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Abstract

We give semantic characterizations for the notions of reachability and trace equivalence
in a linear-logic based framework of asyncronous concurrent process calculus. Usually the
reachability relation in linear logic-based concurrent process calculi is characterized by the
logical notion of provability, which is in turn characterized by model-theoretic semantics such
as the phase semantics. The standard phase semantics is, however, too abstract to give
concrete meanings to processes due to the presence of the closure operation. To remedy this,
we introduce a simplification of the phase semantics, which we call the naive phase semantics,
and show that the reachability relation is also characterized by the completeness with respect
to the naive phase semantics.

On the other hand, the logical provability does not provide any satisfactory notion of
equivalence over processes. We consider the trace equivalence (Hoare[Hoa80]) for our process
calculus and introduce certain algebraic models, which we call the trace semantics. Then the
trace equivalence is characterized by the completeness with respect to the trace semantics.

§1 Introduction

We investigate a version of asynchronous concurrent process calculus based on linear logic. In our
framework, formulas are identified with processes and inference rules are identified with actions
in terms of “message passing”-based process calculi. Then a bottom-up proof construction of a
formula A is naturally interpreted as a computation of the process A (cf. §2).

Under these identifications, various notions which have been discussed in the field of concurrent
process calculi are brought into logical study. This paper attempts to give a logical analysis to
these new notions from process calculi in the framework of traditonal model-theoretic semantics.

It has been observed that the logical notion of provability well-captures the computational no-
tion of reachability between states of computations (configurations), in such a way that, roughly,
state A is reachable from state B if and only if formula B logically implies formula A. On the
other hand, the provability is characterized by some logical semantics, eg. the phase semantics,
via the completeness theorem in the traditional framework of logic. However, the usual logical
semantics complete for full linear logic is of rather abstract nature; for example, the phase seman-
tics interprets a formula by a subset of a certain model-theoretic domain, called a phase space,
but such a subset interpreting a formula should be be a closed one (called a fact) according to a
certain closure operation (cf. §3.1). It is this closure operation which makes the phase semantics
a sort of abstract nonsense (in the word of J.-Y. Girard), because, for one thing, it makes the
meaning of a formula (hence a process) less intuitive, and for the other, it makes difficult to find
a counter-example to the reachability of a given configuration from an initial one.

The closure operation is absolutely needed when one wants to have a complete semantics for
the full system of linear logic. However, since our theory of concurrent process calculus uses only
a very restricted fragment of linear logic, essentially the !-Horn fragment, here arises a possibility
of having a simpler semantics which is complete for that framgent. In §3.2, we introduce a
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simplification of the phase semantics, called the naive phase semantics, which is obtained from
phase semantics by dropping the closure condition. The naive phase semantics gives more intuitive
meaning of formulas than the original phase semantics. Our first main result says (in §3.2);

1. The reachability relation is characterized by the completeness with respect to the naive phase
semantics.

The next problem which we address in this paper is to characterize certain notion of equivalence
on processes in the traditional framework of model-theoretic semantics. The identification of
formulas with processes naturally leads us to the following question; what is an appropriate notion
of equivalence on formulas/processes from the viewpoint of process calculi? One might expect
that logical equivalence, defined in terms of logical provability, provides such an adequate notion
of equivalence; A and B are logically equivalent if A � B and B � A are provable in linear logic.
Logical equivalence is, however, too coarse in a sense and too fine in another sense to be an adeqate
notion of equivalence on processes. Consider two processes α−◦β−◦γ and β−◦α−◦γ. α−◦β−◦γ
intuitively means “first receive α, then receive β and send γ”, while β −◦ α−◦ γ intuitively means
“first receive β, then receive α and send γ”. So they behave quite differently, whereas the logical
equivalence identifies them. On the other hand, it is reasonable to think that (α −◦ β) ⊗ (γ −◦ δ)
and α−◦ (β ⊗ (γ −◦ δ))&γ −◦ ((α−◦β)⊗ δ)) are equivalent with respect to their behavior, whereas
they are not logically equivalent. Here α−◦A means “receive α and invoke A”, α⊗A means “send
α and invoke A”, A & B means “choose A or B”. (See Kobayashi&Yonezawa[KY93] for a slightly
different view of logical equivalence.)

The leading principle to find an adequate notion of equivalence is that processes should be
equivalent if they are indistinguishable by an external observer. What makes two processes equiv-
alent or distinct is their observable behavior. Under this principle, various notions of equivalence
have been proposed in the literature (cf. van Glabbeek[vG90][vG93]). Among those, we deal with
trace equivalence in this paper.

Trace equivalence, presented by Hoare[Hoa80], is known to be one of the simplest notion of
equivalence; roughly, A and B are trace equivalent if they can perform the same set of sequences
of observable actions. Trace equivalence provides a better notion of equivalence on processes than
that of logical equivalence from the observational point of view. As a matter of fact, it is easily
shown that α −◦ β −◦ γ and β −◦ α −◦ γ are not trace equivalent, and that (α −◦ β) ⊗ (γ −◦ δ)
and α−◦ (β ⊗ (γ −◦ δ))&γ −◦ ((α −◦ β) ⊗ δ)) are trace equivalent. Trace equivalence is sometimes
considered to be too weak to identify processes in the sense that it identifies too many processes.
In particular, it possibly identifies a deadlocking process with one that does not deadlock (see
Example 3(2) in §4.1). Nevertheless it is of significance as the basis for other equivalence notions
of processes. Trace equivalence provides a simple formalization of our basic intuition that processes
are equivalent if they are observationally indistiguishable, and any equivalence naturally defined
on the basis of this intuition can be seen as a refinement of trace equivalence.

In §4.1 we consider the trace equivalence in our framework, defined in terms of observable
behavior of processes, and in §4.2 we introduce certain algebraic models, which we call trace
models. Trace models are defined in the traditional frame work of algebraic semantics. Then our
second main result says (in §4.2);

2. Trace equivalence is characterized by the completeness with respect to the trace models.

For the completeness proof we use the technique similar to the phase-semantic completeness
proof.

In this preliminary report, we only deal with the systems that can be developed in propositional
fragment of linear logic.

§2 Syntax and Operational Semantics

Throughout this paper, we consider the following correspondence between the logical notions and
the notions from the theory of “message passing”-based process calculi;
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Table 1
propositional variables = tokens or messages

logical connectives = action names
inference rules = transition rules

formulas = processes
sequents = process configurations

bottom-up proof construction = computation

We identify a propositional variable with a token or a message, and each logical connective sym-
bol with an action name. Then the operational meaning of an action, namely the transition rule
determining the behavior of the action, is described in terms of a logical inference rule correspond-
ing to the logical connective associated to the action. A formula constructed from propositional
variables and logical connectives is viewed as a process and a sequent (in the sequent-calculus
formulation of logic) is viewed as a process configuration which describes a state of computation.
A logical inference is interpreted as a state-transition by reading them bottom-up, thus, eg. a
logical inference of the form

A, B, Γ �
A ⊗ B, Γ � ⊗

is read as “state A ⊗ B, Γ transforms to state A, B, Γ by Parallel action ⊗”. Then a bottom-up
proof construction for a sequent “Γ �” corresponds to a computation starting from a process
configuration “Γ �”.

We introduce the system S, a version of asynchronous concurrent process calculus based on lin-
ear logic proof search, that is essentially a subsystem of the system considered by Okada[Oka93][Oka96a].
S is based on left one-sided sequent calculus. However, nothing important is missing for theo-
retical issues compared with process calculi based on two-sided (classical) sequent calculi such as
Andreoli&Pareschi[AP91]’s LO and Kobayashi&Yonezawa[Kob92][KY95]’s ACL, although two-
sided formulation would be convenient for practical issues like the logic programming languages
design.

Let us begin by defining the language L(S) of our system S. We presuppose that a set P
of propositional variables is given. As mentioned before, logical constants and connectives can
be naturally identified with actions in our process calculus. In the following definition, we give
the action names corresponding to the outermost logical connectives. Their precise operational
meanings will be given below in terms of logical inference rules of linear logic.

Definition 1 The language L(S) is defined as follows;

1. If α ∈ P , then α ∈ L(S) (Token or Message).

2. 1 ∈ L(S) (Suicide-action).

3. If A, B ∈ L(S), then A ⊗ B ∈ L(S) (Parallel-action), in particular if α ∈ P , then α ⊗ B is
called a Sending-action

4. If α1, . . . , αn ∈ P(n ≥ 1) and B ∈ L(S), then α1 ⊗ · · · ⊗αn −◦B ∈ L(S) (Receiving-action).

5. If A, B ∈ L(S), then A & B ∈ L(S) (Choice-action).

6. If A ∈ L(S), then !A ∈ L(S) (Bang-action).

Thus our language L(S) is a subset of the usual one of the intuitionistic linear logic; L(S)
lacks �,0,⊥,⊕, and implications are restricted to the Horn implications in L(S) that require
antecedents be of the form α1 ⊗ · · · ⊗ αn for αi ∈ P .

Roughly speaking, the formulas in L(S) correspond to the processes in CCS[Mil89] and π-
calculus[MPW92][Mil92] in the way described in Table 2.
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Table 2: Correspondence between formulas in S and processes in CCS and π-calculus
Parallel Sending Receiving Choice Bang (Replication)

S A ⊗ B α ⊗ B α −◦ B A & B !A
CCS and π-calculus A|B α.B α.B A + B !A

It should be noted, however, that there are some serious differences between them; S is an asyn-
chronous calculus in the sense explained later whereas CCS and π-calculus are synchronous, and
S is based on proof-theoretic notions whereas CCS and π-calculus are based on algebraic no-
tions. (An asynchronous version of π-calculus was also introduced in Honda[HT91] on the basis
of algebraic notions.)

A finite multiset of formulas in L(S) is called a process configuration. A sequent of S of the
form Γ � is identified with a process configuration Γ. In the sequel, α, β, . . . range over P , A, B, . . .
range over L(S), and Γ, ∆, . . . range over the process configurations of L(S). �α, �β, . . . range over
the finite sequences of propositional variables. If �α = α1, . . . , αn, then ⊗�α stands for α1⊗· · ·⊗αn.
We write An to denote a formula A ⊗ · · · ⊗ A︸ ︷︷ ︸

n times

. A formula of the form !A is called a modal formula.

The inference rules of S, which corresponds to the transition rules in process calculi (when
read bottom-up), are essentially those of linear logic restricted to our language L(S). It should be
noted that Γ below is considered as a multiset, hence the exchange rule is implicit.

• Parallel Action (⊗)
A, B, Γ �

A ⊗ B, Γ � ⊗

(Parallel action A ⊗ B invokes processes A and B in parallel.) A special case of this action
is the Sending Action
α, B, Γ �

α ⊗ B, Γ � ⊗

(Sending action α ⊗ B sends a token α and invokes B.)

• Receiving Action (−◦)
(�α � ⊗�α) A, Γ �
�α,⊗�α −◦ A, Γ � −◦

where �α denotes α1, . . . , αn(n ≥ 1). (Receiving action ⊗�α −◦ A receives tokens �α from the
environment and invokes A.) We treat this rule/action as if it had only one premise. This
convention is justified by the fact that the left premise of this rule is always provable, (hence
the proof construction of the left premise terminates immediately.)

• Choice Action (&)
A, Γ �

A & B, Γ � &
B, Γ �

A & B, Γ � &

(Choice action A & B chooses either A or B, and invokes it.)

• Suicide Action (1)
Γ �

1, Γ � 1

(Suicide action 1 terminates itself.)

• Bang Action (!)
!A, A, Γ �
!A, Γ � !

(Bang action !A produces a copy A and invokes it.)

Note that the above Bang ! rule is slightly different from Girard[Gir87]’s original ones; ours is
derivable from Girard’s, but not vice versa. Our bang ! is sometimes called Milner’s bang because
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it behaves like the one Milner introduced in [Mil92] for his theory of π-calculus. It will be shown,
however, that these two versions of bang ! are equivalent up to reachability and trace equivalence
defined later (in this section and in §4.1).

Listed below are some useful derived rules of S.

(1)

A, Γ �
α, α −◦ A, Γ �

α, α −◦ A&β −◦ B, Γ �

B, Γ �
β, β −◦ B, Γ �

β, α −◦ A&β −◦ B, Γ �

The process α −◦ A&β −◦ B selects A or B depending on α or β which the process receives.

(2)

�β, !(⊗�α −◦⊗�β), Γ,�
�α,⊗�α −◦ ⊗�β, !(⊗�α −◦⊗�β), Γ,�

�α, !(⊗�α −◦⊗�β), Γ,�

The process !(⊗�α −◦⊗�β) transforms tokens �α into �β, while the process itself remains unchanged.

(3)

A, B, Γ �
α, A, α −◦ B, Γ �

α ⊗ A, α −◦ B, Γ �

The sender α⊗A passes a message α to the receiver α−◦B. Note that this communication occurs
asynchronously in the sense that the sender can send a message without synchronizing with the
receiver. This is the most important difference from synchronous concurrent process calcului such
as Milner[Mil89]’s CCS, and for this reason our S is said to be an asynchronous concurrent process
calculus (also cf. Honda[HT91]).

Example 1 Consider the detafolw diagram below;

Figure 1: A dataflow diagram
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Here, α,β, γ, δ, η and λ denote channels in the above dataflow network. Process P1 is a process
to receive two messages (tokens) from the channel α and to produce two tokens to channel β and
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one token to channel γ concurrently. This is specified by !(α⊗α−◦β⊗β⊗γ) in S. We abbreviate
this as !(α2 −◦ β2 ⊗ γ). The bang (modality) ! means that this process can be repeated infinitely
many times. P2 is waiting for three tokens through channel β then sending two tokens through
channel δ. P2 is specified by !(β3 −◦ δ2). P3 is waiting for two tokens through channel γ then
sending one token through channel η. P3 is specified by !(γ2 −◦ η). P4 receives two tokens from
channel δ and two from η concurrently, then produces one output token through channel λ. P4 is
written as !(δ2 ⊗ η2 −◦ λ).

Then the whole network is described as Γ, where

Γ ≡!(α2 −◦ β2 ⊗ γ), !(β3 −◦ δ2), !(γ2 −◦ η), !(δ2 ⊗ η2 −◦ λ).

Now consider an initial channel state m, say α2, β, γ5. This means that the network is started
with channel state m, i.e., two tokens at channel α, one token at channel β and five tokens at
channel γ.

By using derived rule (2) above, we observe that the following is a derivation in S;

λ, γ2, Γ �
δ2, η2, γ2, Γ �
δ2, η, γ4, Γ �
δ2, γ6, Γ �
β3, γ6, Γ �

α2, β, γ5, Γ �

Let us denote by n(≡ λ, γ2) the channel state in which there are one token at channel λ and
two tokens at channel γ. Then the above derivation expresses that channel state n is reachable
from channel state m under specification Γ. State λ, η is also reachable from m under Γ, but state
λ2 is not.

Example 2 If we incorporate such an infinitary expression as &i∈IAi, where I denotes an arbi-
trary index set, into the language, and add an inference rule

Aj , Γ �
&i∈IAi, Γ �,

where j ∈ I, then we can express value passing between two processes in this extended system.
Assume that P includes propositional variables αi indexed by natural numbers. We write α(i) to
denote ai, and A(i) to indicate some occurrences of subscript i attached to propositional variables
in A. We abbreviate a process &i∈Nα(i) −◦ B(i) where N is the set of natural numbers by
α(x) −◦ B(x). Then we see

A, B(n), Γ �
α(n), A, α(n) −◦ B(n), Γ �
α(n), A, α(x) −◦ B(x), Γ �

α(n) ⊗ A, α(x) −◦ B(x), Γ �

is a derivation in this extended system. This expresses that the sender α(n)⊗A passes value n to
the receiver α(x) −◦ B(x) through channel α.

All results shown in this paper would still hold by this extension. Later we shall introduce this
infinitary & formally in §4.1.

If

Γ2 �
Γ1 �
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is an instance of an inference rule of S, then the pair of Γ1 and Γ2 is called a transition (and we
denote the transition relation by Γ1 −→ Γ2). A (finite or infinite) sequence Γ0, Γ1, . . . , Γi, . . . of
process configurations is a transition sequence if for each i a transition relation Γi−1 −→ Γi holds.
The transitive reflexive closure of −→ is written as −→∗. Hence Γ−→∗Γ′ means that there exists
a finite transition sequence from Γ to Γ′.

Let Γ be a process configuration and �β be a finite sequence of tokens. Then we say �β is reachable
from Γ if Γ−→∗�β, !Σ for some sequence !Σ of modal formulas. Note that in the definition the
succedent configuration is relativized by some modal formulas !Σ. This is due to a slight difference
between the original inference rules for ! of linear logic and our transition rule for !; in the original
linear logic modal formulas can be erased and duplicated freely, whereas in our framework they
cannot.

Proposition 1 The following are equivalent;
(1) �β is reachable from Γ;
(2) Γ � ⊗�β is provable in classical full linear logic;
(3) Γ � ⊗�β is provable in intuitionistic full linear logic.

(See Girard[Gir95] for the precise definition of classical and intuitionistic linear logic.)

Proof. Consider the following subsystem S′ of linear logic;

Axiom: �α � ⊗�α

Inference rules:
A, B, Γ � ⊗�β

A ⊗ B, Γ � ⊗�β
⊗

(�α � ⊗�α) A, Γ � ⊗�β

�α,⊗�α −◦ A, Γ � ⊗�β
−◦

A, Γ � ⊗�β

A & B, Γ � ⊗�β
&

B, Γ � ⊗�β

A & B, Γ � ⊗�β
&

Γ � ⊗�β

1, Γ � ⊗�β
1

Γ � ⊗�β

!A, Γ � ⊗�β
!W

!A, !A, Γ � ⊗�β

!A, Γ � ⊗�β
!C

A, Γ � ⊗�β

!A, Γ � ⊗�β
!D

As easily shown, a sequent of the form Γ � ⊗�β, where Γ is a process configuration of S, is provable
in S′ iff it is provable in classical full linear logic iff it is provable in intuitionistic full linear logic.
Now we can easily transform a finite transition sequence of S into a proof in S′, and vice versa.

The above Proposition shows that the logical notion of provability characterizes the computa-
tional notion of reachability.

§3 Naive Phase Semantics Characterizing Reachability

§3.1 Preliminary Remark on Intuitionistic Phase Semantics

This subsection is devoted to a brief introduction to intuitionistic phase semantics, as a preliminary
to the next subsection.

Phase semantics, originally introduced by Girard[Gir87], is a standard model-theoretic seman-
tics for (classical) linear logic. After the publication of [Gir87], its intuitionistic versions are
investigated by several authors, eg. Abrusci[Abr90], Okada[Oka96b], Sambin[Sam94], with slight
differences in their definitions. Here we introduce a version of intuitionistic phase semantics, follow-
ing Okada[Oka96b]. As proved in [Oka96b], the semantics completely characterizes the provability
of intuitionistic linear logic. In the light of Proposition 1 in §2, which says that the provability
of intuitionistic linear logic characterizes the reachability in S, it is immediate that the validity of
the intuitionistic phase semantics also characterize reachability in S. However, the intuitionistic
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phase semantics usually requires a certain closure operator to interprete formulas, which causes
difficulty in understanding the intuitive meaning of formulas via the semantics.

We shall introduce naive phase semantics, i.e., phase semantics without any closure condition,
in §3.2. That is obtained by modifying intuitionistic phase semantics defined below. A variant of
intuitionistic phase semantics is also used for the canonical model construction for completeness
of the trace models in §4.4.

Definition 2 An intuitionistic phase space (M, D,⊥) consists of a commutative monoid M , a
subset D (called the facts) of the powersets of M and ⊥ ∈ D that satisfies

(P1) D is closed under arbitrary
⋂

; in particular M ∈ D,

(P2) If X ⊆ M and Y ∈ D, then X −◦ Y ∈ D

where −◦ is defined by X −◦ Y = {y|∀x ∈ Xxy ∈ Y } for any X, Y ⊆ M . We also define XY as
{xy|x ∈ X, y ∈ Y } and XC as

⋂
{Y ∈ D|X ⊆ Y } (the smallest fact that includes X).

Then, we can define 1 = {1}C (1 stands for the unit element of M), � = M , 0 = ∅C , and for
any facts X, Y ,

• X ⊗ Y = (XY )C ,

• X & Y = X ∩ Y,

• X ⊕ Y = (X ∪ Y )C ,

• X⊥ = X −◦ ⊥.

Among the basic properties of intuitionistic phase spaces, we have the following;

• For any facts X, Y and Z, X ⊗ Y = Y ⊗ X , X ⊗ (Y ⊗ Z) = (X ⊗ Y ) ⊗ Z, 1 ⊗ X = X ;

• X ⊗ Y ⊆ Z iff Y ⊆ X −◦ Z;

• X −◦ (Y −◦ Z) = Y −◦ (X −◦ Z), 1−◦ X = X ;

• X ⊗ (Y ⊕ Z) = (X ⊗ Y ) ⊕ (X ⊗ Z), X −◦ Y & Z = (X −◦ Y ) & (X −◦ Z);

• X ⊗ (Y & Z) ⊆ (X ⊗ Y ) & (X ⊗ Z), but the reverse does not hold in general.

Associativity of ⊗ is nontrivial, but follows from the observation that XCY C ⊆ (XY )C for any
X, Y ⊆ M . Note that (D, &,⊕,0,−◦,⊗,1) forms an IL-algebra in the sense of Troelstra[Tro92].

A classical phase space is a special intuitionic phase space in which D consists of all X ’s such
that X = X⊥⊥.

The following definition is analogous to that of enriched (classical) phase spaces in Lafont[Lafar]
(cf. also Girard[Gir95]). If M is an intuitionistic phase space, then J(M) = {x ∈ 1|x ∈ {xx}C}
is a submonoid of M . An enriched intuitionistic phase space is an intuitionistic phase space M
endowed with a submonoid K of J(M) (not necessary to be a fact). One may typically take J(M)
itself or {1} for K.

For any fact X of enriched intuitionistic phase space, define

• !X = (X ∩ K)C .

The following are some basic properties of modality ! (cf. Girard[Gir87][Gir95], Lafont[Lafar]);

• For any facts X and Y , !X ⊆ X , !X⊗!X =!X , !X ⊂ 1; if !Y ⊆ X , then !Y ⊆!X ;

• !(X & Y ) =!X⊗!Y .

An intuitionistic phase model is given by an (enriched) intuitionistic phase space and an inter-
pretation which maps each atom α to a fact α∗ of M . Then any formula A is interpreted by a fact
A∗ along the above definitions, and Γ ≡ A1, . . . , An is interpreted by Γ∗ = A∗

1 ⊗ · · · ⊗A∗
n. We say

that A is satisfied in M if 1 ∈ A∗, and that Γ � C is satisfied in M if Γ∗ ⊆ C∗.
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Theorem 1 Let Γ � C be a sequent in intuitionistic linear logic. Then Γ � C is provable in
intuitionistic linear logic if and only if it is satisfied in every intuitionistic phase model.

Proof. See Okada[Oka96b].

Combined with Proposition 1 in §2, we obtain;

Corollary 1 Let Γ be a process configuration of S. Then �β is reachable from Γ if and only if
Γ � ⊗�β is satisfied in every intuitionistic phase model.

§3.2 Naive Phase Semantics

As stated at the end of the previous subsection, the reachability in S is characterized by the validity
in intuitionistic phase semantics (Corollary 1). But it may be regarded as a shortcoming of phase
semantics that phase semantics heavily relies on some closure operation in order to be complete
for its corresoponding syntax; for example, X ⊗ Y should be interpreted by (XY )⊥⊥ in classical
phase spaces and by (XY )C in intuitionistic phase spaces. Indeed, these closure operations make
it difficult to catch an intuitive meaning of a formula from its semantic interpretation, and hence
it would be preferable to dispense with them. Such a phase semantics without closure condition
is called naive phase semantics.

Naive phase semantics is sound for full intuitionistic linear logic, but fails to be complete for
the following obvious reasons;

1. The distribution law between & and ⊕ holds for every naive phase model, but it cannot be
proved in linear logic.

2. Phase semantics requires that 1 be interpreted by the smallest fact including 1, the monoid
unit. In a naive phase model, however, such a fact would be {1}, that is too poor to be an
interpretation of 1; since !A must be interpreted by a subset of the interpretation of 1, any
formula of the form !A would collapse into 1 or 0.

Hence it is an interesting question to what extent of subsystems of linear logic one can obtain
the completeness with respect to naive phase semantics.

There are several completeness results on the naive phase semantics for certain very restricted
subsystems of linear logic, especially for Lambek Calculus[Lam58], which amounts to the (⊗,−◦)-
fragment of noncommutative intuitionistic linear logic, and its related systems. Buszkowski[Bus86]
proved that Lambek Calculus and some systems related to it are complete with respect to the naive
phase models (the generalized standard models or GS-models, in his terminology). Pentus[Pen94]
proved that the naive phase models based on free semigroups, called the language models, are
sufficient to be complete for Lambek Calculus. Okada&Terui[OT96] showed that the finite naive
phase models are sufficient to be complete for Lambek Calculus and some related systems, hence
that these systems have the finite model property with respect to the naive phase models.

To obtain a completeness result for our system of concurrent process calculus we restrict
the previous system S in such a way that 1 does not occur and ! only occurs as an outermost
connective. The resulting subsystem of S will be called S1. Then we prove that the reachability in
S1 is characterized by the completeness with respect to naive phase semantics (Theorem 2 below).
S1 has enough expressive power to represent a wide range of message-passing based communication
networks.

Definition 3 The language L(S1) is defined as follows;

• If A is a formula of L(S) which contains neither 1 nor !, then A is also a formula of L(S1),
and so is !A.

The inference rules of S1 is the same as S (but restricted to L(S1)).

9



!Γ (hence Γ and ∆ are modality-free). Note that no modal formula in a configuration disappears
after a transition, and note also that, by the restriction to S1, no modal formula newly appears
after a transition. We split a configuration into two part and to write it as !Γ, ∆ where all modal
formulas are indicated by !Γ (thus Γ, ∆ are modality-free). Then every configuration which is
accessible from !Γ, ∆ is of the form !Γ, Π.

Definition 4 A naive phase model M is an intuitionistic phase model (not enriched) in which the
set D of facts consists of all subsets of M .

A naive phase model does not need the closure operation C ; X ⊗ Y is simply interpreted by
XY and each atomic formula is interpreted by arbitrtary subset of M . Since D plays no role and
⊥ does not have to be specified because our language does not contain ⊥, we can say that a naive
phase model is simply a commutative monoid M with an interpretation ∗ which maps each atomic
formula α to a subset α∗ of M . Bang !(modality) cannot be interpreted directly in a naive phase
model for the reason discussed above. Thus we do not require a naive phase model to be enriched.
Rather, we interpret modal formulas as if they were axioms.

By a Γ-model we mean a naive phase model in which 1 ∈ A∗ holds for each A occuring in Γ,
namely a naive phase model in which Γ is true.

Proposition 2 (Soundness) Let !Γ, ∆ be a process configuration of S1. If �β is reachable from
!Γ, ∆, then ∆∗ ⊆ �β∗ in every Γ-model.

Proof. If �β is reachable from !Γ, ∆, then there is a transition sequence

!Γ, ∆ ≡!Γ, Σ0 −→!Γ, Σ1 −→ · · · −→!Γ, Σn ≡!Γ, �β.

Then it is easily shown that Σ∗
i−1 ⊆ Σ∗

i for each 1 ≤ i ≤ n in every Γ-model.

§3.3 Completeness of Naive Phase Semantics

To show the reverse of Proposition 2, namely, completeness, we exploit the completeness proof
method investigated by Okada&Terui[OT96].

First let us give some ideas informally. Given a process configuration !α −◦ β ⊗ γ, α, we have
the following transition sequence (derivation);

....
!α −◦ β ⊗ γ, β, γ �
!α −◦ β ⊗ γ, β ⊗ γ �

!α −◦ β ⊗ γ, α −◦ β ⊗ γ, α �
!α −◦ β ⊗ γ, α �

We would like to give a concrete model to this transition sequence and to give a concrete in-
terpretation in the model to each formula occurring in the transition sequence. It is natural to
construct a model based on preconditions of processes. What we mean by the term precondition
is illustrated in the following transition sequence, where each formula B is labelled like a :B with
a expressing a precondition of B;

!α −◦ β ⊗ γ,

....
l
√

α :β, r
√

α :γ �
!α −◦ β ⊗ γ, α :β ⊗ γ �

!α −◦ β ⊗ γ, 1:α −◦ β ⊗ γ, α :α �
!α −◦ β ⊗ γ, α :α �

• α occurs in the initial process configuration, hence α itself is a precondition of α.

10



• We do not consider preconditions for modal formulas.

• α −◦ β ⊗ γ has the empty precondition denoted by 1 above because this can be produced
freely by Bang action.

• β ⊗ γ emerges from two processes α −◦ β ⊗ γ and α, which have preconditions 1 and α,
respectively. Hence 1α ≡ α is a precondition of β ⊗ γ.

• β ⊗ γ splits into β and γ. Let us consider l
√

α (the left-half of α) to be a precondition of β,
and r

√
α (the right-half of α) to be a precondition of γ.

The labels express the preconditions which have a natural monoid-structure, thus, 1α ≡ α
and l

√
α · r

√
α = α. We can construct a naive phase model from the labels occuring in the above

transition sequence, in which

if a :B occurs in the transition sequence, then a ∈ B∗.

Hence this model can be seen as a direct representation of the above transition sequence. This
model is indeed a (α −◦ β ⊗ γ)-model, because 1 : α −◦ β ⊗ γ occurs in the sequence, hence
1 ∈ (α −◦ β ⊗ γ)∗.

By a construction like the above, we can obtain a countermodel for the completeness proof.
Suppose that �β is not reachable from �α under !Γ, ∆. Then we can construct a naive phase model
in which �α∆ ∈ (�α, ∆)∗ and �α∆ �∈ ⊗�β∗. The resulting phase model is indeed a Γ-model, hence we
obtain the completeness.

Let us begin the proof by giving the precise definition of the labels. Our labels are obtained by
modifying the terms of the system ND introduced by Buszkowski[Bus86], which was used in his
proof of completeness for Lambek Calculus with respect to GS-models. See also Pankrat’ev[Pan94]
for another use of the system ND. We modify ND-terms by adding the unit label 1 with convention
a1 ≡ 1a ≡ a, and by imposing commutativity ab ≡ ba on the labels.

Definition 5 The labels L and the simple labels L ⊂ L are defined as follows;

1. 1 is a simple label.

2. Each formula in L(S1) is a simple label.

3. if a is a label and A is a formula of the form B ⊗ C, then l
√

aA and r
√

aA are simple labels.

4. if a and b are labels, then ab is a label.

As a convention, we identify a1a2 · · · an with any of its permutations. Moreover, we assume
that a1 ≡ 1a ≡ a for any label a. For example, b l

√
a1A ≡ b l

√
aA ≡ l

√
aAb.

Now we define a reduction relation on the labels.

Definition 6 For any labels a, a′, b and any formula A, if a contains as sublabel l
√

bA
r
√

bA and
a′ results from a by replacing one occurrence of l

√
bA

r
√

bA by b, then we say that a reduces to a′,
denoted by a �→ a′. We denote the reflexive, transitive closure of the relation �→ by �→∗.

Lemma 1 The relation �→∗ on L1 is confluent and terminating.

Proof. Essentially due to Buszkowski[Bus86]. See also Pankrat’ev[Pan94].

As a corollary, each label a has a unique normal form denoted by a•. Write a • b to denote
(ab)•. Then we can easily derive associativity of • from the above lemma.

A labelled formula is a formula equipped with a label in normal form (write a :A for a label a
and a formula A). A labelled process configuration is of the form !B1, . . . , !Bm, a1 :A1, . . . , an :An,
where each non-modal formula Ai is labelled by a label ai, whereas each modal formula !Bj is not
labelled. If ∆ ≡ A1, . . . , An, then a1 :A1, . . . , an :An is sometimes abbreviated by a1 • · · · • an :∆;
eg., if l

√
bC :A and r

√
bC :B, then l

√
bC :A, r

√
bC :B is abbreviated by b :A, B.

The inference rules of S1 are extended to those for labelled sequents, as follows;
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!Γ, l
√

aA⊗B :A, r
√

aA⊗B :B, c :∆ �
!Γ, a :A ⊗ B, c :∆ �

!Γ, a1 • · · · • an • b :B, c :∆ �
!Γ, a1 :α1, . . . , an :αn, b :α1 ⊗ · · ·αn −◦ B, c :∆ �

!Γ, a :A, c :∆ �
!Γ, a :A & B, c :∆ �

!Γ, a :B, c :∆ �
!Γ, a :A & B, c :∆ �

!Γ, !A, 1:A, c :∆ �
!Γ, !A, c :∆ �

If

!Γ, b :∆2 �
!Γ, a :∆1 �

is an instance of one of the above inference rules for labelled sequents, then we write (by abuse
of notation) !Γ, a :∆1 −→!Γ, b :∆2. Here note that b is always identical with a. We use, again by
abuse of notation, �→∗ to denote the transitive reflexive closure of −→.

Let ∆ be A1, . . . , An. Let ∆:∆ denote A1 :A1, . . . , An :An (Ai is labelled with Ai itself). Now
define

T (!Γ, ∆) = {!Γ, ∆:Σ|!Γ, ∆:∆ �→∗!Γ, ∆:Σ}
T ∗(!Γ, ∆) = {b :Σ | !Γ, b :Σ, c :Π is in T (!Γ, ∆) for some c :Π}.

We say that a label b occurs in T ∗(!Γ, ∆) if b :Σ ∈ T ∗(!Γ, ∆) for some Σ.
The basic properties of T (!Γ, ∆) are expressed in Lemma 2 and Corollary 2, which play key

roles in Lemma 3 and Lemma 4 below. To show Lemma 2, we need two Sublemmas (Sublemma
1 and Sublemma 2), which we state without proofs.

For each label a, we define a sequence O(a) of labelled formulas as follows;

1. O(1) = φ (the empty sequence);

2. O(A) = A : A if A is a formula;

3. O( l
√

bB⊗C) = l
√

bB⊗C :B, O( r
√

bB⊗C) = r
√

bB⊗C :C;

4. O(p1 · · · pn) = O(p1), . . . , O(pn) where each pi is a simple label.

Sublemma 1 Let b1 :Σ1, . . . , bn :Σn ∈ T ∗(!Γ, ∆). Then
(i) O(b1), . . . , O(bn) ∈ T ∗(!Γ, ∆);
(ii) !Γ, O(bi)−→∗!Γ, bi :Σi for each i.

Sublemma 2 Let b1, . . . , bn be labels occurring in T ∗(!Γ, ∆). If O(b1 • · · · • bn) ∈ T ∗(!Γ, ∆) then
!Γ, O(b1 • · · · • bn)−→∗!Γ, O(b1), . . . , O(bn).

Lemma 2 If bi : Σi ∈ T ∗(!Γ, ∆) for each 1 ≤ i ≤ n and b1 • · · · • bn : Π ∈ T ∗(!Γ, ∆), then
b1 :Σ1, · · · , bn :Σn ∈ T ∗(!Γ, ∆).

Proof. By Sublemma 1(i), O(b1 • · · · • bn) ∈ T ∗(!Γ, ∆), hence O(b1), . . . , O(bn) ∈ T ∗(!Γ, ∆) by
Sublemma 2. Since O(bi)−→∗bi :Σi by Sublemma 1(ii), it easily follows that b1 :Σ1, · · · , bn :Σn ∈
T ∗(!Γ, ∆).

Corollary 2 If each of a, b, c and a • b • c occurs in T ∗(!Γ, ∆), then a • b, b • c and a • c also occur
in T ∗(!Γ, ∆).

Proof. By definition a :Σ1 ∈ T ∗(!Γ, ∆), b :Σ2 ∈ T ∗(!Γ, ∆), c :Σ3 ∈ T ∗(!Γ, ∆) and a • b • c :Π ∈
T ∗(!Γ, ∆) for some Σ1, Σ2, Σ3 and Π. Hence by Lemma 2 a : Σ1, b : Σ2, c : Σ3 ∈ T ∗(!Γ, ∆). Then
Corollary 2 follows by definition.

Given T (!Γ, ∆) defined above, we construct a naive phase model M ≡ M(!Γ, ∆). In the sequel,
T stands for T (!Γ, ∆) and T ∗ stands for T ∗(!Γ, ∆).

M consists of a commutative monoid (also denoted by M) and an interpretation ∗ defined as
follows;
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• M = {a ∈ L|a occurs in T ∗} ∪ {√}, where
√

is a distinguished propositional variable not
occuring in T ∗.

We assume that 1 is always in M. Note that every a ∈ M is a label in normal form.

• For a, b ∈ M, a · b =
{

a • b if a • b occurs in T ∗;√
otherwise.

In particular, a · √ =
√

for any a ∈ M.

• For each α, α∗ = {b|b :α ∈ T ∗} ∪ {√}

Lemma 3 (M, ·, 1) is actually a commutative monoid.

Proof. Almost immediate. Only nontrivial is associativity (a ·b) ·c = a ·(b ·c). If a•b•c occurs in
T ∗, then by Corollary 2, a•b and b•c occur in T ∗. Hence (a ·b)·c = (a•b)•c = a•(b•c) = a ·(b ·c).
If a • b • c does not occur in T ∗, then (a · b) · c =

√
= a · (b · c).

Lemma 4 For any formula B, (i) if b :B ∈ T ∗, then b ∈ B∗, and (ii)
√ ∈ B∗.

Proof. (ii) is obvious. Here we only prove (i) by induction on the complexity of B.

(Case 1) B is an atomic formula. Immediate by definition.
(Case 2) B ≡ C ⊗ D.
Assume b : C ⊗ D ∈ T ∗. Then l

√
bC⊗D : C, r

√
bC⊗D : D ∈ T ∗. By induction hypothesis,

l
√

bC⊗D ∈ C∗ and r
√

bC⊗D ∈ D∗. Hence b = l
√

bC⊗D · r
√

bC⊗D ∈ C∗ ⊗ D∗.
(Case 3) B ≡ ⊗�α −◦ D, where �α = α1, . . . , αn.
Assume b :C −◦D ∈ T ∗. It suffices to show that for any c ∈ ⊗�α∗, c · b ∈ D∗. If c · b =

√
, then

by induction hypothesis (ii)
√ ∈ D∗. Hence we may assume that c • b occurs in T ∗. By definition,

c ∈ ⊗�α∗ means that there are labels c1, . . . , cn such that c1 • · · · • cn ≡ c and ci :αi ∈ T ∗ for each
ci. Hence by Lemma 2, !Γ0, c1 :α1, . . . , cn :αn, b :⊗�α −◦ D, d :Σ � is an assignment of a node of T
for some d :Σ. Hence,

!Γ0, c • b :D, d :Σ �
!Γ0, c1 :α1, . . . , cn :αn, b :⊗�α −◦ D, d :Σ �

Therefore c • b :D ∈ T ∗, and by induction hypothesis, c • b ∈ D∗.
(Case 4) B ≡ C&D. Obvious.

Finally we obtain;

Theorem 2 Let !Γ0, ∆0 be a process configuration of S1. Then �β is reachable from !Γ0, ∆0 if and
only if ∆∗

0 ⊆ �β∗ in every Γ0-model.

Proof. The only-if part is Proposition 2. To show the reverse, suppose that �β is not reachable
from !Γ0, ∆0. Let !Γ0 ≡!G1, . . . , !Gk, ∆0 ≡ D1, . . . , Dl and �β ≡ β1, . . . , βm.

By the above construction we get a proof search tree T 0 ≡ T (!Γ0, ∆0) and a naive phase model
M0 ≡ M(!Γ0, ∆0). We claim the following;

(1) M0 constructed above is a Γ0-model.

(2) In M0, label D1D2 · · ·Dl is in ∆∗
0.

(3) In M0, label D1D2 · · ·Dl is not in �β∗.

As for (1), 1 :Gi ∈ T ∗
0 for each !Gi in !Γ0. Hence by Lemma 4, 1 ∈ G∗

i . (2) also follows from
Lemma 4. As for (3), by assumption !Γ0, a : �β �∈ T 0, where a ≡ D1 · · ·Dl. Hence, it easily follows
by Lemma 2 that there are no labels a1, . . . , an such that ai ∈ β∗

i for each i and a1 • · · · • an ≡ a.
Therefore ∆∗

0 �⊆ �β∗ in a Γ0-model M0.
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§4 Algebraic Semantics Characterizing Trace Equivalence

§4.1 Trace Equivalence

In this Section we introduce the notion of trace equivalence (Hoare[Hoa80]) in our system of process
calculus, and give the characterization of the equivalence by means of model-theoretic semantics.

We introduce the system S2 in which implications are restrictied to the ones of the form α−◦B
and two inference rules that express observable actions are added. These observable actions are
not inference rules of linear logic, but it enables us to estimate observable effects of processes in a
precise manner. Then we define the notion of trace and trace equivalence on processes (or process
configurations) in system S2 in terms of these observable actions.

We also introduce the system S2 which has the infinitary & expressions. S2 can express, for
example, value passing between processes (See Example 2 in §2).

Trace equivalence is a simple and intuitive notion, but has certain shortcomings. Among
them, it is often pointed out (cf. van Glabbeek [vG90], Milner[Mil90]) that it identifies too
many processes, in particular it possibly identifies a deadlocking process with one that does not
deadlock. We shall briefly mention this point in Example 3(2). Nevertheless, trace equivalence
deserves careful analysis, because it can be seen as the basis for other equivalences finer than this
equivalence.

A relationship between the notion of trace and that of reachability is established in Proposi-
tion 3.

Definition 7 The language L(S2) of S2 is obtained by restricting L(S) so that if a formula in
L(S2) contains A −◦ B as subformula, then A is a propositional variable α.

S2 has the following two actions in addition. These are called observable actions, while the
actions described in §2 is called silent actions, since those actions are completely taken inside the
system, and an external observer outside the system cannot observe them.

• Input Action (α)
P, Γ �

α −◦ P, Γ � α

(Input action α gets a token α from the outside of the system. This action is understood to
be always possible no matter what the environment is.)

• Output Action (α)
Γ �

α, Γ � α

(Output action α throws away a token α to the outside of the environment.)

Of course, observable actions are not logical inference rules at all. The point of introducing
these actions is that it enables us to observe process behavior from the outside of the system, and
by means of these actions we can define the notion of trace eqivalence.

We also introduce system S2, which extends S2 with infinitary & described in §2 Example 2.

Definition 8 The language L(S2) is defined as follows;

1. if α ∈ P , then α ∈ L(S2);

2. if Ai ∈ L(S2), (i.e., Ai contains no &j∈J) for each i ∈ I, where I denotes an arbitrary index
set, then &i∈IAi ∈ L(S2);

3. if α ∈ P , A, B ∈ L(S2), then α −◦ A, A ⊗ B, A & B and !A are in L(S2).

S2 has the following inference rule in addition to those of S2;

Aj , Γ �
&i∈IAi, Γ �,
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where j ∈ I.

It is clear that S2 is a conservative extension of S2. All results stated below hold both for S2 and
for S2.

Let Act be {α|α ∈ P} ∪ {α|α ∈ P} and Act∗ be the set of all finite sequences over Act. In
particular, the empty sequence is in Act∗ and denoted by 1. For t ≡ p1 . . . pn ∈ Act∗, we define
len(t) = n. In the sequel, s, t, u, . . . range over Act∗.

Now the transition relation −→, defined in §2, is reformulated for the labelled transition relation
as follows;

Definition 9

• Γ
p−→ ∆ if

∆ �
Γ �

p

is an instance of an inference rule of S2 with p indicating the action name corresponding to
the inference.

• Γ−→∗∆ if Γ
p1−→ · · · pm−→ ∆ (possibly m = 0) where each pi is a silent action.

For each t ∈ Act∗, we define a binary relation t⇒ on process configurations by induction on
len(t), as follows;

• If len(t) = 0 then t ≡ 1. We define Γ 1⇒ ∆ by Γ−→∗∆;

• If t is of the form pt′, where p ∈ Act, then Γ t⇒ ∆ holds whenever there is a Γ′ such that

Γ−→∗ p−→ −→∗Γ′ t′⇒ ∆.

Let Γ be a process configuration of S2. If Γ t⇒ Γ′ for some Γ′, we say that t ∈ Act∗ is a trace
of Γ and write Γ t⇒. Define tr(Γ) = {t|Γ t⇒}. Then Γ and ∆ are said to be trace equivalent if
tr(Γ) = tr(∆).

Example 3 Consider the processes below;

(1) α −◦ β & α −◦ 1
α⇒ β

β⇒ ∅
α⇒ ∅

tr(α−◦β&α−◦1) = {1, α, αβ} = tr(α−◦β). Hence α−◦β&α−◦1 is trace equivalent to α−◦β.

(2) (!α) & α
α⇒ !α α⇒ !α α⇒ · · ·
α⇒ ∅

This process is trace equivalent to !α. This exemplifies a drawback of trace equivalence; (!α)&α
may deadlock whereas !α never deadlock, but they are taken to be the same if we adopt trace
equivalence.

(3)

tr(α ⊗ (β & γ)) = {1, α, αβ, αγ, β, βα, γ, γα}
= tr(α ⊗ β & α ⊗ γ).

Hence, α ⊗ (β & γ) is trace equivalent to α ⊗ β & α ⊗ γ.

Given t ∈ Act∗, let Inp(t) be the multiset {α|α ∈ t and α is an input action} and let Out(t)
be the multiset {α|α ∈ t and α is an output action}. The following Proposition shows the rela-
tionship between the notion of reachability and that of trace;

Proposition 3 If Γ t⇒!Ξ where !Ξ consists of modal formulas, then Out(t) is reachable from
Inp(t) under Γ. Conversely, if �β is reachable from �α under Γ, then there are t ∈ Act∗ and !Ξ,
such that Γ t⇒!Ξ, Inp(t) = �α and Out(t) = �β.
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§4.2 Trace Models

Our next purpose is to characterize trace equivalence by means of model-theoretic semantics.
To this end, we introduce an algebraic model, called a trace model, and show soundness and
completeness for trace equivalence with respect to the trace models.

Definition 10 A trace algebra < D,
∧

,1,⊗,−◦,A > consists of the following;

• A ⊆ D

• < D,
∧

,1 > is a complete meet semilattice with maximal element 1. We define a partial

order ≤ on D by p ≤ q
def⇔ p ∧ q = p.

• < D,⊗,1 > is a commutative monoid.

• −◦ : A×D −→ D. We write a −◦ p to denote −◦(a, p) (in the sequel we assume that a ∈ A
when we write a −◦ p).

• a ⊗ (a −◦ p) ≤ p, p ⊗ (a −◦ q) ≤ a −◦ (p ⊗ q).

• ⊗ distributes over
∧

, i.e.,
∧

i∈I q ⊗ pi = q ⊗
∧

i∈I pi.

• −◦ distributes over
∧

, i.e.,
∧

i∈I a −◦ pi = a −◦
∧

i∈I pi

• The expansion law (cf. Milner[Mil89][Mil90]) holds, i.e., (a−◦ p)⊗ (b −◦ q) = a−◦ (p⊗ (b −◦
q)) ∧ b −◦ ((a −◦ p) ⊗ q).

In a trace algebra bang operator ! is defined by !p =
∧

i∈N pi, where N is the set of natural
numbers and pi denotes p ⊗ · · · ⊗ p︸ ︷︷ ︸

i times

.

The following are easily derived in a trace algebra.

• If p ≤ q then r ⊗ p ≤ r ⊗ q and a −◦ p ≤ a −◦ q.

• p ⊗ q ≤ p.

• !p ≤ p, !p⊗!p =!p. If !p ≤ q then !p ≤!q.

• !(p ∧ q) =!p⊗!q.

Definition 11 A trace model is a trace algebra with an interpretation * which maps α ∈ P into
α∗ ∈ A(⊆ D). In a trace model, nonatomic formulas and process configurations are interpreted
as follows;

• (A ⊗ B)∗ = A∗ ⊗ B∗;

• (α −◦ B)∗ = α∗ −◦ B∗;

• (A & B)∗ = A∗ ∧ B∗; (&i∈IAi)∗ =
∧

i∈I A∗
i ;

• (!A)∗ =!(A∗);

• (A1, . . . , An)∗ = A1 ⊗ · · · ⊗ An, in particular the empty process configuration is interpreted
by 1.

Remark that !A has the same interpretation as &i∈NAi. This reflects the syntactic observation
that tr(!A) = tr(&i∈NAi) (cf. Lemma 6).

The trace models characterize trace equivalence, in the form of completeness theorem below;

Theorem 3 tr(A) = tr(B) if and only if A∗ = B∗ in every trace model.

We prove the “only-if” part (soundness) in §4.3 (Corollary 3) and the “if” part (completeness)
in §4.4 (Corollary 4).
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§4.3 Soundness of Trace Models

Through this subsection we fix a trace model D =< D,
∧

,1,⊗,−◦,A >. We cannot use the usual
induction on the length of proof to show the soundness of trace models, since we deal with possibly
infinite proof constructions that do not reach any axiom. Instead, the proof below proceeds as
follows;

1. Assign [t] ∈ D to each t ∈ Act∗;

2. Define the observation value of A by
∧

A
t⇒[t];

3. Show that [A] = A∗ for any A ∈ L(S2).

Soundness easily follows from 3. It should be noted that A∗ above is the interpretation of A
inductively defined along Definition 11, while [A] is completely determined by the traces of A; to
determine [A], one does not have to know what A exactly is. It is sufficient to know its observable
behavior, i.e., its traces.

First we inductively define a ternary relation � ◦ ⊆ Act∗ × Act∗ × Act∗ as follows;

• 1 � 1 ◦ 1.

• If u � s ◦ t, then αu � αs ◦ t, αu � s ◦ αt, u � αs ◦ αt, and u � αs ◦ αt for any α.

Then we define F (s, t) ⊆ Act∗ by F (s, t) = {u ∈ Act∗|u � s ◦ t}.

Lemma 5 Γ, ∆ u⇒ if and only if u ∈ F (s, t), Γ s⇒ and ∆ t⇒ for some s, t.

Proof. “If” part: By induction on the generation of u � s ◦ t. We treat only the case when

u′ � αs′ ◦ αt′ is derived from u′ � s′ ◦ t′, Γ αs′
⇒ and ∆ αt′⇒. Then there are some Γ′ and ∆′ such

that Γ, ∆−→∗Γ′, ∆′ and Γ′ s′
⇒ and ∆′ t′⇒ hold. By induction hypothesis, Γ′, ∆′ u′

⇒ holds, therefore

Γ, ∆−→∗Γ′, ∆′ u′
⇒ holds.

“Only-if” part: Γ, ∆ u⇒ means that there is a finite transition sequence

Γ, ∆ ≡ Γ0, ∆0
p1−→ Γ1, ∆1

p2−→ · · · pn−→ Γn, ∆n

and Γ0, ∆0
u⇒ Γn, ∆n holds, where for each 1 ≤ i ≤ n one of the following holds;

(1) Γi−1
pi−→ Γi and ∆i−1 ≡ ∆i;

(2) Γi−1 ≡ Γi and ∆i−1
pi−→ ∆i;

(3) Γi−1 �≡ Γi and ∆i−1 �≡ ∆i.

We define si ∈ Act∗ and ti ∈ Act∗ by induction on i. If i = 0, then si ≡ ti ≡ 1.
When (1) holds for i ≥ 1, then ti ≡ ti−1. If pi is an observable action, then si ≡ si−1pi;

otherwise si ≡ si−1.
When (2) holds for i ≥ 1, similar to the previous case.
When (3) holds for i ≥ 1, then pi must be a receiving action, and either

(3a) Γi−1
α−→ Γi and ∆i−1

α−→ ∆ holds for some α, or
(3b) Γi−1

α−→ Γi and ∆i−1
α−→ ∆ holds for some α.

If (3a) is the case, then si ≡ si−1α and ti ≡ ti−1α. If (3b) is the case, then si ≡ si−1α and
ti ≡ ti−1α.

By the above construction, we see that u ∈ F (sn, tn), Γ sn⇒ and ∆ tn⇒.

Lemma 6 !A u⇒ if and only if An u⇒ for some n ∈ N .

Proof. Obvious.

Remark: This lemma shows that, in S2, our bang !A is equivalent to &i∈NAn up to traces.
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Definition 12 For t ∈ Act∗, we define [t] ∈ D as follows;

• [1] = 1(∈ D);

• [αt] = α∗ ⊗ [t];

• [αt] = α∗ −◦ [t].

The observation value of A is defined by

• [A] =
∧

A
t⇒[t].

Lemma 7
∧

u∈F (s,t)[u] = [s] ⊗ [t].

Proof. By induction on len(s) + len(t). Since other cases are similar, we only treat the case
when s is of the form αs′ and t is of the form αt′.∧

u∈F (αs′,αt′)

[u] =
∧

u′∈F (s′,αt′)

[αu′] ∧
∧

u′∈F (αs′,t′)

[αu′] ∧
∧

u′∈F (s′,t′)

[u′]

=
∧

u′∈F (s′,αt′)

α −◦ [u′] ∧
∧

u′∈F (αs′,t′)

α ⊗ [u′] ∧
∧

u′∈F (s′,t′)

[u′]

= α −◦
∧

u′∈F (s′,αt′)

[u′] ∧ α ⊗
∧

u′∈F (αs′,t′)

[u′] ∧
∧

u′∈F (s′,t′)

[u′]

= α −◦ ([s′] ⊗ [αt′]) ∧ α ⊗ ([αs′] ⊗ [t′]) ∧ ([s′] ⊗ [t′])
= α −◦ ([s′] ⊗ (α ⊗ [t′])) ∧ α ⊗ ((α −◦ [s′]) ⊗ [t′]) ∧ ([s′] ⊗ [t′])
= α ⊗ ((α −◦ [s′]) ⊗ [t′])
= [αs′] ⊗ [αt′].

The expansion law is needed in the case when s is of the form αs′ and t is of the form βt′.

Lemma 8 [Pn] = [P ]n.

Proof. Obvious.

Now we obtain the main proposition with the help of the above Lemmas.

Proposition 4 In every trace model, [A] = A∗.

Proof. By induction on the complexity of A.
Case 1) A is a propositional variable. Obvious.
Case 2) A is of the form B ⊗ C.

[B ⊗ C] =
∧

B⊗C
u⇒[u] =

∧
B,C

u⇒[u] =
∧

B
s⇒

∧
C

t⇒
∧

u∈F (s,t)[u] (by Lemma 5)
=

∧
B

s⇒
∧

C
t⇒[s] ⊗ [t] (by Lemma 7)

=
∧

B
s⇒[s] ⊗

∧
C

t⇒[t]
= [B] ⊗ [C] = B∗ ⊗ C∗ (by induction hypothesis)

Case 3) A is of the form !B. By Lemma 6 and Lemma 8.
Case 4) A is of the form B & C. Obvious.

Soundness is almost immediate if we take into consideration that the observation value of a
formula is completely determined by its traces.

Corollary 3 (Soundness) If tr(A) = tr(B) then A∗ = B∗ in every trace model.
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§4.4 Completeness of Trace Models

The proof of completeness employs the usual canonical model construction for (phase semantic)
completeness proof (cf. Okada[Oka96b]). We construct a syntactic (canonical) model of S2 in
which Γ ∈ A∗ implies tr(Γ) ⊇ tr(A) (Proposition 5). Then the completeness (Corollary 4) directly
follows. It is trivial that for any formulas A in L(S2), tr(A) in system S2 is equivalent to tr(A) in
system S2, hence we have the completeness for S2 at the same time.

For each t ∈ Act∗, we define t̃ ∈ L(S2) as follows;

• 1̃ = 1(∈ L(S2));

• α̃t = α ⊗ t̃;

• α̃t = α −◦ t̃.

We define a phase space-like structure M as follows;

• Let M be the free commutative monoid generated by all formulas in L(S2).

• For each t ∈ Act∗, define [[t]] = {Γ|Γ t⇒}, and for each A ∈ L(S2), [[A]] =
⋂

A
t⇒[[t]].

• D is defined in such a way that X ∈ D if and only if X is of the form
⋂

i∈Λ[[ti]] where
ti ∈ Act∗ for each i ∈ Λ. Then clearly [[A]] ∈ D for any A ∈ L(S2).

• A = {[[α]]|α ∈ P}.

It is easily seen that [[A]] = {Γ|tr(Γ) ⊇ tr(A)} and [[t̃]] = [[t]]. Moreover, we observe that

(
) for any X ∈ D, if Γ ∈ X and tr(∆) ⊇ tr(Γ) then ∆ ∈ X .

On this structure, we can define phase-semantic operations & and ⊗ as in §3.1; let X ⊆ M,
Y ⊆ M, then

• X & Y = X ∩ Y ; &i∈IXi =
⋂

i∈I Xi;

• X ⊗ Y = (XY )C =
⋂
{[[t]]|XY ⊆ [[t]]}, where XY = {Γ, ∆|Γ ∈ X, ∆ ∈ Y }.

The interpretation of −◦ is modified; let X ∈ A and Y ⊆ M, then X is of the form [[α]] (such an
α is uniquely determined), and we define

• [[α]] −◦ Y =
⋂
{[[αt]]|Y ⊆ [[t]]}.

!X is defined by
⋂

i∈N X i for each X ⊆ M. 1 = [[1]] = {Γ|Γ 1⇒} = M. Finally we define an
interpretation * by α∗ = [[α]] for each α ∈ P . It is obvious that A∗ ∈ D for each A ∈ L(S2).

Then we show the following;

Proposition 5 (i) D ≡< D,
⋂

,1,⊗,−◦,A > and * defined above form a trace model.
(ii) For every formula A ∈ L(S2), A ∈ A∗ ⊆ [[A]].

From this, the completeness easily follows;

Corollary 4 (Completeness) If A∗ = B∗ in every trace model, then tr(A) = tr(B).

Proof of Completeness. By Proposition 5(i), A∗ = B∗ holds in D defined above. By Proposi-
tion 5(ii), A ∈ A∗, hence A ∈ B∗, which in turn implies A ∈ [[B]] by Proposition 5(ii), that means
tr(A) ⊇ tr(B). tr(A) ⊆ tr(B) is shown similarly.

Proof of Proposition 5. First we show (ii) by induction on the complexity of A.
(Case 1) A is a propositional vairable. By definition.

19



(Case 2) A is of the form α −◦ B. First we prove that α −◦ B ∈ (α −◦ B)∗ = [[α]] −◦ B∗ =⋂
{[[αt]]|B∗ ⊆ [[t]]}. It suffices to show that α −◦ B ∈ [[αt]] for each t such that B∗ ⊆ [[t]]. Since

B ∈ B∗ by induction hypothesis, B ∈ [[t]], that means B
t⇒. Hence α −◦ B

αt⇒. Therefore
α −◦ B ∈ [[αt]].

To prove (α−◦B)∗ ⊆ [[α−◦B]], assume Γ ∈ (α−◦B)∗. Then Γ ∈ [[αt]] for any [[t]] ⊇ B∗. In par-
ticular, Γ ∈ [[αt]] for any [[t]] ⊇ [[B]], since B∗ ⊆ [[B]] by induction hypothesis. Therefore, Γ ∈ [[αt]]
for any B

t⇒. Then it follows that Γ ∈ [[α −◦ B]] because [[α −◦ B]] =
⋂

α−◦B
u⇒[[u]] =

⋂
B

t⇒[[αt]].

(Case 3) A is of the form B ⊗ C. By induction hypothesis, B ∈ B∗ and C ∈ C∗. Hence
B, C ∈ B∗C∗. It is immediate that B ⊗ C ∈ (B∗C∗)C = B∗ ⊗ C∗ by tr(B, C) = tr(B ⊗ C) and
(
).

On the other hand, B∗C∗ ⊆ [[B]][[C]], since B∗ ⊆ [[B]] and C∗ ⊆ [[C]] by induction hypothesis.
[[B]][[C]] ⊆ [[B ⊗ C]] is shown by the observation that if tr(Γ) ⊇ tr(B) and tr(∆) ⊇ tr(C), then
tr(Γ, ∆) ⊇ tr(B, C) = tr(B ⊗ C). Finally we infer B∗ ⊗ C∗ ⊆ [[B ⊗ C]] from B∗C∗ ⊆ [[B ⊗ C]].

(Case 4) A is of the form B & C. This is a special case of (Case 6) below.
(Case 5) A is of the form !B. By induction hypothesis, B ∈ B∗. Since tr(!B) ⊇ tr(B), !B ∈ B∗.

Hence we see that

!B, . . . , !B︸ ︷︷ ︸
n times

∈ B∗ ⊗ · · · ⊗ B∗︸ ︷︷ ︸
n times

for each n ∈ N . On the other hand, it can be easily shown that tr(!B) = tr(!B, . . . , !B︸ ︷︷ ︸
n times

). Therefore,

by (
), !B ∈ (B∗)n for each n, thus !B ∈!B∗.
To show !B∗ =

⋂
n∈N B∗n ⊆ [[!B]] =

⋂
!B

t⇒[[t]], suppose Γ ∈
⋂

n∈N B∗n and !B t⇒. Then, using
induction hypothesis, we can prove that Γ ∈ [[Bn]] for each n. On the other hand, by Lemma 6,
!B t⇒ if and only if Bn t⇒ for some n ∈ N . Hence Γ ∈ [[t]] and we conclude !B∗ ⊆ [[!B]].

(Case 6) A is of the form &i∈IBi. By induction hypothesis, Bi ∈ B∗
i for each i ∈ I. Since

tr(&i∈IBi) ⊇ tr(Bi), we see by (
) that &i∈IBi ∈ B∗
i for each i ∈ I. Therefore, &i∈IBi ∈

⋂
i∈I B∗

i .
&i∈IB

∗
i ⊆ [[&i∈IBi]] is almost immediate from induction hypothesis.

Now let us show (i). First note that we can obtain stronger result than (i); A∗ = [[A]] holds for
each A ∈ L(S2). Suppose Γ ∈ [[A]], then tr(Γ) ⊇ tr(A). By (i) and (
) we obtain that Γ ∈ A∗.

Here we only show the expansion law and the distribution law between ⊗ and
⋂

. The other
laws are shown similary. Note that each element in A is of the form [[α]] and each element in D is
of the form

⋂
i∈I [[ti]] =

⋂
i∈I [[t̃i]]. The expansion law is proved as follows;

([[α]] −◦
⋂

i∈I [[ti]]) ⊗ ([[β]] −◦
⋂

j∈J [[sj ]]) = [[(α −◦ &i∈I t̃i) ⊗ (β −◦ &j∈J s̃j)]]
= [[α −◦ (&i∈I t̃i ⊗ (β −◦ &j∈J s̃j)) & β −◦ ((α −◦ &i∈I t̃i) ⊗ &j∈J s̃j)]] (∗)
= [[α]] −◦ (

⋂
i∈I [[ti]] ⊗ ([[β]] −◦

⋂
j∈J [[sj ]])) ∩ [[β]] −◦ (([[α]] −◦

⋂
i∈I [[ti]]) ⊗

⋂
j∈J [[sj ]])

In the above, (*) is due to the observation that

tr((α −◦ B) ⊗ (β −◦ C)) = tr(α −◦ (B ⊗ (β −◦ C)) & β −◦ ((α −◦ B) ⊗ C)).

The distribution law is shown as follows;⋂
k∈K

(
⋂
i∈I

[[ti]] ⊗
⋂
j∈J

[[skj ]]) =
⋂

k∈K

([[&i∈I t̃i ⊗ &j∈J s̃kj ]])

= [[&i∈I t̃i ⊗ &(k,j)∈K×J s̃kj ]] (∗∗)

=
⋂
i∈I

[[ti]] ⊗
⋂

k∈K

⋂
j∈J

[[skj ]]

For (**), observe that
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⋃
k∈K tr(&i∈I t̃i ⊗ &j∈J s̃kj) = tr(&i∈I t̃i ⊗ &(k,j)∈K×J s̃kj).

This completes the proof of Proposition 5.

§5 Conclusion and Future Works

So far we have seen how traditional logical analyses, especially model-theoretic semantics, con-
tribute to characterize new notions from the discipline of process calculi.

We have obtained a simple semantics characterizing the reachability. One interesting point
can be found in the completeness proof of naive phase semantics in §3.3. Our naive phase model
construction for the completeness proof gives each process configuration Γ a naive phase model
M(Γ) that directly represents the precondition structure in the computation starting from Γ; in
M(Γ), a ∈ A∗ holds whenever a is a precondition of A. We also considered splitted preconditions
of the form l

√
bB, which represents a half of precondition b of B. It is the use of these splitted

preconditions that allows us to drop the closure condition and obtain the completeness with respect
to the naive phase models. This model construction suggests that our naive phase models provide
somewhat direct interpretation of processes. A further study is needed to clarify this point.

The second part of this paper is an attempt to apply the traditional model-theoretic tech-
nique to characterization of the new equivalence notions of processes that come from the theory
of process calculi. Trace equivalence, which we have characterized by trace models in §4, is
so coarse that it would be of little use in practice. Nevertheless, it is important as the basis
for further study on equivalences on processes/formulas; the notion of trace equivalence well-
captures a primitive intuition that processes/formulas should be identified on the ground of their
observable behavior. There is a wide range of equivalence notions naturally defined in terms
of process behavior, among which trace equivalence is not only the coarsest, but also the most
general in the sense that each equivalence can be seen as a refinement of trace equivalence (cf.
van Glabbeek[vG90], Milner[Mil90]). Therefore, it is expected, on the basis of our result in §4,
to obtain model-theoretic characterizations for finer equivalences than trace equivalence, such as
failure equivalence (Brookes,Hoare&Roscoe[BHR84]), simulation equivalence (cf. Park[Par81]) and
bisimulation equivalence (Milner[Mil83]).

Our system is too restricted to develop a full theory of process calculus. An important mech-
anism which our system lacks is the guarding. By guarding a process (or a process configuration)
with respect to some messages �α, we can inhibit communications of �α between the outside of the
scope of guarding operator and the inside of the scope. This, roughly, corresponds to the existen-
tial quantifier in terms of logic. However, incorporation of guarding mechanism will undoubtedly
complicate the situation around the notion of observation and observable actions. Hence it still
remains uncertain whether our results hold for richer fragments that include a kind of guarding
operator in syntax.

Besides, the first author introduced in [Oka93] the mobile linear logic to express mobile message
passing in a linear logic-based process calculus, corresponding to Milner’s extension of CCS to
π-calculus[MPW92], a mobile version and higher order mobile version of CCS. We leave these
invesigation on extended systems to future works.
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