that not(b0) −→∗b1. Therefore, not(p) can
be seen as representing the negation function, in such a way
that when an input Boolean value is given at a link of type
B⊥ by (Cut), the output is obtained via cut-elimination.

The following facts are fundamental [4]:

Theorem 9 The following holds for every proof net P:

• Sequential cut-elimination: P reduces to a cut-free
proof net P0 within |P| reduction steps, where P0 is
unique up to renaming of links.

• Subject reduction: If 	 Γ � P and P−→∗Q, then
	 Γ � Q.

4. From Boolean Circuits to Proof Nets

4.1. Flat Boolean Proof Nets

In this section, we give a depth-efficient simulation of
Boolean circuits by proof nets. Before considering the gen-
eral case, let us first consider a simple situation.

Definition 10 (Flat Boolean proof nets) A flat Boolean
proof net with n inputs is a proof net P(−→p ) of type

	 p1 :B⊥, . . . , pn :B⊥,q :B.

Such a proof net has n input links −→p ≡ p1, . . . , pn and one
output link q (we often do not indicate the output link). It
is called flat because the input types and the output type are
of the same depth. Given

−→
b ≡ bi1 , . . . ,bin , P(

−→
b ) denotes

the proof net obtained by connecting b i to pi by (Cut) for
every 1 ≤ i ≤ n (see Figure 3(d)). The resulting net P(

−→
b )

is of type B, and by Theorem 9, it reduces to a unique cut-
free proof net of type B, that is either b1 or b0. We say
that P(−→p ) represents a function f : {0,1}n −→ {0,1} if
P(bi1 , . . . ,bin)−→∗b f (w) for every w = i1 · · · in ∈ {0,1}n.

Parity. We have already seen that the proof net not(p)
in Figure 1(d) represents the negation function. As an-
other example, we have a proof net parityn(−→p ) representing
PARITYn for every n (see Figure 4(a)). Although the correct-
ness of parityn(−→p ) can be checked directly, one might like
to employ the following graph theoretic argument. Below,
an a-edge means an edge incident to an axiom-link.

Let i1 · · · in ∈ {0,1}n, and suppose that the sum of

i1, . . . , in is k. Let
−→
b ≡ bi1 , . . . ,bin and consider the proof net

parity(
−→
b ) of type B. Now, our argument goes as follows;

first, it is clear that parity(
−→
b ) has a drawing with exactly

k crossings, one for each drawing of b1. Note that those
crossings are all between a-edges. Second, thinking of the
reduction rules in Figure 3 (a) and (b) as rewrite rules for
drawings of proof nets, we may observe:

• An m-reduction does not change the number of cross-
ings (since there are no crossings at m-cuts).

• An a-reduction does not change the parity of the num-
ber of crossings:

=⇒ =⇒

As a consequence, what we obtain after cut-elimination is
(a drawing of) a cut-free proof net of type B with the par-
ity of crossings equivalent to k mod 2. That is nothing but
bk mod 2, as required.



(a) A-reduction (b) M-reduction
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Figure 3. Reductions

Actually, the above argument would break down if there
was a self-crossing:

=⇒

However, we can show that such a self-crossing never ap-
pears in the current setting.

From the above argument, it is clear that if one adds a
twist somewhere between a-edges in parity(−→p ), it will re-
sult in a proof net for¬PARITYn. Furthermore, the above ar-
gument applies to any cut-free flat Boolean proof net (when
suitably drawn). That is to say, all what matters is the parity
of the number of crossings. We therefore conclude:

Theorem 11 Every flat Boolean proof net with n inputs
represents either PARITYn or ¬PARITYn.

A consequence is that we need to consider a more gen-
eral class of proof nets than flat ones to represent arbitrary
Boolean functions.

4.2. General Case

We generalize the flat Boolean proof nets in two ways.
First, we allow an input type to be of the form B⊥[A] with
A arbitrary, where B⊥[A] is short for B⊥[A/α ]. Note that b1

and b0 have type B[A] for arbitrary A, hence B⊥[A] can still
be considered as an input type. Second, we allow an output
type to be accompanied by some garbage

−→
C .

Definition 12 (Boolean proof nets) A Boolean proof net
with n inputs is a proof net P(−→p ) of type

	 p1 :B⊥[A1], . . . , pn :B⊥[An],q :⊗m+1(B,
−→
C )

for some
−→
A ≡ A1, . . . ,An and

−→
C ≡C1, . . . ,Cm.

Given
−→
b ≡ bi1 , . . . ,bin , P(

−→
b ) is defined as before (Fig-

ure 3(d)), but this time its type is ⊗m+1(B,
−→
C ). It is easy

to see that P(
−→
b ) reduces to a cut-free proof net of the form

tensor(bi,
−→
Q ) with i∈ {0,1}. In this case, we say that P(

−→
b )

evaluates to bi and write P(
−→
b ) ev−→ bi.

An n-ary Boolean proof net P(−→p ) represents a function
f : {0,1}n −→{0,1} if P(bi1 , . . . ,bin) evaluates to b f (w) for
every w ≡ i1 · · · in ∈ {0,1}n. In this case, we also say that
P(−→p ) accepts the language X given by X = f −1(1).

In the sequel, we describe several constructions of
Boolean proof nets.

Conditional. Given two proof nets P1 and P2 of type
	 Γ, p1 : A and 	 ∆, p2 : A, one builds a proof net
condp1,p2

r [P1,P2](q) in Figure 4(b). It is of type

	 Γ,∆,q : B[A]⊥,r : A⊗A.

Given an Boolean input bi at q, it reduces as follows:

condp1,p2
r [P1,P2](b1) −→∗ tensorp1,p2

r (P1,P2)
condp1,p2

r [P1,P2](b0) −→∗ tensorp2,p1
r (P2,P1)

With the convention that the first component is considered
as the real output, cond surely works as conditional. We
omit scripts p1, p2,r when they are clear from the context.

Disjunction. Define a proof net for binary disjunction by

or(p1, p2)≡ cond[b1,axp1 ](p2)

which is of type 	 p1 : B⊥, p2 : B⊥[B],q : B⊗B. It surely
represents disjunction, as follows:

or(bi,b1)−→∗cond[b1,bi](b1)−→∗tensor(b1,bi)
or(bi,b0)−→∗cond[b1,bi](b0)−→∗tensor(bi,b1)

It is also possible to define n-ary disjunction for every n, by
composing binary disjunctions.
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Figure 4. Parity, Conditional and Composition

Lemma 13 (Composition) Let Γ ≡ p′1 : A′1, . . . , p′n : A′n and

∆≡ q′1 :B′1, . . . ,q
′
n :B′m. Given proof nets P(

−→
p′ ) and Q(q,

−→
q′ )

of type

	 Γ, p :⊗(B,
−→
C ) and 	 q :B⊥[A],∆,r :⊗(B,

−→
D ),

there is a proof net comp
p,q,r
s [P,Q](

−→
p′ ,
−→
q′ ) of type

	 Γ[A],∆,s :⊗(B,
−→
D ,
−−→
C[A])

such that the total depth is bounded by max(d ′(P)+d(A)−
1,d′(Q)) and whenever P(

−→
R ) ev−→ S and Q(S,

−→
T ) ev−→ U,

we have comp
p,q,r
s [P,Q](

−→
R ,
−→
T ) ev−→U.

Proof. The type of P can be lifted to 	 Γ[A], p :

⊗(B[A],
−−→
C[A]). Observe that all formulas in it have depth

bounded by d ′(P)+ d(A)−1. From this and the type of Q,
one can easily derive:

	 Γ[A],⊗(B[A],
−−→
C[A]) 	 B⊥[A],∆,⊗(B,

−→
D )

	 Γ[A],∆,⊗(B,
−→
D ,
−−→
C[A])

The derivation yields the proof net given in Figure 4(c),
which surely works as composition of P and Q. Since all
the formulas occurring in the above derivation have depth
bounded by the depths of those in the premises, we con-
clude that the total depth is bounded by max(d ′(P)+d(A)−
1,d′(Q)).

Coming back to disjunction, apply the previous lemma
to

	 p1 :B⊥, p2 :B⊥[B], p :B⊗B�or(p1, p2)

	 q :B⊥, p3 :B⊥[B],r :B⊗B�or(q, p3)

to obtain or3(p1, p2, p3) defined as

compp,q,r
s [or(p1, p2),or(q, p3)](p1, p2, p3).

It is of type 	 p1 : B⊥, p2 : B⊥[B], p3 : B⊥[B],s :⊗(B,B,B).
By repetition, one can obtain n-ary disjunction for every
n. Note that the total depth is d(B⊥[B]), that is a constant

independent of n.

Duplication. Let n≥ 2 and C ≡⊗n(B[A1], . . . ,B[An]). De-

fine copyn(p) ≡ cond[tensor(
−→
b1),tensor(

−→
b0)](p), which is

of type 	 p : B⊥[C],q : C⊗C. It produces n copies of the
input Boolean value, one for each type B[Ai], as follows:

copyn(b1)−→∗tensor(tensor(
−→
b1),tensor(

−→
b0))

copyn(b0)−→∗tensor(tensor(
−→
b0),tensor(

−→
b1))

This proof net is useful for encoding a gate of arbitrary fan-
out. The total depth is d(B[C]), which only depends on
max(d(A1), . . . ,d(An)).

Majority. Let us consider MAJ. The encoding is particu-
larly interesting, because it makes use of higher order facil-
ity of proof nets. We first illustrate the idea.

Assume for simplicity that n = 2m. Let id be the iden-
tity function on {0,1}n+1, and sh be the shift function on
{0,1}n+1, given by sh(i1 · · · in+1) = i2 · · · in+1i1 for every
i1 · · · in+1 ∈ {0,1}n+1. Now, let F be a higher order func-
tional whose output is a function, defined by F(0) = id and
F(1) = sh.

Using this F , MAJn(x1 · · ·xn) can be defined as

FirstBit(F(x1)◦ · · · ◦F(xn)(0 · · ·0︸ ︷︷ ︸
m

1 · · ·1︸ ︷︷ ︸
m+1

)),

where FirstBit(x1 · · ·xn+1) = x1 and ◦ stands for functional
composition. This definition is correct; for instance, we
have:
MAJ6(101101)
= FirstBit(F(1)F(0)F(1)F(1)F(0)F(1)(0001111))
= FirstBit(sh◦ id ◦ sh◦ sh◦ id ◦ sh(0001111))
= FirstBit(1110001) = 1.

One can easily encode id and sh as proof nets of type
Bn+1−◦Bn+1. Hence by conditional, the proof net F(p) for
the functional F can be defined as cond[sh, id](p) of type

	 p:B⊥[Bn+1−◦Bn+1],r : (Bn+1−◦Bn+1)⊗(Bn+1−◦Bn+1).



The output of F(pi) is a pair of (proof nets coding) id and
sh, connected by tensor. The first is useful whereas the sec-
ond is garbage. Now apply the outputs of F(p 1), . . . ,F(pn)
to (tensor(

−→
bI ),tensor(

−→
bG)) componentwise, where

−→
bI ≡

b0, . . . ,b0︸ ︷︷ ︸
m times

,b1, . . . ,b1︸ ︷︷ ︸
m+1 times

and
−→
bG is arbitrary. The resulting net

is of type

	 −→p :
−−−−−−−−−−−−→
B⊥[Bn+1−◦Bn+1],r : Bn+1⊗Bn+1,

with −→p ≡ p1, . . . , pn. It is then easy to extract the first bit.
The result is surely a Boolean proof net. The size is O(n2),
and the total depth is d(B[Bn+1−◦Bn+1]), that is a constant
independent of n.

St-connectivity for undirected graphs of degree 2. Sup-
pose that E = {xi, j}1≤i< j≤n codes an undirected graph G
of degree 2. E consists of m = n(n−1)/2 Boolean values,
and stCONNn

2(E) = 1 holds iff there is a path from vertex 1
to n in G. To check the latter, we consider a token travel-
ling around the graph, starting from vertex 1. The location
of the token is specified by an element of {0,1}n such that
the ith bit is 1 iff the token is currently visiting vertex i.
To simulate a transition of a token, we exploit the function
swi, j : {0,1}n −→ {0,1}n which swaps the ith bit with the
jth.

Given k ≥ 0, let xi, j be the (k mod m)th element of E.
Define a functional F by F(k) = swi, j if xi, j = 1 and F(k) =
id otherwise, and let

H(k) = LastBit(F(k)◦ · · · ◦F(1)(10 · · ·0︸ ︷︷ ︸
n−1

)).

It is then clear that the token, initially located at vertex 1,
reaches vertex n whenever H(k) = 1 for some k ≥ 0, be-
cause an application of function F(l) (1 ≤ l ≤ k) corre-
sponds to a possible transition of the token. Conversely,
whenever there is a path form vertex 1 to n, there is some
k ≤ n ·m such that H(k) = 1. The reason is that the token
moves to an adjacent vertex (if any) in at most m steps of ap-
plications of F(l), and furthermore, when the current vertex
visited by the token is of degree 2, the token will never go
back to the previous one, because it will find an edge lead-
ing to the other vertex first. Since there are only n vertices,
the token will reach vertex n in n ·m steps whenever possi-
ble. We therefore have stCONNn

2(E) =
∨

k≤n·m H(k).
As before, one can implement stCONN n

2 by a proof net of
constant depth; the crucial fact here is that both id and swi, j

are represented by a flat proof net of type B n−◦Bn. The
size is O(m4).

Remark. The same idea would work for acyclic graphs of
arbitrary degree too, but fails for graphs in general. Indeed,
it would be a great surprise if there was a constant depth

proof net for stCONN, because that would imply stCONN ∈
AC0(stCONN2) by Theorem 21.

From what precedes, we conclude:

Theorem 14 For every unbounded fan-in Boolean circuit
C of size s and depth d over the basis B1(stCONN2), there
is a Boolean proof net of size O(s5) and depth O(d) which
accepts the same set as C does.

Proof. Every gate of fan-in n and fan-out m can be en-
coded by a proof net of size O(n4 +m)≤O(s4) and of con-
stant depth. The depth increases when one composes an
encoding of a gate with another by using Lemma 13. The
increase is linear in d.

5. From Proof Nets to Boolean Circuits

5.1. Parallel Cut Elimination

Recall that Theorem 9 is concerned with a sequential cut-
elimination procedure. As a result, the number of reduction
steps required is linear in the size of the proof net, that is
too slow from the viewpoint of parallel computation. Here
we present a parallel cut-elimination procedure to achieve
a speed-up. Although m-reductions are not problematic at
all, there is a small problem for a-reductions. The problem
is that there are two ways of reducing an a-cut between two
axioms, and applying both ways in parallel causes a con-
flict:

=⇒

This conflict is avoided in [10] by thinking of axioms not
as links but as wires. We cannot, however, use the same
trick, because wires are difficult to implement by circuits.
Instead, we introduce another reduction step which is global
and eliminates several a-cuts at once.

Definition 15 (Tightening reduction) We presuppose that
every proof net is endowed with a total ordering ≺ on the
links. An a-sequence is a sequence of axiom-links p1, . . . , pn

(n≥ 2) such that (pi,0)∼ (pi+1,0) for every 1≤ i≤ n−1.
Such a sequence is maximal if it cannot be extended in ei-
ther direction. A t-reduction (tightening reduction) consists
in replacing a maximal a-sequence as follows:

q r

p
....

pp1 2 n

−→
q r

p

where p is the smaller one of p1 and pn with respect to ≺.



Definition 16 (Parallel reduction) We write P =⇒a Q
(P =⇒m Q, P =⇒t Q, resp.) when Q is obtained from P
by applying a-reductions (m-reductions, t-reductions, resp.)
to all a-cuts (m-cuts, maximal a-sequences, resp.) in P si-
multaneously. We write P =⇒ Q if P =⇒a Q, P =⇒m Q or
P =⇒t Q.

Theorem 17 (Parallel cut-elimination) There is a se-
quence of parallel reductions

P =⇒ P1 =⇒ P2 · · ·=⇒ Pn

such that Pn is cut-free and n≤ 3 ·d(P).

Proof. We show that one can decrease the depth by 1 in
three steps. Given P, first apply =⇒t to obtain P1. In P1,
there is no pair of axiom links connected each other. Hence
one can safely apply =⇒a to obtain P2 without any conflicts.
Note that P2 contains only m-cuts. Finally apply =⇒m to
obtain P3. We then have d(P2) > d(P3), because, assum-
ing a typing derivation for P2, it replaces each cut of type

(⊗n(
−→
A ), ..................................................

............
................................. n(
←−
A⊥)) with cuts of type (A1,A⊥1 ), . . . , (An,A⊥n ).

Remark. It is not always the case, however, that paralleliza-
tion achieves a speed-up. For instance, consider the follow-
ing proof net Pn (which corresponds to I · · · I︸︷︷︸

n times

with I ≡ λ x.x

in lambda calculus):

....{n

It is not hard to see that both |Pn| and d(Pn) are linear
in n. This means that for such a proof net, parallel cut-
elimination requires of essentially the same time as sequen-
tial cut-elimination. This shows a limitation on paralleliza-
tion.

5.2. Simulating Cut-Elimination

Let us now give a simulation of parallel cut-elimination
by Boolean circuits. To do so, we first need to represent
each proof net by a set of Boolean values. In the sequel, we
fix a set L0 of links, and only consider the proof nets with
links from L0.

Definition 18 (Configurations) A configuration θ consists
of the following Boolean values:

• alive(p) for every p ∈ L0

• sort(p,s) for every p ∈ L0 and s ∈ {•,⊗,
..................................................

............
................................. },

• edge(p,0,q, i) for every p,q ∈ L0 and i≤ |L0|.
A link p∈ L0 is said to be alive in θ if alive(p) = 1. Given a
proof net P =< L,σ ,∼>, we write θ ∈Conf(P) if for every
p ∈ L0, alive(p) = 1⇐⇒ p ∈ L, and for every alive links p
and q in θ , the following hold:

sort(p,s) = 1 ⇐⇒ σ(p) is of sort s;

edge(p,0,q, i) = 1 ⇐⇒ (p,0)∼ (q, i).

Here, we call a ⊗n-link (
.................................................

............
.................................. n-link, resp.) of sort ⊗ (

.................................................
............
.................................. ,

resp.), forgetting the arities of ⊗ and
..................................................

............
................................. . It is clear that the

number of Boolean values in a configuration is O(|L0|)3.
We are now ready to simulate each reduction step.

Lemma 19 There is an unbounded fan-in circuit C of size
O(|P0|3) and constant depth such that whenever a config-
uration θ ∈ Conf(P) is given as input and P =⇒m P′, C
outputs a θ ′ ∈ Conf(P′). The same holds for =⇒a too.

Lemma 20 There is an unbounded fan-in circuit C with
stCONN2 gates which is of size O(|P0|3) and constant depth
such that whenever a configuration θ ∈ Conf(P) is given as
input and P =⇒t P′, C outputs a θ ′ ∈ Conf(P′).

Proof. Given θ ∈ Conf(P), define

• mid(p) = 1 iff p is an alive axiom-link in θ and there
are alive axiom-links q,r such that (q,0) ∼ (p,0) ∼
(r,0)

• end(p) = 1 iff p is an alive axiom-link in θ and
mid(p) = 0

• aseq(p,q) = 1 iff end(p) = end(q) = 1 and there is an
a-sequence of alive links from p to q.

The conditions on the right hand side can actually be spelled
out in terms of Boolean values in θ .

Note in particular that aseq(p,q) can be computed in
constant depth by using a stCONN2 gate (applied to the undi-
rected graph which consists of the vertices L0 and the edges
between alive axiom-links in θ). Now one can compute a
θ ′ ∈ Conf(P′) which consists of the following values:

alive′(p) = alive(p)∧¬mid(p)∧¬
∨

q≺p

aseq(q, p)

sort ′(p,s) = sort(p,s)
edge′(p,0,q, i) = edge(p,0,q, i)∨∨

r�p

(aseq(p,r)∧ edge(r,0,q, i)).

The computation above can be easily implemented by a
constant depth circuit.



Theorem 21 For every Boolean proof net P of size s and
depth d, there is a boolean circuit C of size O(s4) and depth
O(d) over the basis B1(stCONN2) which accepts the same
set as P does.

Proof. Almost clear from Theorem 17, Lemma 19 and
Lemma 20. It just remains to show that there is a con-
stant depth circuit for initialization which computes a θ ∈
Conf(P(bi1 , . . . ,bin)) from given inputs i1, . . . , in, and there
is a constant depth circuit for acceptance checking which
decides whether a given configuration θ ′ represents b1 or
not. These are easily constructed.

6. Proof Net Complexity

Analogously to the AC hierarchy, we define a hierarchy
of complexity classes based on proof nets.

Definition 22 (APN hierarchy) A family {Pn}n∈N of
Boolean proof nets accepts a language X ⊆ {0,1}∗ if Pn is
n-ary and accepts X ∩{0,1}n for every n≥ 1.

A language X ⊆{0,1}∗ belongs to the class APNi iff X is
accepted by a polynomial size, logi-depth family of Boolean
proof nets. More precisely, X ∈ APNi iff X is accepted by
a family {Pn}n∈N of Boolean proof nets and there is some k
such that each Pn is of size O(nk) and of depth O(logi n).

We finally end up with:

Theorem 23

1. APNi = ACi(stCONN2) for every i≥ 0.

2.
⋃

i∈N APNi = NC.

3. P/poly = the class of those languages for which there
is a polynomial size family of Boolean proof nets.

7 Conclusion and Future Work

We have established a connection between proof nets
and Boolean circuits by giving depth-preserving simula-
tions of each other. The connection is based on the proofs-
as-programs paradigm, in contrast to the well-known cor-
respondences between circuit complexity and propositional
proof systems such as Frege systems (see [9]). Our study
has led to a precise characterization of parallel complex-
ity of proof nets, namely APN i = ACi(stCONN2). To estab-
lish this result, we have employed a graph-theoretic reason-
ing (§4.1), and used some higher order functionals (§4.2).
These techniques are further to be explored. Another re-
search direction would be to study the bounded fan-in case,
which seems to be more difficult. It should also be inter-
esting to enrich proof nets with additives, because additives
allow us to incorporate nondeterminism [13].

Finally, we hope that our study will shed a new light
on the relationship between parallel-nonuniform compu-
tation (exemplified by Boolean circuits) and sequential-
uniform computation (exemplified by functional program-
ming/constructive logics, from which proof nets stem).
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