On the use of phase semantics: to make sense out of nonsense

Kazushige Terui

terui@nii.ac.jp

National Institute of Informatics, Tokyo

23/05/2007, Roma Tre - p.1/5

What is phase semantics?

- A semantics complete for provability in Linear Logic (LL)
- Both for classical LL (Girard 87) and intuitionistic LL (Abrusci 90, Troelstra 92, Okada 96, etc.)
- Can be accommodated for all FL-systems (Ono 94)
- Sometimes considered as "abstract nonsense" (Girard) in the LL community
- Today we overview some uses of phase semantics.

Time Table

- Motivation (17.10 -)
- LL vs. Intuitionistic LL (17.17 -)
- Decidability and Finite Model Property (17.27 -)
- Cut Elimination (17.35 -)
- Criteria for Cut-Elimination (17.45 -)
- Interpolation and Amalgamation (17.52 -)
- Polarity and Focalization (18.00 -)
- Conclusion (18.10)

Why study phase semantics? (1)

- Phase semantics is
 - A useful tool to show various properties.
 - Source of inspiration.
 - Simple accounts for various phenomena.

Why study phase semantics? (1)

- Semantic cut-elimination (Okada 96)
- Undecidability of MALL2 (Lafont 96)
- Decidability of LL/ILL with weakening/contraction via finite model property (Lafont 96, Okada-Terui 99)
- Denotational completeness (Girard 98, Streicher ??, Ehrhard ??)
- Verification of concurrent constraint programs (Fages, Ruet, Soliman 98)
- Criteria for Cut-Elimination (Terui 07, Ciabattoni-Terui 06, 07)
- Interpolation/Amalgamation (Terui)
- Focalization

Why study phase semantics? (2)

- It models not only provability, but also counter-proofs.
- Counter-proofs: possibly infinite trees, defined dually to proofs, not reaching axioms. E.g.,

$$\frac{\vdash \alpha, \beta^{\perp}}{\vdash \alpha \& \beta, \beta^{\perp}} \vdash \alpha, \beta^{\perp} \\
\vdash (\alpha \& \beta) \oplus \alpha, \beta^{\perp} \\
\vdash (\alpha \& \beta) \oplus \alpha, \alpha^{\perp} \& \beta^{\perp}$$

Why study phase semantics? (3)

Fact: Any formula has either a proof or a counter-proof.

■ Theorem (Terui 98): To each counter-proof π of a formula A, one can associate a phase model π^{\bullet} such that $\pi^{\bullet} \not\models A$.

Why study phase semantics? (4)

- Similar to classical logic proofs, from the viewpoint of computational complexity.
- Classical logic provability: coNP-complete (Cook 71).
- MLL provability: NP-complete (Kanovitch 92).
- Syntax-semantics twist between CL and MLL:

Classical logic	MLL	
Proofs	\approx	Phase models
Boolean valuations	\approx	Proofs

Time Table

- Motivation (17.10 -)
- LL vs. Intuitionistic LL (17.17 -)
- Decidability and Finite Model Property (17.27 -)
- Cut Elimination (17.35 -)
- Criteria for Cut-Elimination (17.45 -)
- Interpolation and Amalgamation (17.52 -)
- Polarity and Focalization (18.00 -)
- Conclusion (18.10)

Intuitionistic LL is almost classical

- Intuitionistic connectives: $1, \perp, \top, 0, \otimes, -\circ, \oplus, \&, !$
- Conservativity Theorem (Schellinx 91): A propositional formula A of ILL without 0 and \perp is provable in ILL iff it is provable in LL.
- Should be contrasted with the CL/IL case. CL and IL are different even without negation and absurdity:

$$\mathsf{CL} \vdash \quad ((\alpha \to \beta) \to \alpha) \to \alpha \quad \not = | \mathsf{IL}$$

Syntactically, LL and ILL are almost equivalent. However, semantically, they look so different...

Phase semantics for LL

Classical phase space: (M, \perp) such that

- M: a commutative monoid
- $\bot \subseteq M$.

$$X^{\perp} = \{ y \in M \mid \forall x \in X (xy \in \bot) \}$$

- $X \subseteq M$ is closed if $X^{\perp \perp} = X$.
- Properties of ()^{⊥⊥}:

$$(\perp 1) \quad X \subseteq X^{\perp \perp},$$

$$(\perp 2) \quad X^{\perp \perp \perp \perp} \subseteq X^{\perp \perp},$$

$$(\perp 3) \quad X \subseteq Y \Longrightarrow X^{\perp \perp} \subseteq Y^{\perp \perp},$$

$$(\perp 4) \quad X^{\perp \perp} \bullet Y^{\perp \perp} \subseteq (X \bullet Y)^{\perp \perp}.$$

ILL

- What is ILL?
- Syntax suggests it is a restriction of LL.
- Phase semantics seems to suggest it is a generalization of LL.

Phase semantics for ILL (1)

• Intuitionistic phase space: (M, Cl) such that

- M: a commutative monoid
- $Cl: \mathscr{P}(M) \longrightarrow \mathscr{P}(M)$ (closure operator):

(Cl1)
$$X \subseteq Cl(X)$$
,
(Cl2) $Cl(Cl(X)) \subseteq Cl(X)$,
(Cl3) $X \subseteq Y \Longrightarrow Cl(X) \subseteq Cl(Y)$,
(Cl4) $Cl(X) \bullet Cl(Y) \subseteq Cl(X \bullet Y)$.

•
$$X \subseteq M$$
 is closed if $Cl(X) = X$.

Phase semantics for ILL (2)

- Intuitionistic phase model: intuitionistic phase space (M, Cl) with a valuation of atoms and \perp into the set of closed sets.
- Formulas interpreted by closed sets:

$$\mathbf{1}^{\bullet} = Cl(\{1\}) \quad \mathbf{0}^{\bullet} = Cl(\emptyset)$$

$$\top^{\bullet} = M \qquad \perp^{\bullet} = \text{ prescribed by valuation}$$

$$(A \otimes B)^{\bullet} = Cl(A^{\bullet} \cdot B^{\bullet})$$

$$(A \oplus B)^{\bullet} = Cl(A^{\bullet} \cup B^{\bullet})$$

$$(A \& B)^{\bullet} = A^{\bullet} \cap B^{\bullet}$$

$$(A \multimap B)^{\bullet} = \{y \in M \mid \forall x \in A^{\bullet}(xy \in B^{\bullet})\}$$

$$(!A)^{\bullet} = Cl(A \cap \{x \in \mathbf{1} \mid xx = x\})$$

Phase semantics for ILL (3)

- A formula A is satisfied in (M, Cl, \bullet) if $1 \in A^{\bullet}$.
- Completeness Theorem: A formula of ILL is provable iff it is satisfied in every intuitionistic phase model.
- Trouble: Intuitionistic phase semantics requires of a second-order closure operator even for propositional ILL!

Concrete closure operators

• (Abrusci 90): For some presupposed set $\mathscr{B} \subseteq \mathscr{P}(M)$,

$$Cl(X) = \bigcap_{Y \in \mathscr{B}} (X \multimap Y) \multimap Y.$$

(Okada 96): For some set $\mathscr{C} \subseteq \mathscr{P}(M)$ closed under intersection and implication,

$$Cl(X) = \bigcap_{Y \in \mathscr{C}, X \subseteq Y} Y.$$

- Again second-order!
- Question: Is it possible to give a first-order definition to intuitionistic phase semantics?

Subspaces

(M_I, Cl) is a subspace of a classical phase space (M_C, \perp) if

$$M_I \subseteq M_C$$

 $Cl(X) = X^{\perp \perp} \cap M_I$, for $X \subseteq M_I$.

Theorem: Every subspace of a classical phase space is an intuitionistic phase space.

Proof:

$$\begin{array}{rcl} X^{\perp \perp} \cdot Y^{\perp \perp} & \subseteq & (X \cdot Y)^{\perp \perp} \\ & & M_I \bullet M_I & \subseteq & M_I \\ (X^{\perp \perp} \cap M_I) \bullet (Y^{\perp \perp} \cap M) & \subseteq & (X \bullet Y)^{\perp \perp} \cap M \end{array}$$

Question: What about the converse?

Subspaces

- Theorem: Every intuitionistic phase space is a subspace of a classical phase space.
- **Proof:** Given (M, Cl), define (M_C, \bot) by:

 $M_C = \{(x, \Phi) \mid x \in M, \ \Phi: \text{ a multiset of } Cl\text{-closed sets} \}$ $(x, \Phi) \cdot (y, \Psi) = (x \cdot y, \Phi \uplus \Psi)$ $\mathbf{0}_C = \{(x, \Phi) \mid x \in \mathbf{0}, \Phi: \text{ arbitrary} \}$ $\perp = \{(x, \{X\}) \mid X: \text{closed set in } (M, Cl), \ x \in X\} \cup \mathbf{0}_C$

- Original (M, Cl) is identified with $\{(x, \emptyset) \mid x \in M\} \subseteq M_C$.
- Remark: In general, M_C is uncountable. However, it can be made countable when the original (M, Cl) has a countable basis.

Syntactic embedding of ILL into LL (1)

- Recall Schellinx' Theorem: A propositional formula A of ILL without 0 and \perp is provable in ILL iff it is provable in LL.
- It fails in the presence of 0 or \perp :

$$\begin{array}{cccc} \mathsf{LL} \vdash & \alpha^{\perp \perp} \multimap \alpha & \not \neq | \ \mathsf{ILL} \\ \mathsf{LL} \vdash & (\top \multimap \mathbf{1}) \multimap \alpha^{\mathbf{00}} \multimap \alpha & \not \neq | \ \mathsf{ILL} \end{array}$$

- We need to translate ILL formulas into LL formulas.
- Idea: ILL is a "submonoid-restriction" of LL.

Syntactic embedding of ILL into LL (2)

Fix a propositional variable *M*. Define

 $Monoid(M) \equiv !(1 \multimap M) \otimes !(M \otimes M \multimap M)$

J Lemma: $(\bullet) \& M$ is an S4-modality for LL.

Syntactic embedding of ILL into LL (2)

Define an embedding $^{\circ}$: *ILL* \longrightarrow *LL*:

q°	:=	q&M,	for a propositional variable q
c°	:=	c&M,	for $c \in \{\top, \bot\}$
d°	:=	d,	for $d \in \{1, 0\}$
$(A \multimap B)^\circ$:=	$(A^{\circ} \multimap B^{\circ})$ & M	
$(A \star B)^{\circ}$:=	$A^{\circ}\star B^{\circ},$	for $\star \in \{\otimes, \&, \oplus\}$
$(!A)^{\circ}$:=	$!A^{\circ}.$	

- Theorem: *A* is provable in ILL iff $Monoid(M) \circ A^\circ$ is provable in LL.
- Remark: Linear analogue of Gödel's translation of IL into S4.
 However, our modality (•) & M is definable in terms of LL
 23/05/2007, Roma Tre p.21/5

Morals

- Intuitionistic phase spaces = subspaces of classical phase spaces
- Reduction of second-order to first-order
- ILL is a submonoid restriction of LL, both semantically and syntactically.

Time Table

- Motivation (17.10 -)
- LL vs. Intuitionistic LL (17.17 -)
- Decidability and Finite Model Property (17.27 -)
- Cut Elimination (17.35 -)
- Criteria for Cut-Elimination (17.45 -)
- Interpolation and Amalgamation (17.52 -)
- Polarity and Focalization (18.00 -)
- Conclusion (18.10)

Decidability and FMP

- MALL is decidable, since proof search trees are always finite.
- MALL also satisfies the finite model property (FMP).
- Idea: To each finite counter-proof π of a formula *A*, one can associate a finite phase model π^{\bullet} such that $\pi^{\bullet} \not\models A$.
- LL is undecidable, since proof search encodes machine computation (Kanovitch, Lafont).

Quiz

- What about the decidability/FMP of:
 - 1. LL + W?
 - 2. LL + C?
 - 3. LL + W + C?
 - 4. LL E?
 - 5. LL E + W?
 - 6. LL E + C?
 - 7. LL E + W + C?

Answers

- What about the decidability/FMP of:
 - 1. LL + W? yes (Kopylov)
 - 2. LL + C? yes (Okada-Terui)
 - 3. LL + W + C? yes (=IS4)
 - 4. LL E? yes (Lafont)
 - 5. LL E + W? yes (Lafont)
 - 6. LL E + C? open
 - 7. LL E + W + C? yes (=IS4)
- Except 6, phase semantics provides a simple, unified proof.

Decidability of LL +C

(Kripke's argument) Define a partial order \leq on sequents:

$$dash \Gamma, \Sigma \quad \leq \quad dash \Gamma, \Sigma, \Sigma$$

Design a sequent calculus for LL+C such that:

If $S_1 \leq S_2$ and S_2 has a proof, then S_1 has a shorter (or equivalent length) proof.

$$\frac{\vdash \Gamma, \Sigma, (A \otimes B), A \quad \vdash \Delta, \Sigma, (A \otimes B), B}{\vdash \Gamma, \Delta, \Sigma, A \otimes B}$$

Deserve: \leq admits no infinite anti-chain

$$S_1 \not\leq S_2 \not\leq S_3 \not\leq \ldots$$

Proof search tree is finite!

Phase semantics for decidability

Phase spaces admit quotientation by logical congruence (Lafont)

Syntactic model (validity = provability)

Finite model (validity = provability)

Decidability/FMP of MALL –E + C is still open.

Time Table

- Motivation (17.10 -)
- LL vs. Intuitionistic LL (17.17 -)
- Decidability and Finite Model Property (17.27 -)
- Cut Elimination (17.35 -)
- Criteria for Cut-Elimination (17.45 -)
- Interpolation and Amalgamation (17.52 -)
- Polarity and Focalization (18.00 -)
- Conclusion (18.10)

- (Okada 92,96) builds an (intuitionistic) phase space in which validity implies cut-free provability.
- \mathscr{F}^* : free monoid generated by the formulas \mathscr{F} of ILL
- The closure operator $Cl: \mathcal{O}(\mathscr{F}^*) \longrightarrow \mathcal{O}(\mathscr{F}^*)$ defined by:

 $\begin{bmatrix} \Gamma \Rightarrow C \end{bmatrix} = \{\Sigma \mid \Sigma, \Gamma \Rightarrow C \text{ is cut-free provable in ILL}\},\$ *Y* is closed $\Leftrightarrow Y = \bigcap_{i \in \Lambda} \llbracket \Gamma_i \Rightarrow C_i \rrbracket$ Cl(X) = the minimal closed set that includes X

Meaning of closure operator:

 $\Sigma \in Cl(\{\Lambda\}) \iff$ Whenever $\Gamma, \Lambda, \Delta \Rightarrow C$ is cut-free derivable, so is $\Gamma, \Sigma, \Delta \Rightarrow C$.

• Define $\alpha^{\bullet} = [\![\alpha]\!]$.

Okada's Lemma: For every formula A,

$$A \in A^{\bullet} \subseteq \llbracket A \rrbracket.$$

In particular, if A is satisfied, then

 $1 \in A^{\bullet} \subseteq \llbracket A \rrbracket.$

I.e., $\Rightarrow A$ is cut-free provable.

- Use left logical rules to show $A \in A^{\bullet}$.
- Use right logical rules to show $A^{\bullet} \subseteq [[A]]$.

Cut-elimination theorem: obtained by composition with soundness:

$$\frac{\vdash A \xrightarrow{\text{sound}} \vdash A \xrightarrow{\text{complete}}}{\vdash A \xrightarrow{} \vdash_{cut-free} A}$$

- Object-CUTs are replaced with META-CUTs.
- Question: what happens if we eliminate META-CUTs?

Algebraic perspective on cut-elimination

- Residuated lattices: algebras associated to (noncommutative) IMALL.
- One can consider its intransitive variant.
- Algebraic understanding of cut-elimination: For any intransitive residuated lattice A, there exists a (transitive) residuated lattice A⁺ and a surjective homomorphism

$$f: \mathbf{A}^+ \longrightarrow \mathbf{A}$$

Intuition:

- \mathbf{A} = cut-free proof system
- A^+ = Okada's phase space
- Cut-Elimination = Algebraic Completion

Time Table

- Motivation (17.10 -)
- LL vs. Intuitionistic LL (17.17 -)
- Decidability and Finite Model Property (17.27 -)
- Cut Elimination (17.35 -)
- Criteria for Cut-Elimination (17.45 -)
- Interpolation and Amalgamation (17.52 -)
- Polarity and Focalization (18.00 -)
- Conclusion (18.10)

When do you have cut-elimination?

- Cut-elimination holds when ILL is entended with a natural structural rule:
 - Contraction: $A \multimap A \otimes A$
- It fails when extended with an unnatural one:
 - Broccoli: $A \otimes A \multimap A$ $\frac{A, \Gamma \Rightarrow C}{A, A, \Gamma \Rightarrow C}$
- Broccoli is equivalent to Mingle: $A \otimes B \multimap A \oplus B$, which admits cut-elimination:

$$\frac{\Gamma, \Sigma_1, \Delta \Rightarrow C \quad \Gamma, \Sigma_2, \Delta \Rightarrow C}{\Gamma, \Sigma_1, \Sigma_2, \Delta \Rightarrow C}$$

What is the general principle?

Broccoli and Mingle

Broccoli does not admit cut elimination:

$$\frac{\overline{\beta \Rightarrow \beta}}{\underline{\beta \Rightarrow \alpha \lor \beta}} \quad \frac{\overline{\alpha \Rightarrow \alpha}}{\underline{\alpha \Rightarrow \alpha \lor \beta}} \quad \frac{\overline{\alpha \lor \beta \Rightarrow \alpha \lor \beta}}{\alpha \lor \beta, \alpha \lor \beta \Rightarrow \alpha \lor \beta} \quad Exp$$

$$Cut$$

$$\alpha, \beta \Rightarrow \alpha \lor \beta$$

$$Cut$$

When Broccoli is replaced with Mingle, the above cut can be eliminated:

$$\frac{\overline{\alpha \Rightarrow \alpha}}{\alpha \Rightarrow \alpha \lor \beta} \quad \frac{\overline{\beta \Rightarrow \beta}}{\beta \Rightarrow \alpha \lor \beta}$$

$$\frac{\overline{\alpha \Rightarrow \alpha \lor \beta}}{\alpha, \beta \Rightarrow \alpha \lor \beta} \quad Min$$

Girard's test

Girard's test for naturality of structural rules (Meaning I, 1999).

 A logical principle (structural rule) passes Girard's test if, in every phase space (M,⊥), it propagates from atomic facts {x}^{⊥⊥} to all facts X^{⊥⊥}.

Contraction and Mingle pass it:

$$\forall x \in M. \{x\}^{\perp \perp} \multimap \{x \cdot x\}^{\perp \perp} \implies \forall X: \text{ fact } (X \multimap X \otimes X).$$

Broccoli fails:

 $\forall x \in M. \{x \cdot x\}^{\perp \perp} \multimap \{x\}^{\perp \perp} \not \longrightarrow \forall X: \text{ fact } (X \otimes X \multimap X).$

Relationship with cut elimination is hinted, but not proved.

Structural rules in general

(Additive) structural rules:

$$\frac{\Gamma, \vec{X}_1, \Delta \Rightarrow C \quad \cdots \quad \Gamma, \vec{X}_n, \Delta \Rightarrow C}{\Gamma, \vec{X}_0, \Delta \Rightarrow C} R$$

such that $\{\vec{X}_1, \ldots, \vec{X}_n\} \subseteq \{\vec{X}_0\}$.

Correctness of Girard's test

- Cut elimination implies Girard's test.
- Build a phase space $\mathbf{P}(R) = (\mathscr{F}^*, Cl)$ based on:

 $[[\Gamma \Rightarrow C]] = \{\Sigma \mid \Sigma, \Gamma \Rightarrow C \text{ is cut-free provable in ILL+R} \}$

- *R* holds on atomic facts $Cl({A})$.
- We want to argue

$$\begin{array}{ccc} \vdash A \xrightarrow{\mathsf{sound}} MODEL(ILL+R) \models A & \mathbf{P}(R) \models A \xrightarrow{\mathsf{complete}} & \vdash_{cut-free} A \\ & \vdash A \longrightarrow \vdash_{cut-free} A \end{array}$$

It works only when $P(R) \in MODEL(ILL+R)$, i.e. *R* passes Girard's test.

Correctness of Girard's test

- Theorem: For any structural rule R, IMALL+R admits cut-elimination iff R passes Girard's test.
- See (Terui 07) for more general results.
- (Ciabattoni-Terui 06) gives CE-criteria for logics with arbitrary (strange) connectives.

Time Table

- Motivation (17.10 -)
- LL vs. Intuitionistic LL (17.17 -)
- Decidability and Finite Model Property (17.27 -)
- Cut Elimination (17.35 -)
- Criteria for Cut-Elimination (17.45 -)
- Interpolation and Amalgamation (17.52 -)
- Polarity and Focalization (18.00 -)
- Conclusion (18.10)

Intermezzo: 短歌

● 瀬をはやみ 岩にせかるる 滝川の

われてもすえに あはんとぞおもふ

崇徳院 (1119-1164)

Intermezzo: 短歌

● 瀬をはやみ 岩にせかるる 滝川の

われてもすえに あはんとぞおもふ

崇徳院 (1119-1164)

The stream goes down a mountain rapidly Even if it runs into a rock And is forced to divide into two They will join together in the end.

Sutoku-in (1119 – 1164)

- $\mathscr{F}(X)$: formulas over variables $\alpha, \beta, \dots \in X$.
- Craig interpolation property: Suppose *A* ∈ 𝔅(*X*) and
 B ∈ 𝔅(*Y*). If *A* → 𝔅 is provable, then there is *I* ∈ 𝔅(*X* ∩ *Y*) such
 that

$$A \multimap I \qquad I \multimap B$$

are provable.

- True for most natural logics including LL and ILL.
- Open for NCILL.

Residuated lattices

A residuated lattice is an algebra

$$\mathbf{P} = \langle P, \wedge, \vee, \otimes, \rightarrow, \leftarrow, 1 \rangle$$

where

- 1. $\langle P, \wedge, \vee \rangle$ is a lattice.
- 2. $\langle P, \otimes, 1 \rangle$ is a monoid.
- 3. For any $x, y, z \in P$,

$$x \otimes y \leq z \iff x \leq z \rightarrow y \iff y \leq x \leftarrow z.$$

- NCIMALL : Residuated lattices = IL : Heyting algebras
- For any substructural logic L over NCIMALL, $\mathscr{V}(L)$ is the class of residuated lattices validating all theorems of L.

A class 𝒴 of algebras has the amalgamation property if for any A, B, C ∈ 𝒴 with embeddings

$$f_1: \mathbf{A} \longrightarrow \mathbf{B} \qquad f_2: \mathbf{A} \longrightarrow \mathbf{C},$$

there are $D \in \mathscr{V}$ and embeddings

$$g_1: \mathbf{B} \longrightarrow \mathbf{D} \qquad g_2: \mathbf{C} \longrightarrow \mathbf{D}$$

such that $g_1 \circ f_1 = g_2 \circ f_2$.

A class 𝒱 of algebras has the amalgamation property if for any A, B, C ∈ 𝒱 with embeddings

$$f_1: \mathbf{A} \longrightarrow \mathbf{B} \qquad f_2: \mathbf{A} \longrightarrow \mathbf{C},$$

there are $D \in \mathscr{V}$ and embeddings

$$g_1: \mathbf{B} \longrightarrow \mathbf{D} \qquad g_2: \mathbf{C} \longrightarrow \mathbf{D}$$

such that $g_1 \circ f_1 = g_2 \circ f_2$.

I would call it Sutoku-in property.

Theorem (Maximova): For any superintuitionstic logic L,

L admits interpolation $\iff \mathscr{V}(L)$ admits amalgamation

Extended for logics over IMALL by Wroński, Kowalski, Galatos-Ono, etc.

- Usually proved by a chain of arguments ...
- Why are they equivalent?
- Phase semantics gives a uniform account (for some special cases)

Phase space for interpolation

• $\Gamma \Rightarrow_M C$ (Γ macharaly implies C) iff for any partition Γ_1 ; $\Gamma_2 = \Gamma$ such that $\Gamma_1 \in \mathscr{F}^*(X)$ and $\Gamma_2, A \in \mathscr{F}^*(Y)$, there is $I \in \mathscr{F}(X \cap Y)$ such that

$$\Gamma_1 \Rightarrow I \text{ and } I, \Gamma_2 \Rightarrow A.$$

The same holds with *X* and *Y* exchanged.

• Build a phase space (\mathscr{F}^*, Cl) based on:

 $\llbracket \Gamma \Rightarrow C \rrbracket = \{ \Sigma \mid \Sigma, \Gamma \Rightarrow_M C \text{ holds in ILL} \}$

Phase space for interpolation

Define
$$\alpha^{\bullet} = [\![\alpha]\!]$$

- Main Lemma: $A^{\bullet} = [[A]]$ for all formula A
- Corollary: If $A \Rightarrow B$ is provable, then there is an interpolant *I* such that $A \Rightarrow I$ and $I \Rightarrow B$.

 $\begin{array}{cccc} A \Rightarrow B & \stackrel{\text{sound}}{\longrightarrow} & \mid = A \Rightarrow B & \mid = A \Rightarrow B & \stackrel{\text{complete}}{\longrightarrow} & A \Rightarrow_M B \\ & A \Rightarrow B & \longrightarrow & A \Rightarrow_M B \end{array}$

Phase space for amalgamation

- $\blacksquare \quad \text{We assume } \mathbf{A} = \mathbf{B} \cap \mathbf{C}$
- Consider $((B \cup C)^*, \circ, \varepsilon)$, the free commutative monoid generated by $B \cup C$.
- Given $d \in B \cup C$, define $[[d]] \subseteq (B \cup C)^*$ by: $t \in [[d]]$ holds \iff
 - 1. if $d \in B$, then for any partition $t_1 \circ t_2 = t$ with $t_1 \in C^*$ and $t_2 \in B^*$, there is $i \in A$ such that

$$t_1 \leq_{\mathbf{C}} i \qquad i \cdot t_2 \leq_{\mathbf{B}} d.$$

2. The same holds with *B* and *C* exchanged.

Phase space for amalgamation

We have

$$\begin{bmatrix} & \\ \end{bmatrix} : \mathbf{B} \longrightarrow \mathbf{D} = ((B \cup C)^*, Cl)$$
$$\begin{bmatrix} & \\ \end{bmatrix} : \mathbf{C} \longrightarrow \mathbf{D}$$

- The $g_1 \circ f_1 = g_2 \circ f_2$ requirement trivially holds.
- Main Lemma: [[]] is an embedding.

Polarity

- Positive and negative connectives have nice characterizations in terms of phase semantics.
- **Positive connectives** $1, 0, \otimes, \oplus$ propagate closure operator:

$$\begin{array}{rcl} X^{\perp \perp} \bullet Y^{\perp \perp} &\subseteq & (X \bullet Y)^{\perp \perp} &= & X \otimes Y \\ \\ X^{\perp \perp} \cup Y^{\perp \perp} &\subseteq & (X \cup Y)^{\perp \perp} &= & X \oplus Y \\ \\ & \{1\} &\subseteq & \{1\}^{\perp \perp} &= & \mathbf{1} \\ & \emptyset &\subseteq & \emptyset^{\perp \perp} &= & \mathbf{0} \end{array}$$

■ Negative connectives $\top, \bot, \&, \Im$ distribute closure operator:

$$\begin{array}{rccc} (X \cap Y)^{\perp \perp} & \subseteq & X^{\perp \perp} \cap Y^{\perp \perp} \\ & \top^{\perp \perp} & \subseteq & \top \end{array}$$

Time Table

- Motivation (17.10 -)
- LL vs. Intuitionistic LL (17.17 -)
- Decidability and Finite Model Property (17.27 -)
- Cut Elimination (17.35 -)
- Criteria for Cut-Elimination (17.45 -)
- Interpolation and Amalgamation (17.52 -)
- Polarity and Focalization (18.00 -)
- Conclusion (18.10)

Invertibility and Focalization

- Invertibility and Focalization can be stated as phase semantic propertiles.
- Invertibility: negative connectives do not need closure operator:

$$(X \cap Y)^{\perp \perp} = X \cap Y$$

if *X*,*Y* are closed.

Focalization: closure operator between two positive connectives can be omitted:

$$X \otimes (Y \oplus Z) = (X \bullet (Y \cup Z)^{\perp \perp})^{\perp \perp} = (X \bullet (Y \cup Z))^{\perp \perp}$$

Question: Do they have applications to syntax?

Phase space for focalization

Build a phase space (\mathscr{F}_+^*, Cl) based on:

 $[\![\Gamma]\!] = \{\Sigma \mid \vdash \Sigma, \Gamma \text{ has a cut-free focusing proof in MALL}\}\$

- **Define** $\alpha^{\bullet} = [\![\alpha]\!].$
- Main Lemma: $A^{\bullet} \subseteq [[A]]$ for any formula A.
- Crucial use of phase-semantic focalization property!
- Corollary: Every provable formula in MALL has a focusing proof.

$$\begin{array}{ccc} \underset{A}{\vdash} A \xrightarrow{\text{sound}} & \underset{A}{\vdash} A \xrightarrow{\text{complete}} & \underset{focusing}{\vdash} A \xrightarrow{\text{complete}} & \\ \hline & & \vdash_{A} \xrightarrow{} & \vdash_{focusing} A \end{array}$$

Conclusion

- Phase semantics gives simplified accounts for: LL vs ILL, Decidability, Cut Elimination, Positive vs Negative
- By considering various condition sets [], one can uniformly prove various properties.
 - $[[A]] = \{\Sigma \mid \Sigma \Rightarrow A \text{ is cut-free provable in ILL} \}$ for C.-E.
 - $[[A]] = \{\Sigma \mid \Sigma \Rightarrow_M A \text{ holds in ILL}\}$ for Interpolation
 - $[[d]] = \{t \mid t \ge_M d \text{ holds for } \mathbf{B}, \mathbf{C}\}$ for Amalgamation
 - $[[A]] = \{\Sigma \mid \vdash \Sigma, A \text{ has a cut-free focusing proof}\}$ for Foc.
- Export to universal algebra
- By extending the above argument to denotational phase spaces (Girard, Streicher), one would be able to prove similar properties for denotational semantics.