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What is phase semantics?

A semantics complete for provability in Linear Logic (LL)

Both for classical LL (Girard 87) and intuitionistic LL (Abrusci

90, Troelstra 92, Okada 96, etc.)

Can be accommodated for all FL-systems (Ono 94)

Sometimes considered as “abstract nonsense” (Girard) in the

LL community

Today we overview some uses of phase semantics.
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Why study phase semantics? (1)

Phase semantics is

A useful tool to show various properties.

Source of inspiration.

Simple accounts for various phenomena.
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Why study phase semantics? (1)

- Semantic cut-elimination (Okada 96)

- Undecidability of MALL2 (Lafont 96)

- Decidability of LL/ILL with weakening/contraction via finite

model property (Lafont 96, Okada-Terui 99)

- Denotational completeness (Girard 98, Streicher ??, Ehrhard

??)

- Verification of concurrent constraint programs (Fages, Ruet,

Soliman 98)

- Criteria for Cut-Elimination (Terui 07, Ciabattoni-Terui 06, 07)

- Interpolation/Amalgamation (Terui)

- Focalization
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Why study phase semantics? (2)

It models not only provability, but also counter-proofs.

Counter-proofs: possibly infinite trees, defined dually to

proofs, not reaching axioms. E.g.,

� α �β�

� α & β �β� � α �β�

� �α & β ��α �β�

� �α & β ��α �α�& β�
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Why study phase semantics? (3)

Fact: Any formula has either a proof or a counter-proof.

Theorem (Terui 98): To each counter-proof π of a formula A,

one can associate a phase model π� such that π� ��� A.

Proofs dual

�� Counter-proofs

� �
Denotations ?

�� Phase models
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Why study phase semantics? (4)

Similar to classical logic proofs, from the viewpoint of

computational complexity.

Classical logic provability: coNP-complete (Cook 71).

MLL provability: NP-complete (Kanovitch 92).

Syntax-semantics twist between CL and MLL:

Classical logic MLL

Proofs � Phase models

Boolean valuations � Proofs
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Intuitionistic LL is almost classical

Intuitionistic connectives: 1�	�
�0����Æ���&� !

Conservativity Theorem (Schellinx 91): A propositional

formula A of ILL without 0 and 	 is provable in ILL iff it is

provable in LL.

Should be contrasted with the CL/IL case. CL and IL are

different even without negation and absurdity:

CL � ��α  β � α� α ��� IL

Syntactically, LL and ILL are almost equivalent. However,

semantically, they look so different...
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Phase semantics for LL

Classical phase space: �M�	� such that

- M: a commutative monoid

- 	�M.

X� � �y �M � �x � X�xy � 	��

X �M is closed if X�� � X .

Properties of � � ���:

(	 1) X � X��,

(	 2) X���� � X��,

(	 3) X � Y �� X�� � Y��,

(	 4) X�� �Y�� � �X �Y ���.
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ILL

What is ILL?

Syntax suggests it is a restriction of LL.

Phase semantics seems to suggest it is a generalization of LL.
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Phase semantics for ILL (1)

Intuitionistic phase space: �M�Cl� such that

- M: a commutative monoid

- Cl :��M����M� (closure operator):

(Cl1) X �Cl�X�,

(Cl2) Cl�Cl�X���Cl�X�,

(Cl3) X � Y ��Cl�X��Cl�Y �,

(Cl4) Cl�X��Cl�Y ��Cl�X �Y �.

X �M is closed if Cl�X� � X .
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Phase semantics for ILL (2)

Intuitionistic phase model: intuitionistic phase space �M�Cl�

with a valuation of atoms and 	 into the set of closed sets.

Formulas interpreted by closed sets:

1� � Cl��1�� 0� � Cl� /0�


� � M 	� � prescribed by valuation

�A�B�� � Cl�A� �B��

�A�B�� � Cl�A��B��

�A&B�� � A��B�

�A�ÆB�� � �y �M � �x � A��xy � B���

�!A�� � Cl�A��x � 1 � xx � x��
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Phase semantics for ILL (3)

A formula A is satisfied in �M�Cl��� if 1 � A�.

Completeness Theorem: A formula of ILL is provable iff it is

satisfied in every intuitionistic phase model.

Trouble: Intuitionistic phase semantics requires of a

second-order closure operator even for propositional ILL!
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Concrete closure operators

(Abrusci 90): For some presupposed set � ���M�,

Cl�X� �

�

Y��
�X�ÆY ��ÆY�

(Okada 96): For some set � ���M� closed under

intersection and implication,

Cl�X� �

�

Y�� �X�Y

Y�

Again second-order!

Question: Is it possible to give a first-order definition to

intuitionistic phase semantics?
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Subspaces

�MI �Cl� is a subspace of a classical phase space �MC�	� if

MI � MC

Cl�X� � X���MI � for X �MI .

Theorem: Every subspace of a classical phase space is an

intuitionistic phase space.

Proof:

X�� �Y�� � �X �Y ���

MI �MI � MI

�X���MI�� �Y

���M� � �X �Y ����M

Question: What about the converse?
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Subspaces

Theorem: Every intuitionistic phase space is a subspace of a

classical phase space.

Proof: Given �M�Cl�, define �MC�	� by:

MC � ��x�Φ� � x �M� Φ : a multiset of Cl-closed sets�

�x�Φ� � �y�Ψ� � �x � y�Φ�Ψ�

0C � ��x�Φ� � x � 0�Φ : arbitrary�

	 � ��x��X�� � X : closed set in �M�Cl�� x � X��0C

Original �M�Cl� is identified with ��x� /0� � x �M� �MC.

Remark: In general, MC is uncountable. However, it can be

made countable when the original �M�Cl� has a countable

basis.
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Syntactic embedding of ILL into LL (1)

Recall Schellinx’ Theorem: A propositional formula A of ILL

without 0 and 	 is provable in ILL iff it is provable in LL.

It fails in the presence of 0 or 	:

LL � α���Æα ��� ILL

LL � �
�Æ1��Æα00�Æα ��� ILL

We need to translate ILL formulas into LL formulas.

Idea: ILL is a “submonoid-restriction” of LL.
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Syntactic embedding of ILL into LL (2)

Fix a propositional variable M. Define

Monoid�M��!�1�ÆM��!�M�M�ÆM�

Lemma: � � �&M is an S4-modality for LL.
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Syntactic embedding of ILL into LL (2)

Define an embedding Æ : ILL� LL:

qÆ :� q&M� for a propositional variable q

cÆ :� c&M� for c � �
�	�

dÆ :� d� for d � �1�0�

�A�ÆB�Æ :� �AÆ�ÆBÆ�&M

�A�B�Æ :� AÆ �BÆ� for � � ���&���

�!A�Æ :� !AÆ�
Theorem: A is provable in ILL iff Monoid�M��ÆAÆ is provable

in LL.

Remark: Linear analogue of Gödel’s translation of IL into S4.

However, our modality � � �&M is definable in terms of LL
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Morals

Intuitionistic phase spaces = subspaces of classical phase

spaces

Reduction of second-order to first-order

ILL is a submonoid restriction of LL, both semantically and

syntactically.
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Decidability and FMP

MALL is decidable, since proof search trees are always finite.

MALL also satisfies the finite model property (FMP).

Idea: To each finite counter-proof π of a formula A, one can

associate a finite phase model π� such that π� ��� A.

LL is undecidable, since proof search encodes machine

computation (Kanovitch, Lafont).
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Quiz

What about the decidability/FMP of:

1. LL + W?

2. LL + C?

3. LL + W + C?

4. LL – E?

5. LL – E + W?

6. LL – E + C?

7. LL – E + W + C?
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Answers

What about the decidability/FMP of:

1. LL + W? yes (Kopylov)

2. LL + C? yes (Okada-Terui)

3. LL + W + C? yes (=IS4)

4. LL – E? yes (Lafont)

5. LL – E + W? yes (Lafont)

6. LL – E + C? open

7. LL – E + W + C? yes (=IS4)

Except 6, phase semantics provides a simple, unified proof.
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Decidability of LL +C

(Kripke’s argument) Define a partial order � on sequents:

� Γ�Σ � � Γ�Σ�Σ

Design a sequent calculus for LL+C such that:

If S1 � S2 and S2 has a proof, then S1 has a shorter (or

equivalent length) proof.

� Γ�Σ��A�B��A � Δ�Σ��A�B��B

� Γ�Δ�Σ�A�B

Observe: � admits no infinite anti-chain

S1 �� S2 �� S3 �� � � �

Proof search tree is finite!
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Phase semantics for decidability

Phase spaces admit quotientation by logical congruence

(Lafont)

Syntactic model
(validity = provability)

Quotientation

��

Finite model
(validity = provability)

Decidability/FMP of MALL –E + C is still open.
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Phase semantics for cut-elimination

(Okada 92,96) builds an (intuitionistic) phase space in which

validity implies cut-free provability.

� � : free monoid generated by the formulas � of ILL

The closure operator Cl :℘�� ���℘�� �� defined by:

��Γ�C�� � �Σ � Σ�Γ�C is cut-free provable in ILL��

Y is closed � Y �
�

i�Λ
��Γi �Ci��

Cl�X� � the minimal closed set that includes X
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Phase semantics for cut-elimination

Meaning of closure operator:

Σ �Cl��Λ����

Whenever Γ�Λ�Δ�C is cut-free derivable, so is

Γ�Σ�Δ�C.
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Phase semantics for cut-elimination

Define α� � ��α ��.

Okada’s Lemma: For every formula A,

A � A� � ��A���
In particular, if A is satisfied, then

1 � A� � ��A���

I.e., � A is cut-free provable.

Use left logical rules to show A � A�.

Use right logical rules to show A� � ��A��.
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Phase semantics for cut-elimination

Cut-elimination theorem: obtained by composition with

soundness:

� A
sound

� �� A �� A
complete

� �cut� f ree A

� A � �cut� f ree A

Object-CUTs are replaced with META-CUTs.

Question: what happens if we eliminate META-CUTs?
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Algebraic perspective on cut-elimination

Residuated lattices: algebras associated to (noncommutative)

IMALL.

One can consider its intransitive variant.

Algebraic understanding of cut-elimination: For any

intransitive residuated lattice A, there exists a (transitive)

residuated lattice A� and a surjective homomorphism

f : A� � A

Intuition:
A � cut-free proof system

A� � Okada’s phase space

Cut-Elimination = Algebraic Completion
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When do you have cut-elimination?

Cut-elimination holds when ILL is entended with a natural

structural rule:

Contraction: A�ÆA�A

It fails when extended with an unnatural one:

Broccoli: A�A�ÆA
A�Γ�C

A�A�Γ�C

Broccoli is equivalent to Mingle: A�B�ÆA�B, which admits

cut-elimination:

Γ�Σ1�Δ�C Γ�Σ2�Δ�C
Γ�Σ1�Σ2�Δ�C

What is the general principle?
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Broccoli and Mingle

Broccoli does not admit cut elimination:

β � β
β � α �β

α � α
α � α �β

α �β � α �β
α �β �α �β � α �β

Exp

α�α �β � α �β
Cut

α�β � α �β
Cut

When Broccoli is replaced with Mingle, the above cut can be

eliminated:

α � α
α � α �β

β � β
β � α �β

α�β � α �β
Min
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Girard’s test

Girard’s test for naturality of structural rules ( Meaning I, 1999).

- A logical principle (structural rule) passes Girard’s test if,

in every phase space �M�	�, it propagates from atomic

facts �x��� to all facts X��.

Contraction and Mingle pass it:

�x �M� �x����Æ�x � x��� �� �X : fact �X�ÆX�X��

Broccoli fails:

�x �M� �x � x����Æ�x��� ��� �X : fact �X�X�ÆX��

Relationship with cut elimination is hinted, but not proved.
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Structural rules in general

(Additive) structural rules:

Γ��X1�Δ�C � � � Γ��Xn�Δ�C

Γ��X0�Δ�C
R

such that ��X1� � � � ��Xn� � ��X0�.
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Correctness of Girard’s test

Cut elimination implies Girard’s test.

Build a phase space P�R� � �� ��Cl� based on:

��Γ�C�� � �Σ � Σ�Γ�C is cut-free provable in ILL+R�

R holds on atomic facts Cl��A��.

We want to argue

� A
sound

� MODEL�ILL�R� �� A P�R� �� A
complete

� �cut� f ree A
� A � �cut� f ree A

It works only when P�R� �MODEL�ILL�R�, i.e. R passes

Girard’s test.
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Correctness of Girard’s test

Theorem: For any structural rule R, IMALL+R admits

cut-elimination iff R passes Girard’s test.

See (Terui 07) for more general results.

(Ciabattoni-Terui 06) gives CE-criteria for logics with arbitrary

(strange) connectives.
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Intermezzo: 短歌

瀬をはやみ　岩にせかるる　滝川の

　われてもすえに　あはんとぞおもふ

祟徳院 (1119 – 1164)
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Intermezzo: 短歌

瀬をはやみ　岩にせかるる　滝川の

　われてもすえに　あはんとぞおもふ

祟徳院 (1119 – 1164)

The stream goes down a mountain rapidly
Even if it runs into a rock
And is forced to divide into two
They will join together in the end.

Sutoku-in (1119 – 1164)
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Interporation and Amalgamation

� �X�: formulas over variables α �β � � � � � X .

Craig interpolation property: Suppose A �� �X� and

B �� �Y �. If A�ÆB is provable, then there is I �� �X �Y � such

that

A�Æ I I�ÆB

are provable.

True for most natural logics including LL and ILL.

Open for NCILL.
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Residuated lattices

A residuated lattice is an algebra

P � �P����������1�
where

1. �P����� is a lattice.

2. �P���1� is a monoid.

3. For any x�y�z � P,

x� y� z �� x� z y �� y� x� z�

NCIMALL : Residuated lattices = IL : Heyting algebras

For any substructural logic L over NCIMALL, � �L� is the class

of residuated lattices validating all theorems of L.
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Interporation and Amalgamation

A class � of algebras has the amalgamation property if for

any A�B�C � � with embeddings

f1 : A� B f2 : A� C�

there are D � � and embeddings

g1 : B� D g2 : C� D

such that g1 Æ f1 � g2 Æ f2.
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Interporation and Amalgamation

A class � of algebras has the amalgamation property if for

any A�B�C � � with embeddings

f1 : A� B f2 : A� C�

there are D � � and embeddings

g1 : B� D g2 : C� D

such that g1 Æ f1 � g2 Æ f2.

I would call it Sutoku-in property.
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Interporation and Amalgamation

Theorem (Maximova): For any superintuitionstic logic L,

L admits interpolation �� � �L� admits amalgamation

Extended for logics over IMALL by Wroński, Kowalski,

Galatos-Ono, etc.
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Interporation and Amalgamation

Usually proved by a chain of arguments ...

Why are they equivalent?

Phase semantics gives a uniform account (for some special

cases)
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Phase space for interpolation

Γ�M C (Γ maeharaly implies C) iff

for any partition Γ1;Γ2 � Γ such that Γ1 ��
��X� and

Γ2�A �� ��Y �, there is I �� �X �Y � such that

Γ1 � I and I�Γ2 � A�

The same holds with X and Y exchanged.

Build a phase space �� ��Cl� based on:

��Γ�C�� � �Σ � Σ�Γ�M C holds in ILL�
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Phase space for interpolation

Define α� � ��α ��

Main Lemma: A� � ��A�� for all formula A

Corollary: If A� B is provable, then there is an interpolant I

such that A� I and I � B.

A� B
sound

� �� A� B �� A� B
complete

� A�M B
A� B � A�M B
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Phase space for amalgamation

We assume A � B�C

Consider ��B�C���Æ�ε�, the free commutative monoid

generated by B�C.

Given d � B�C, define ��d��� �B�C�� by:

t � ��d�� holds ��

1. if d � B, then for any partition t1 Æ t2 � t

with t1 �C� and t2 � B�, there is i � A such that

t1 �C i i � t2 �B d�

2. The same holds with B and C exchanged.
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Phase space for amalgamation

We have

�� �� : B� D � ��B�C���Cl�

�� �� : C� D

The g1 Æ f1 � g2 Æ f2 requirement trivially holds.

Main Lemma: �� �� is an embedding.
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Polarity

Positive and negative connectives have nice characterizations

in terms of phase semantics.

Positive connectives 1�0���� propagate closure operator:

X�� �Y�� � �X �Y ��� � X�Y

X���Y�� � �X �Y ��� � X�Y

�1� � �1��� � 1

/0 � /0�� � 0

Negative connectives 
�	�&�

.............................................
...........

....................................... distribute closure operator:

�X �Y ��� � X���Y��


�� � 
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Invertibility and Focalization

Invertibility and Focalization can be stated as phase semantic

propertiies.

Invertibility: negative connectives do not need closure

operator:

�X �Y ��� � X �Y

if X �Y are closed.

Focalization: closure operator between two positive

connectives can be omitted:

X� �Y �Z� � �X � �Y �Z������ � �X � �Y �Z����

Question: Do they have applications to syntax?
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Phase space for focalization

Build a phase space �� �
�

�Cl� based on:

��Γ�� � �Σ � � Σ�Γ has a cut-free focusing proof in MALL�

Define α� � ��α ��.

Main Lemma: A� � ��A�� for any formula A.

Crucial use of phase-semantic focalization property!

Corollary: Every provable formula in MALL has a focusing

proof.

� A
sound

� �� A �� A
complete

� � f ocusing A
� A � � f ocusing A
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Conclusion

Phase semantics gives simplified accounts for:

LL vs ILL, Decidability, Cut Elimination, Positive vs Negative

By considering various condition sets �� ��, one can uniformly

prove various properties.

��A�� � �Σ � Σ� A is cut-free provable in ILL� for C.-E.

��A�� � �Σ � Σ�M A holds in ILL� for Interpolation

��d�� � �t � t  M d holds for B�C� for Amalgamation

��A�� � �Σ � � Σ�A has a cut-free focusing proof� for Foc.

Export to universal algebra

By extending the above argument to denotational phase

spaces (Girard, Streicher), one would be able to prove similar

properties for denotational semantics.
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