On space efficiency of Krivine's abstract machine and Hyland-Ong games

Kazushige Terui

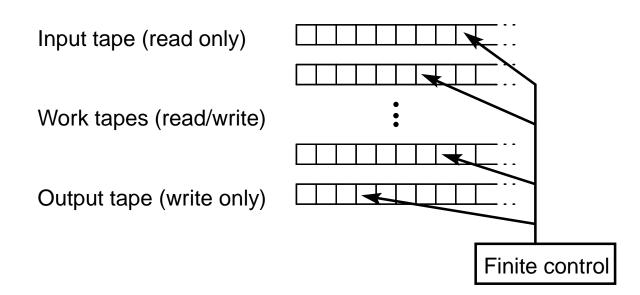
terui@nii.ac.jp

National Institute of Informatics, Tokyo Laboratoire d'Informatics de Paris Nord, CNRS

ICC

- Intensional Computational Complexity (ICC)
 - **algorithms** (eg. λ terms)
 - evaluation mechanisms (eg. β -reduction)

Space sensitive Turing machines



- Space = the num of cells used on worktapes.
- The input and output can be significantly larger than the space: If *M* works in space f(n) then the output is of size $O(2^{f(n)})$.
- Given two Turing machines M, N, we want to compose them. How?

Space sensitive Turing machines

- Functional composition is not good: If M, N work in space f(n), g(n), then M; N works in space $O(f(n) + g(2^{f(n)}) + 2^{f(n)}).$
- In particular, logspace functions do not compose.
- Composition must be interactive: $M \rightleftharpoons N$ works in $O(f(n) + g(2^{f(n)})).$
- From functional to interactive computation!

Towards a logical theory of computational complexity

- Shortcomings of Turing Machines:
 - Poor data structures (only tapes)
 - Poor control mechanisms (only transitions)
 - Ad hoc constructions: no canonical way of composition
 - Results in lack of beautiful mathematical theory
- Logic and lambda calculus
 - Rich data structures and controls
 - Canonical composition $T \circ U = \lambda x . T(U(x))$
 - Hope to make complexity theory more mathematical

Space in lambda calculus

- Composition does not preserve good space bounds when using β -reduction, because β -reduction is not interactive!
- Interactive evaluation mechanisms
 - Geometry of Interaction
 - Krivine's abstract machine (KAM)
 - Game semantics

KAM

KAM implements weak head linear reduction:

$$(\lambda \cdots \lambda x \cdots . x \vec{U}) \cdots T \cdots \implies (\lambda \cdots \lambda x \cdots . T \vec{U}) \cdots T \cdots$$

Gol with "jumps" under A ⇒ B =!(A → B) (Danos-Regnier 94)
 Syntax:

Terms $t ::= x | \lambda x.t_1 | t_1 t_2$ Environments $\rho ::= [x_1 \mapsto t_1 \rho_1, \ldots, x_n \mapsto t_n \rho_n]$ Closures $t\rho$ Stacks $\pi ::= t_1 \rho_1 : \cdots : t_n \rho_n$ States $S ::= (t\rho, \pi)$

KAM

- **•** Initial state: (t[], nil)
- Transitions

$$\begin{aligned} & (x\rho, \ \pi) & \longrightarrow \ (\rho(x), \ \pi) & \text{if } x \in Dom(\rho) \\ & ((tu)\rho, \ \pi) & \longrightarrow \ (t\rho, \ u\rho : \pi) \\ & ((\lambda x.t)\rho, \ u\rho' : \pi) & \longrightarrow \ (t\rho[x \mapsto u\rho'], \ \pi) \end{aligned}$$

Terminations

 $(x\rho, \pi)$ with $x \notin Dom(\rho)$ —Success with output x $((\lambda x.t)\rho, \text{ nil})$ —Failure

• Not space efficient: ρ contains a lot of redundant bindings.

Optimized KAM

Optimized transitions

 $\rho|_t$ is a restriction of ρ to the free variables of t.

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $(\overline{2}Kc, \operatorname{nil})$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $(\overline{2}Kc, \text{ nil})$ $(\overline{2}K, c)$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $egin{aligned} & (\overline{2}Kc, \ {\sf nil}) \ & (\overline{2}K, \ c) \ & (\overline{2}, \ K:c) \end{aligned}$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $(\overline{2}Kc, \text{ nil})$ $(\overline{2}K, c)$ $(\overline{2}, K : c)$ $(\lambda x.f(fx)[f \mapsto K], c)$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $\begin{array}{l} \left(\overline{2}Kc, \ \mathsf{nil}\right) \\ \left(\overline{2}K, \ c\right) \\ \left(\overline{2}, \ K:c\right) \\ \left(\overline{2}, \ K:c\right) \\ \left(\lambda x.f(fx)[f\mapsto K], \ c\right) \\ \left(f(fx)[f\mapsto K, x\mapsto c], \ \mathsf{nil}\right) \end{array}$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $\begin{array}{l} \left(\overline{2}Kc, \ \mathsf{nil}\right) \\ \left(\overline{2}K, \ c\right) \\ \left(\overline{2}, \ K:c\right) \\ \left(\overline{2}, \ K:c\right) \\ \left(\lambda x.f(fx)[f\mapsto K], \ c\right) \\ \left(f(fx)[f\mapsto K, x\mapsto c], \ \mathsf{nil}\right) \\ \left(f[f\mapsto K], \ fx[f\mapsto K, x\mapsto c]\right) \end{array}$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $\begin{aligned} &(\overline{2}Kc, \text{ nil}) \\ &(\overline{2}K, c) \\ &(\overline{2}, K:c) \\ &(\lambda x.f(fx)[f\mapsto K], c) \\ &(f(fx)[f\mapsto K, x\mapsto c], \text{ nil}) \\ &(f[f \mapsto K], fx[f\mapsto K, x\mapsto c]) \\ &(K, fx[f\mapsto K, x\mapsto c]) \end{aligned}$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $\begin{array}{l} (\overline{2}Kc, \ \mathsf{nil}) \\ (\overline{2}K, \ c) \\ (\overline{2}, \ K: c) \\ (\lambda x.f(fx)[f \mapsto K], \ c) \\ (f(fx)[f \mapsto K, x \mapsto c], \ \mathsf{nil}) \\ (f[f \mapsto K], \ fx[f \mapsto K, x \mapsto c]) \\ (K, \ fx[f \mapsto K, x \mapsto c]) \\ (\lambda z.z, \ fx[f \mapsto K, x \mapsto c]) \end{array}$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $(\overline{2}Kc, \text{ nil})$ $(\overline{2}K, c)$ $(\overline{2}, K:c)$ $(\lambda x.f(fx)[f\mapsto K], c)$ $(f(fx)[f \mapsto K, x \mapsto c], \text{ nil})$ $(\mathbf{f}[f \mapsto K], fx[f \mapsto K, x \mapsto c])$ $(K, fx[f \mapsto K, x \mapsto c])$ $(\lambda z.z, fx[f \mapsto K, x \mapsto c])$ $(fx[f \mapsto K, x \mapsto c], \text{ nil})$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $(\overline{2}Kc, \text{ nil})$ $(\overline{2}K, c)$ $(\overline{2}, K:c)$ $(\lambda x.f(fx)[f\mapsto K], c)$ $(f(fx)[f \mapsto K, x \mapsto c], \text{ nil})$ $(\mathbf{f}[f \mapsto K], fx[f \mapsto K, x \mapsto c])$ $(K, fx[f \mapsto K, x \mapsto c])$ $(\lambda z.z, fx[f \mapsto K, x \mapsto c])$ $(fx[f \mapsto K, x \mapsto c], \text{ nil})$ $(\mathbf{f}[f \mapsto K], c)$

Suppose $(K[], \operatorname{nil}) \longrightarrow^* (\lambda z.z, \operatorname{nil}), \overline{2} = \lambda f x. f(fx).$

 $(\overline{2}Kc, \text{ nil})$ $(\overline{2}K, c)$ $(\overline{2}, K:c)$ $(\lambda x.f(fx)[f\mapsto K], c)$ $(f(fx)[f \mapsto K, x \mapsto c], \text{ nil})$ $(\mathbf{f}[f \mapsto K], fx[f \mapsto K, x \mapsto c])$ $(K, fx[f \mapsto K, x \mapsto c])$ $(\lambda z.z, fx[f \mapsto K, x \mapsto c])$ $(fx[f \mapsto K, x \mapsto c], \text{ nil})$ $(\mathbf{f}[\mathbf{f} \mapsto K], c)$

(K, c)

Size of a state

- Subterm property: if $(t[], nil) \rightarrow^* S$, all terms occurring in S are subterms of t.
- Allows us to think of each state as made of pointers rather than actual terms.
- **•** $\ddagger S$ = the number of pointers in S:

- In particular, $\sharp(t[], nil) = 1$.
- ✓ KAM evaluates t with n pointers if for any intermediate state $(t[], nil) \longrightarrow^* S, \quad \sharp S \leq n.$

TM space-efficiently simulates KAM

- Naively, TM requires of log *n* overhead to simulate KAM: if KAM evaluates *t* with *n* pointers, then M(t) works in space $O(n \cdot \log |t|)$.
- We are interested in terms td, where t (program) is fixed while d (input) is varying.
- Consider a huge alphabet

$$\Sigma = \{u \mid u \text{ is a subterm occ. of } t\} \cup \{0, 1\}$$

TM space-efficiently simulates KAM

- t satisfies the input condition if in any intermediate state $(td[], nil) \longrightarrow^* S$, the number of pointers pointing subterms of d is constant (independent of d).
- Analogy: the num of heads on input tape is fixed.
- Theorem: There is a TM *M* which simulates KAM linearly: if KAM evaluates *td* with f(|d|) pointers, *t* satisfies the input condition and $f(x) \ge \log x$, then M(t) works in space O(f(|d|)).

Data structures

- **Booleans:** $\mathbf{t} = \lambda x y . x$, $\mathbf{f} = \lambda x y . y$
- Scott numerals: w for $w \in \{0,1\}^*$

 $\varepsilon = \lambda x_{\varepsilon} x_0 x_1 . x_{\varepsilon}$ $\mathbf{0} \cdot \mathbf{w} = \lambda x_{\varepsilon} x_0 x_1 . x_0 \mathbf{w}$ $\mathbf{1} \cdot \mathbf{w} = \lambda x_{\varepsilon} x_0 x_1 . x_1 \mathbf{w}$

- Purely linear. Successor, predecessor and conditional are also linear. Useful for worktapes.
- What are read-only/write-only tapes?
- They should be interactive entities (analogy: Book vs Dialogue)

Data structures

 Databases: For $d \in \{0,1\}^{2^n}$, define a term d : Word → Bool s.t. Given $w \in \{0,1\}^n$, dw returns the wth bit of d.

$$\mathbf{d} = \lambda w.w \mathbf{i} \Omega \Omega \quad \text{if } d = i \in \{0, 1\}$$
$$= \lambda w.w \Omega \mathbf{d}_0 \mathbf{d}_1 \quad \text{if } d_1 = i_{2^n} \cdots i_{2^{n-1}+1},$$
$$d_0 = i_{2^{n-1}} \cdots i_1, d = d_1 d_0$$

KAM space-efficiently simulates TM

• Theorem: For any TM M, there is a term t_M s.t.

- Given $d \in \{0,1\}^*$, $t_M \mathbf{d} *_0 *_1$ returns $*_0$ or $*_1$ according to the output of M(d).
- When M works in space $f(n) \ge \log n$, KAM evaluates $t_M \mathbf{d} *_0 *_1$ with O(f(n)) pointers.
- Now the space hierarchy theorem implies

There is no TM *M* that evaluates $t_M d$ in space $O(f(n)^{\epsilon})$ with $\epsilon < 1$.

Corollary: There is no evaluator that is uniformly (i.e. for all terms) and significantly (i.e. super-linearly) more space-efficient than KAM.

Composition

• Let M, N be transducer TMs which work in space f(n), g(n)and produce outputs of size $2^{f(n)}$ and $2^{g(n)}$.

 $t_{M} : (Word \to Bool) \longrightarrow (Word \to Bool)$ $t_{N} : (Word \to Bool) \longrightarrow (Word \to Bool)$ $t_{M} \circ t_{N} : (Word \to Bool) \longrightarrow (Word \to Bool)$

- $(t_N \circ t_M) \mathbf{dw} *_0 *_1$ returns the *w*th bit of $N \circ M(d)$.
- Solution KAM evaluates it with O(f(|d|) + g(|d'|)) pointers, where d' is the output of M(d).
- KAM + canonical composition simulates the interactive composition of TMs!

Moral

	Turing Machines	λ -calculus
Composition	non canonical	canonical
Evaluation	canonical	non canonical

- In λ -calculus, TIME-SPACE tradeoff shows up at the stage of evaluation:
 - KAM is space-efficient
 - CBV seems to be time-efficient (cf. Dal Lago-Martini).
- Work to be done: identify a subclass of λ-terms (via a type system) on which space bounds are well preserved by KAM composition.

Warning

- There is no uniformly more efficient evaluator than KAM.
- KAM is like a student Bob with score

Math	Science	Grammer	Latin	Music
1	1	1	1	10

Although there is no uniformly better student than Bob, this does not mean Bob is the best student.

From KAM to HO games

Empirically, KAM is good at "tall" terms:

$$t_n = (\lambda f x. f^n(x))(\lambda y. y) *$$

KAM evaluates t_n with O(1) pointers.

KAM is not good at "wide" terms:

$$u_n = (\lambda x_1 \cdots \lambda x_n . x_n) *_1 \cdots *_n$$

KAM evaluates u_n with O(n) pointers.

For simply typed terms with unbounded width and fixed rank,
 HO games seem to be more efficient.

HO games

- A fully abstract model of PCF (Hyland-Ong 00). Successfully applied to various programming languages.
- Useful for compositional and higher-order model checking (Ghica-Mckusker 00, Ong 04, etc.)

Types	=	Arenas
Terms	=	Strategies
Computation	=	play

Play = interactive composition of two strategies

(

Composition is effective (cf. Ong 04). Corresponds to Pointer Abstract Machine (Danos-Herbelin-Regnier 96).

Ranks and complexity

- The rank of a type: $rank(\iota) = 0$,
 rank(A → B) = max(rank(A) + 1, rank(B))
- \checkmark A term is at rank *n* if all of its subterms have rank *n* types.

Rank	Quantative	Qualitative
1	boolean formulas	(open) addition
	$\neg b = \lambda x y. b^{\iota \to \iota \to \iota} y x$	
2	boolean circuits	multiplication
	$(\lambda x.F(x,\ldots,x))^{bool \to bool}G(y)$	$\overline{n}\circ\overline{m}$
3	QBFs $\forall x.F(x) =$	exponentiation
	$(\lambda X.X(0) \wedge X(1))^{(bool \to bool) \to bool} \lambda x.F(x)$	$(\overline{n})^{int \to int} \overline{m}$

Ranks and complexity

Normalization problem:

Given two terms t, u where u is normal, does t reduce to u?

- (Schubert 2001) shows that this problem is
 - 1. in $DTIME(n \log n)$ for rank 1 terms
 - 2. P-complete for rank 2 terms
 - 3. PSPACE-complete for rank 3 terms
- Hardness is easy. Membership is difficult, since β -reduction does not work.
- Schubert uses graph rewriting. We use HO games.

HO games for simple types

Arena for type A:

- P-moves = negative occurrences
- O-moves = positive occurrences
- Initial move = tail(A)

 $tail(B) \vdash tail(C)$ where C is an immediate subformula of B

Legal play: a PO-alternating pointing sequence like

$$s = m_0 m_1 \cdots m_j \cdots m_i \cdots$$

- m_0 is the initial O-move
- each m_i (1 ≤ i) is justified by a preceding move m_j ($m_j \vdash m_i$, 0 ≤ j < i).</p>

Let's play the game!

- P-view: a legal play in which any O-move is justfied by the move immediately before.
- Siven an arbitrary legal play s, a P-view $\lceil s \rceil$ can be extracted.
- Innocent strategy (as view function): a P-deterministic tree made of P-ending P-views.
- Every closed normal term t : A can be interpreted by an innocent strategy.
- **•** HO-dialogue: Given innocent strategies $\sigma : A \to B$ and $\tau : A$,
 - 1. Start with the initial move $m_0 = tail(B)$
 - 2. Expand an odd length play s to $s \cdot m$ such that $\lceil s \rceil \cdot m \in \sigma$
 - 3. Expand an even length play $m_0 \cdot s$ to $m_0 \cdot s \cdot m$ such that $\lceil s \rceil \cdot m \in \tau$

A lemma in game semantics

- Difficulty: HO game is history sensitive. But recording the whole history leads to TIME = SPACE.
- Lemma (taught by P. Boude): For any legal play satisfying Pand O-visibility

$$s = \cdots m_1 \cdots m_2 \cdots \cdots$$

if m_2 justifies no moves, it never happens that

$$s = \cdots m_1 \cdots m_2 \cdots \cdots$$

So one can safely contract s to

$$s' = \cdots m_1 m_2 \cdots$$

and continue the play.

Complexity of Rank 3 games

- Theorem: Given a term t at rank 3 (which is an applicative combination of closed normal terms), the length of play can be kepth within O(|t|).
- Corollary: One can determine the head variable of nf(t) in polynomial space via HO games.
- Work to be done: What about rank ≥ 4 ? Do we have a hierarchy result as in Kristiansen's talk?

Conclusion

- Lambda calculus admits a canonical composition $M \circ N$
- KAM is optimal for simulating TM.
- Composition works nicely with KAM.
- (KAM allows natural programming eg. boolean matrix closure)
- HO games seem to be good at least for rank bounded terms.
- Good understanding of game semantics leads to clever space management. Game semantics may implicitly explain complexity.