Proof Nets and Boolean Circuits

Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics, Tokyo

Motivation (1)

Proofs-as-Programs (Curry-Howard) correspondence:

Proofs	=	Programs
Cut-Elimination	=	Computation
(Normalization)		

- Usually interested in infinite, uniform, sequential computation such as functional programs.
- Can be extended to finite, nonuniform, parallel computation such as boolean circuits?

Motivation (2)

Our goal:

Proofs = Circuits Cut-Elimination = Evaluation

- What system of Proofs?
- Cut-elimination in Classical/Intuitionistic Logics: Non-elementary time. Too much!

Motivation (3)

Linear Logic (Girard 87): a decomposition of Classical/Intuitionistic Logics:

- MLL: Classical Logic without weakening nor contraction.
- Has a nice parallel syntax: Proof Nets (Girard 87).
- Quadratic time cut-elimination procedure.

Motivation (4)

- Our specific goal: correspondence between MLL proof nets and circuits.
- (Mairson & Terui 2003) Encoding of circuits by linear size MLL proof nets => P-completeness of cut-elimination in MLL.
 "Proof nets can represent all finite functions as

SIZE-efficient as circuits."

What about the DEPTH-efficiency? What about the converse?

Parallel computation

- Effective parallelization: Achieve a dramatic speed-up by use of a reasonable number of processors.
- Addition: School method (O(n) time) \implies Parallel algorithm: (constant time)
- In boolean circuits,

time = depth

num of processors = size (num of gates)

- Fundamental question: Are all feasible algorithms effectively parallelizable?
- NC = P problem: Are all problems in P solvable by polynomial size poly-log depth circuits?

Outline

- Unbounded fan-in boolean circuits.
- Proof nets for MLLu and parallel cut-elimination procedure.
- Simulation of circuits by proof nets
- Simulation of proof nets by circuits
- Proof net complexity classes

Boolean circuits (1)

- An unbounded fan-in circuit with n inputs (and 1 output): a directed acyclic graph made of
 - input nodes x_1, \ldots, x_n
 - boolean gates \neg , \land , \lor (and possibly more).

(there is a distinguished node for output.)

- \land and \lor may have an arbitrary number of inputs.
- size = the number of gates
- depth = the length of the longest path

Boolean circuits (2)

- A circuit *C* accepts $w = i_1 \cdots i_n \in \{0, 1\}^n$ if $C[x_1 := i_1, \dots, x_n := i_n]$ evaluates to 1.
- *C* accepts $X \subseteq \{0,1\}^n$ if *C* accepts $w \Leftrightarrow w \in X$.

Formulas of MLLu

Formulas:

 α, α^{\perp} Literals $\otimes^n (A_1, \dots, A_n), \quad n \geq 2$ *n*-ary Conjunction $\Im^n (A_1, \dots, A_n), \quad n \geq 2$ *n*-ary Disjunction

Negation: defined by

$$(\otimes^{n}(A_{1},\ldots,A_{n}))^{\perp} \equiv \Im^{n}(A_{n}^{\perp},\ldots,A_{1}^{\perp})$$
$$(\Im^{n}(A_{1},\ldots,A_{n}))^{\perp} \equiv \otimes^{n}(A_{n}^{\perp},\ldots,A_{1}^{\perp})$$

Notation:

$$A \otimes B \equiv \otimes^{2}(A,B) \qquad A^{2} \otimes B \equiv \mathcal{B}^{2}(A,B) \qquad A \multimap B \equiv A^{\perp} \otimes B$$

Sequent calculus for MLLu

- **Sequents**: $\vdash \Gamma$, where Γ is a multiset of formulas.
- Inference Rules:

 $\frac{\vdash \Gamma, A^{\perp} (Axiom)}{\vdash \Gamma, A^{\perp}} \xrightarrow{(Axiom)} \frac{\vdash \Gamma, A^{\perp} \vdash \Delta, C^{\perp}}{\vdash \Gamma, \Delta} (Cut)$ $\frac{\vdash \Gamma, A_{1} \cdots \vdash \Gamma_{n}, A_{n}}{\vdash \Gamma_{1}, \dots, \Gamma_{n}, \otimes^{n}(A_{1}, \dots, A_{n})} \otimes^{n} \xrightarrow{(\Gamma, \Lambda, L)} \xrightarrow{(\Gamma, \Lambda, C^{\perp})} (Cut)$

Exchange is implicit. No weakening, no contraction.

Proof nets for MLLu

- Each link has several ports. Principal port(s) numbered 0.
- Cut: an edge connecting two principal ports.

Proof nets are obtained from sequent proofs by extracting their structures (forgetting about formulas).

Example: Negation

Example: Booleans

Reduction rules

Axiom reduction:

Multiplicative reduction:

Example: Computing Negation of True

Example: Computing Negation of True

Example: Computing Negation of True

Sequential cut elimination

Size |P|: number of links.

Sequential cut elimination

- **Size** |P|: number of links.
- Theorem (Girard 87): Every proof net P reduces to a cut-free proof net in |P| steps.

Sequential cut elimination

- Size |P|: number of links.
- Theorem (Girard 87): Every proof net P reduces to a cut-free proof net in |P| steps.
- Too slow!

Parallel cut elimination (1)

Applying two axiom reductions in parallel may conflict:

Global axiom reduction:

Parallel cut elimination (2)

Parallel multiplicative reduction:

Parallel axiom reduction:

$$\bigcap_{q}^{p} \bigcap_{r}^{p} \bigcap_{r}^{p} \bigcap_{q}^{p} \bigcap_{r}^{p} \bigcap_{r}^{p} \bigcap_{q}^{p} \bigcap_{r}^{p} \bigcap_{$$

 $P_1 \implies P_2$ if P_2 is obtained from P_1 either by parallel m-reduction or by parallel a-reduction.

Parallel cut elimination (3)

- What controls the runtime of parallel cut-elimination?
- Depth d(P): Maximal depth of cut formulas in it.
 (P is assumed to be typed by principal types (most general types))
- Depth of formulas:

$$d(\alpha) = d(\alpha^{\perp}) = 1$$

$$d(\otimes^{n}(A_{1}, \dots, A_{n})) = d(\mathfrak{B}^{n}(A_{1}, \dots, A_{n}))$$

$$= max(d(A_{1}), \dots, d(A_{n})) + 1$$

Parallel cut elimination (4)

- **Proof** Theorem: Every proof net *P* reduces to a normal form in $2 \cdot d(P)$ parallel reduction steps.
- Proof: By applying parallel a-reduction, every cut becomes multiplicative. By applying parallel m-reduction, the depth decreases by 1.

Limitation on parallelization

 $|P_n|$ and $d(P_n)$ are linear in n.

 P_n :

Parallel cut-elimination takes almost as long time as sequential cut-elimination.

Representing circuits by proof nets

Idea: Represent

Circuits	by	Proof nets
Boolean values	by	Proof nets (b_1 , b_0)
Assignment	by	Cuts
Evaluation	by	Cut elimination

Representation of Parity

- **Parity:** PARITY^{*n*} $(x_1, \ldots, x_n) = 1$ iff the sum of x_1, \ldots, x_n is odd.
- CANNOT be represented by (poly-size) circuits of constant depth.

Correctness of parity

- There are exactly 2 crossings in the drawing.
- Multiplicative reduction does not change the num of crossings.
- Axiom reduction preserves the parity of the num of crossings:

Therefore, the parity is 0 after cut-elimination.

Expressivity of flat proof nets

Would break down if there were a self-crossing:

- But self-crossing can be avoided.
- As far as proof nets of conclusion $\vdash \mathbf{B}^{\perp}, \ldots, \mathbf{B}^{\perp}, \mathbf{B}$ are

concerned, all what matters is the parity of the num of crossings.

Theorem: Every proof net with the above conclusion represents either PARITYⁿ or \neg PARITYⁿ.

Boolean proof nets

Boolean proof net: a proof net with conclusion

 $\vdash \mathbf{B}[A_1/\alpha]^{\perp},\ldots,\mathbf{B}[A_n/\alpha]^{\perp},\otimes^m(\mathbf{B},\vec{G})$

for some A_1, \ldots, A_n and \vec{G} (garbage).

• Given $w = i_1 \cdots i_n \in \{0,1\}^n$, define P(w) to be:

P accepts w ∈ {0,1}ⁿ if P(w) reduces to ⊗ (b₁, $\vec{P_G}$)
 for some proof nets $\vec{P_G}$ with conclusions \vec{G} .

Conditional and Disjunction

if q then P_1 else P_2

- **Disjunction:** $or(p,q) \equiv if p$ then b_1 else q
- Disjunctions of arbitrary arity can be represented by proof nets of constant depth.

Composition

Composition:

The depth may increase:

Proof Net for Majority (1)

■ MAJ^{*n*} $(x_1 \cdots x_n) = 1$ if at least half of x_i 's are 1.

● Let $id, sh : \{0, 1\}^{n+1} \longrightarrow \{0, 1\}^{n+1}$ be:

$$id(i_1 \cdots i_{n+1}) = i_1 \cdots i_{n+1}$$
$$sh(i_1 \cdots i_{n+1}) = i_2 \cdots i_{n+1}i_1$$

F: higher order functional

$$F(0) = id$$
$$F(1) = sh$$

Proof Net for Majority (2)

• MAJⁿ given by

$$MAJ^{n}(x_{1}\cdots x_{n}) = FstBit(F(x_{1})\circ\cdots\circ F(x_{n})(\underbrace{0\cdots0}_{n/2}\underbrace{1\cdots1}_{n/2+1}))$$

Example:

- $MAJ^{6}(101101) = FstBit(F(1)F(0)F(1)F(1)F(0)F(1)(0001111)))$ = FstBit(sh \circ id \circ sh \circ sh \circ id \circ sh(0001111)) = FstBit(1110001)
- Represented by proof nets of constant depth. (CANNOT be represented by (poly-size) circuits of constant depth.)

St-connectivity₂

- Input: an undirected graph of degree 2 (i.e., nonbranching graph) with vertices {1,...,n}. Assume it is coded by a n × n boolean matrix.
- Output: is 1 if vertices 1 and *n* are connected.

St-connectivity₂

- Input: an undirected graph of degree 2 (i.e., nonbranching graph) with vertices {1,...,n}. Assume it is coded by a n × n boolean matrix.
- Output: is 1 if vertices 1 and *n* are connected.

- Can simulate мај in constant depth.
- Represented by proof nets of constant depth.

From Circuits to Proof nets

■ Theorem: For every circuit *C* of size *s* and depth *d* (possibly equipped with *st*CONN₂), there is a boolean proof net *P*_C of size $O(s^5)$ and depth O(d) which accepts the same set as *C*.

From Circuits to Proof nets

Proof Theorem: For every circuit *C* of size *s* and depth *d* (possibly equipped with stCONN₂), there is a boolean proof net P_C of size $O(s^5)$ and depth O(d) which accepts the same set as *C*.

Circuit CProof Net
$$P_C$$
size s, depth d \implies size $O(s^5)$, depth $O(d)$

From Circuits to Proof nets

• Theorem: For every circuit *C* of size *s* and depth *d* (possibly equipped with st_{CONN_2}), there is a boolean proof net P_C of size $O(s^5)$ and depth O(d) which accepts the same set as *C*.

Circuit CProof Net
$$P_C$$
size s, depth d \implies size $O(s^5)$, depth $O(d)$

■ **Proof:** \neg , \bigwedge^n , \bigvee^n , $st \text{CONN}_2^n$ represented by a proof net of size $O(n^4)$ and of constant depth. Composition increases the depth linearly.

Representing proof nets by circuits

Idea: Represent

A proof net P	by	a set of boolean values
One-step reduction	by	constant depth circuit
$2 \cdot d(P)$ reduction steps	by	O(d)-depth circuit

Coding proof nets by boolean values

- *P* : a proof net with links $\subseteq L$.
- Conf(P): consists of the following boolean values: For $p,q \in L$,
 - $\begin{array}{ll} alive(p) & \Leftrightarrow & p \text{ is a link of } P \\ sort(p,s) & \Leftrightarrow & \text{link } p \text{ is of sort } s \in \{\otimes, \Re, \bullet\} \\ edge(p,i,q,j) & \Leftrightarrow & \text{there is an edge between port } i \text{ of} \\ & & \text{link } p \text{ and port } j \text{ of link } q \end{array}$
- Build a circuit C s.t.

if $P_1 \Longrightarrow P_2$ then *C* computes $Conf(P_2)$ from $Conf(P_1)$.

Multiplicative Reduction

Easily implemented by a constant depth circuit: E.g,

$$edge'(p_i, 0, q_i, 0) = edge(p_i, 0, q_i, 0) \lor \\ \bigvee_{p,q \in L} (edge(p, 0, q, 0) \land \bigvee_j edge(p_i, 0, p, j) \land edge(q_i, 0, q, j))$$

Global Axiom Reduction

- Naive attempt to build a constant depth circuit leads to exponential size.
- Use stCONN₂ gates.
- Apply to the axiom-cut subgraph of P, that is of degree 2.

From Proof nets to Circuits

■ Theorem: For every boolean proof net *P* of size *s* and depth *d*, there is a circuit *C* (with *st*CONN₂ gates) of size $O(s^4)$ and depth O(d) which accepts the same set as *P*.

From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d, there is a circuit C (with stCONN₂ gates) of size O(s⁴) and depth O(d) which accepts the same set as P.

From Proof nets to Circuits

Theorem: For every boolean proof net P of size s and depth d, there is a circuit C (with stCONN₂ gates) of size O(s⁴) and depth O(d) which accepts the same set as P.

$$\begin{array}{|c|c|} \hline \text{Proof Net } P \\ \text{size } s, \text{ depth } d \end{array} \implies \begin{array}{|c|} \hline \text{Circuit } C_P \\ \text{size } O(s^4), \text{ depth } O(d) \end{array}$$

Proof: Cut-elimination of P requires of 2 · d steps. Each step simulated by a constant depth circuit (with stCONN₂ gates). Initialization and acceptance checking also by constant depth circuits.

Proof net complexity classes (1)

 $APN^i = AC^i(st \text{CONN}_2).$

Proof net complexity classes (2)

- **APN** $= \bigcup_i APN^i.$
- Theorem APN = NC.
- ▶ Proof: $AC^i \subseteq AC^i(st \text{CONN}_2) = APN^i \subseteq AC^{i+1}$ and $NC = \bigcup_i AC^i$.
- P/poly: nonuniform version of P.
- Theorem P/poly = the class of languages $X \subseteq \{0,1\}^*$ accepted by polynomial size families of proof nets.
- ▶ Note $AC^0(st \text{CONN}_2) = L/poly$ (nonuniform logspace). Hence,

$$AC^0 \subsetneq NC^1 \subseteq L/poly = APN^0 \subseteq AC^1$$

Conclusion

- Extended the Proofs-as-Programs paradigm to a finite, nonuniform, parallel setting.
- Characterized proof net complexity by circuit complexity.
- Proof nets represent "higher order gates."

Future Work

- $NC^{i+1} \subseteq APN^i?$
- Comparison with other approaches to proofs-circuits correspondence (Propositional Proof Systems and Bounded Arithmetic).
- Study the bounded fan-in case.
- Implicit parallel complexity.