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Motivation (1)

Proofs-as-Programs (Curry-Howard) correspondence:

Proofs = Programs

Cut-Elimination = Computation

(Normalization)

Usually interested in infinite, uniform, sequential computation

such as functional programs.

Can be extended to finite, nonuniform, parallel computation

such as boolean circuits?
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Motivation (2)

Our goal:

Proofs = Circuits

Cut-Elimination = Evaluation

What system of Proofs?

Cut-elimination in Classical/Intuitionistic Logics:

Non-elementary time. Too much!
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Motivation (3)

Linear Logic (Girard 87): a decomposition of

Classical/Intuitionistic Logics:

Classical Logic

Multiplicatives

Additives Exponentials

MLL: Classical Logic without weakening nor contraction.

Has a nice parallel syntax: Proof Nets (Girard 87).

Quadratic time cut-elimination procedure.
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Motivation (4)

Our specific goal: correspondence between MLL proof nets

and circuits.

(Mairson & Terui 2003) Encoding of circuits by linear size MLL

proof nets =⇒ P-completeness of cut-elimination in MLL.

“Proof nets can represent all finite functions as

SIZE-efficient as circuits.”

What about the DEPTH-efficiency? What about the converse?
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Parallel computation

Effective parallelization: Achieve a dramatic speed-up by use

of a reasonable number of processors.

Addition: School method (O(n) time)

=⇒ Parallel algorithm: (constant time)

In boolean circuits,

time = depth

num of processors = size (num of gates)

Fundamental question: Are all feasible algorithms effectively

parallelizable?

NC = P problem: Are all problems in P solvable by polynomial

size poly-log depth circuits?

14/07/04, Turku – p.6/44



Outline

Unbounded fan-in boolean circuits.

Proof nets for MLLu and parallel cut-elimination procedure.

Simulation of circuits by proof nets

Simulation of proof nets by circuits

Proof net complexity classes
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Boolean circuits (1)

An unbounded fan-in circuit with n inputs (and 1 output): a

directed acyclic graph made of

- input nodes x1, . . . ,xn

- boolean gates ¬,
∧

,
∨

(and possibly more).

(there is a distinguished node for output.)
∧

and
∨

may have an arbitrary number of inputs.

size = the number of gates

depth = the length of the longest path
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Boolean circuits (2)

A circuit C accepts w = i1 · · · in ∈ {0,1}n if

C[x1 := i1, . . . ,xn := in] evaluates to 1.

C accepts X ⊆ {0,1}n if C accepts w ⇔ w ∈ X .
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Formulas of MLLu

Formulas:

α ,α⊥ Literals

⊗n(A1, . . . ,An), n ≥ 2 n-ary Conjunction
.............................................

...........
....................................... n(A1, . . . ,An), n ≥ 2 n-ary Disjunction

Negation: defined by

(⊗n(A1, . . . ,An))⊥ ≡ .............................................
...........

....................................... n(A⊥
n , . . . ,A⊥

1 )

(.............................................
...........

....................................... n(A1, . . . ,An))⊥ ≡ ⊗n(A⊥
n , . . . ,A⊥

1 )

Notation:

A⊗B ≡⊗2(A,B) A.............................................
...........

....................................... B ≡ .............................................
...........

....................................... 2(A,B) A−◦B ≡ A⊥ .............................................
...........

....................................... B
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Sequent calculus for MLLu

Sequents: 
 Γ, where Γ is a multiset of formulas.

Inference Rules:


 A,A⊥ (Axiom) 
 Γ,C 
 ∆,C⊥


 Γ,∆ (Cut)


 Γ1,A1 · · · 
 Γn,An


 Γ1, . . . ,Γn,⊗n(A1, . . . ,An)
⊗n 
 Γ,A1, . . . ,An


 Γ,
.............................................

...........
....................................... n(A1, . . . ,An)

.............................................
...........

....................................... n

Exchange is implicit. No weakening, no contraction.
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Proof nets for MLLu

Links:

0 0

1 n

0

1n

0

Each link has several ports. Principal port(s) numbered 0.

Cut: an edge connecting two principal ports.

p

r

q

0 0
i

0

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p

Proof nets are obtained from sequent proofs by extracting

their structures (forgetting about formulas).
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Example: Negation


 α⊥ .............................................
...........

....................................... α⊥,α ⊗α 
 α⊥,α 
 α⊥,α

 ⊗3(α⊥ .............................................

...........
....................................... α⊥,α ,α ),α⊥,α⊥,α ⊗α


 ⊗3(α⊥ .............................................
...........

....................................... α⊥,α ,α ), .............................................
...........

....................................... 3(α⊥,α⊥,α ⊗α )
=⇒

q

r
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Example: Booleans

B ≡ α −◦α −◦α ⊗α ≡ .............................................
...........

....................................... 3(α⊥,α⊥,α ⊗α )


 α⊥,α 
 α⊥,α


 α⊥,α⊥,α ⊗α
⊗2


 .............................................
...........

....................................... 3(α⊥,α⊥,α ⊗α )
.............................................

...........
....................................... 3

=⇒ ≡ b1


 α⊥,α 
 α⊥,α


 α⊥,α⊥,α ⊗α
⊗2


 .............................................
...........

....................................... 3(α⊥,α⊥,α ⊗α )
.............................................

...........
....................................... 3

=⇒ ≡ b0
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Reduction rules

Axiom reduction:

p

r

q

0 0
i

0 −→
r

q

0

i

Multiplicative reduction:

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p
−→ ......

n 1

0 0
......

n1

0 0

qpp q
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Example: Computing Negation of True
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Example: Computing Negation of True
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Example: Computing Negation of True
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Sequential cut elimination

Size |P|: number of links.
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Sequential cut elimination

Size |P|: number of links.

Theorem (Girard 87): Every proof net P reduces to a cut-free

proof net in |P| steps.

14/07/04, Turku – p.19/44



Sequential cut elimination

Size |P|: number of links.

Theorem (Girard 87): Every proof net P reduces to a cut-free

proof net in |P| steps.

Too slow!
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Parallel cut elimination (1)

Applying two axiom reductions in parallel may conflict:

=⇒

Global axiom reduction:

q r

p
....

pp1 2 n

−→
q r

p
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Parallel cut elimination (2)

Parallel multiplicative reduction:

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p =⇒ ......
n 1

0 0
......

n1

0 0

qpp q
......

n 1

0 0
......

n1

0 0

qpp q
......

n 1

0 0
......

n1

0 0

qpp q

Parallel axiom reduction:

q r

p
....

pp1 2 n

q r

p
....

pp1 2 n

q r

p
....

pp1 2 n

=⇒ q r

p

q r

p

q r

p

P1 =⇒ P2 if P2 is obtained from P1 either by parallel m-reduction

or by parallel a-reduction.
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Parallel cut elimination (3)

What controls the runtime of parallel cut-elimination?

Depth d(P): Maximal depth of cut formulas in it.

(P is assumed to be typed by principal types (most general

types))

Depth of formulas:

d(α ) = d(α⊥) = 1

d(⊗n(A1, . . . ,An)) = d(.............................................
...........

....................................... n(A1, . . . ,An))

= max(d(A1), . . . ,d(An))+1
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Parallel cut elimination (4)

Theorem: Every proof net P reduces to a normal form in

2 ·d(P) parallel reduction steps.

Proof: By applying parallel a-reduction, every cut becomes

multiplicative. By applying parallel m-reduction, the depth

decreases by 1. �
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Limitation on parallelization

Pn:

....{n

|Pn| and d(Pn) are linear in n.

Parallel cut-elimination takes almost as long time as

sequential cut-elimination.
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Representing circuits by proof nets

Idea: Represent

Circuits by Proof nets

Boolean values by Proof nets (b1, b0)

Assignment by Cuts

Evaluation by Cut elimination
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Representation of Parity

Parity: PARITYn(x1, . . . ,xn) = 1 iff the sum of x1, . . . ,xn is odd.

CANNOT be represented by (poly-size) circuits of constant

depth.

q

....

....

....

p p p123

The conclusion is 
 B⊥, . . . ,B⊥
︸ ︷︷ ︸

n times

,B
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Correctness of parity

There are exactly 2 crossings in the drawing.

Multiplicative reduction does not change the num of crossings.

Axiom reduction preserves the parity of the num of crossings:

=⇒ =⇒

Therefore, the parity is 0 after cut-elimination.
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Expressivity of flat proof nets

Would break down if there were a self-crossing:

=⇒

But self-crossing can be avoided.

As far as proof nets of conclusion 
 B⊥, . . . ,B⊥
︸ ︷︷ ︸

n times

,B are

concerned, all what matters is the parity of the num of

crossings.

Theorem: Every proof net with the above conclusion

represents either PARITYn or ¬PARITYn.
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Boolean proof nets

Boolean proof net: a proof net with conclusion


 B[A1/α ]⊥, . . . ,B[An/α ]⊥,⊗m(B, �G)

for some A1, . . . ,An and �G (garbage).

Given w = i1 · · · in ∈ {0,1}n, define P(w) to be:

. . . .
q1

. . . .

P
p pn

b bii 1n

P accepts w ∈ {0,1}n if P(w) reduces to ⊗ (b1, �PG)
for some proof nets �PG with conclusions �G.
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Conditional and Disjunction

if q then P1 else P2

p

PP

p

q r

12

12

Disjunction: or(p,q) ≡ if p then b1 else q

Disjunctions of arbitrary arity can be represented by proof nets

of constant depth.
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Composition

Composition:

q
p

r
sP

Q

The depth may increase:

.... P1


 Γ,B

 Γ[A/α ],B[A/α ]

.... P2


 B⊥[A/α ],∆,B

 Γ[A/α ],∆,B
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Proof Net for Majority (1)

MAJn(x1 · · ·xn) = 1 if at least half of xi’s are 1.

Let id,sh : {0,1}n+1 −→ {0,1}n+1 be:

id(i1 · · · in+1) = i1 · · · in+1

sh(i1 · · · in+1) = i2 · · · in+1i1

F : higher order functional

F(0) = id

F(1) = sh
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Proof Net for Majority (2)

MAJn given by

MAJn(x1 · · ·xn) = FstBit(F(x1)◦ · · · ◦F(xn)(0 · · ·0︸ ︷︷ ︸
n/2

1 · · ·1︸ ︷︷ ︸
n/2+1

))

Example:

MAJ6(101101) = FstBit(F(1)F(0)F(1)F(1)F(0)F(1)(0001111))

= FstBit(sh◦ id ◦ sh◦ sh◦ id ◦ sh(0001111))

= FstBit(1110001)

= 1

Represented by proof nets of constant depth. (CANNOT be

represented by (poly-size) circuits of constant depth.)
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St-connectivity2

- Input: an undirected graph of degree 2 (i.e., nonbranching

graph) with vertices {1, . . . ,n}. Assume it is coded by a n×n

boolean matrix.

- Output: is 1 if vertices 1 and n are connected.

1

n
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St-connectivity2

- Input: an undirected graph of degree 2 (i.e., nonbranching

graph) with vertices {1, . . . ,n}. Assume it is coded by a n×n

boolean matrix.

- Output: is 1 if vertices 1 and n are connected.

1

n

Can simulate MAJ in constant depth.

Represented by proof nets of constant depth.
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From Circuits to Proof nets

Theorem: For every circuit C of size s and depth d (possibly

equipped with stCONN2), there is a boolean proof net PC of size

O(s5) and depth O(d) which accepts the same set as C.
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From Circuits to Proof nets

Theorem: For every circuit C of size s and depth d (possibly

equipped with stCONN2), there is a boolean proof net PC of size

O(s5) and depth O(d) which accepts the same set as C.

Circuit C
size s, depth d =⇒ Proof Net PC

size O(s5), depth O(d)
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From Circuits to Proof nets

Theorem: For every circuit C of size s and depth d (possibly

equipped with stCONN2), there is a boolean proof net PC of size

O(s5) and depth O(d) which accepts the same set as C.

Circuit C
size s, depth d =⇒ Proof Net PC

size O(s5), depth O(d)

Proof: ¬,
∧n,

∨n, stCONNn
2 represented by a proof net of size

O(n4) and of constant depth. Composition increases the depth

linearly.
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Representing proof nets by circuits

Idea: Represent

A proof net P by a set of boolean values

One-step reduction by constant depth circuit

2 ·d(P) reduction steps by O(d)-depth circuit
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Coding proof nets by boolean values

P : a proof net with links ⊆ L.

Con f (P): consists of the following boolean values:

For p,q ∈ L,

alive(p) ⇔ p is a link of P

sort(p,s) ⇔ link p is of sort s ∈ {⊗,
.............................................

...........
....................................... ,•}

edge(p, i,q, j) ⇔ there is an edge between port i of

link p and port j of link q

Build a circuit C s.t.

if P1 =⇒ P2 then C computes Con f (P2) from Con f (P1).
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Multiplicative Reduction

P

......
n 1

0 0
n 1

0
q

......
n1

0 0
n1

0

qpp q

p
−→

P′

......
n 1

0 0
......

n1

0 0

qpp q

Easily implemented by a constant depth circuit: E.g,

edge′(pi,0,qi,0) = edge(pi,0,qi,0)∨
∨

p,q∈L

(edge(p,0,q,0)∧
∨

j

edge(pi,0, p, j)∧ edge(qi,0,q, j))
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Global Axiom Reduction

P

q r

p
....

pp1 2 n

−→

P′

q r

p

Naive attempt to build a constant depth circuit leads to

exponential size.

Use stCONN2 gates.

Apply to the axiom-cut subgraph of P, that is of degree 2.
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From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d,

there is a circuit C (with stCONN2 gates) of size O(s4) and

depth O(d) which accepts the same set as P.
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From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d,

there is a circuit C (with stCONN2 gates) of size O(s4) and

depth O(d) which accepts the same set as P.

Proof Net P
size s, depth d =⇒ Circuit CP

size O(s4), depth O(d)
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From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d,

there is a circuit C (with stCONN2 gates) of size O(s4) and

depth O(d) which accepts the same set as P.

Proof Net P
size s, depth d =⇒ Circuit CP

size O(s4), depth O(d)

Proof: Cut-elimination of P requires of 2 ·d steps. Each step

simulated by a constant depth circuit (with stCONN2 gates).

Initialization and acceptance checking also by constant depth

circuits.
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Proof net complexity classes (1)

For X ⊆ {0,1}∗,
X ∈ ACi(F )

de f⇐⇒ X is accepted by a polynomial size logi-depth

family of unbounded fan-in circuits

with additional gates from F .

X ∈ APNi de f⇐⇒ X is accepted by a polynomial size logi-depth

family of proof nets.

Theorem: For every i ≥ 0,

APNi = ACi(stCONN2).
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Proof net complexity classes (2)

APN =
⋃

i APNi.

Theorem APN = NC.

Proof: ACi ⊆ ACi(stCONN2) = APNi ⊆ ACi+1 and NC =
⋃

i ACi.

P/poly : nonuniform version of P.

Theorem P/poly = the class of languages X ⊆ {0,1}∗
accepted by polynomial size families of proof nets.

Note AC0(stCONN2) = L/poly (nonuniform logspace). Hence,

AC0 � NC1 ⊆ L/poly = APN0 ⊆ AC1
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Conclusion

Extended the Proofs-as-Programs paradigm to a finite,

nonuniform, parallel setting.

Characterized proof net complexity by circuit complexity.

Proof nets represent ”higher order gates.”

Future Work

NCi+1 ⊆ APNi?

Comparison with other approaches to proofs-circuits

correspondence (Propositional Proof Systems and Bounded

Arithmetic).

Study the bounded fan-in case.

Implicit parallel complexity.
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