
Proof Nets and Boolean Circuits
Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics, Tokyo

14/07/04, Turku – p.1/44

Motivation (1)

Proofs-as-Programs (Curry-Howard) correspondence:

Proofs = Programs

Cut-Elimination = Computation

(Normalization)

Usually interested in infinite, uniform, sequential computation

such as functional programs.

Can be extended to finite, nonuniform, parallel computation

such as boolean circuits?

14/07/04, Turku – p.2/44

Motivation (2)

Our goal:

Proofs = Circuits

Cut-Elimination = Evaluation

What system of Proofs?

Cut-elimination in Classical/Intuitionistic Logics:

Non-elementary time. Too much!

14/07/04, Turku – p.3/44

Motivation (3)

Linear Logic (Girard 87): a decomposition of

Classical/Intuitionistic Logics:

Classical Logic

Multiplicatives

Additives Exponentials

MLL: Classical Logic without weakening nor contraction.

Has a nice parallel syntax: Proof Nets (Girard 87).

Quadratic time cut-elimination procedure.
14/07/04, Turku – p.4/44

Motivation (4)

Our specific goal: correspondence between MLL proof nets

and circuits.

(Mairson & Terui 2003) Encoding of circuits by linear size MLL

proof nets =⇒ P-completeness of cut-elimination in MLL.

“Proof nets can represent all finite functions as

SIZE-efficient as circuits.”

What about the DEPTH-efficiency? What about the converse?

14/07/04, Turku – p.5/44

Parallel computation

Effective parallelization: Achieve a dramatic speed-up by use

of a reasonable number of processors.

Addition: School method (O(n) time)

=⇒ Parallel algorithm: (constant time)

In boolean circuits,

time = depth

num of processors = size (num of gates)

Fundamental question: Are all feasible algorithms effectively

parallelizable?

NC = P problem: Are all problems in P solvable by polynomial

size poly-log depth circuits?

14/07/04, Turku – p.6/44

Outline

Unbounded fan-in boolean circuits.

Proof nets for MLLu and parallel cut-elimination procedure.

Simulation of circuits by proof nets

Simulation of proof nets by circuits

Proof net complexity classes

14/07/04, Turku – p.7/44

Boolean circuits (1)

An unbounded fan-in circuit with n inputs (and 1 output): a

directed acyclic graph made of

- input nodes x1, . . . ,xn

- boolean gates ¬,
∧

,
∨

(and possibly more).

(there is a distinguished node for output.)
∧

and
∨

may have an arbitrary number of inputs.

size = the number of gates

depth = the length of the longest path

14/07/04, Turku – p.8/44

Boolean circuits (2)

A circuit C accepts w = i1 · · · in ∈ {0,1}n if

C[x1 := i1, . . . ,xn := in] evaluates to 1.

C accepts X ⊆ {0,1}n if C accepts w ⇔ w ∈ X .

14/07/04, Turku – p.9/44

Formulas of MLLu

Formulas:

α ,α⊥ Literals

⊗n(A1, . . . ,An), n ≥ 2 n-ary Conjunction
...

...........
....................................... n(A1, . . . ,An), n ≥ 2 n-ary Disjunction

Negation: defined by

(⊗n(A1, . . . ,An))⊥ ≡ ...
...........

....................................... n(A⊥
n , . . . ,A⊥

1)

(...
...........

....................................... n(A1, . . . ,An))⊥ ≡ ⊗n(A⊥
n , . . . ,A⊥

1)

Notation:

A⊗B ≡⊗2(A,B) A...
...........

....................................... B ≡ ...
...........

....................................... 2(A,B) A−◦B ≡ A⊥ ...
...........

....................................... B

14/07/04, Turku – p.10/44

Sequent calculus for MLLu

Sequents:
 Γ, where Γ is a multiset of formulas.

Inference Rules:

 A,A⊥ (Axiom)
 Γ,C
 ∆,C⊥

 Γ,∆ (Cut)

 Γ1,A1 · · ·
 Γn,An

 Γ1, . . . ,Γn,⊗n(A1, . . . ,An)
⊗n
 Γ,A1, . . . ,An

 Γ,
...

...........
....................................... n(A1, . . . ,An)

...
...........

....................................... n

Exchange is implicit. No weakening, no contraction.

14/07/04, Turku – p.11/44

Proof nets for MLLu

Links:

0 0

1 n

0

1n

0

Each link has several ports. Principal port(s) numbered 0.

Cut: an edge connecting two principal ports.

p

r

q

0 0
i

0

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p

Proof nets are obtained from sequent proofs by extracting

their structures (forgetting about formulas).

14/07/04, Turku – p.12/44

Example: Negation

 α⊥ ...
...........

....................................... α⊥,α ⊗α
 α⊥,α
 α⊥,α

 ⊗3(α⊥ ...

...........
....................................... α⊥,α ,α),α⊥,α⊥,α ⊗α

 ⊗3(α⊥ ...
...........

....................................... α⊥,α ,α), ...
...........

....................................... 3(α⊥,α⊥,α ⊗α)
=⇒

q

r

14/07/04, Turku – p.13/44

Example: Booleans

B ≡ α −◦α −◦α ⊗α ≡ ...
...........

....................................... 3(α⊥,α⊥,α ⊗α)

 α⊥,α
 α⊥,α

 α⊥,α⊥,α ⊗α
⊗2

 ...
...........

....................................... 3(α⊥,α⊥,α ⊗α)
...

...........
....................................... 3

=⇒ ≡ b1

 α⊥,α
 α⊥,α

 α⊥,α⊥,α ⊗α
⊗2

 ...
...........

....................................... 3(α⊥,α⊥,α ⊗α)
...

...........
....................................... 3

=⇒ ≡ b0

14/07/04, Turku – p.14/44

Reduction rules

Axiom reduction:

p

r

q

0 0
i

0 −→
r

q

0

i

Multiplicative reduction:

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p
−→

n 1

0 0
......

n1

0 0

qpp q

14/07/04, Turku – p.15/44

Example: Computing Negation of True

14/07/04, Turku – p.16/44

Example: Computing Negation of True

14/07/04, Turku – p.17/44

Example: Computing Negation of True

14/07/04, Turku – p.18/44

Sequential cut elimination

Size |P|: number of links.

14/07/04, Turku – p.19/44

Sequential cut elimination

Size |P|: number of links.

Theorem (Girard 87): Every proof net P reduces to a cut-free

proof net in |P| steps.

14/07/04, Turku – p.19/44

Sequential cut elimination

Size |P|: number of links.

Theorem (Girard 87): Every proof net P reduces to a cut-free

proof net in |P| steps.

Too slow!

14/07/04, Turku – p.19/44

Parallel cut elimination (1)

Applying two axiom reductions in parallel may conflict:

=⇒

Global axiom reduction:

q r

p
....

pp1 2 n

−→
q r

p

14/07/04, Turku – p.20/44

Parallel cut elimination (2)

Parallel multiplicative reduction:

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p =⇒
n 1

0 0
......

n1

0 0

qpp q
......

n 1

0 0
......

n1

0 0

qpp q
......

n 1

0 0
......

n1

0 0

qpp q

Parallel axiom reduction:

q r

p
....

pp1 2 n

q r

p
....

pp1 2 n

q r

p
....

pp1 2 n

=⇒ q r

p

q r

p

q r

p

P1 =⇒ P2 if P2 is obtained from P1 either by parallel m-reduction

or by parallel a-reduction.

14/07/04, Turku – p.21/44

Parallel cut elimination (3)

What controls the runtime of parallel cut-elimination?

Depth d(P): Maximal depth of cut formulas in it.

(P is assumed to be typed by principal types (most general

types))

Depth of formulas:

d(α) = d(α⊥) = 1

d(⊗n(A1, . . . ,An)) = d(...
...........

....................................... n(A1, . . . ,An))

= max(d(A1), . . . ,d(An))+1

14/07/04, Turku – p.22/44

Parallel cut elimination (4)

Theorem: Every proof net P reduces to a normal form in

2 ·d(P) parallel reduction steps.

Proof: By applying parallel a-reduction, every cut becomes

multiplicative. By applying parallel m-reduction, the depth

decreases by 1. �

14/07/04, Turku – p.23/44

Limitation on parallelization

Pn:

....{n

|Pn| and d(Pn) are linear in n.

Parallel cut-elimination takes almost as long time as

sequential cut-elimination.

14/07/04, Turku – p.24/44

Representing circuits by proof nets

Idea: Represent

Circuits by Proof nets

Boolean values by Proof nets (b1, b0)

Assignment by Cuts

Evaluation by Cut elimination

14/07/04, Turku – p.25/44

Representation of Parity

Parity: PARITYn(x1, . . . ,xn) = 1 iff the sum of x1, . . . ,xn is odd.

CANNOT be represented by (poly-size) circuits of constant

depth.

q

....

....

....

p p p123

The conclusion is
 B⊥, . . . ,B⊥
︸ ︷︷ ︸

n times

,B

14/07/04, Turku – p.26/44

Correctness of parity

There are exactly 2 crossings in the drawing.

Multiplicative reduction does not change the num of crossings.

Axiom reduction preserves the parity of the num of crossings:

=⇒ =⇒

Therefore, the parity is 0 after cut-elimination.

14/07/04, Turku – p.27/44

Expressivity of flat proof nets

Would break down if there were a self-crossing:

=⇒

But self-crossing can be avoided.

As far as proof nets of conclusion
 B⊥, . . . ,B⊥
︸ ︷︷ ︸

n times

,B are

concerned, all what matters is the parity of the num of

crossings.

Theorem: Every proof net with the above conclusion

represents either PARITYn or ¬PARITYn.

14/07/04, Turku – p.28/44

Boolean proof nets

Boolean proof net: a proof net with conclusion

 B[A1/α]⊥, . . . ,B[An/α]⊥,⊗m(B, �G)

for some A1, . . . ,An and �G (garbage).

Given w = i1 · · · in ∈ {0,1}n, define P(w) to be:

. . . .
q1

. . . .

P
p pn

b bii 1n

P accepts w ∈ {0,1}n if P(w) reduces to ⊗ (b1, �PG)
for some proof nets �PG with conclusions �G.

14/07/04, Turku – p.29/44

Conditional and Disjunction

if q then P1 else P2

p

PP

p

q r

12

12

Disjunction: or(p,q) ≡ if p then b1 else q

Disjunctions of arbitrary arity can be represented by proof nets

of constant depth.

14/07/04, Turku – p.30/44

Composition

Composition:

q
p

r
sP

Q

The depth may increase:

.... P1

 Γ,B

 Γ[A/α],B[A/α]

.... P2

 B⊥[A/α],∆,B

 Γ[A/α],∆,B

14/07/04, Turku – p.31/44

Proof Net for Majority (1)

MAJn(x1 · · ·xn) = 1 if at least half of xi’s are 1.

Let id,sh : {0,1}n+1 −→ {0,1}n+1 be:

id(i1 · · · in+1) = i1 · · · in+1

sh(i1 · · · in+1) = i2 · · · in+1i1

F : higher order functional

F(0) = id

F(1) = sh

14/07/04, Turku – p.32/44

Proof Net for Majority (2)

MAJn given by

MAJn(x1 · · ·xn) = FstBit(F(x1)◦ · · · ◦F(xn)(0 · · ·0︸ ︷︷ ︸
n/2

1 · · ·1︸ ︷︷ ︸
n/2+1

))

Example:

MAJ6(101101) = FstBit(F(1)F(0)F(1)F(1)F(0)F(1)(0001111))

= FstBit(sh◦ id ◦ sh◦ sh◦ id ◦ sh(0001111))

= FstBit(1110001)

= 1

Represented by proof nets of constant depth. (CANNOT be

represented by (poly-size) circuits of constant depth.)

14/07/04, Turku – p.33/44

St-connectivity2

- Input: an undirected graph of degree 2 (i.e., nonbranching

graph) with vertices {1, . . . ,n}. Assume it is coded by a n×n

boolean matrix.

- Output: is 1 if vertices 1 and n are connected.

1

n

14/07/04, Turku – p.34/44

St-connectivity2

- Input: an undirected graph of degree 2 (i.e., nonbranching

graph) with vertices {1, . . . ,n}. Assume it is coded by a n×n

boolean matrix.

- Output: is 1 if vertices 1 and n are connected.

1

n

Can simulate MAJ in constant depth.

Represented by proof nets of constant depth.
14/07/04, Turku – p.35/44

From Circuits to Proof nets

Theorem: For every circuit C of size s and depth d (possibly

equipped with stCONN2), there is a boolean proof net PC of size

O(s5) and depth O(d) which accepts the same set as C.

14/07/04, Turku – p.36/44

From Circuits to Proof nets

Theorem: For every circuit C of size s and depth d (possibly

equipped with stCONN2), there is a boolean proof net PC of size

O(s5) and depth O(d) which accepts the same set as C.

Circuit C
size s, depth d =⇒ Proof Net PC

size O(s5), depth O(d)

14/07/04, Turku – p.36/44

From Circuits to Proof nets

Theorem: For every circuit C of size s and depth d (possibly

equipped with stCONN2), there is a boolean proof net PC of size

O(s5) and depth O(d) which accepts the same set as C.

Circuit C
size s, depth d =⇒ Proof Net PC

size O(s5), depth O(d)

Proof: ¬,
∧n,

∨n, stCONNn
2 represented by a proof net of size

O(n4) and of constant depth. Composition increases the depth

linearly.

14/07/04, Turku – p.36/44

Representing proof nets by circuits

Idea: Represent

A proof net P by a set of boolean values

One-step reduction by constant depth circuit

2 ·d(P) reduction steps by O(d)-depth circuit

14/07/04, Turku – p.37/44

Coding proof nets by boolean values

P : a proof net with links ⊆ L.

Con f (P): consists of the following boolean values:

For p,q ∈ L,

alive(p) ⇔ p is a link of P

sort(p,s) ⇔ link p is of sort s ∈ {⊗,
...

...........
....................................... ,•}

edge(p, i,q, j) ⇔ there is an edge between port i of

link p and port j of link q

Build a circuit C s.t.

if P1 =⇒ P2 then C computes Con f (P2) from Con f (P1).

14/07/04, Turku – p.38/44

Multiplicative Reduction

P

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p
−→

P′

......
n 1

0 0
......

n1

0 0

qpp q

Easily implemented by a constant depth circuit: E.g,

edge′(pi,0,qi,0) = edge(pi,0,qi,0)∨
∨

p,q∈L

(edge(p,0,q,0)∧
∨

j

edge(pi,0, p, j)∧ edge(qi,0,q, j))

14/07/04, Turku – p.39/44

Global Axiom Reduction

P

q r

p
....

pp1 2 n

−→

P′

q r

p

Naive attempt to build a constant depth circuit leads to

exponential size.

Use stCONN2 gates.

Apply to the axiom-cut subgraph of P, that is of degree 2.

14/07/04, Turku – p.40/44

From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d,

there is a circuit C (with stCONN2 gates) of size O(s4) and

depth O(d) which accepts the same set as P.

14/07/04, Turku – p.41/44

From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d,

there is a circuit C (with stCONN2 gates) of size O(s4) and

depth O(d) which accepts the same set as P.

Proof Net P
size s, depth d =⇒ Circuit CP

size O(s4), depth O(d)

14/07/04, Turku – p.41/44

From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d,

there is a circuit C (with stCONN2 gates) of size O(s4) and

depth O(d) which accepts the same set as P.

Proof Net P
size s, depth d =⇒ Circuit CP

size O(s4), depth O(d)

Proof: Cut-elimination of P requires of 2 ·d steps. Each step

simulated by a constant depth circuit (with stCONN2 gates).

Initialization and acceptance checking also by constant depth

circuits.

14/07/04, Turku – p.41/44

Proof net complexity classes (1)

For X ⊆ {0,1}∗,
X ∈ ACi(F)

de f⇐⇒ X is accepted by a polynomial size logi-depth

family of unbounded fan-in circuits

with additional gates from F .

X ∈ APNi de f⇐⇒ X is accepted by a polynomial size logi-depth

family of proof nets.

Theorem: For every i ≥ 0,

APNi = ACi(stCONN2).

14/07/04, Turku – p.42/44

Proof net complexity classes (2)

APN =
⋃

i APNi.

Theorem APN = NC.

Proof: ACi ⊆ ACi(stCONN2) = APNi ⊆ ACi+1 and NC =
⋃

i ACi.

P/poly : nonuniform version of P.

Theorem P/poly = the class of languages X ⊆ {0,1}∗
accepted by polynomial size families of proof nets.

Note AC0(stCONN2) = L/poly (nonuniform logspace). Hence,

AC0 � NC1 ⊆ L/poly = APN0 ⊆ AC1

14/07/04, Turku – p.43/44

Conclusion

Extended the Proofs-as-Programs paradigm to a finite,

nonuniform, parallel setting.

Characterized proof net complexity by circuit complexity.

Proof nets represent ”higher order gates.”

Future Work

NCi+1 ⊆ APNi?

Comparison with other approaches to proofs-circuits

correspondence (Propositional Proof Systems and Bounded

Arithmetic).

Study the bounded fan-in case.

Implicit parallel complexity.

14/07/04, Turku – p.44/44

	Motivation (1)
	Motivation (2)
	Motivation (3)
	Motivation (4)
	Parallel computation
	Outline
	Boolean circuits (1)
	Boolean circuits (2)
	Formulas of MLLu
	Sequent calculus for MLLu
	Proof nets for MLLu
	Example: Negation
	Example: Booleans
	Reduction rules
	Example: Computing Negation of True
	Example: Computing Negation of True
	Example: Computing Negation of True
	Sequential cut elimination
	Parallel cut elimination (1)
	Parallel cut elimination (2)
	Parallel cut elimination (3)
	Parallel cut elimination (4)
	Limitation on parallelization
	Representing circuits by proof nets
	Representation of Parity
	Correctness of $Parity $
	Expressivity of flat proof nets
	Boolean proof nets
	Conditional and Disjunction
	Composition
	Proof Net for Majority (1)
	Proof Net for Majority (2)
	St-connectivity$mbox {}_2$
	St-connectivity$mbox {}_2$
	From Circuits to Proof nets
	Representing proof nets by circuits
	Coding proof nets by boolean values
	Multiplicative Reduction
	Global Axiom Reduction
	From Proof nets to Circuits
	Proof net complexity classes (1)
	Proof net complexity classes (2)
	Conclusion

